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Liebe Studentin, lieber Student,

wir freuen uns über Ihr Interesse für den Kurs Funktionalanalysis und wünschen Ihnen Erfolg
bei der Bearbeitung und Vergnügen beim Lernen.

Funktionalanalysis – was soll das sein? Schließlich haben Sie das gesamte bisherige Studium
hindurch reichlich viele Funktionen getroffen, ohne dass man auf die Idee kommen würde, ihnen
einen ganzen Kurs zu widmen. Nein, die Funktionalanalysis hat wenig mit allgemeinen Funk-
tionen zu tun, vielmehr ist sie die Lehre von den Funktionale – beziehungsweise ist sie als solche
entstanden. Funktionale sind wiederum auch keine allzu geheimnisvollen Objekte: Sie sind nichts
anderes als Abbildungen von Rn nach R, beziehungsweise ihre natürlichen Verallgemeinerungen
auf unendlichdimensionale Vektorräume. Fordert man darüber hinaus, dass sie eine geeignete Lin-
earitätsbedingung erfüllen, so werden Funktionale zu hoch interessanten mathematischen Objek-
ten mit erstaunlich vielen Anwendungen sowie bemerkenswerten subtilen Problematiken – lineare
Funktionale auf unendlichdimensionalen Vektorräumen müssen zum Beispiel nicht stetig sein, so
lang man bereit ist, das gängige axiomatische System um das Auswahlaxiom zu ergänzen!

Erstmals untersucht wurden Funktionale zu Beginn des 20. Jahrhunderts. Die Welt der Mathe-
matik war damals ein interessanter, widerspruchsreicher Ort: Viele Forscher (und leider nur sehr
wenige Forscherinnen) kämpften um die korrekte Gestaltung der Fundamente obwohl – oder ger-
ade weil? – sie gleichzeitig immer wieder auch viele Probleme instinktiv lösten, die erst viel
später akkurat untersucht, ja sogar genau formuliert werden konnten. Dies springt besonders ins
Auge wenn man bedenkt, dass viele Gruppen – etwa die Göttinger Schule um David Hilbert –
tiefe Resultate in der Analyse von Integralgleichungen erzielten, ohne jedoch über den Begriff
von unendlichdimensionalem Vektorraum oder von Norm zu verfügen.

Funktionalanalysis also als Fokussierung der klassischen Analysis auf lineare Abbildungen. Gle-
ichzeitig lässt sich die Funktionalanalysis aber auch als Disziplin beschreiben, in der die ana-
lytischen Eigenschaften der klassischen Objekte der linearen Algebra untersucht werden. Was
nämlich die Analysis von der linearen Algebra im Kern unterscheidet, ist die Möglichkeit – die in
allgemeinen Vektorräumen nicht gegeben ist –, Grenzwerte zu bilden und Stetigkeit zu definieren.
Somit bilden normierte Räume – das Thema unserer Kurseinheit 2 – gewissermaßen die denkbar
elementarsten Objekte, die aus einer Hybridisierung von Analysis und linearer Algebra entste-
hen können. Normierte Räume wurden somit schnell zu einem der beliebtesten Spielplätze der
klassischen Funktionalanalysis und sind in diesem Kurs allgegenwärtig.

Die stürmischen Entwicklungen der Jahre 1895-1915 zeigten deutlich, wie wichtig und vielver-
sprechend ein abstrakterer, ja von der linearen Algebra inspirierter Zugang zur Analysis sein konn-
te. 100 Jahre alte Probleme der Fourier-Analyse konnten in einem neuen algebraischen Rahmen
aufgefasst und gelöst, die Struktur zahlreicher Gegenbeispiele erläutert, die Approximierbarkeit
stetiger Funktionen durch Polynome oder trigonometrische Reihen strukturell untersucht werden.
In diesen Jahren wurden vor allem in Deutschland und Frankreich, aber auch in Österreich-Ungarn
und Italien, etwa Funktionen- und Folgenräume, Lebesguesche Integrationstheorie, Konvergenz in
allgemeinen topologischen Räumen eingeführt. Sie blieben jedoch für eine Weile weitgehend ge-
trennte Gebiete. Die Strukturierung und die Systematisierung dieser und weiterer Theorien ist vor
allem einer Gruppe polnischer Mathematiker um Stefan Banach und Hugo Steinhaus in Lwów
(bis 1918: Lemberg, Österreich-Ungarn; heute Lwiw, Ukraine) zu verdanken, von denen bis 1945
viele starben oder emigrierten.

Die goldenen Jahre der klassischen Funktionalanalysis umfassen die Zeit zwischen der Promotion
von Stefan Banach im Jahr 1922 und dem Einmarsch der Wehrmacht in Lwów im Jahr 1941. Somit
ist sie auch, stärker und offensichtlicher als wohl die meisten anderen mathematischen Bereiche,
ein Spiegel der europäischen Geschichte im 20. Jahrhundert; kaum ein anderes Gebiet wurde so
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stark von Diktaturen, Kriegen, antisemitischen Verfolgungen, Verschiebungen von Grenzen und
Flucht beeinflusst; eine sehr gute und informierte Quelle über die Wechselwirkung von Politik und
Funktionalanalysis ist [?].

Die Anfänge der Funktionalanalysis wurden von Frankreich und Deutschland besonders ge-
prägt, den beiden Staaten, die an an der Jahrhundertwende de facto das Monopol der Analysis
weltweit innehatten; die ersten Versuche im Bereich der Funktionalanalysis waren vor allem da-
rauf gerichtet, alte analytische Probleme mit neuen Methoden zu behandeln. In der Zeit zwis-
chen den Weltkriegen entwickelte sich die Funktionalanalysis vor allem unter dem Impuls der
Mitglieder der bereits erwähnten Lemberger Mathematikerschule, deren Interessen eher abstrakt
waren und sich von der Wechselwirkung von Topologie und linearer Algebra ableiteten. Nach
dem zweitem Weltkrieg nahmen auch die USA und die Sowjetunion, die mittlerweile auch math-
ematische Mächte geworden waren, selber an der Entwicklung des Gebietes maßgeblich teil, was
wieder zu einer Verschiebung der Schwerpunkte führte: Funktionalanalysis wurde nun vor allem
als Werkzeug für Numerik, Approximationstheorie, Differenzialgleichungen, Stochastik und vor
allem mathematische Physik verstanden. Denn es ist ein großes Wunder der Natur, dass die Funk-
tionalanalysis und ihre Tochterdisziplinen die Sprache der Quantenmechanik sind. Wenig, was
nach 1950 in der Funktionalanalysis passiert ist, wird aber in diesem Kurs abgebildet.

Und nun zur Struktur dieses Kurses: Er besteht aus sieben Einheiten über

• Metrische Räume

• Normierte Räume

• Lineare Operatoren

• Funktionale und schwache Konvergenz

• Lebesgue- und Sobolevräume

• Hilberträume

• Spektraltheorie

Wir empfehlen Ihnen, die Kapitel in dieser Reihenfolge durchzuarbeiten, da sie meistens aufeinan-
der aufbauen. Die Kapitel werden getaktet durch das Abwechseln von lockereren Texten mit
formalisierten Inhalten. Zum einem haben wir versucht, die historischen Entwicklungen zu schildern,
die dazu geführt haben, dass einige Begrifflichkeiten oder sogar ganze Forschungsrichtungen sich
herauskristallisiert haben; zum anderen präsentieren wir die wichtigsten Sätzen der Funktional-
analysis zusammen mit ihren Beweisen, welche oft ihre ganz eigenen interessanten Geschichten
aufweisen. Darüber hinaus werden Sie im Text zahlreiche Übungsaufgaben finden: Sie selbständig
zu lösen wird Ihnen helfen, die Begriffe und die Beweismethoden im Lernstoff besser zu verin-
nerlichen. (Die zugehörigen Lösungsvorschläge finden Sie dann am Ende der jeweiligen Kapi-
tel.) Ebenfalls am Ende jedes Kapitels finden sie einen kurzen Abschnitt über Anmerkungen und
Empfehlungen fürs weitere Lernen: Sie sind eine Auswahl jener Themen, die aus Platzmangel
nicht in den Haupttext aufgenommen wurden und trotzdem interessant sind – ob wegen der ele-
ganten Beweise und der Verschärfung von Resultaten im Haupttext oder aufgrund der unerwarteten
Einblicke in benachbarte Gebiete, die sie erlauben. Sie bieten durchaus mögliche Themen für ein
Seminar oder für eine Abschlussarbeit.

Nachdem die wichtigsten Inhalte dieses Kurses zusammengefasst wurden, sollte nicht unerwähnt
bleiben, was in diesem Kurs nicht behandelt wird, darunter:
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• Unbeschränkte Operatoren: Im Text werden ausschließlich Resultate über beschränkte
lineare Operatoren präsentiert. Dabei haben unbeschränkte Operatoren seit den 1930er
Jahren sehr viel Aufmerksamkeit bekommen, auch angesichts ihrer Rolle in der Quanten-
mechanik. Der Kurs 1347 ”Lineare Operatoren im Hilbertraum“ ist vor allem der Spek-
traltheorie dieser Operatoren so wie ihrer Anwendung gewidmet.

• Nichtlineare Funktionalanalysis: Einige der Resultate, die Sie in diesem Skript finden,
gelten nicht nur für lineare Operatoren. Die meisten Methoden topologischer Natur können
tatsächlich den nichtlinearen Kontexten erweitert werden, außerdem kann man manchmal
die Linearität eines Funktionals durch die schwächere Bedingung der Konvexität ersetzen.
Bei genügendem Interesse könnte gerne ein Seminar über nichtlineare Funktionalanalysis
gerne angeboten werden.

• Anwendungen in der Theorie der linearen Differenzialgleichungen: Funktionalanalytis-
che Methoden für die Untersuchung von partiellen Differenzialgleichungen gehören seit
Jahrzehnten zur Grundausstattung der angewandten Mathematik. Außerdem sind sie in-
teressant, weil sie eine Wechselwirkung von Hilbertraummethoden, Sobolevräumen und
Ad-hoc-Argumenten, die von der relevanten Klasse von Differenzialgleichungen abhängen,
erfordern. Viele dieser Themen werden in den kommenden Jahren im Skript zum Kurs 1380

”Partielle Differenzialgleichungen“ Eingang finden.

Eine letzte, wichtige Anmerkung zum Schluss: Wie Sie schon im Modulhandbuch gelesen haben,
ist dieses Skript in englischer Sprache verfasst. Es gibt verschiedene Gründe für unsere Entschei-
dung, einen Kurs an einer deutschen Universität von einem Lehrtext auf Englisch begleiten zu
lassen: Zum einen gehört seit vielen Jahrzehnten die Fähigkeit, mathematische Texte in englischer
Sprache zu verstehen, zu den Kernexpertisen jeder Mathematikerin und jedes Mathematikers; zum
anderen wird die Erfahrung mit mathematischem Englisch ihre erste Phase bei einer Abschlussar-
beit deutlich vereinfachen, da seit längerer Zeit praktisch alle Forschungsartikel, die Sie dafür
lesen können müssen, eben in englischer Sprache verfasst sind. Sie sollten auch nicht vergessen,
dass bereits jetzt die meisten Seminarreferate auf Fachliteratur in englischer Sprache beruhen.
Wir haben versucht, Ihren Einstieg ins mathematische Englisch möglichst zu vereinfachen: Am
Anfang jedes Kapitels finden sie eine kurze Zusammenfassung der relevanten Resultate und Lernziele
auf Deutsch; darüber hinaus wird allen (englischen) Einträgen im Glossar eine deutsche Überset-
zung beigefügt. Selbstverständlich werden Klausur und mündliche Prüfungen zu diesem Kurs auf
Deutsch formuliert beziehungsweise abgenommen.

In diesem Sinne: have fun!

DR. JOACHIM KERNER

DR. HAFIDA LAASRI

PROF. DR. DELIO MUGNOLO

Wir bedanken uns ganz herzlich bei Dr. Waed Dada für ihre wichtige Mitarbeit bei der Fertigstel-
lung des Skriptes.
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Studierhinweise zu Kurseinheit 1

In dieser Kurseinheit befassen wir uns mit einem zentralen Aspekt der Funktionalanalysis, den
metrischen Räumen. Das sind Mengen, auf denen ein gewissen Axiomen genügender Abstandsbe-
griff gegeben ist. Wir werden topologische Grundbegriffe wie den der offenen Menge, abgeschlosse-
nen Menge, Umgebung eines Punktes einführen, die dann für die weiteren Kurseinheiten grundle-
gend sind. Einige Definitionen und Begriffe sind Ihnen bereits aus der reellen Analysis bekannt.
In dieser Kurseinheit werden diese aber entsprechend verallgemeinert. Ferner werden vollständige
und kompakte metrische Räumen ausführlich diskutiert. Wir setzen etwas Vertrautheit mit den Be-
griffen Grenzwert einer Folge, Stetigkeit einer Funktion sowie Isomorphismus, Kontraktion u.a.
voraus. Besonders zentrale Aussagen dieser Kurseinheit sind der Satz von Bolzano-Weierstrass
und der Banachsche Fixpunktsatz.

Lernziele:

Abschnitt 1.1: Definition und Beispiele (Definition and examples)

Nach der Lektüre dieses Paragraphen sollten Sie in der Lage sein, den Begriff der Metrik und
des metrischen Raumes definieren und an Beispielen erläutern zu können. Wichtig sind vor allem
Beispiele, die über den Rn hinausgehen.

