
Offshoring and Firm Overlap

Stella Capuano^(a), Hartmut Egger^(b,c), Michael Koch^(b), and Hans-Jörg Schmerer^(a,c,d)

^(a)Institute for Employment Research (IAB), Nuremberg ^(b)University of Bayreuth ^(c)CESifo ^(d)FernUniversität Hagen

> University of Uppsala research seminar 05/05/15

- Offshoring features prominently in the public debate as well as the scientific research on international trade
- ▶ Recent contributions focus on the role of firm heterogeneity:
 - Antràs and Helpman (2004)
 - Antràs, Garicano and Rossi-Hansberg (2006)
 - Egger, Kreickemeier and Wrona (2013)
- In heterogeneous firms models à la Melitz (2003) with fixed offshoring costs:
 - \Rightarrow Firms self-select into offshoring
 - \Rightarrow Direct link between firm size and offshoring status
- But considerable overlap in the data: firms with the same size (or productivity) have different offshoring intensities

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Table: Firm size and offshoring

Size (IAB)	No	Yes
1-5	82.21	17.69
6-10	75.43	24.57
11-18	73.84	26.16
19-30	62.47	37.53
31-54	47.12	52.88
55-97	36.56	63.44
98-178	26.31	73.69
179-306	17.03	82.97
307-680	16.10	83.90
> 680	6.76	93.24
Total	45.93	54.07

Table: Nr. of tasks and offshoring

Nr. tasks	No	Yes
1-9	82.91	17.09
10-12	76.65	23.35
13-14	68.00	32.00
15-16	56.86	43.14
17	52.36	47.64
18	30.77	69.23
19-22	45.44	54.56
23	24.92	75.08
24	16.69	83.31
> 24	11.58	88.42
Total	69.29	30.71

- Stylized facts show:
 - subset of firms of each category engages in offshoring
 - share increases in firm size/number of tasks
- In Melitz-type models overlap requires the draw of two (dependent) random variables (Davis and Harrigan, 2011; Harrigan and Reshef, *forthcoming*)

So far missing: clean microfoundation of overlap

This paper

Theory

- Tractable model of offshoring and firm overlap
- New microfoundation: firms differ
 - in the range of tasks they perform, and
 - in the share of offshorable tasks
 - \implies Probability of offshoring increases in the number of tasks

Empirics

- Model-based estimation of key parameters
- Quantifying the welfare effects of offshoring
- Conducting counterfactual analysis

Basic assumptions

- ▶ 2 countries, L (developed, source) and L^* (undeveloped, host)
- Consumers in both countries have identical CES preferences
- Monopolistic competition among single-product firms
- Production requires performance of different tasks, combined into a Cobb-Douglas technology

$$q = \frac{z}{1-z} \exp\left[\frac{1}{z} \int_0^z \ln x(i) di\right], \qquad (1)$$

- x(i) output for task *i*, which equals labor input
- $z \in (0,1)$ firm-specific number of tasks

Cost minimization

- Two modes of production:
 - $c^d = (1 z)w$, if all tasks are performed at home • $c^o = (1 - z)w\kappa^s$, if share s is performed offshore

Where:

- $\kappa \equiv \tau w^* / w$ is the effective wage differential
- Offshoring only attractive if $\kappa < 1$
- ► 1/κ^s is the marginal cost saving effect of offshoring

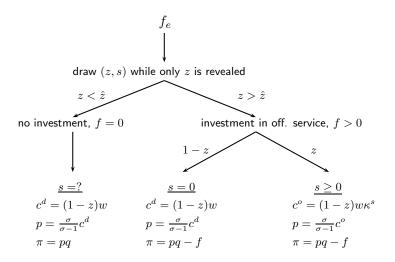
Firm entry

- Entering requires an initial investment of f_e units of labor
- Investment gives single draw from a lottery
- Outcome is a technology tuple (z, s)
 - z: number of tasks,

$$f_z(z) = k(1-z)^{k-1}$$

s: share of offshorable tasks,

 $s \sim U(0,1)$


 After the lottery, firms only know z but are uninformed about s

Firm entry

- Firms form expectations on *s*:
 - Probability of s > 0 is a positive function of z
 - ▶ For tractability, we set this probability equal to *z*
- Firms can invest f units of labor into a fixed offshoring service, which provides information on the share s of offshorable tasks
 - $\Rightarrow~$ Intuition: Firms have to go through an in-depth analysis of their offshoring potential

