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Abstract

The purpose of this note is to extend the results obtained for graphic
matroids by Jonah Blasiak in [1] to cographic matroids.

1 Introduction
Neil White [4] conjectured that, given a matroid M on a finite set E, any two
n-tuples of bases of M with the same ground set (taking multiplicities into
account) are connected by a series of symmetric set swaps, as well as by a series
of symmetric single element swaps. In algebraic terms this means that the toric
ideal IM of a matroid is generated by the quadratic binomials yB1

yB2
−yB′

1
yB′

2
,

where (B1, B2), (B
′
1, B

′
2) are pairs of bases connected by single element swaps,

i.e. (B′1, B′2) = (B1 − e ∪ f,B2 − f ∪ e) for suitable e, f ∈ E. Jonah Blasiak
[1] proved that, if a class of matroids is closed under multiplication of elements,
and in that class the so called n-base graph and the single exchange graph, to
be defined below, are always connected, then White’s conjecture holds for that
class. Moreover, he proved that both graphs are always connected for matroids
in the class of graphic matroids. Kashiwabara [3] verified White’s conjecture
for matroids of rank 3 and Schweig [2] for lattice path matroids.

It is obvious that the single exchange graph of a matroid is isomorphic to
the single exchange graph of its dual. Moreover we show that, given a matroid
M , which has a partition of its ground set into n bases, the n-base graph of
the dual of M , where (n − 2) additional parallel copies have been added to
each element, denoted by Sn((n − 1)M∗) maps homomorphically onto Sn(M)
(augmented by loops). Hence, if Sn((n− 1)M∗) is connected, Sn(M) must be
connected as well. Using Blasiak’s results, this implies that White’s Conjecture
holds for cographic matroids.

We assume familiarity with matroid theory and with [1], in particular with
the definition of the toric ideal IM of a matroid, although we will not really use
it.

1



2 Blasiak’s Results
We call a matroid M on a finite set E an n-base-tuple if |E| = nr(M), a 2-base
tuple is also called a base pair. On an n-base-tuple M we define a graph Sn(M)
on the set of partitions (B1, . . . , Bn) of E into bases, where (B1, . . . , Bn) and
(B′1, . . . , B

′
n) are adjacent if Bi = B′j for some i, j ∈ {1, . . . , n}. We say that a

class C of matroids is closed under multiplication of elements, if given a matroid
M from C, deleting an element from M or adding an element parallel to a given
element in M yields another matroid from C.

Proposition 2.1 ([1]). Let C be a class of matroids closed under multiplication
of elements. Suppose that for each n ≥ 3 and each n-base-tuple M ∈ C the
n-base graph Sn(M) is connected. Then for every matroid M ∈ C the toric
ideal IM is generated by quadratic binomials.

Given a base pair, the single exchange graph S(M) is defined on the parti-
tions of the ground set into bases, and two vertices (B1, B2) and (B′1, B

′
2) are

adjacent if one base partition arises from the other by single element swaps, i.e.
|B1 ∩B′1| = |B2 ∩B′2| = r(M)− 1.

Proposition 2.2 ([1]). If for a base pair M ∈ C the single exchange graph
S(M) is connected, then for every matroid in C the quadratic binomials of IM
are in the ideal generated by the binomials yB1

yB2
−yB′

1
yB′

2
such that the pair of

bases (B′1, B
′
2) can be obtained from the pair (B1, B2) by single element swaps.

Theorem 2.1 ([1]). If M is a graphic matroid and an n-base tuple for n ≥ 3,
then the n-base graph Sn(M) is connected.

Theorem 2.2 ([1]). If M is a graphic matroid and a base pair, then the single
exchange graph S(M) is connected.

Putting these pieces together yields:

Theorem 2.3 ([1]). If M is a graphic matroid, then the toric ideal IM is gen-
erated by the quadratic binomials yB1

yB2
− yB′

1
yB′

2
such that the pair of bases

B′1, B
′
2 can be obtained from the pair B1, B2 by single element swaps.

3 A Dual Construction
Given a matroid N on a finite set E, and for n ∈ N we define the matroid
(n− 1)N by adding (n− 2) parallel copies to each element e ∈ E.

In the following letM be an n-base-tuple with ground set E. LetM∗ denote
the matroid dual to M . Let F denote the ground set of (n− 1)M∗.