Abschnitte 1.2: Topologische Begriffe (Topological concepts)

In diesem Abschnitt wird die topologische Struktur metrischer Räume diskutiert. Nach der Bear-
beitung dieses Paragraphen sollten Sie

• die Begriffe: offene (abgeschlossener) Kugel (Menge), Umgebung, Abschluss einer Menge
verstanden haben und erklären können.

• wissen, dass eine Metrik eine topologische Struktur induziert.

• wissen, wie das System der offenen Mengen mit dem System der abgeschlossenen Mengen
bzw. dem des Umgebungssystems zusammenhängt.

Abschnitte 1.3: Folgen in metrischen Rämen (Sequences in metric spaces)

In diesem Abschnitt werden wir lernen, dass eine Metrik nicht nur eine topologische Struktur,
sondern auch eine uniforme Struktur induziert. Nach Durcharbeiten dieses Abschnitts sollten Sie

• mit den Begriffen: konvergente Folge, Teilfolge, Cauchy-Folge, vollständiger metrischer
Raum umgehen und an Beispielen erläutern können.

1



• wissen, wie abgeschlossene Mengen mittels der Konvergenz von Folgen charakterisiert wer-
den.

• die Beziehung zwischen konvergente Folgen, konvergente Teilfolgen und Cauchy-Folgen
aufzeigen können;

• in der Lage sein, ein Beispiel einer Cauchy-Folge, die nicht konvergiert, angeben zu können.

• wissen, wann ein Teilraum eines vollständigen metrischen Raumes selbst vollständig ist.

• in der Lage sein nachzuweisen, dass verschiedene Metriken auf einer Menge zwar dieselbe
Topologie, aber unterschiedliche uniforme Strukturen erzeugen können.

Abschnitte 1.4: Stetige Abbildungen (Continuous functions)

In diesem Abschnitt werden wir uns mit verschiedenen Begiffen der Stetigkeit einer Abbildung
befassen. Nach dem Durcharbeiten dieses Abschnitts sollten Sie

• in der Lage sein, die Definition der Stetigkeit, der gleichmäßigen Stetigkeit und der Lipschitz-
Stetigkeit einer Abbildung anzugeben. Desweiteren sollten Sie Kriterien für Stetigkeit
angeben und diese anwenden können.

• wissen, dass Stetigkeit und Folgenstetigkeit einer Abbildung in metrischen Räumen äquiv-
alente Konzepte sind.

Abschnitt 1.5: Fortsetzung von stetigen Funktionen (Extension by density of continuous
functions)

Nach dem Durcharbeiten dieses Abschnittes sollte Ihnen klar geworden sein, dass man sich gle-
ichmässig stetige Abbildungen, die auf einem dichten Teilraum definiert sind, eindeutig auf den
ganzen Raum fortsetzen lassen.

Abschnitt 1.6: Separable metrische Räume (Separable metric spaces)

Nach dem Durcharbeiten dieses Abschnitts sollten Sie wissen, was man unter einem separablen
metrischen Raum versteht und Kriterien für Separabilität formulieren können.

Abschnitt 1.7: Kontraktionsprinzip (Banach fixed-point theorem)

In diesem Abschnitt werden Existenz- und Eindeutigkeitssätze von Fixpunkten einer Abbildung
behandelt. Nach der Lektüre dieses Abschnitts sollten Sie in der Lage sein, den Banachschen
Fixpunktsätz formulieren, beweisen und anwenden zu können.

Abschnitt 1.8: Kompakte metrische Räume (Compact metric spaces)

Ein weiteres zentrales Konzept der Funktionalanalysis, welches wir in diesem letzten Abschnitt
betrachten, ist das der Kompaktheit. Nachdem Sie diesen Abschnitt durchgearbeitet haben, sollten
Sie

• wissen, was man unter einem kompakten Raum und was unter einer kompakten bzw. relativ-
kompakten Teilmenge versteht.

• die Eigenschaften kompakter Räume (Teilmengen) aufzählen und diese nachweisen können.

Darüber hinaus sollten Sie nachweisen können,

2



• dass in einem metrischen Raum kompakte Mengen abgeschlossen und beschränkt sind und
die Umkehrung (im Gegensatz zum Rn) im Allgemeinen nicht gilt.

• dass stetige Funktionen auf kompakten Mengen gleichmäßig stetig sind und dass, im reell-
wertigegen Fall, das Supremum sowie das Infimum angenommen werden.

3
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Chapter 1
Metric spaces

In this chapter we will introduce the important concept of metric spaces and give several examples
thereof. If functional analysis is a hybrid of linear algebra and analysis, then metric spaces may
look out of place: no sums or further operations are in general defined, only distances can be
measured. This is enough to discuss limiting processes and more general topological issues, but
not to allow for composition of vectors or to introduce the notion of linearity. Nevertheless, we
will present in this chapter a manifold of objects and also prove several results that will play an
important role in all later chapters. This introduction will also allow us to follow the earliest
historical developments of functional analysis and to meet some of its pioneers, like Maurice
Fréchet and Stefan Banach.

Introduced in 1906 in Paris by Maurice René Fréchet, metric spaces are sets on which a (mean-
ingful) distance can be defined. The most well-known example of a metric space is the Euclidean
space Rn where by the Pythagorean theorem the distance d2(x, y) of two points x, y ∈ Rn can be
calculated via

d2(x, y) =
( n∑
j=1

|xj − yj |2
) 1

2
.

This particular distance is meaningful since it is positive and equals zero only if and only if the
two points x and y are identical. Furthermore, it fulfills some minimizing property in the sense
that d2(x, y) is the least distance one has to “walk” to get from x to y. In other words, if z ∈ Rn
is any additional point one has

d2(x, y) ≤ d2(x, z) + d2(z, y) .

Also, as you have already learned in earlier courses, concepts like convergence and continuity
of functions f : Rn → R can be defined in terms of the metric d2. For example, a function
f : R→ R is continuous at x0 ∈ R if for any ε > 0 there exists a δ > 0 such that, d2(x, x0) < δ
implies

d2(f(x), f(x0)) < ε for all x ∈ X.

The crucial insight in defining a distance on more general sets is then to realize that the explicit
form of the distance function d is not that important. As we will see, only a few requirements are
necessary to determine a “good” metric d which then allows to transfer important concepts such as
the two mentioned above from Euclidean to more general spaces. In addition to that, we know that
the topology of Euclidean space is also determined by the metric d2. Namely, a subset A ⊂ Rn is
called open whenever for each point x ∈ A there exists r > 0 such that

BRn(x, r) := {y ∈ Rn : d2(x, y) < r}

5



6 CHAPTER 1. METRIC SPACES

is contained in A. However, this construction can be made for all metric spaces and we hence see
that a metric d on any set X also defines a topology in a very natural way.

1.1 Definition

In the following K will denote either the real field R or the complex field C and X shall always
be a non-empty set.

Definition 1.1.1. A metric or distance d on X is a mapping

d : X ×X → R
(x, y) 7→ d(x, y)

such that for all x, y, z in X, the following conditions are satisfied:

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x),

(M3) d(x, z) ≤ d(x, y) + d(y, z).

A pair (X, d) of a setX and a metric d onX is called a metric space. We call d(x, y) the distance
between x and y (with respect to the metric d).

One usually refers to properties (M1), (M2), (M3) by saying that a distance mapping is positive
definite, symmetric and satisfies the triangle inequality, respectively.

Remark 1.1.2. If (X, d) is a metric space, then d is necessarily a non-negative mapping, i.e.,
d(x, y) ≥ 0 for all x, y ∈ X. This is an easy consequence of the axioms (M1), (M2), (M3). In fact,
for all x, y ∈ X we have

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

Furthermore, the inequalities

|d(x, z)− d(y, z)| ≤ d(x, y) for all x, y, z ∈ X , (1.1)

and
|d(x, y)− d(u, v)| ≤ d(x, u) + d(y, v) for all x, y, u, v ∈ X (1.2)

hold.

Let us emphasize that different metrics on the same set X can exist, cf. Example 1.1.3. How-
ever, sometimes there is no confusion about what metric is considered and one simply writes X
referring to a metric space without specifying d (the most prominent example here is Euclidean
space Rn). We now want to give several standard examples of metric spaces some of which will
appear repeatedly in later chapters.
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Example 1.1.3. 1) The Euclidean metric d2 : Rn × Rn → R on Rn is given by

d2(x, y) :=

(
n∑
i=1

|xi − yi|2
)1/2

with x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rn. For n = 1, the Euclidean metric
reduces to the usual absolute-value distance d(x, y) = |x− y| on the real line.

Also the mappings

d1(x, y) :=

n∑
i=1

|xi − yi| and d∞(x, y) := max
1≤i≤n

|xi − yi|

define metrics on Rn. They are called the Manhattan metric and the maximum metric on Rn,
respectively. Can you imagine why d1 is called so? If not, try to compute the distance between,
say, (0, 0) and (12, 3) with respect to d1, and then take a look at a map of Manhattan (or
downtown Mannheim, for that matters) and then think of how distant two junctions are. More
generally,

dp(x, y) :=

(
n∑
i=1

|xi − yi|p
)1/p

defines a metric on Rn for all p > 0.

Figure 1.1: A map of Manhattan in 1910

2) On Rn the mapping

d(x, y) :=

{
d2(x, y) if x = κy for some κ ∈ R
d2(x, 0) + d2(y, 0) otherwise

(1.3)
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Figure 1.2: A finite graph with 10 vertices and 15 edges

Figure 1.3: An infinite graph

defines a metric on Rn where d2 is the Euclidean metric. The metric d is called SNCF metric
because in the French railway system (managed by France’s national railway company SNCF),
the fastest connection between two cities x and y (e.g., from Bordeaux to Lyon) usually goes
through the origin (Paris of course) unless y = κx, i.e., they already lie on the same TGV line
(e.g., Lyon and Marseille).

3) A rather trivial example of a metric on an arbitrary non-empty set X is given by the discrete
metric defined by

d(x, y) :=

{
1 if x 6= y

0 if x = y
x, y ∈ X . (1.4)

In particular, any non-empty set X is metrizable, i.e, there exists a mapping d : X ×X → R
that turns X into a metric space (X, d).

4) Let us consider the setX := Z of integer numbers and the mapping dZ defined by dZ(n,m) :=
|n−m| for all n,m ∈ Z. Then (Z, dZ) is a metric space.

5) A (simple, undirected) graph is a pair G = (V,E) composed of a finite or countable set V ,
whose elements are called vertices, and another set E ⊂ {{v, w} : v, w ∈ V, v 6= w}, whose
elements are called edges): if e = {v, w} is an element of E, then the vertices v, w are said to
be adjacent (by means of e).

A path of length m from v to w is a sequence

v0, e1, v1, e2, · · · , em, vm

of vertices v := v0, v1, · · · , vm =: w ∈ V and edges e1, e2, · · · , em ∈ E such that vi and vi+1

are adjacent by means of ei+1. The graph is called connected if any two vertices are joined by
at least one path.

If G is connected, then the function dG : V × V → N defined by

dG(v, w) := inf{length of P : P is a path from v to w}

turns V into a metric space (V, dG); dG is called the shortest-path metric.

We emphasize that this construction strictly generalizes two already considered notions. In-
deed, if (X, d) is a discrete metric space, i.e., d is the discrete metric, then we can turn it
into a graph with vertex set V := X and such that any two vertices are adjacent, so that
dG(v, w) = 1 if and only if v 6= w. Then dG = d and thus (X, d) coincides with (V, dG).
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Furthermore, we can look at Z as a graph, letting V := Z and regarding two numbers/vertices
n,m as adjacent if |n−m| = 1, i.e., if n,m are subsequent numbers. Then, the metric spaces
(Z, dZ) and (V, dG) agree.

6) It is known that a matrix M ∈Mn,m(R) has rank 0 if and only if M = 0. Using this, one sees
that the mapping

d(M,N) := rank (M −N), M,N ∈Mn,m(R) ,

defines a metric onMn,m(R).

7) LetC(K,K), or simplyC(K), denote the set of continuous function f : K → K whereK ⊂ R
is compact. For example we could take K to be the closed bounded interval [a, b]. Then both

(f, g) 7→
∫
K
| f(x)− g(x) | dx and (f, g) 7→ sup

x∈K
|f(x)− g(x)|.

are metrics on C(K).

8) Let (X, d) be a metric space. Then

d1(x, y) :=
d(x, y)

1 + d(x, y)
and d2(x, y) := min{d(x, y), 1}

are also metrics on X . More generally, if d is a metric then ϕ ◦ d is also a metric provided that
ϕ : R+ → R+ is a non-decreasing mapping such that

ϕ(s+ r) ≤ ϕ(s) + ϕ(r),

ϕ(0) = 0 and ϕ(s) > 0 for s > 0.

9) Let (X, d) be a metric space and let A be a subset of X. The restriction dA of d to A×A, that
is

dA(x, y) := d(x, y), x, y ∈ A,

defines a metric on A, called induced metric. Whenever a metric space (X, d) is given and
we wish to generate a metric space structure on a subset A ⊂ X , we will always canonically
endow A with the relative metric dA, unless otherwise stated.

1.1.1 Exercises

E 1.1.4. Show that the inequalities (1.1) and (1.2) hold.

E 1.1.5. Let X be the extended real line R ∪ {±∞} and set

dX(x, y) := | arctanx− arctan y|, ∀x, y ∈ X,

where
arctan(±∞) := lim

x→±∞
arctan(x) = ±π

2
.

