

Stephan Dominique Andres, Reinhard Börger:

Note on a 1-colouring game on paths and cycles

Technical Report feu-dmo027.11 Contact: dominique.andres@fernuni-hagen.de, reinhard.boerger@fernuni-hagen.de

FernUniversität in Hagen Fakultät für Mathematik und Informatik Lehrgebiet für Diskrete Mathematik und Optimierung D – 58084 Hagen

2000 Mathematics Subject Classification: 91A46, 05C57 **Keywords:** combinatorial game, 1-colouring achievement game, path, cycle, nim sum

Note on a 1-colouring game on paths and cycles

Stephan Dominique Andres Reinhard Börger Fakultät für Mathematik und Informatik, Fernuniversität in Hagen, Lützowstr. 125, 58084 Hagen, Germany dominique.andres@fernuni-hagen.de reinhard.boerger@fernuni-hagen.de

November 18, 2011

Abstract

In the 1-colouring achievement game, two players alternately choose pairwise nonadjacent distinct vertices of a given graph. A player looses if he cannot move any more. We characterize the paths and cycles for which the first player has a winning strategy. This answers an open question of Harary and Tuza.

MSC 2000: primary 91A46; secondary 05C57

 $Key\ words:$ combinatorial game, 1-colouring achievement game, path, cycle, nim sum

1 Introduction

Consider the following 1-colouring achievement game on a graph G = (V, E). At the beginning of the game, every vertex of the graph is unmarked. Two players move alternately. A move consists in marking an unmarked vertex all of which neighbours are unmarked. The first player who is unable to move looses the game. We call this game G^* .

Let $n \in \mathbb{N}$ and P_n be the path with n vertices, where P_0 denotes the empty graph, and, for $n \geq 3$, let C_n be the cycle with n vertices. In this note we characterize which player has a winning strategy in the games P_n^* resp. C_n^* . This answers an open question raised by Harary and Tuza [4] who examined a similar k-colouring game on paths and cycles for $k \geq 2$.

2 Combinatorial games and nim sum

A combinatorial game is a 2-player game, where the players move alternately. The game consists of several configurations S_i , i = 0, 1, ..., k, where S_0 is the starting configuration, and each configuration is a set of other configurations,

the options. The players move alternately, where a move consists in choosing an option (if any) from the actual configuration. The first player's actual configuration is S_0 . If a player is unable to move (since the actual configuration is the empty set), the game ends and he looses. We furthermore impose that a combinatorial game is always finite, i.e. the game ends after a finite number of moves. Note that each configuration of a combinatorial game defines a combinatorial game. In the following, we identify the games with their starting configuration.

Let S be the set of configurations of a combinatorial game with starting configuration S_0 . Sprague [6] (and later Grundy [3]) showed that there is a unique mapping $g: S \longrightarrow \mathbb{N}$ such that

- (i) if S' is an option of $S \in \mathcal{S}$, then $g(S') \neq g(S)$, and
- (ii) if g(S) > 0 for $S \in S$, then, for any $0 \le k < g(S)$, the configuration S has an option S' with g(S') = k.

The number $g(S_0)$ is called the *Grundy value* of the game. So, if S_0 is the set $\{O_1, \ldots, O_m\}$ of options, then

$$g(S_0) = \max\{g(O_1), \dots, g(O_m)\},$$
(1)

where for a finite $M \subseteq \mathbb{N}$ the mex is defined as $\max M := \min(\mathbb{N} \setminus M)$. The Grundy value describes which player has a winning strategy for the game S: the first player wins if and only if g(S) > 0.

The sum $S^{(0)} + S^{(1)}$ of two combinatorial games $S^{(0)}$ and $S^{(1)}$ is the game, where in each move a player chooses some $k \in \{0, 1\}$ and plays in $S^{(k)}$ according to the rules of the respective games. Sprague [6] showed that the Grundy value of a sum $S^{(0)} + S^{(1)}$ is the nim sum

$$g(S^{(0)} + S^{(1)}) = g(S^{(0)}) \oplus g(S^{(1)})$$
(2)

defined by

$$\left(\sum_{i=0}^{n} \alpha_i 2^i\right) \oplus \left(\sum_{i=0}^{n} \beta_i 2^i\right) := \sum_{i=0}^{n} (\alpha_i + \beta_i \mod 2) 2^i \tag{3}$$

for $n \in \mathbb{N}$, $\alpha_i, \beta_i \in \{0, 1\}$.

The nim sum was already considered by Bouton [2] for nim games, in a generalized version by Moore [5].

3 The 1-colouring achievement game on paths

In this section we discuss the 1-colouring achievement game.