Proposition 3.1. (n− 1)M∗ is an n-base tuple.
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Proof. We have r((n − 1)M∗) = r(M∗) = |E| − r(M) = (n − 1)r(M) and
|F | = (n− 1)|E| = (n− 1)nr(M) = nr((n− 1)M∗).

Let πF : F → E denote the projection which maps each copy ei ∈ F of an
element from E to its original e ∈ E. Let Sn(M)′ denote the graph which arises
from Sn(M) by attaching a loop to each of its vertices. We define the following
projection from Sn((n − 1)M∗) to Sn(M)′. For a partition (D1, . . . , Dn) of F
into bases let

π((D1, . . . , Dn)) = (E \ πF (D1), . . . , E \ πF (Dn)).

Proposition 3.2. We claim that π defines a surjective graph homomorphism
from Sn((n− 1)M∗) to Sn(M)′.

Proof. Since Di is a basis of (n − 1)M∗ only if πF (Di) is a basis of M∗ if and
only if E\πF (Di) is a basis ofM , we conclude that (E\πF (D1), . . . , E\πF (Dn))
is an n-tuple of bases of M . We have to show that they are disjoint. Assume
e ∈ (E \ πF (Di)) ∩ (E \ πF (Dj)) for some i 6= j. Since each basis of (n− 1)M∗

may contain at most one copy of e we conclude that F contains at most n− 2
copies of e, a contradiction. Hence, π is well defined.

Assume that (D1, . . . , Dn) and (D′1, . . . , D
′
n) are two adjacent vertices of

Sn((n−1)M∗). Hence we have Di = D′j for some i, j ∈ {1, . . . , n} implying E \
πF (Di) = E \ πF (D′j). So π(D1, . . . , Dn) and π(D′1, . . . , D′n) are also adjacent,
and π is a graph homomorphism.

To verify surjectivity choose a partition (B1, . . . , Bn) of the ground set of
M into bases. Assume that the copies of each element e are numbered as
e1, . . . , en−1 and for A ⊆ E denote by Ai the copies of elements of A with index i.
Hence F = E1∪̇ . . . ∪̇En−1. We claim that (E1 \B1

1 , . . . , E
n−1 \Bn−1

n−1 ,
⋃n−1

i=1 B
i
i)

is a partition of the elements of (n − 1)M∗ into bases. Since Bi is a basis of
M if and only if E \ Bi is basis of M∗,we conclude that Ei \ Bi

i is a basis of
(n − 1)M∗. Since πF (

⋃n−1
i=1 B

i
i) = E \ Bn, and the sets are obviously pairwise

disjoint, we conclude that (E1 \ B1
1 , . . . , E

n−1 \ Bn−1
n−1 ,

⋃n−1
i=1 B

i
i) is a vertex of

Sn((n− 1)M∗) which maps to (B1, . . . , Bn). Hence π is surjective.

4 Cographic matroids
Theorem 4.1. If M is a cographic matroid, then the toric ideal IM is generated
by the quadratic binomials yB1yB2 −yB′

1
yB′

2
such that the pair of bases (B′1, B′2)

can be obtained from the pair (B1, B2) by single element swaps.

Proof. Clearly, the class of cographic matroids is closed under multiplication. If
M is a cographic base pair and G = (V,E) a graph with cographic matroid M ,
then each partition of E into bases of M is a partition into spanning trees of
G. Hence, S(M) ∼= S(M(G)) where M(G) denotes the graphic matroid of G.
Thus, the cographic analogue of Theorem 2.2 is seen to hold. Now assume n ≥ 3,
and M is an n-base-tuple. If (B1, . . . , Bn) and (B′1, . . . , B

′
n) are two vertices of

Sn(M), we choose vertices (D1, . . . , Dn) and (D′1, . . . , D
′
n) of Sn((n − 1)M∗)
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such that π((D1, . . . , Dn)) = (B1, . . . , Bn) and π((D′1, . . . , D′n)) = (B′1, . . . , B
′
n).

Since (n− 1)M∗ is graphic, by Theorem 2.1 we have a path from (D1, . . . , Dn)
to (D′1, . . . , D

′
n) in Sn((n − 1)M∗). By Proposition 3.2 the path projects via

π to a trail (a not necessary simple path) from (B1, . . . , Bn) to (B′1, . . . , B
′
n).

Hence Sn(M) is connected and the claim follows from Proposition 2.1 and
Proposition 2.2.
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