Show that (X, dX) is a metric space.
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E 1.1.6. Let
`∞(N) := {(xn)n∈N ⊂ R : sup

n∈N
|xn| <∞}

be the space of bounded real sequences. For

d∞(x, y) := sup
n∈N
|xn − yn|,

check if (`∞, d∞) is a metric space.

E 1.1.7. Consider the set

c00(N) := {(xn)n∈N ∈ `∞(N) : ∃n0 such that xn = 0 ∀n ≥ n0}

of all eventually vanishing sequences of real numbers, which is clearly a subspace of `∞(N).
Prove that

dH(x, y) := #{n ∈ N | xn 6= yn}
defines a metric on c00(N) but not on `∞(N). (This function dH is referred to as Hamming
distance, after the early computer scientist Richard Wesley Hamming: if x, y are two pieces of
binary code, dH(x, y) says how close they are by measuring at how many entries they differ,
possibly up to equalizing their lengths by extending the shorter one by 0.)

E 1.1.8. Check if the following maps define a metric on R :

i) d1(x, y) := |x2 − y2|,

ii) d2(x, y) := |x3 − y3|,

iii) d3(x, y) := e
1

|x−y| .

E 1.1.9. Show that the space C(K) of continuous functions on a compact interval K with d∞
from Example 1.1.3 is, in fact, a metric space. (The same assertion also holds for C(K) whenever
K is merely a compact metric space, a notion that generalizes compact intervals which we will
meet later on.)

1.2 Topological concepts

When you first met continuous functions in the courses 1141 and 1144, they were (more or less
explicitly) defined by means of an ε − δ criterion, but an equivalent definition of continuity is
based on the notion of open set:

A function f : Rn → Rm is continuous if and only if the pre-image f−1(O) of each
open set O ⊂ Rm is an open subset of Rn.

This has a major advantage: it allows for an abstract introduction of the notion of continuity inde-
pendently of the specific structure of the Euclidean spaces. This sounds good, since the extension
of analytical notions and results to sets as general as possible is among the leading ideas of func-
tional analysis. Because open sets were defined by means of neighborhoods, everything boils
down to replacing the “classical” Euclidean distance by more general mappings: this has been
done in the previous section. For a metric space, we will see that open sets can be constructed
from a particular important subclass of open sets, the so called open balls. More precisely, the set

B(x, r) = {y ∈ X : d(x, y) < r}

is called the open ball of radius r and center x. For example, the open ball in R of radius r
centered at x is the open interval (x− r, x+ r). Note that, in the mathematical literature it is also
customary to write Br(x) instead of B(x, r).
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Definition 1.2.1. A set U ⊂ X is called neighborhood of a point x ∈ X if there exists r > 0 such
that B(x, r) ⊂ U.

The following theorem shows that each metric space is a Hausdorff space, i.e., a space in
which any two distinct elements admit a pair of disjoint neighborhoods.

Theorem 1.2.2. Let (X, d) be a metric space. Then for every pair of distinct points x, y ∈ X,
there exist neighborhoods U and V of x and y, respectively, such that U ∩ V = ∅.

Proof. Let x, y be two distinct points of X and let r := d(x, y) > 0. Define U := B(x, r2) and
V := B(y, r2). Thus U and V are disjoint: if there existed a z ∈ U ∩ V then, using the triangle
inequality,

r = d(x, y) ≤ d(x, z) + d(z, y) <
r

2
+
r

2
= r .

This is absurd, hence U ∩ V = ∅.

Definition 1.2.3. Let (X, d) be a metric space. A set O ⊂ X is called open if for all x ∈ O there
exists r > 0 such that B(x, r) ⊂ O.

It is always important to specify the relevant metric space! The set [0, 1) is e.g. an open set
in the metric space [0, 1] (with the induced metric of R), since [0, 1) = (−1, 1) ∩ [0, 1]. However,
[0, 1) is not open in R.

Remark 1.2.4. Clearly, in a metric space a set is open if and only if it is a neighborhood of each
of its elements. A first example of an open set is given by the open ball B(x0, r) for some x0 ∈ X
and r > 0. In fact, consider y0 ∈ B(x0, r) and choose r′ > 0 such that 0 < r′ < r − d(x0, y0).
For every y ∈ B(y0, r

′)

d(y, x0) ≤ d(y, y0) + d(y0, x) ≤ r′ + d(y0, x0) < r.

This implies y ∈ B(x0, r) and hence B(y0, r
′) ⊂ B(x0, r). As a consequence, B(x0, r) is open.

Theorem 1.2.5. Let (X, d) be a metric space. Then the following assertions hold.

1) ∅ and X are open.

2) If O1 ⊂ X and O2 ⊂ X are two open sets, then O1 ∩O2 is open.

3) If (Oi)i∈I is an arbitrary family of open sets of X , then the union
⋃
i∈I Oi is open.

Proof. 1) is clear.
2) Let x ∈ O1 ∩ O2. Then there exists r1 > 0 and r2 > 0 such that B(x, r1) ⊂ O1 and
B(x, r2) ⊂ O2. For r := min{r1, r2} > 0 we have B(x, r) ⊂ O1 ∩O2. This proves that O1 ∩O2

is open. The assertion follows from (a) if O1 and O2 are disjoint.
3) Let x ∈

⋃
i∈I Oi. Then there exists j ∈ I with x ∈ Oj . Since Oj is open there exists rj > 0

such that B(x, rj) ⊂ Oj ⊂
⋃
i∈I Oi.

Remark 1.2.6. It follows from assertion 2) in Theorem 1.2.5 that finite intersections of open sets
are also open. However, this is not true anymore for an infinite number of intersections. For
example, in R with the absolute-value metric, the intervals (− 1

n , 1 + 1
n) with n > 0 are open but

the intersection
∞⋂
n=1

(
− 1

n
, 1 +

1

n

)
= [0, 1]

is not open.
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Definition 1.2.7. A set F ⊂ X is called closed if its complement F { := X \ F is open.

The closed ball with center x and radius r > 0 is the set

B(x, r) := {y ∈ X : d(x, y) ≤ r} .

Each closed ball is a closed set in X, since its complement is open. Indeed, let x0 ∈ B(x, r){ and
set r1 := d(x, x0)− r > 0. Then for each y ∈ B(x0, r1) we have

d(x, x0) ≤ d(x, y) + d(y, x0)

by the triangle inequality and therefore

d(x, y) ≥ d(x, x0)− d(x0, y) > r1 + r − r1 = r .

This implies that B(x0, r1) ⊂ B(x, r){ and we conclude that B(x0, r)
{ is in fact open.

Starting from Definition 1.2.7 we can immediately establish an analog of Theorem 1.2.5 for
closed sets.

Theorem 1.2.8. Let (X, d) be a metric space. Then the following assertions hold.

1) ∅ and X are closed sets.

2) If F1 ⊂ X and F2 ⊂ X are two closed sets, then F1 ∪ F2 is closed.

3) If (Fi)i∈I is an arbitrary family of closed sets of X , then the intersection
⋂
i∈I Fi is closed.

Note that ∅ and X are example of sets that are both open and closed. Furthermore, if a set is
not open, this, in general, does not mean that it is closed. For instance, the half-open interval [0, 1)
is neither open nor closed in R.

Definition 1.2.9. Let (X, d) be a metric space and let A ⊂ X.

1) The set Å := {x ∈ X : ∃r > 0 such that B(x, r) ⊂ A} is called the interior of A. The
elements of Å are called interior points of A.

2) The set A := {x ∈ X : ∀r > 0 B(x, r) ∩A 6= ∅} is called the closure of A.

3) The set ∂A := A ∩A{ is called the boundary of A.

4) A subset A ⊂ X is said to be dense in X (or simply dense, if no confusion is possible) if
A = X.

Proposition 1.2.10. Let (X, d) be a metric spaceX and letA ⊂ X. Then the following assertions
hold.

1) The interior Å of a set A is the largest open set which is contained in A.

2) The closure A of a set A ⊂ X is the smallest closed set which contains A.

Proof. 1) Let O ⊂ X be an open set with A ⊂ O. Following Definition 1.2.3 we can find, for any

x ∈ O, a r > 0 such that B(x, r) ⊂ O. Hence x ∈
◦
A and therefore O ⊂ A.

2) The assertion follows from 1) by passing to the complement.

Proposition 1.2.11. Let (X, d) be a metric space and let A ⊂ X. Then the following assertions
hold.
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1) A{
= (A{)◦ and (A◦){ = A{.

2) A = A and ˚̊
A = Å.

3) A is open if and only if A = Å.

4) A is closed if and only if A = A.

5) ∂A = ∂(A{).

6) Let additionally A 6= X . If A is dense, it is not closed. If A is closed, it is not dense.

Example 1.2.12. On a metric space (X, d) every singleton {x}, x ∈ X , is closed, see Exercise
1.3.19.

Example 1.2.13. A topology is called discrete if every subset is open, or equivalently closed (since
its complement is open).

If a non-empty set X is endowed with the discrete metric introduced in Example 1.1.3, then
every subset ofX is both open and closed. The same holds in general for any metric space in which
neighborhoods of a point x cannot become arbitrarily small without reducing to the singleton {x}:
this is for instance also the case for the metric space (V, dG) where V is the set of vertices of a
graphG = (V,E) and dG the shortest-path metric (see again Example 1.1.3), and more generally
for all metric spaces (X, d) whose metric d can only attain finitely many values. For this reason,
in the following we generally call discrete metric spaces all metric spaces (X, d) with the property
that the set of all values of d is a subset of R+ without cluster points.

Things are however less trivial if G is turned into a weighted graph Gµ = (V,E) by associ-
ating a weight µ(e) > 0 with each e ∈ E: then the length of a path between two nodes is defined
as the sum of the weights of the edges that appear in the path and the distance between two nodes
is modified accordingly. Hence, if inf

e∈E
µ(e) = 0, then (V, dGµ) is not a discrete metric space any

more.

Remark 1.2.14. A closed ball B(x, r) always contains the closure of the open ball B(x, r), but
they do not coincide in general. For instance, let X be a set which contains more than one point
equipped with the discrete metric d. For x ∈ X ,

B(x, 1) = {x}, B(x, 1) = X

and since the set {x} is closed, {x} = {x} 6= B(x, 1).

Definition 1.2.15. A subset A of a metric space X is called bounded if it is non-empty and there
exist x0 ∈ X and 0 ≤ R <∞ such that

d(x0, y) ≤ R for all y ∈ A. (1.5)

We readily see thatA ⊂ X is bounded if and only if there exists r > 0 such thatA ⊂ B(x0, r).
This definition is independent of x0 since, due to the triangle inequality, one has

B(x0, r) ⊂ B(x, r′) for all x ∈ X

where r′ = r + d(x0, x). The diameter of a set A is defined by

diam(A) := sup{d(x, y)| x, y ∈ A}.

Then A is bounded if and only if diam(A) <∞.
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Remark 1.2.16. The notion of boundedness depends on the metric which is considered. For any
given metric space (X, d), every subset A ⊂ X is bounded with respect to the new metric

(x, y) 7→ d(x, y)

1 + d(x, y)
.

Definition 1.2.17. Let (X, d) be a metric space. For two subsets A,B ⊂ X the distance from A
to B is the number

d(A,B) := inf
x∈A

inf
y∈B

d(x, y) .

If A = {x} then d(x,B) := d({x}, B) is the distance from x to the set B.

Remark 1.2.18. 1) Let A be a non-empty subset of a metric space X. We have seen in Section 1.1
that (A, dA) is a metric space, where dA is the induced metric. Let B(x, ε) be an open ball in X
and let BA(x, ε) the open ball in A with radius ε > 0 and center x ∈ X, i.e.,

BA(x, ε) = {y ∈ A : d(x, y) < ε},

we see that BA(x, ε) = B(x, ε) ∩ A. A similar relation holds for closed and open sets in A. A
subset O ⊂ A is open in A (i.e., with respect to dA) if and only if O = A ∩ U where U is a open
set in X. Similarly, a subset B ⊂ A is closed in A if and only if B = A ∩ F where F is a closed
set in X .

2) Observe that if (X, d) is a metric space, then X may or may not be bounded in its own
right: think of the intervals (0, 1) and (0,∞) with respect to the canonical distance. If the metric
space is bounded, then so are all its subsets; more generally, subsets of bounded sets are clearly
bounded.

3) The closure of a bounded set is bounded (try to prove it!) and hence, in particular, bounded
sets always have bounded boundary – the converse is obviously wrong for any unbounded metric
space: think of the example of the unbounded set Rn \ B(x, r), for any given x ∈ Rn and r > 0,
whose boundary is the sphere

S(0, 1) := {y ∈ Rn : d(x, y) = r} .

4) Let A,B be two subsets of a metric space (X, d). If A ∩ B 6= ∅, then d(A,B) = 0. The
converse is in general not true. Take for instance X = R with the absolute-value metric and the
sets A = (0, 1) and B = (1, 2).

1.2.1 Exercises

E 1.2.19. Let X be a metric space and let x ∈ X. Prove that the set {x} is closed.

E 1.2.20. Let (X, dX) be a metric space.

a) For dX being the discrete metric, show that X is the only dense set.

b) Show that A ⊂ X is dense if and only if A ∩Br 6= ∅ for all open balls Br(x), x ∈ X .

E 1.2.21. Let (X, d) be a metric space and let A be a non-empty subset of it. Prove that:

i) If x ∈ A then d(x,A) = 0.
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ii) If d(x,A) = 0 then x ∈ A.