Lemma 3.1. Let $n \in \mathbb{N}$. Then

$$g(P_0^*) = 0, \qquad g(P_1^*) = 1$$

and, for $n \geq 2$, the options of P_n^* are

 P_{n-2}^* , and $P_k^* + P_{n-k-3}^*$ for any $0 \le k \le n-3$.

Table 1: The Grundy values of P_{17n+k}^*

n	k = 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	1	1	2	0	3	1	1	0	3	3	2	2	4	0	5	2
1	2	3	3	0	1	1	3	0	2	1	1	0	4	5	2	7	4
2	0	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
3	2	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
4	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
5	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
6	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
7	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
8	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
9	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
10	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
11	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4

Proof. In P_n , the first player may either mark a vertex of degree 1, this leads to a path P_{n-2} which can still be marked, or he can mark a vertex of degree 2, this leads to 3 unmarkable vertices in the middle, leaving a path P_k at the left and a path P_{n-k-3} at the right.

Using Lemma 3.1, (1) and (2), it is possible to calculate the Grundy value of P_n^* recursively via

$$g(P_n^*) = \max\{g(P_{n-2}^*), g(P_k^*) \oplus g(P_{n-k-3}^*) \mid 0 \le k \le n-3\}$$
(4)

for $n \geq 2$. The first 204 values are displayed in Table 1.

Table 1 suggests that the sequence of Grundy values $g(P_n^*)$ is periodic with period 34, except for $0 \le n \le 51$. In fact, this is true.

Lemma 3.2. For all $N \ge 86$,

$$g(P_N^*) = g(P_{N-34}^*).$$

Proof. For 86 ≤ N ≤ 173 the lemma is true by the above table. If $N \ge 174$, we have $N - 2 \ge 172 \ge 86$, hence $g(P_{N-2}^*) = g(P_{N-34-2}^*)$ by the induction hypothesis. Moreover, for $0 \le k \le N-3$ we have $k \ge 86$ or $N-k-3 \ge 86$, hence $g(P_k^*) = g(P_{k-34}^*)$ or $g(P_{N-k-3}^*) = g(P_{N-k-3-34}^*)$ by the induction hypothesis. Therefore, $g(P_k^*) \oplus g(P_{N-k-3}^*) = g(P_{k-34}^*) \oplus g(P_{N-k-3}^*)$ or $g(P_k^*) \oplus g(P_{N-k-3-34}^*)$. Using Lemma 3.1 this means that, for any option of P_N^* , there is an option of P_{N-34}^* with the same Grundy value. Since, for $0 \le k \le N - 34 - 3$, we have that $k \ge 52$ or $N - 34 - 3 - k \ge 52$, by a similar argumentation we conclude that, for any option of P_{N-34}^* , there is an option of P_N^* with the same Grundy value. This proves the lemma. □

Now we can prove our main result:

Theorem 3.3. The second player wins the game P_n^* if and only if

- (i) $n \in \{0, 14, 34\}$ or
- (ii) $n \equiv c \mod 34$ with $c \in \{4, 8, 20, 24, 28\}$.

Proof. The second player wins on P_n if and only if $g(P_n^*) = 0$. Thus the theorem follows from Table 1 and Lemma 3.2.

Theorem 3.4. For $n \geq 3$, the first player wins the game C_n^* if and only if

- (i) $n \in \{3, 17, 37\}$ or
- (*ii*) $n \equiv c \mod 34$ with $c \in \{7, 11, 23, 27, 31\}$.

Proof. In the first move of the game C_n^* the only option is P_{n-3}^* . Therefore the first player wins on C_n if and only if the second player wins on P_{n-3} , thus the theorem follows from Theorem 3.3.

References

- E.R. Berlekamp, J.H. Conway, and R.K. Guy, "Winning ways for your mathematical plays", Academic Press, 1982
- [2] C.L. Bouton, Nim, a game with a complete mathematical theory, Ann. of Math. (2) 3 (1901–1902), 35–39
- [3] P.M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8
- F. Harary and Zs. Tuza, Two graph-colouring games, Bull. Austral. Math. Soc. 48 (1993), 141–149
- [5] E.H. Moore, A generalization of the game called Nim, Ann. of Math. (2) 11 (1910), 93–94
- [6] R. Sprague, Uber mathematische Kampfspiele, Tohoku Math. J., First Series 41 (1935), 438–444
- [7] Zs. Tuza, Graph colorings with local constraints, Discuss. Math. Graph Theory 17 (1997), 161–228

Note added

After having completed this paper we came to know that Theorem 3.3 had been already proved by Berlekamp et al. [1], pages 88–90, i.e. even before the problem was announced as an open problem by Harary and Tuza [4], as was remarked in a survey of Tuza [7], see pages 214–215.