• At \hat{z} a firm is indifferent between investing f or not

Illustration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Equilibrium

• Offshoring indifference condition (OC):

$$\Gamma_1\left(\hat{c},\kappa\right) = \frac{\hat{c}^{\sigma-1}}{1-\hat{c}}\frac{k}{k-\sigma+1} + \left\{\frac{\hat{c}^k}{1-\hat{c}}\left[\frac{\sigma-1}{k-\sigma+1} - \hat{c}\frac{\sigma-2}{k-\sigma+2}\right] - \frac{f_e}{f}\right\}\left[\frac{\kappa^{1-\sigma}-1}{(1-\sigma)\ln\kappa} - 1\right] = 0.$$

ightarrow establishes a negative link between \hat{c} and κ

Labor market constraint (LC):

$$\Gamma_2\left(\kappa,\hat{c}\right) \equiv \kappa \left\{ \frac{\sigma+1}{\sigma-1} + \frac{2\sigma}{\sigma-1} \frac{(1-\sigma)\ln\kappa}{\kappa^{1-\sigma}-1} \left[\frac{k-\sigma+2}{\hat{c}^{k-\sigma+1}\left[1+(1-\hat{c})\left(k-\sigma+1\right)\right]} - 1 \right] \right\} - \frac{\tau L}{L^*} = 0.$$

- ightarrow establishes a positive link between \hat{c} and κ
 - System of two equations which jointly determine a unique interior equilibrium with ĉ, κ ∈ (0, 1)

Equilibrium values of \hat{c} and $\kappa = \tau w^*$

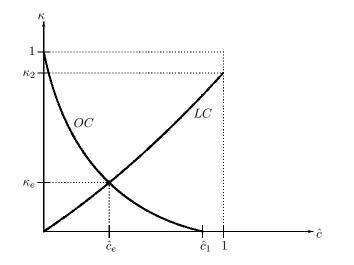


Figure: Equilibrium values of \hat{c} and κ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparative statics: increase in f

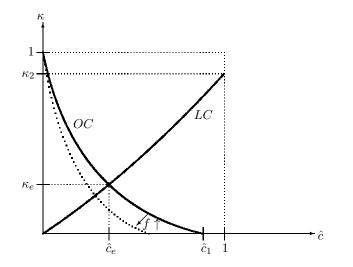


Figure: Equilibrium values of \hat{c} and κ

(日) (個) (目) (目) (目) (目)

Comparative statics: increase in $\boldsymbol{\tau}$

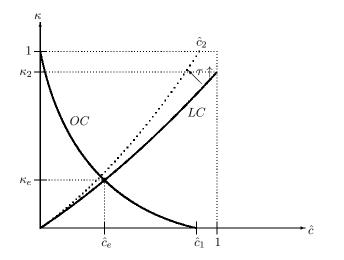


Figure: Equilibrium values of \hat{c} and κ

Data source

 German manufacturing establishments: years 1999, 2001, 2003

- 29 tasks from BIBB-BAuA 2006 survey
- Sample selection: large manufacturing firms (i.e., 4employees)

	Mean	Median	Std. Dev.
Offshoring	0.38	0.00	0.49
Nr. of tasks	13.98	14.00	4.18
Nr. of tasks/total nr. tasks	0.48	0.48	0.14
Revenues	9,420,030	1,186,826	98,268,970

Table: Summary statistics

Method of Moments estimation

Estimating k and \hat{c}

- ► Targeted moments: share of offshoring firms χ , first and second moments of 1 z
- Method of Moments (minimum-distance) constrained estimation

$$\begin{array}{ll} 0 &\approx & \chi_o - \left\{ \hat{c}^k \left[1 - \frac{k}{k+1} \hat{c} \right] \right\} &, \\ 0 &\approx & \tilde{c}_o - \left\{ \frac{k}{k+2} \hat{c}^{k+2} + \frac{k}{k+1} - \frac{k}{k+1} \hat{c}^{k+1} \right\} &, \\ 0 &\approx & v_o - \left\{ \frac{k}{k+3} \hat{c}^{k+3} + \frac{k}{k+2} - \frac{k}{k+2} \hat{c}^{k+2} - [\tilde{c}(k,\hat{c})]^2 \right\} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Method of Moments estimation

Estimating σ and r(1)

We use

$$\ln r^d (1-z) = \ln r^d (1) + (1-\sigma) \ln(1-z)$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 And combine the OLS and FE moment conditions for identification

$$\begin{split} \zeta_1 &= E \left[\ln r^d - \ln r_1^d - (1 - \sigma) \ln(1 - z) \right] = 0, \\ \zeta_2 &= E \left[\ln r^d - \ln r_1^d - (1 - \sigma) \ln(1 - z) \right] \ln(1 - z) = 0 \\ \zeta_3 &= E \left[\Delta \ln r^d - (1 - \sigma) \Delta \ln(1 - z) \right] = 0, \\ \zeta_4 &= E \left[\Delta \ln r^d - (1 - \sigma) \Delta \ln(1 - z) \right] \Delta \ln(1 - z) = 0 \end{split}$$