Conclude that d(x,A) = 0 if and only if x ∈ A.

E 1.2.22. Prove that the union of two bounded subsets A and B of a metric space (X, d) is
bounded.

E 1.2.23. Let (X, d) be a metric space. Let A,B be two non-empty subsets of X. Show that

i) diam(A) = diam(A).

ii) Assume that A ∩B 6= ∅. Then d(A,B) = 0.

iii) diam(A ∪B) ≤ diam(A) + d(A,B) + diam(B).

E 1.2.24. A metric d on a vector space X is called an ultrametric if for all x, y and z ∈ X

d(x, z) ≤ max{d(x, y), d(y, z)},

and we say that (X, d) is an ultrametric space. The discrete metric is for example an ultrametric
(but general discrete metric spaces are not necessarily ultrametric spaces!).

Let (X, d) be a ultrametric space.

1. Show that for each x, y, z ∈ X with d(x, y) 6= d(y, z) we have

d(x, z) = max{d(x, y), d(y, z)}.

2. Show that each open ball B(x, r) is closed and open. Moreover, B(y, r) = B(x, r) for all
y ∈ B(x, r).

3. Show that each closed ball B(x, r) is closed and open and moreover, B(y, r) = B(x, r) for
all y ∈ B(x, r).

1.3 Sequences in metric spaces

A sequence in a set X is a mapping N 3 n 7→ xn ∈ X , usually denoted by (xn)n∈N. As
soon as the set X carries suitable structures of topological nature, we may inquire convergence of
sequences.

1.3.1 Convergence

Definition 1.3.1. We say that a sequence (xn)n∈N ⊂ X converges to some element x ∈ X – and
we write lim

n→∞
xn = x, xn → x as n → ∞, or simply xn → x – if for every ε > 0 there exists

n0 ∈ N such that for every n ≥ n0 one has d(xn, x) ≤ ε. If xn → x then we call x the limit of
(xn)n∈N.

Observe that this agrees with the classical definition of sequence convergence in normed space
(and, in particular, in R) which you have learned in the course 1144.

Remark 1.3.2. Let (X, d) be a metric space.

1) A sequence (xn)n∈N ⊂ X converges to some x ∈ X if and only if the sequence of real
numbers (d(xn, x))n∈N converges to 0 as n → ∞. Equivalently, xn → x if and only if for
every neighborhood U of x there exists n0 ∈ N such that for every n ≥ n0 one has xn ∈ U.
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2) Each convergent sequence on X has a unique limit. This is, if (xn)n∈N ⊂ X is a sequence and
x, y ∈ X such that xn → x and xn → y as n → ∞, then x = y. This is due to the fact that
each metric space is a Hausdorff space.

Example 1.3.3. Consider the metric space (C([0, 1]), d∞), see Example 1.1.3. Then a sequence
(fn)n∈N ⊂ C[0, 1] converges to f ∈ C[0, 1] if and only if the sequence (fn)n∈N converges uni-
formly to f in the sense that you have learned in the course 1144.

Example 1.3.4. Let X be a non-empty set and d be the discrete metric upon it. If a sequence
(xn)n∈N ⊂ X converges to x with respect to d, then there exists n0 ∈ N such that for all n ≥ n0
on has d(xn, x) ≤ 1

2 . Since d is the discrete metric this means that d(xn, x) = 0 and thus xn = x
for all n ≥ n0: we have thus observed that every convergent sequence with respect to the discrete
metric is eventually constant. This result clearly holds in the context of general discrete metric
spaces. Conversely, every eventually constant function is convergent with respect to any metric.

Since every metric defines a topology in a natural way, metric spaces form a subclass of the
topological spaces. In general topological spaces it might be difficult to characterize the closure
or the boundary of a given subset A ⊂ X . For metric spaces, however, it is always possible to
characterize closed sets of X in terms of convergent sequences as follows.

Theorem 1.3.5. Let A be a subset of a metric space X. Then the following assertions are equiva-
lent.

a) x0 ∈ A.

b) There exists a sequence (xn)n∈N ⊂ X such that xn → x0.

Proof. In order to show that a)⇒ b), let x0 ∈ A. Then for every n ∈ N one has B(x0,
1
n) ∩A 6=

∞. Thus for every n ∈ N we can find xn ∈ A such that d(x0, xn) ≤ 1
n . This implies that the

sequence xn → x0.

Conversely, assume that b) holds and let (xn)n∈N ⊂ X which converges to some x0 ∈ X. Let
ε > 0. From the convergence there exists n0 ∈ N such that d(xn, x0) ≤ ε for all n ≥ n0. This
implies that B(x0,

1
n) ∩A 6=∞. Because ε is arbitrary, we conclude that x0 ∈ A.

We thus deduce the following characterizations.

Corollary 1.3.6. A subset A of a metric space X is closed if and only if for every sequence
(xn)n∈N ⊂ A converging to some x0 ∈ X, one has x ∈ A.

Corollary 1.3.7. Let A be a subset of a metric space X . Then the following assertions are equiv-
alent.

a) A is dense in X .

b) For each x0 ∈ X there exists (xn)n∈N ⊂ A such that xn → x0.

c) A ∩O 6= ∅ for any open subset O ⊂ X .

1.3.2 Cauchy sequences and complete metric spaces

Let (X, d) be a metric space. A sequence (xn)n∈N ⊂ X is a Cauchy sequence if for all ε > 0
there exists n0 ∈ N such that

d(xn, xm) ≤ ε for all n,m ≥ n0.
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By the triangle inequality, each convergent sequence in a metric space X is a Cauchy sequence.
The converse is however not true. For instance, consider (0, 1) with the absolute-value metric and
the sequence xn := 1 − 1

n ∈ (0, 1). Since (xn)n∈N converges in R to 1, (xn)n∈N is a Cauchy
sequence (in R and then) in (0, 1) but (xn)n∈N has no limit in (0, 1).

Definition 1.3.8. We say that a metric space (X, d) is complete if every Cauchy sequence is
convergent.

For complete metric spaces, like the Euclidean spaces Rn, the definition of Cauchy sequences
is thus a convergence criterion. This criterion does not involve the limit of the sequence, hence it
gives us a tool to prove that a sequence is convergent without knowing its limit.

Example 1.3.9. 1) (Rn, d2) and (C[0, 1], d∞) are complete metric spaces

2) Every set endowed with the discrete metric is complete. In fact, let (xn)n∈N ∈ X be a
Cauchy sequence. Then there exists n0 ∈ N such that for all n,m ≥ n0 on has d(xn, xm) ≤ 1

2
and therefore xn = xm, thus (xn)n∈N is eventually constant and hence convergent. The same
proof shows that also general discrete metric spaces are complete.

Theorem 1.3.10. Let (X, d) be a metric space. Then the following assertions hold.

1) If (X, d) is complete, then also every closed subset F ⊂ X is complete with respect to the
induced metric.

2) If A ⊂ X is complete, then A is closed.

Proof. 1) Let (xn)n∈N ⊂ F be a Cauchy sequence. Then (xn)n∈N converges to some element
x ∈ X and since F is closed, x ∈ F. Thus F is complete.

2) Let (xn)n∈N ⊂ A converging to x0 ∈ X. Thus is a Cauchy sequence in A and then in X.
Since A is complete, (xn)n∈N converges to a an element y belonging to A. By uniqueness of the
limit, x0 = y and thus x0 ∈ F. By Corollary 1.3.6 this implies that F is closed.

Let ([an, bn])n∈N be a sequence of closed intervals such that the sequences (an)n∈N and
(bn)n∈N are adjacent, i.e., (an)n∈N is increasing and (bn)n∈N decreasing with (bn − an) → 0.
Then it is known that

⋂
n∈N[an, bn] = {l} with l := lim

n→∞
an = lim

n→∞
bn. For a complete metric

space (X, d) a similar result holds.

Proposition 1.3.11. Let (Fn)n∈N be a decreasing sequence of closed subset of a complete metric
space (X, d) such that diam(Fn)→ 0 as n→∞. Then

⋂
n∈N Fn = {x} for some x ∈ X.

Proof. Since diam(Fn) → 0 the intersection F :=
⋂
n∈N Fn contains at most one element. Re-

garding existence, we choose xn ∈ Fn for each n ∈ N. Since

d(xn, xm) ≤ diam(FN ) for all n,m ≥ N

the sequence (xn)n∈N is a Cauchy sequence and thus converges to some element x ∈ X. For every
k ∈ N, we have xn ∈ Fn ⊂ Fk for n ≥ k. Since Fk are closed, the limit x of (xn)n∈N belongs to
Fk. Thus F is not empty.

1.3.3 Subsequences and cluster points

As introduced above, a sequence (xn)n∈N on a metric space (X, d) is a mapping n 7→ xn from N
to X . A subsequence of (xn)n∈N is a mapping k 7→ xnk from N to X where k 7→ nk : N→ N is
strictly increasing. For example, (xn+1)n∈N is a subsequence of (xn)n∈N because n 7→ n + 1 is
strictly increasing from N into N.
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Remark 1.3.12. Bijectivity of k 7→ nk is a necessary but not sufficient condition for (xnk)k∈N to
be a subsequence of (xn)n∈N: e.g.,

x1, x4, x2, x5, x6, x7, . . .

is not a subsequence of (xn)n∈N.

Proposition 1.3.13. If a sequence (xn)n∈N ⊂ X converges to some x ∈ X, then every subse-
quence converges to the same limit x.

Proof. Let ε > 0. Since (xn)n∈N converges to x, there exists n0 ∈ N such that d(x, xn) ≤ ε if
n ≥ n0. Taking k0 ∈ N such that nk0 ≥ n0 we obtain that d(x, xnk) ≤ ε.

Note that the converse of the statement of Proposition 1.3.13 is also true since (xn)n∈N is always
a subsequence of itself.

Definition 1.3.14. We say that x ∈ X is a cluster point or accumulation point of the sequence
(xn)n∈N if there exists a subsequence (xnk)k∈N converging to x.

For example the real sequence

xn :=

{
1
n if n = 2k, k ∈ N,
1 otherwise ,

has two cluster points. Indeed, the subsequences (x2n)n∈N and (x2n+1)n∈N converges to 0 and
1 respectively. Clearly, if x is the limit of a convergent sequence (xn)n∈N, then x is the unique
cluster point of (xn)n∈N.

Proposition 1.3.15. Let (xn)n∈N be a sequence in a metric space (X, d). Then the following
assertions are equivalent.

a) x is a cluster point of (xn)n∈N.

b) For all ε > 0 and n ∈ N there exists m > n such that d(xm, x) ≤ ε.

c) For each p ∈ N, x ∈ {xn, n ≥ p}.

Proof. The implication a)⇒ b) is clear. Indeed, let ε > 0 and n ∈ N be fixed. Since there exists
k(ε) ∈ N such that d(xnk , x) ≤ ε for each k ≥ k(ε), it suffices to take m = nk for k ≥ (ε) with
nk ≥ n.

The implication b)⇒ c) is left as an exercise.
Assume now that c) holds. For every k, n ∈ N there exists n(k) ∈ N such that d(x, xn(k)) ≤

1/k. We can then define a subsequence (xnk)k∈N such that xnk is the smallest integer with

xnk−1
< xnk and d(x, xnk) ≤ 1/k.

This subsequence converges to x, which shows that a) holds.

Remark 1.3.16. Let (X, d) be a metric space. Then x is a cluster point of a sequence (xn)n∈N ⊂
X if and only if every open ball B(x, ε) contains xn for infinitely many n ∈ N.

In the previous section we have seen that, in general metric spaces, not every Cauchy sequence
converges. It turns out that convergent Cauchy sequences can indeed be characterized in terms of
cluster points.
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Proposition 1.3.17. If a Cauchy sequence (xn)n∈N has a cluster point x, then (xn)n∈N converges
and x is its limit.

Proof. Let ε > 0. Since x is a cluster point there exists k0 ∈ N such that d(x, xnk) ≤ ε/2 for
k ≥ k0. Since (xn)n∈N is a Cauchy sequence there exists n0 ∈ N such that d(xn, xm) ≤ ε/2 for
n,m ≥ n0. By taking n1 := max(n0, nk0) and k ≥ k0 such that nk ≥ n0 we obtain

d(x, xm) ≤ d(x, xnk) + d(xnk , xm) ≤ ε/2 + ε/2 = ε

for all m ≥ n1. Thus xn → x.

1.3.4 Exercises

E 1.3.18. Show that each convergent sequence on a metric space X has a unique limit.

E 1.3.19. Let X be a metric space and let x ∈ X. Using Corollary 1.3.6 show that the set {x} is
closed.

E 1.3.20. Let (X, d) be a metric space and let (xn)n∈N be a sequence of elements ofX. Then (xn)
is a Cauchy sequence if and only if lim

n→∞
diam (An) = 0 where An := {xn, xn+1, ...}.

E 1.3.21. Let (X, d) be a metric space. Show that X consists of only one element if and only if
every bounded sequence is convergent.

E 1.3.22. Consider the vector space

`1(N) := {(xn)n∈N :
∞∑
n=0

|xn| <∞}

of all absolutely convergent series of real numbers and the vector space c00 introduced in Exer-
cise 1.1.7. Clearly c00(N) ⊂ `1(N) and we can define on both `1(N)×`1(N) and c00(N)×c00(N)
the mapping

d(x, y) :=

∞∑
n=1

|xn − yn| .

Show that

1. (`1(N), d) is a complete metric space.

2. c00(N) is dense in `1(N), i.e., c00 = `1(N).

1.4 Continuous functions

The purpose of this paragraph is to introduce a general concept of continuous functions on metric
spaces. For this let (X, dX) and (Y, dY ) be two metric spaces.

Definition 1.4.1. A function f : X → Y is said to be continuous at x0 ∈ X if for all ε > 0 there
exists δ = δ(x0, ε) such that

dX(x0, x) ≤ δ ⇒ dY (f(x0), f(y)) ≤ ε.

The function f is continuous on X if it is continuous at every point x ∈ X.
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One readily sees that a function f : X → Y is continuous at x0 ∈ X if for every neighborhood
U of f(x0) ∈ Y the set f−1(U) is a neighborhood of x0.

Theorem 1.4.2. Let f : X → Y. The following assertions are equivalent.

a) f is continuous at x0 ∈ X.

b) f is sequentially continuous at x0, that is for every sequence (xn)n∈N ⊂ X which converges
to x0 one has lim

n→∞
f(xn) = f(x0).

Proof. For the implication a) ⇒ b) let (xn)n∈N ⊂ X be convergent to x0. For each ε > 0 there
exists δ > 0 such that dY (f(x0), f(y)) ≤ ε whenever dX(x0, x) ≤ δ. By the convergence, there
exists n0 ∈ N such that dX(x0, xn) ≤ δ. Then dY (f(x0), f(xn)) ≤ ε for all n ≥ n0. Hence
f(xn)→ f(x0) as n→∞.

For the converse implication we assume that f is sequentially continuous at x0. If f is not
continuous, then there exists ε > 0 such that for all n ∈ N we can find xn ∈ X such that
dX(x0, xn) ≤ 1

n with dY (f(x0), f(xn)) ≥ ε. We obtain a sequence (xn)n∈N which converges to
x0. Since f is sequentially continuous we have (f(xn))n∈N converges to f(x0), contradicting the
fact that dY (f(x0), f(xn)) ≥ ε for every n ∈ N. Therefore f is continuous at x0.

Example 1.4.3. Any metric d : X ×X → R on X is a continuous function. In fact, let (xn)n∈N
and (yn)n∈N ⊂ X be such that xn → x and yn → y as n→∞. From inequality (1.2) we have

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y) for all n ∈ N.

Thus lim
n→∞

d(xn, yn) = d(x, y) and Theorem 1.4.2 implies that d is continuous.

Continuous functions can be defined also between topological spaces which are not necessarily
metric spaces. The following proposition shows that, for metric spaces, Definition 1.4.1 is actually
equivalent to the more general definition which is also valid for maps between topological spaces.

Proposition 1.4.4. Let X and Y be metric spaces and let f : X → Y be given. The following
assertions are equivalent.

a) f is continuous.

b) For every open set O ⊂ Y one has f−1(O) is open.

c) For every closed set F ⊂ Y one has f−1(F ) is closed.

Proof. It suffices to proof that a) is equivalent to b). First assume that f is continuous and let
O ⊂ X be open. Let x ∈ f−1(O) be arbitrary. Then f(x0) ∈ O. Since O is open there exists
ε > 0 such that B(f(x0), ε) ⊂ O. Because f is continuous, there exists δ > 0 such that for every
x ∈ B(x0, δ) one has f(x) ∈ B(f(x0), ε) ⊂ O. Thus B(x0, δ) ⊂ f−1(B(f(x0), ε)) ⊂ f−1(O).
Therefore, f−1(O) is open.
Conversely, assume that (b) holds. Let x0 ∈ X and let V be a neighborhood of f(x0). There
exists an open ball B(y, r) such that f(x0) ∈ B(y, r) ⊂ V. Then x0 ∈ f−1(B(y, r)) ⊂ f−1(V ).
Since f−1(B(y, r)) is open there exists r′ > 0 such that x0 ∈ B(x0, r

′) ⊂ f−1(B(y, r)). This
implies that f−1(V ) is a neighborhood of x0.

Example 1.4.5. Let (X, dX) be a metric space with the discrete metric. Then every function f
from X to a metric space Y is continuous.
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Remark 1.4.6. For a continuous function f between two metric spaces (X, dX) and (Y, dY ), the
image f(O) of a open set O ⊂ X is not necessary open in Y. Also the image f(F ) of a closed set
F ⊂ X is not necessary closed in Y. Take for example f : R → R given by f(x) = x2. Then for
the open set ]− 1, 1[, the image f(]− 1, 1[) = [0, 1[ is not open in R.

Definition 1.4.7. Let (X, dX), (Y, dY ) be two metric spaces. Then f : X → Y is said to be

1) uniformly continuous if for all ε > 0 there exists δ > 0 such that

dY (f(x), f(y)) ≤ ε for all x, y ∈ X s.t. d(x, y) < δ;

2) Lipschitz continuous with Lipschitz constant L > 0 if

dY (f(x), f(y)) ≤ L dX(x, y) for all x, y ∈ X ;

3) a strict contraction if it is Lipschitz continuous with constant L ∈ [0, 1).

It is important to note that, in the definition of uniform continuity, δ does not depend on the
point of continuity. This means that, unlike the continuity which is a local property, the uniform
continuity is a global property. Note that each uniformly continuous function is continuous and
each Lipschitz continuous function is uniformly continuous.

Proposition 1.4.8. Let (X, d) be a metric space and let A ⊂ X . Then the function x 7→ d(x,A)
is Lipschitz continuous.

Proof. Let x, y ∈ X . Then for a ∈ A

d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a).

Thus
d(x,A) ≤ d(x, a) ≤ d(x, y) + inf

a∈A
d(y, a).

Similarly, we obtain
d(y,A) ≤ d(x, y) + inf

a∈A
d(x, a).

Finally
|d(x,A)− d(y,A)| ≤ d(x, y) ,

which is what wanted to prove.

As a corollary we obtain the following characterization of the closure A of a set A ⊂ X.

Corollary 1.4.9. Let X be a metric space and let A ⊂ X. Then

A = {x ∈ X : d(x,A) = 0}.

Proof. Since x 7→ d(x,A) is continuous, the set B := {x ∈ X : d(x,A) = 0} is closed. Since
A ⊂ B, it follows that B contains B. Conversely, let x ∈ B. For every n ∈ N there exists xn ∈ A
such that

d(x, xn) ≤ 1

n
.

Thus there exists a sequence (xn)n∈N ⊂ A which converges to x and then x ∈ A. This shows that
B ⊂ A.
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1.4.1 Exercises

E 1.4.10. Let (X, dX) and (Y, dY ) be two metric spaces. Show that a function f : X → Y is
continuous at x ∈ X if and only if for each neighbourhood V of f(x) there exists a neighbourhood
U of x such that f(U) ⊂ V.

E 1.4.11. Let (X, dX) be a metric space with the discrete metric. Show that every function f from
X to a metric space Y is continuous.

E 1.4.12. Prove that f : R→ R : x 7→ x2 is continuous but not uniformly continuous.

E 1.4.13. Let (X, dX) and (Y, dY ) be two metric spaces and (Y, dY ) complete. Suppose that
f : X → Y is bijective and uniformly continuous and that f−1 is continuous. Show that (X, dX)
is also complete.

1.5 Extension by density of continuous functions

Let (X, dX) and (Y, dY ) be two metric spaces and D be a subset of X . Let f : D → Y and
g : X → Y . We say that g extends f, or that f is an extension of g, if

g(x) = f(x) for every x ∈ D.

Proposition 1.5.1. Let f, g be two continuous functions from X to Y . Let D be a dense subset of
X. Then the following assertions hold.

1) If f(x) = g(x) for every x ∈ D, then f(x) = g(x) for all x ∈ X.

2) Assume that Y = R and that f(x) ≤ g(x) for every x ∈ D, then f(x) ≤ g(x) for all x ∈ X.

Proof. 1) Let x ∈ X and let (xn)n∈N ⊂ D converge to x in X. Since f and g are continuous, we
have f(xn)→ f(x) and g(xn)→ g(x). We obtain

dY (f(x), g(x)) ≤ dY (f(x), f(xn)) + dY (f(xn), g(xn)) + dY (g(xn), g(x))

Letting n → ∞, we conclude that dY (f(x) − g(x)) ≤ 0 and thus f(x) = g(x). This completes
the proof. An analogous argument shows 2).

Proposition 1.5.1, shows that an extension of a continuous function on a dense subset (if it
exists) is unique. Indeed, if f is defined on a dense subset D ⊂ X and if g and h are two
extensions of f , then we have f(x) = g(x) = h(x) for every x ∈ D. By Proposition 1.5.1, this
implies g(x) = h(x) for all x ∈ X.
To prove existence of an extension we need additional conditions as formulated in the following
theorem.

Theorem 1.5.2. Let f be a uniformly continuous function from a dense subsetD of a metric space
(X, dX) to a complete metric (Y, dY ). Then f has a unique continuous extension g : X → Y.
Furthermore, g : X → Y is uniformly continuous.

Proof. Let x ∈ X . SinceD is dense there exists a sequence (xn)n∈N ⊂ D which converges to x in
X Because f is uniformly continuous, (f(xn))n∈N is a Cauchy sequence in Y (observe that mere
continuity of f would not do the job!) and hence lim

n→∞
f(xn) =: g(x) exists since Y is complete.

The element g(x) ∈ Y is independent of the sequence (xn)n∈N which converges to x : if (x′n)n∈N



1.6. SEPARABLE METRIC SPACES 23

is another sequence with x′n → x and ĝ(x) is the limit of the Cauchy sequence (f(x′n))n∈N ⊂ Y
then, using the uniform continuity of f, we see that ĝ(x) = g(x). Hence, the function g : X → Y
given by g(x) = lim

n→∞
f(xn) is defined and is an extension of f since g(x) = f(x) = lim

n→∞
f(xn)

for each x ∈ D.
It remains to show that g is uniformly continuous. Let ε > 0. Since f is uniformly continuous on
D there exists δε > 0 such that dY (f(x), f(y)) ≤ ε for every x, y ∈ D with dX(x, y) ≤ δε. On
the other hand, there exist two sequence (xn)n∈N and (yn)n∈N of elements of D such that xn → x
and yn → y. Then there exists n0(δ) ∈ N such that for every n ≥ n0(δ) and for ‖x− y‖X ≤ δε/3
one has

dX(xn, yn) ≤ dX(xn, x) + dX(x, y) + dX(yn, y) ≤ δε/3 + δε/3 + δε/3 = δε.

We deduce that

dY (g(x), g(y)) ≤ dY (g(x), f(xn)) + dY (f(xn), g(yn)) + dY (g(yn), g(y))

≤ dY (g(x), f(xn)) + ε+ dY (g(yn), g(y))

≤ ε ( by letting n→∞)

when dX(x, y) ≤ δε/3.

1.6 Separable metric spaces

While we know that the set of real numbers is not countable, several results about continuous
functions of one real variable can be reduced to studying their properties whenever restricted
to the set of rational numbers. This is of uttermost importance because Q is of course much
smaller than R and, more importantly, because working along sequences of numbers often allows
for constructive proofs that can be turned into algorithms. Clearly, the property of containing a
countable dense subset is not limited to R or C = R + iR, as the set of polynomials with real vs.
rational coefficients show.

Definition 1.6.1. A metric space is called separable if it contains a countable dense subset.

In other words, a metric space (X, d) is separable if there exists a countable setD := {xn : n ∈ N}
such that for any x ∈ X and each ε > 0

B(x, ε) ∩D 6= ∅.

Example 1.6.2. 1) As already suggested above, R is separable, since Q is dense. For the same
reason also C and Rn,Cn are separable.

2) Let X be a non-empty set and d be the discrete metric on it. In order for a subset D to
be dense in X , each point of X should be the limit of a suitable sequence (xn)n∈N ⊂ D; but
we have seen in Example 1.3.4 that convergent sequences with respect to the discrete metric are
necessarily eventually constant, i.e., such a sequence (xn)n∈N cannot converge to any element
outside D. Accordingly, the only dense subset of X is X itself, and we conclude that (X, d) is
separable if and only if X if countable. In particular, R is not separable whenever endowed with
the discrete metric.

Proposition 1.6.3. Each subset of a separable metric space is separable.

Proof. Let (X, d) be a metric space and let Y ⊂ X be a non-empty subset. Assume that X is
separable and let D := {an : n ∈ N} be dense in X. For each pair (ak, n) ⊂ D × N choose
ynk ∈ Y such that

d(ak, ynk) ≤ d(ak, Y ) +
1

n
.
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We will show now that ynk forms a countable dense subset of Y. For this, let y ∈ Y and ε > 0.
By the separability of X, there exists ak0 ∈ D such that

d(y, ak0) <
ε

3
.

Next choosing 1
n0
< ε

3 , we obtain

d(y, yk0n0) ≤ d(y, ak0) + d(ak0 , yk0n0)

≤ d(y, ak0) + d(ak0 , Y ) +
1

n0

≤ d(y, ak0) + d(ak0 , y) +
1

n0
(since y ∈ Y )

≤ ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof.

Proposition 1.6.4. A metric space is separable if and only if there exists a countable family {On :
n ∈ N} of open set of X such that for every open set O of X and for every x ∈ X there exists
On0 such that x ⊂ On0 ⊂ O.

Proof. Assume that X is separable and let D = {an : n ∈ N} be dense in X. Let O ⊂ X be open
and take x ∈ O. Set δ := d(x,O{) = infy∈O{ d(x, y) and let m ∈ N be such that m > 2/δ. Since
D is dense in X, there exists an ∈ D with

d(x, an) < 1/m.