Results

Parameter values

	ĉ	k	χ	ĩ	var(<i>c</i>)
Estimates	0.996	1.653	0.377	0.452	0.150
Targets			0.384	0.555	0.016
Difference			0.007	0.103	0.134
	σ	$r^d(1)$			
Estimates	1.857	1,421,002			
Recovered parameters: κ , f, f _E and $\tau L/L^*$					
	κ	f	f _e	$ au L/L^*$	
Parameters	0.115	5,704.08	3,265,730	0.522	

<□> <圖> < E> < E> E のQ@

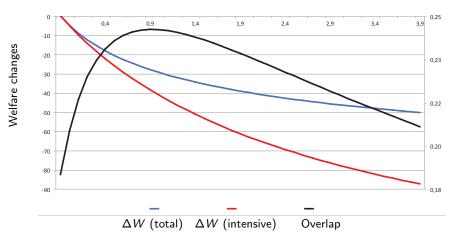
Results

Welfare effects

- We use the parameter estimates to evaluate the welfare effects of offshoring
- ► Using per-capita income as a welfare measure, we compute: $\Delta W = 100 \left\{ \left(1 + \frac{\kappa L^*}{\tau L}\right)^{\frac{1}{\sigma-1}} \left[1 - \frac{\hat{c}^k}{1-\hat{c}} \left(\frac{\sigma-1}{k-\sigma+1} - \hat{c}\frac{\sigma-2}{k-\sigma+2}\right) \frac{f}{f_e}\right]^{\frac{1}{1-\sigma}} - 1 \right\}$
 - Welfare increases by 192.29 percent when moving from autarky to today
 - In a model variant without overlap, welfare increases by 77.95 percent

Counterfactual analysis

Changes in the offshoring fixed cost f


We evaluate:

- The welfare effects
 - Along the *intensive margin* of offshoring (i.e. keeping the share of offshoring firms χ constant)
 - Along the *extensive margin* of offshoring (i.e. keeping the effective wage differential κ constant)
- Effect on the overlap between offshoring and non-offshoring firms
 - Our aggregate measure of overlap is given by

$$O = \frac{1}{F_c(\hat{c})} \int_0^{\hat{c}} \left(1 - \left| 1 - 2\frac{kc^k}{f_c(c)} \right| \right) f_c(c) dc$$
(3)

Counterfactual analysis

Changes in the offshoring fifth of f_{fixed} cost f (in millions)

Overlap

(日)、

э

Model fit

Decile	Ove	Overlap	
	observed	computed	
1	0.407	0.002	0.405
2	0.49	0.012	0.478
3	0.704	0.037	0.667
4	0.907	0.103	0.804
5	0.868	0.276	0.592
6	0.774	0.744	0.031
7	0.442	0.495	-0.053
8	0.466	0.11	0.355
9	0.452	0.026	0.426
Average	0.612	0.201	0.412

Robustness checks

Table: Alternative estimation of σ

Estimated Model: In $r^d(1-z) = \ln r^d(1) + (1-\sigma)\ln(1-z)$				
Estimator	OLS	FE	RE	
$\ln c = \ln(1-z)$	-3.022***	-0.319	-2.687***	
	(0.077)	(0.340)	(0.096)	
σ	4.022***	1.318***	3.687***	
r(1)	88,198	420,114	121,925	
R-squared	0.503	0.965	0.503	
Observations	1981	1981	1981	

A model variant without overlap

- No overlap \rightarrow all firms investing f actually start offshoring
- We estimate another set of model parameters based on this new assumption
- We compare the welfare effects of offshoring in the two model variants
- Using per-capita income as a welfare measure, we find:
 - Welfare increases by 192.29 percent in the model variant with overlap

 Welfare increases by 77.95 percent in the model variant without overlap

Results - No overlap

	ĉ	k	χ	ĩ	var(c)
Estimates	0.529	1.525	0.307	0.555	0.154
Targets			0.384	0.555	0.016
Difference			-0.005	-0.072	-0.138
	σ	$r^d(1)$			
Estimates	1.857	1,421,002			
Recovered parameters: κ , f, f _E and $\tau L/L^*$					
	κ	f	f _e	auL/L*	
Parameters	0.247	1,229,820	2, 345, 320	1.118	

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Conclusions

Summary:

- Tractable model which matches the overlap between offshoring and non-offshoring firms
- Model-based estimation using German firm-level data
- Evaluation of the welfare effects and counterfactual analysis

Main findings:

- Offshoring exerts a welfare stimulus
- Taking into account the overlap magnifies the welfare effects of offshoring

In progress:

 More flexible structure for the correlation between number of tasks and the share of offshorable tasks