Moreover, the open ball B(an, 1/m) ⊂ O. Otherwise, there would exists z ∈ O{ such that

d(an, z) < 1/m,

and we would then obtain that

d(x, z) ≤ d(x, an) + d(an, z) < 1/m+ 1/m = 2/m < δ,

which is absurd. We conclude then that the open balls B(an, 1/m) satisfy the necessary condition
of the proposition. Conversely, assume that such open set On, n ∈ N exists and take an ∈ On
for each n ∈ N. Then the countable set {a1, a2, ..., an, ...} is dense in X. In fact, for each x ∈ X
and for each open ball B(x, ε) there exists On such that x ∈ On ⊂ B(x, ε). Thus an ∈ On ∩
B(x, ε).

1.6.1 Exercises

E 1.6.5. Suppose that (X, dX) is a separable metric space and (Y, dY ) a metric space with f :
X → Y continuous. Show that (f(X), dY |f(X)) is also separable.
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1.7 The Banach fixed-point theorem

Consider a metric space (X, d) and a continuous mapping f : X → X. An element x ∈ X is
called a fixed point of f if

x = f(x).

There are several theorems stating conditions on X and f that are sufficient for the existence
of a fixed point: one of the oldest is the result below which was proved by Stefan Banach in
Lwów in 1922. The Banach fixed point theorem (also known in the literature as the contraction
mapping theorem) provides sufficient conditions for the existence and also uniqueness of a fixed
point and, in addition, it is constructive: the fixed point can be approximated by a sequence whose
convergence rate can be estimated. A standard application of Banach’s theorem is found in the
theory of ordinary differential equations as a main ingredient in the proof of Picard–Lindelöf’s
theorem about existence and uniqueness of a solution.

Theorem 1.7.1 (Banach fixed point theorem). Let (X, d) be a complete metric space and f :
X → X be a contraction, cf. Definition 1.4.7. Then f has a unique fixed point. Moreover, for any
arbitrary x0 ∈ X, the sequence (xn)n∈N recursively defined by

xk :=

{
f(x0) if k = 1

f(xk−1) if k ≥ 2
(1.6)

converges to the fixed point of f.

Proof. First, if such fixed point exists then it is unique. Indeed, assume that there exists x, y ∈ X
such that x = f(x) and y = f(y) then

d(x, y) = d(f(x), f(y)) ≤ Ld(x, y)

where L is the Lipschitz constant of f. Consequently, (1 − L)d(x, y) ≤ 0. Since L < 1, this
implies that d(x, y) ≤ 0 and thus x = y.
Let us now prove existence. For this, let x0 ∈ X be arbitrary and let (xn)n∈N denote the sequence
as defined in (1.6). By recursion we readily obtain

d(xn, xn+1) ≤ Lnd(x1, x0), n ∈ N.

Therefore, for p < q,

d(xp, xq) ≤d(xp, xp+1) + d(xp+1, xp+2) + ...+ d(xq−1, xq)

≤ (Lp + ...+ Lq−1)d(x1, x0)

≤
(q−1∑
n=p

Ln
)
d(x1, x0).

Since L < 1, the series
∑

n∈N L
n converges and the last inequalities above implies that (xn)n∈N is

a Cauchy sequence. As X is complete, (xn)n∈N converges to some x ∈ X. Since f is continuous,
f(xn)→ f(x) by Theorem (1.4.2). From xn+1 = f(xn) we hence deduce x = f(x).

Corollary 1.7.2. Let (X, d) be a complete metric space and let f : X → X be a mapping. Assume
that there exists r ∈ N∗ such that f r is a contraction, where the r-th iterate of f is recursively
defined by

f r :=

{
f if r = 1

f ◦ f r−1 if r ≥ 2 .

Then f has a unique fixed point.
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Proof. SinceX is complete and f r is a contraction, there exists by Theorem 1.7.1 a unique x ∈ X
such that f(x) = x. This implies that f r(f(x)) = f(f r(x)) = f(x). Consequently f(x) = x
since the fixed point of f r is unique.
Now if there exists a another y ∈ X such that f(y) = y, then f r(y) = y and thus x = y.

From the proof of Theorem 1.7.1 we see that this theorem can actually be generalized in the
following fashion.

Theorem 1.7.3. Let (X, d) be a complete metric space and f : X → X a mapping such that the
iterate fn satisfies

d(fn(x), fn(y)) ≤ Lnd(x, y) for all x, y ∈ X and all n ∈ N (1.7)

where Ln ≥ 0 such that
∑

n∈N Ln <∞. Then f has a unique fixed point.

The proof is left as an exercise.

1.7.1 Exercises

E 1.7.4. Give the proof of Theorem 1.7.3.

E 1.7.5. Let X := N∗ = {1, 2, 3, · · · } and d : X ×X −→ R+ given by

d(n, n) = 0 and d(n,m) = 10 +
1

m
+

1

n
if n 6= m.

1. Prove that (X, d) is a complete metric space.

2. Let f : X → X where f(n) = n+ 1. Prove that that for n 6= m

d(f(m), f(n)) < d(m,n)

but f is not a contraction.

1.8 Compact metric spaces

In the course 1144 you have already encountered the important concept of compact subsets S ⊂
Rn. According to the theorem of Heine-Borel, the class of compact subsets of Rn is identical
with the class of closed and bounded subsets. More precisely: If S is closed and bounded and
{Oi : i ∈ J} is a collection of open intervals such that S ⊂

⋃
i∈J Oi, then there exists a finite

subcollection {O1, O2, ..., On} such that

S ⊂
n⋃
i=1

Oi .

This implies, by definition, that S is compact. On the other hand, given a subset S ⊂ R for which
any open cover has a finite subcover, then S is closed and bounded. The aim of this section is to
generalize the concept of compactness to arbitrary metric spaces.



1.8. COMPACT METRIC SPACES 27

1.8.1 Heine-Borel property

Let (X, d) be a metric space. An open cover of X is a collection of open subsets {Oi : i ∈ J}
of X such that X =

⋃
i∈J Oi. A subcover of {Oi : i ∈ J} is a collection {Oi : i ∈ I} where

I ⊂ J and the subcover is finite if and only if I is finite. Finally,X is said to have the Heine-Borel
property if every open cover of X has a finite subcover.

Definition 1.8.1. A metric space (X, d) is said to be compact if every open cover of X has a finite
subcover.

The definition above does not state that X is compact if it has finite open cover: each metric
space is open and thus is a (finite) open cover of itself. It is required that from any given open
cover, we can extract a finite subcover.

Example 1.8.2. 1) Every finite metric space is compact.
2) The real line R is not compact. In fact, we have R ⊂

⋃
n∈N]−n, n[. If we assume that there

exists n1, n2, ..., nm ∈ N such that R ⊂
⋃
i=1,...,m∈N] − ni, ni[, then we get that R ⊂] − N,N [,

where N := max{n1, n2, ..., nm}. This cannot be true.
3) Let (X, d) be a discrete metric space. If X is finite, then (X, d) is clearly compact. If

however X is infinite, X is not compact since the open cover

X =
⋃
x∈X
{x}

has no finite subcover. Accordingly, a discrete metric space (X, d) is compact if and only if X is
finite.

Proposition 1.8.3. Each compact metric space is bounded.

Proof. Let x0 ∈ X. ThenX =
⋃
n∈NB(x0, n). SinceX is compact there exist n1, n2, ..., np such

that

X =

p⋃
i=1

B(x0, ni).

We set N := max{n1, n2, . . . , np}, thus X ⊂ B(x0, N). Hence X is bounded.

Remark 1.8.4. Compactness of a metric space can also be described in terms of closed sets.
Indeed, a metric space is compact if and only if for every collection of closed sets with an empty
intersection one can find a finite subcollection whose intersection is also empty.

An immediate consequence of Remark 1.8.4 is the following fact.

Proposition 1.8.5. Let (Fn)n∈N be a decreasing sequence of non-empty closed set of a compact
metric space (X, d). Then ⋂

n∈N
Fn 6= ∅.

Proof. Assume that
⋂
n∈N Fn = ∅. Since X is compact, there exists Fn1 , Fn2 , . . . , Fnp such that⋂p

i=1 Fni = ∅. Setting N := max{n1, n2, . . . , np}, one obtains FN =
⋂p
i=1 Fni = ∅. which is

contradiction.

We have seen in Proposition 1.3.11 that the conclusion of Proposition 1.8.5 is correct for
complete metric space provided that diam(Fn) → 0. However, if this condition fails to hold and
the space is not compact, the above conclusion is not true in general. For instance, for R we have⋂
n∈N]−∞, n] = ∅.
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1.8.2 The Bolzano-Weierstrass characterization of compact metric spaces

The Bolzano-Weierstrass theorem states that every bounded sequence of real numbers has a cluster
point, i.e., a convergent subsequence. We will prove in this section that a metric space is compact
if and only if each sequence (which is not necessarily bounded!) has a cluster point.

First we need some preliminary results. A metric space is said to be pre-compact if for all
ε > 0 there exists a finite open cover of X of open balls of radius ε > 0, i.e., for every ε > 0 there
exists x0, x1, . . . , xn in X such that

X =

n⋃
i=1

B(xi, ε).

Furthermore, we say that a metric space (X, d) has the Bolzano-Weierstrass property if every
sequence in X has a cluster point.

Lemma 1.8.6. Every metric space (X, d) with the Bolzano-Weierstrass property is pre-compact.

Proof. We prove the lemma by contradiction. For this, assume that there exists ε > 0 such that X
cannot be covered by a finite number of open balls of radius ε. Let x0 ∈ X. Then B(x0, ε) 6= X.
Therefore, there exists x1 ∈ X such that

d(x0, x1) ≥ ε

Again, since B(x0, ε) ∪ B(x1, ε) 6= X, there exists x2 ∈ X such that d(x0, x2) ≥ ε and
d(x1, x2) ≥ ε. Suppose now that we have constructed vectors x0, x1, . . . , xn such that d(xi, xj) ≥
ε for all i, j = 0, 1, . . . , n with i 6= j. Since

n⋃
i=1

B(xi, ε) 6= X

there exists xn+1 ∈ X such that

d(xi, xn+1) ≥ ε for i = 0, 1, . . . , n.

Now, using pre-compactness, let x ∈ X be the limit of a subsequence (xnk)k∈N of (xn). Thus
there exists kε/3 ∈ N such that if k ≥ kε/3

ε ≤ d(xnk , xnk+1) ≤ d(xnk , x) + d(xnk+1, x) <
ε

3
+
ε

3
= 2

ε

3

which is a absurd.

Let (X, d) be a metric space having the Bolzano-Weierstrass property and let {Oi : i ∈ J} be
an open cover of it. If there exists ε > 0 such that each open B(x, ε) is contained in Oi for some
i ∈ J, then X would be compact. Indeed, by Lemma 1.8.6, there exists x0, x1, . . . , xn in X such
that X =

⋃n
i=1B(xi, ε) and if each B(xi, ε) ⊂ Oi for some Oi, then we would have

X =
n⋃
i=1

B(xi, ε) ⊂
n⋃
i=1

Oi.

Let us now show that such ε does actually exist.

Lemma 1.8.7. Let (X, d) be a metric space that has the Bolzano-Weierstrass property and let
{Oi : i ∈ J} be a open cover of it. Then there exists ε0 > 0 such that

B(x, ε0) ⊂ Oi for some i0 ∈ J .
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Proof. Assume the assertion to be false. Then for every ε > 0 there exists x ∈ X such that

B(x, ε) 6⊂ Oi for any i ∈ J.

In particular, for each n ∈ N and ε = 1
n there exists xn ∈ X such that

B

(
xn,

1

n

)
6⊂ Oi for any i ∈ J. (1.8)

Since X has the Bolzano-Weierstrass property, (xn)n∈N has a convergent subsequence (xnk)k∈N
whose limit is denote by x. Then x ∈ Oi0 for some i0 ∈ J , because {Oi : i ∈ J} is a cover of X .
We then see that there exists ε0 > 0 such that

B(x, ε) ⊂ Oi0 ,

as Oi0 is open. Take now K large enough that

d(xnK , x) <
ε0
2

and
1

nK
<
ε0
2
.

Let now y ∈ B(xnK ,
1
nK

). Then d(y, xnK ) < 1
nK

and thus

d(y, x) ≤ d(y, xnK ) + d(xnK , x)

≤ 1

nK
+ d(xnK , x) ≤ ε

2
+
ε

2
= ε .

Thus y belongs to B(x, ε) and hence also to Oi0 . Therefore, B(xnK ,
1
nK

) ⊂ Oi0 , in contradiction
to (1.8).

Now we are able to prove the main result of this section.

Theorem 1.8.8 (Bolzano-Weierstrass Theorem). A metric space is compact if and only if it satis-
fies the Bolzano-Weierstrass property.

Proof. If X has the Bolzano-Weierstrass property, then Lemma 1.8.6, Lemma 1.8.7 and the re-
mark above show that X is indeed compact. For the converse we give two proofs.

First proof :Assume now that (X, d) is a compact metric space and suppose that there exists a
sequence (xn)n∈N ⊂ X which has no cluster point. Then for every x ∈ X , there exists εx > 0
such that the set

{n ∈ N | xn ∈ B(x, εx)}

is finite (see Remark 1.3.16). On the other hand, {B(x, εx), x ∈ X} is an open cover of X and
by compactness there exists y0, y1, . . . , yp such that

X =

p⋃
i=1

B(yi, εyi).

This however yields a contradiction since at least one yj would be a cluster point of (xn)n∈N.
Second proof : Let (xn)n∈N be a sequence on X and let

Fp := {xn, n ≥ p}, p ∈ N

Thus (Fp) is a decreasing sequence of non-empty closed sets. Thus
⋂
p∈N Fp 6= ∅. But by Propo-

sition 1.3.15
⋂
p∈N Fp coincides with the set of cluster points of (xn)n∈N.
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Theorem 1.8.9. Each compact metric space is complete and separable.

Proof. The first statement follows from Theorem 1.8.8 and Proposition 1.3.17. Now from Lemma 1.8.6
it follows that, for every n ∈ N, there exists xn0 , x

n
1 , . . . , x

n
pn in X such that

X =

p⋃
i=0

B
(
xni ,

1

n

)
.

Thus D := {xnj , n ∈ N and j = 0, 1, . . . , pn} is dense in X.

Using the induced metric, we can also define compactness for subsets of metric spaces. In fact,
we will say that K ⊂ X is compact if the metric subspace (K, dK) is compact. More precisely,
K ⊂ X is compact if and only if each sequence (xn) ⊂ K has a subsequence which converges
in K. Equivalently, using Remark 1.2.18 one can easily see that K ⊂ X is compact if and only
if each open cover of A with open sets of X has a finite subcover. Let us mention a few further
elementary but useful properties of compact metric spaces and sets.

Proposition 1.8.10. Let (xn)n∈N be a convergent sequence in a metric space (X, d) and let x
denotes its limit. Then the set

A := {xn : n ∈ N} ∪ {x}

is compact.

Proof. Let {Oi, i ∈ J} be an open cover ofA. Since x ∈ A, there exists i0 ∈ J such that x ∈ Oi0 .
Now because xn → x, there exists n0 ∈ N such that for all n ≥ n0, xn ∈ Oi0 . For n ≤ n0, there
in ∈ J such that xn ∈ Oin . Then one has A ⊂ ∪i∈IOi, where I := {in : n ≤ n0} ∪ {i0}. Thus
the claim is proved since I is finite.

Remark 1.8.11. Note that the conclusion of Proposition 1.8.10 is no longer true when the limit of
the sequence is missing (i.e. when A = {xn : n ∈ N}). Take for instance

A :=

{
1

n
: n ∈ N \ {0}

}
and let

O1 =

(
1

2
, 2

)
and On =

(
1

n+ 1
,

1

n+ 1

)
for n ≥ 2.

Then {On : n ∈ N} is an open cover ofA where eachOn contains exactly one element ofA which
is 1

n . Consequently, A cannot be compact.

Proposition 1.8.12. Let (X, d) be a metric space. Then the following assertions hold.

1) If X is compact and F ⊂ X is closed, then F is compact.

2) If F is a compact subset of X, then F is closed and bounded.

Proof. 1) Obvious.
2) F is closed, since it contains the cluster point of its sequence and thus the limits of its

convergent sequences. The boundedness was proven in Proposition 1.8.3.

Remark 1.8.13. As we have already mentioned, the converse of the second statement of Propo-
sition 1.8.12 holds for X = Rn, but not in general! For example, if (X, d) is an infinite discrete
metric space, then we have seen in Example 1.8.2 that A ⊂ X can only be compact if it is finite.
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1.8.3 Continuous functions in compact metric space

Proposition 1.8.14. Let (X, dX) and (Y, dY ) be two metric spaces and f : X → Y be a con-
tinuous function. Then, for each compact subset K ⊂ X the image f(K) is compact and f is
uniformly continuous from K to Y.

Proof. Let (yn)n∈N ⊂ f(K). Then there exists (xn)n∈N ⊂ Y with xn = f(yn). Since K is
compact, there exists a subsequence xnk → x ∈ K. Since f is continuous, this implies that
ynk = f(xnk)→ f(x) ∈ f(X). Thus f(K) is compact.
Now assume by contradiction that f : K → Y is not uniformly continuous. Then there exists
ε > 0 and two sequences (xn)n∈N and (yn)n∈N in K such that

dX(xn, yn) ≤ 1

n
and dY (f(xn), f(yn)) ≥ ε.

SinceK is compact, (xn)n∈N and (yn)n∈N have convergent subsequences (xnk)k∈N and (ynk)k∈N
converging to the same point x ∈ K. By the continuity of f there exists k0 ∈ N such that for all
k ≥ k0 one has

ε < dY (f(xnk), f(ynk)) ≤ dY (f(xnk), f(x)) + dY (f(ynk), f(x)) ≤ ε

2

which is absurd.

Remark 1.8.15. A consequence of Proposition 1.8.14, is that the image f(F ) of a closed subset
F of is closed in Y provided that X is compact. This is not true in general as we have seen in
Remark 1.4.6.

Remark 1.8.16. Let (X, dX) and (Y, dY ) be two metric spaces such that X is compact. Let
f : X → Y be a continuous function. Proposition 1.8.14 shows that for given y ∈ Y a solution
of the equation

f(x) = y (1.9)

can be obtained by approximation. More precisely, if y can be approximated by a sequence
(yn)n∈N ⊂ Y (i.e., yn → y is Y) and if we assume that there exists a sequence (xn)n∈N ⊂ X of
solutions of

f(xn) = yn,

then we can extract a subsequence (xnk)k∈N of (xn)n∈N that converges to a solution of (1.9).

A function f between two metric spaces (X, dX) and (Y, dY ) is a homeomorphism if f is
continuous, bijective and f−1 is continuous. We say that f is an isometry from (X, dX) to
(Y, dY ) if

dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X.

Proposition 1.8.17. Let (X, dX) and (Y, dY ) be two metric spaces and let f be an isometry from
X to Y . Then the following assertions hold.

1) f is injective.

2) If (X, dX) is complete, then the image f(X) is complete in Y.

3) If f is surjective, then f is a homeomorphism from X to Y.

In general , a continuous and bijective function need not have a continuous inverse. Consider
for example the identity function id : (R, d′) → (R, d), where d′ is the discrete metric and
d is the usual metric. Then this function is is bijective and continuous but its inverse (clearly,
id : (R, d)→ (R, d′)) is not continuous. Things look better under a compactness assumption.
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Proposition 1.8.18. Let (X, dX) and (Y, dY ) be two metric spaces and f : X → Y be a contin-
uous and bijective function. If X is compact, then f is a homeomorphism.

Proof. From Proposition 1.4.4 it suffices to show that the image by f of each closed set of X is
closed in Y . Let F ⊂ X be closed. Since X is compact, F is also compact. By Proposition
1.8.14, f(F ) is compact and then closed in Y.

If A a compact set of R, then inf(A) and sup(A) belong to A. In fact, A is in particular
bounded and thus sup(A), inf(A) < ∞. There exists two sequences (xn)n∈N and (yn)n∈N in
A such that xn → inf(A) and yn → sup(A). Since A is closed we conclude that inf(A) and
sup(A) ∈ A.

From this remark and Proposition 1.8.14 we deduce that each continuous real value function
on a compact metric space is bounded and attains a maximum and a minimum on X.

Theorem 1.8.19 (Extreme value theorem). Let (X, d) be a compact metric space and f : X → R
be a continuous function. Then f attains a maximum and a minimum value, i.e., there exist a, b ∈
X such that

f(a) = inf
x∈A

f(x) and f(b) = sup
x∈A

f(x).

1.8.4 Exercises

E 1.8.20. Give a proof of Remark 1.8.4.

E 1.8.21. Suppose that (X, d) is a compact metric space and {Kn} a decreasing sequence of
closed subsets of X . Setting K :=

⋂
nKn, show that diam(Kn)→ diam(K).

1.9 Notes and suggestions for further learning

One does not even need distances in order to define an abstract notion of open set! An axiomatic
theory of open and closed sets (and therefore of continuity and convergence) has been developed
since the 1910s by Felix Hausdorff in Greifswald and many other subsequent mathematicians,
leading to the birth of the mathematical field of Topology: we refer the interested reader to the
course 1354.
In general, a family of subsets T of a non-empty set X is called topology if the following holds:

(O1) X ∈ T and ∅ ∈ T ,

(O2) if Uα : α ∈ J is any collection of elements of T , then
⋃
α∈J Uα ∈ T

(O3) if, for any n ∈ N, U1, U2, , · · · , Un ∈ T , then
⋂n
i=1 Ui ∈ T .

The pair (X, T ) is called a topological space and the elements of T are called open sets (with
respect to T ). Therefore, what we have proved in Theorem 1.2.5 is that the notion of openness
introduced in Definition 1.2.3 is in fact consistent with the topological definition of openness.

Not only topological results, but even topological notions are useful in analysis and well be-
yond. Let us mention a nice application to linear algebra. You have already seen in the course 1143
that symmetric matrices (or hermitian matrices in the complex case) are diagonalizable, i.e., they
are similar to a diagonal matrices. However, non-symmetric matrices seem to be “many more”
than symmetric ones, so what should be done if a non-symmetric matrix is given? Well. it turns
out that we cannot be too far away from a diagonalizable matrix anyway. Indeed, one can prove
that diagonalizable n × n matrices with complex values are dense in set of all n × n matrices
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with respect to the topology induced by entrywise convergence. While the proof is based on more
or less elementary linear algebra, it is the idea of using denseness to qualitatively suggest how
“common” objects are which is rather topological indeed.
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1.10 Solutions

Solution 1 (E 1.4.10). Assume that f : X → Y is continuous at x ∈ X and let U be a neigh-
bourhood of f(x). Then is V := f−1(U) is a neighbourhood of x and f(V ) ⊂ U. Let us show
the converse assertion. Let U be a neighbourhood of f(x). Then there exists by assumption a
neighbourhood of V of x such that f(V ) ⊂ U. Since

V ⊂ f−1(f(V )) ⊂ f−1(U)

then is f−1(U) also a neighbourhood of x. Therefore f : X → Y is continuous at x ∈ X.

Solution 2 (E 1.1.4). First, we start from condition c) in Definition 1.1.1 to obtain

d(x, z)− d(y, z) ≤ d(x, y) .

Interchanging x↔ y and using symmetry we obtain

d(y, z)− d(x, z) ≤ d(x, y) .

From this, (1.1) follows. Next, using (1.1) we obtain that

|d(x, y)− d(u, y)| ≤ d(x, u) ,

|d(v, u)− d(y, u)| ≤ d(y, v) .

Adding both inequalities and using triangle inequality then yields the result.

Solution 3 (E 1.1.5). We check conditions a)− c) of Definition 1.1.1. Condition b) is clear and a)
follows from the fact that the map arctan : R∪{±∞} → [−π

2 ,+
π
2 ] is bijective. Finally, condition

c) follows from the triangle inequality.

Solution 4 (E 1.1.6). We check conditions a)− c) of Definition 1.1.1.

i) If dX(x, y) = 0, then xn = yn for all n ∈ N. On the other hand, dX(x, x) = 0 for all
x ∈ X .

ii) Is clear.

iii) Let x, y, z ∈ X be given. Using the triangle inequality we obtain

|xn − zn| ≤ |xn − yn|+ |yn − zn|, ∀n ∈ N.

Hence,

sup
n∈N
|xn − zn| ≤ sup

n∈N

(
|xn − yn|+ |yn − zn|

)
,

≤ sup
n∈N
|xn − yn|+ sup

n∈N
|yn − zn|.

We conclude that (X, dX) is indeed a metric space.

Solution 5 (E 1.1.7). (X, dX) is not a metric space. To see this, choose x, y ∈ X such that
xn 6= yn for infinitely many n to obtain dX(x, y) =∞.
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Solution 6 (E 1.1.8). i) The map d1 : (x, y) 7→ |x2 − y2| is not a metric on R, since condition a)
of Definition 1.1.1 is not satisfied. In fact, for instance d1(−2, 2) = 0.
ii) Clearly d2 satisfies conditions a)− b) of Definition 1.1.1. For given x, y, z ∈ R we have

|x3 − z3| ≤ |x3 − y3 + y3 − z3| ≤ |x3 − y3|+ |y3 − z3|.

Thus d2 is a metric on R.
iii) The mapping (x, y) 7→ e

1
|x−y| is never equal 0 and thus condition a) of Definition 1.1.1 is not

satisfied. Therefore d3 is not a metric on R.

Solution 7 (E 1.1.9).

1. We first note that, since f, g are continuous, the integral and hence d1(f, g) is well defined
as a Riemannian integral. Also, symmetry of the metric is clear and from d1(f, f) = 0 we
readily conclude f = 0. To see this note that |f | is positive and continuous. Finally, using
the triangle inequality and linearity of the integral yields the result.

2. Since any continuous function on a compact interval is bounded we readily conclude that
d∞(f, g) is well defined. Also, symmetry is obvious and d∞(f, f) = 0 clearly implies
f = 0. Using triangle inequality then yields the result.

Solution 8 (E 1.2.19). Consider A = {x} where x ∈ X is any point. In order to show that A is
closed we show that X \ A is open. Therefore, let y ∈ X \ A be any point and consider the ball
Br(y) with r < d(x, y) <∞. Then Br(y) ⊂ X \A and we conclude that X \A is indeed open.

Solution 9 (E 1.2.20).

a) Assume that A is dense and X \A 6= ∅. We then choose some element y ∈ X \A. Since A
is dense we have that y ∈ A and by the definition of the closure we conclude that, for any
ball Br(y), one has Br(y) ∩ A 6= ∅. For r small enough one has, by the definition of the
discrete metric, that Br(y) = {y}. This, however, yields a contradiction.

b) ”⇒ ”: LetA be dense inX andBr(x) some open ball with center x ∈ X . SinceA is dense
we immediately conclude thatA∩Br(x) 6= ∅. ”⇐ ”: One hasA := {x ∈ X |Br(x)∩A 6=
∅, ∀r > 0}. Hence, A = X .

Solution 10 (E 1.2.21). The assertion ”i)” is obvious. Assume that d(x,A) = 0. Then for each
r > 0 we have d(x,A) < r. Thus for each r > 0 there exists y ∈ A such that d(x, y) < r. So
for each r > 0 we have B(x, r) ∩ A 6= ∅. This means by Definition that 1.2.9 x ∈ A. Thus ”ii)”
holds. As conclusion we obtain the following characterization

A = {x ∈ X : d(x,A) = 0}.

In fact, the inclusion A ⊃ {x ∈ X : d(x,A) = 0} follows from (ii). On the other hand, if x ∈ A
then i) implies that d(x,A) ≤ d(x,A) = 0 and thus A ⊂ {x ∈ X : d(x,A) = 0}.

Solution 11 (E 1.2.22). Let x, y ∈ A ∪ B. If x, y belong to A (respectively to B) then d(x, y) ≤
diam(A) (respectively d(x, y) ≤ diam(B)). Now if x ∈ A and y ∈ B then for arbitrary a ∈ A
and b ∈ B the triangle inequality implies

d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) ≤ diam(A) + d(a, b) + diam(B).

Thus

d(x, y) ≤ diam(A) + diam(B) + inf
a∈A

inf
b∈B

d(a, b)

= diam(A) + diam(B) + d(A,B).
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Solution 12 (E 1.2.23). (i) Since A ⊂ A then diam (A) ≤ diam (A). Let x, y ∈ A. Then for
each ε > 0 there exist x′, y′ ∈ A such that

d(x, x′) ≤ ε/2 and d(y, y′) ≤ ε/2.

Then

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y, y′)

≤ ε+ d(x′, y′)

≤ ε+ diam (A).

It follows that
sup
x,y∈A

d(x, y) ≤ diam (A),

i.e., diam(A) ≤ diam′(A). We conclude that indeed diam(A) = diam(A).
(ii) If x ∈ A ∩B, then d(A,B) ≤ d(x, x) = 0. Thus d(A,B) = 0.
(iii) Set α := diam(A) + d(A,B) + diam(B). Let x, y ∈ A ∪B :

1. if x, y ∈ A or x, y ∈ B then d(x, y) ≤ diam A ≤ α,

2. if x ∈ A and y ∈ B then d(x, y) ≤ d(A,B) ≤ α.

We conclude that diam (A ∪B) ≤ α.

Solution 13 (E 1.2.24). 1. Let x, y, z ∈ X. Assume for example that d(x, y) < d(y, z). Since
d is an ultrametric we have

d(y, z) ≤ max{d(y, x), d(x, z)}.

If we had d(x, z) < max{d(x, y), d(y, z)} = d(y, z), then

d(y, z) ≤ max{d(y, x), d(x, z)} < max{d(y, z), d(y, z)}

which is impossible.

2. Let x ∈ X and r > 0. Let y ∈ B(x, r). There exists ε > 0 and z ∈ X such that d(x, z) < r
and d(y, z) < ε. In particular for ε = r we obtain that d(x, z) < r and d(y, z) < r. Then

d(y, x) ≤ max{d(x, z), d(y, z)} < r,

so y ∈ B(x, r). It follows that B(x, r) = B(x, r). Let now y ∈ B(x, r), if z ∈ B(y, r) then

d(x, z) ≤ max{d(x, y), d(y, z)} < r.

This implies the inclusion B(y, r) ⊂ B(x, r). The B(x, r) ⊂ B(y, r) follows by a similar
argument.

3. Let x ∈ X and r > 0. Let y ∈ B(x, r). If d(x, y) ≤ r, then y ∈ B(x, r) ⊂ B(x, r) and we
have y ∈ B(y, r) ⊂ B(x, r) if d(x, y) = r. Thus B(x, r) is a neighborhood of every of its
elements and thus open. The second statement can be proved as in (2).

Solution 14 (E 1.3.18). We have to show that each convergent sequence (xn) has a unique limit
x. Suppose that xn → x and also xn → y with x 6= y. By definition we have d(xn, x) ≤ ε

2 and
d(xn, y) ≤ ε

2 for n large enough. Hence

d(x, y) ≤ d(xn, y) + d(xn, x) ≤ ε .

Since ε can be arbitrarily small, we conclude that d(x, y) = 0 and hence x = y which is a
contradiction.
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Solution 15 (E 1.3.19). Let x0 ∈ {x}. By Theorem 1.3.5 there exists a sequence (xn) ⊂ {x} such
that xn → x as n→∞. Since xn ∈ {x} for every n ∈ N it follows that xn = x for every n ∈ N.
Thus x0 = lim

n→∞
xn = x and then {x} = {x}. The result then follows from Proposition 1.2.11.

Solution 16 (E 1.3.20). Assume that (xn)n∈N ⊂ X is a Cauchy sequence. Then for each ε > 0
there exists n0 ∈ N such that for all p, q ≥ n ≥ n0

d(xp, xq) ≤ ε.

Thus for each ε > 0 there exists n0 ∈ N such that for all p, q ≥ n0
diam(An) = sup

p,q≥n0

d(xp, xq) ≤ ε.

i.e., diam(An) −→ 0. Conversely, if diam(An) −→ 0 then for each ε > 0 there exists n0 ∈ N
such that diamAn = supp,q≥n0

d(xp, xq) ≤ ε for all n ≥ n0. In particular for n = n0 we have
d(xp, xq) ≤ ε for all p, q ≥ n0. Thus (xn)n∈N is a Cauchy sequence.

Solution 17 (E 1.3.21). Whenever X consists of only one element, i.e. X = {x}, then every
sequence is the constant sequence and hence convergent. On the other hand, suppose that every
bounded sequence converges inX . Let x 6= y be two different elements and consider the sequence
(zn) with z2n = x and z2n+1 = y. This sequence is obviously bounded and hence, by assumption,
it converges to some limit z. However, every subsequence of (zn) must hence also converge to z
which implies that z = y = x which is a contradiction.

Solution 18 (E 1.3.22).

(a) Let (xn)n∈N be a Cauchy sequence in `1(N), i.e., d(xn, xm) ≤ ε for all n,m ≥ n0. This
means that ∑

i

|xn(i)− xm(i)| ≤ ε

where xn(i) denotes the i-th component of xn ∈ `1(N). Hence, for each fixed value i,
|xn(i)− xm(i)| is a Cauchy sequence in the reals and hence converges. We define this limit
to be x with xi = limn→∞ xn(i). The goal is now to show that x ∈ `1 and xn → x. For
this, consider

M∑
i=N

|xi| = lim
m→∞

M∑
i=N

|xm(i)| ≤ ε,

for N,M ≥ N0. Hence we have x ∈ `1(N). Also,

∞∑
i=0

|xi − xn(i)| =
M∑
i=0

|xi − xn(i)|+
∞∑

i=M+1

|xi|+
∞∑

i=M+1

|xn(i)|.

Now fix n ≥ n0 and then choose M so large that the two latter terms are each smaller than
ε
3 . Note that the last term is then smaller than ε

3 for all m ≥ n. Hence, for fixed M , we
can then choose n so large that also the first term becomes smaller than ε

3 . This shows that
d(xn, x)→ 0 which concludes the proof.

(b) In order to show that c00 = `1, we prove that for every x ∈ `1 and ε > 0, there exists
y ∈ c00 such that d(y, x) ≤ ε. For a given ε > 0 choose N large enough such that

∞∑
n=N

|xn| ≤ ε.

Defining yn := xn for n ≤ N and yn = 0 for n > N we have y ∈ c00 and d(y, x) ≤ ε.
This is the desired result.
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Solution 19 (E 1.4.11). Let O ⊂ Y be an open set. Since the metric considered on X is the
discrete metric every subset of X is open. This implies that f−1(O) is also open. Hence f is
continuous by Proposition 1.4.4.

Solution 20 (E 1.4.12). Let x0 ∈ R and ε > 0. Denote by δ′ > 0 the non-negative root of the
polynomial η2 + 2|x0|η − ε. Thus for all y ∈ R with |x0 − y| ≤ η′ we have

|f(x0)− f(y)| = |x20 − y2|
≤ |(x0 − y)2 + 2x0(x0 − y)|
≤ |(x0 − y)2|+ 2|x0||(x0 − y)| ≤ η′2 + 2|x0|η′ = ε.

Thus f is continuous. Take now ε = 1 and for each η > 0 take x = −η
4 −

2
η and y = x+ η

2 . Then
|x− y| = η

2 < η but |f(x)− f(y)| = |x2− y2| = 2 > ε = 1. We conclude that f is not uniformly
continuous.

Solution 21 (E 1.4.13). Let (xn)n∈N be a Cauchy sequence in (X, dX). From the uniform conti-
nuity of f we conclude that (f(xn)) forms a Cauchy sequence in (Y, dY ) and due to completeness
there exists y ∈ Y such that f(xn) → y as n → ∞. Since f is bijective there exists x ∈ X with
f(x) = y. Hence we have f(xn) → f(x). Finally, due to the continuity of f−1 we conclude that
xn → x which completes the proof.

Solution 22 (E 1.6.5). Let A ⊂ X be dense in (X, dX) with A := {an}. Consider any open ball
Bε(y0) with y0 ∈ Y and ε > 0. Then

f−1
(
Bε(y0) ∩ f(A)

)
= f−1

(
Bε(y0)

)
∩A.

Since f is continuous we conclude that f−1
(
Bε(y0)

)
is open inX . Furthermore, sinceA is dense,

we see that f−1
(
Bε(y0)

)
∩A 6= ∅ which implies that Bε(y0) ∩ f(A) 6= ∅ and hence that f(A) is

dense in (f(X), dY |f(X)).

Solution 23 (E 1.7.4). To prove uniqueness, assume that x 6= y are both fixpoints. Then

d(x, y) = d(fn(x), fn(y)) ≤ Lnd(x, y) . (1.10)

Since
∑

n∈N Ln converges we conclude that Ln → 0 and hence we obtain d(x, y) = 0. Now, for
x0 ∈ X we consider here the sequence

xn := fn(x0), n ∈ N.

Then for all n ∈ N we have xn+1 = f(xn) and

d(xn, xn+1) = d(fn(x0), f
n+1(x0))

= d(fn(x0), f
n(f(x0))) ≤ Lnd(x0, f(x0)).

Thus, for p < q,

d(xp, xq) ≤ d(xp, xp+1) + d(xp+1, xp+2) + ...+ d(xq−1, xq)

≤ (Lp + ...+ Lq−1)d(x0, f(x0))

≤ (

q−1∑
n=p

Ln)d(x0, f(x0)).

Thus (xn)n∈N is a Cauchy sequence in X and thus converges to some x ∈ X. On the other hand,
(1.10) implies in particular that f is continuous and hence

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x.
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Solution 24 (E 1.7.5). 1) It is easy to check that (X, d) is a metric space. Let (xn) ⊂ X be a
Cauchy sequence. Then for all ε > 0 there exists n0 ∈ N such that d(xp, xq) = 10 + 1

xp
+ 1

xq
≤ ε

for all p, q ≥ n0. In particular for ε < 10, this implies that xp = xq for all p, q ≥ n0.We conclude
that (X, d) is complete.
2) For all n 6= m

d(f(m), f(n)) = 10 +
1

m+ 1
+

1

n+ 1
< 10 +

1

m
+

1

m
= d(n,m).

However, f is not contractive, otherwise f would have a fixed point by Theorem 1.7.1 which is
impossible.

Solution 25 (E 1.8.20). Assume that (X, d) is compact and let {Ai} be a collection of closed sets
such that

⋂
iAi = ∅. We have

X \
⋂
i

Ai =
⋃
i

(X \Ai) = X.

Since X is compact there exists a finite subcover, i.e.,

X =
N⋃
i

(X \Ai) = X \
N⋂
i

Ai.

Hence
⋂N
i Ai = ∅.

Conversely, let {Oi} be a open cover ofX , i.e.,X =
⋃
iOi. Then {Bi := X\Oi} is a collection of

closed sets such that
⋂
iBi = ∅. Hence there exists a finite subcollection {Bi}Nn with

⋂N
i Bi = ∅.

This implies that X =
⋃N
i Oi and hence X is compact.

Solution 26 (E 1.8.21). SinceX is compact, it is bounded (according to Proposition 1.8.3). Hence
the sequence diam(Kn) is bounded from above and below. Since it is decreasing we conclude that
lim

n−→∞
diam(Kn) exists. Also, by construction,

lim
n−→∞

diam(Kn) ≥ diam(K).

Now, since X is compact we conclude that each Kn is a compact set. Furthermore, since the
metric d is a continuous function we conclude that, for any Kn, there exist xn, yn ∈ Kn such that

d(xn, yn) = diam(Kn).

Due to compactness, each sequence (xn), (yn) has a cluster point. Restricting ourselves to a
subsequence we can assume that xn → x and yn → y. We readily observe that x, y ∈ K. Hence,

diamK ≥ d(x, y) = lim
n
d(xn, yn) = lim

n
diam(Kn).

Therefore, diam(K) = lim
n

diam(Kn).
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