Stephan Dominique Andres, Reinhard Börger:
Note on a 1-colouring game on paths and cycles

Technical Report feu-dmo027.11
Contact: dominique.andres@fernuni-hagen.de, reinhard.boerger@fernuni-hagen.de

FernUniversität in Hagen
Fakultät für Mathematik und Informatik
Lehrgebiet für Diskrete Mathematik und Optimierung
D - 58084 Hagen

Note on a 1-colouring game on paths and cycles

Stephan Dominique Andres
Reinhard Börger
Fakultät für Mathematik und Informatik, Fernuniversität in Hagen, Lützowstr. 125, 58084 Hagen, Germany
dominique.andres@fernuni-hagen.de
reinhard.boerger@fernuni-hagen.de

November 18, 2011

Abstract

In the 1-colouring achievement game, two players alternately choose pairwise nonadjacent distinct vertices of a given graph. A player looses if he cannot move any more. We characterize the paths and cycles for which the first player has a winning strategy. This answers an open question of Harary and Tuza.

MSC 2000: primary 91A46; secondary 05C57 Key words: combinatorial game, 1-colouring achievement game, path, cycle, nim sum

1 Introduction

Consider the following 1 -colouring achievement game on a graph $G=(V, E)$. At the beginning of the game, every vertex of the graph is unmarked. Two players move alternately. A move consists in marking an unmarked vertex all of which neighbours are unmarked. The first player who is unable to move looses the game. We call this game G^{*}.

Let $n \in \mathbb{N}$ and P_{n} be the path with n vertices, where P_{0} denotes the empty graph, and, for $n \geq 3$, let C_{n} be the cycle with n vertices. In this note we characterize which player has a winning strategy in the games P_{n}^{*} resp. C_{n}^{*}. This answers an open question raised by Harary and Tuza [4] who examined a similar k-colouring game on paths and cycles for $k \geq 2$.

2 Combinatorial games and nim sum

A combinatorial game is a 2-player game, where the players move alternately. The game consists of several configurations $S_{i}, i=0,1, \ldots, k$, where S_{0} is the starting configuration, and each configuration is a set of other configurations,
the options. The players move alternately, where a move consists in choosing an option (if any) from the actual configuration. The first player's actual configuration is S_{0}. If a player is unable to move (since the actual configuration is the empty set), the game ends and he looses. We furthermore impose that a combinatorial game is always finite, i.e. the game ends after a finite number of moves. Note that each configuration of a combinatorial game defines a combinatorial game. In the following, we identify the games with their starting configuration.

Let \mathcal{S} be the set of configurations of a combinatorial game with starting configuration S_{0}. Sprague [6] (and later Grundy [3]) showed that there is a unique mapping $g: \mathcal{S} \longrightarrow \mathbb{N}$ such that
(i) if S^{\prime} is an option of $S \in \mathcal{S}$, then $g\left(S^{\prime}\right) \neq g(S)$, and
(ii) if $g(S)>0$ for $S \in \mathcal{S}$, then, for any $0 \leq k<g(S)$, the configuration S has an option S^{\prime} with $g\left(S^{\prime}\right)=k$.

The number $g\left(S_{0}\right)$ is called the Grundy value of the game. So, if S_{0} is the set $\left\{O_{1}, \ldots, O_{m}\right\}$ of options, then

$$
\begin{equation*}
g\left(S_{0}\right)=\operatorname{mex}\left\{g\left(O_{1}\right), \ldots, g\left(O_{m}\right)\right\} \tag{1}
\end{equation*}
$$

where for a finite $M \subseteq \mathbb{N}$ the mex is defined as $\operatorname{mex} M:=\min (\mathbb{N} \backslash M)$. The Grundy value describes which player has a winning strategy for the game S : the first player wins if and only if $g(S)>0$.

The sum $S^{(0)}+S^{(1)}$ of two combinatorial games $S^{(0)}$ and $S^{(1)}$ is the game, where in each move a player chooses some $k \in\{0,1\}$ and plays in $S^{(k)}$ according to the rules of the respective games. Sprague [6] showed that the Grundy value of a sum $S^{(0)}+S^{(1)}$ is the nim sum

$$
\begin{equation*}
g\left(S^{(0)}+S^{(1)}\right)=g\left(S^{(0)}\right) \oplus g\left(S^{(1)}\right) \tag{2}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\left(\sum_{i=0}^{n} \alpha_{i} 2^{i}\right) \oplus\left(\sum_{i=0}^{n} \beta_{i} 2^{i}\right):=\sum_{i=0}^{n}\left(\alpha_{i}+\beta_{i} \quad \bmod 2\right) 2^{i} \tag{3}
\end{equation*}
$$

for $n \in \mathbb{N}, \alpha_{i}, \beta_{i} \in\{0,1\}$.
The nim sum was already considered by Bouton [2] for nim games, in a generalized version by Moore [5].

3 The 1-colouring achievement game on paths

In this section we discuss the 1-colouring achievement game.
Lemma 3.1. Let $n \in \mathbb{N}$. Then

$$
g\left(P_{0}^{*}\right)=0, \quad g\left(P_{1}^{*}\right)=1,
$$

and, for $n \geq 2$, the options of P_{n}^{*} are

$$
P_{n-2}^{*}, \text { and } P_{k}^{*}+P_{n-k-3}^{*} \text { for any } 0 \leq k \leq n-3
$$

Table 1: The Grundy values of $P_{17 n+k}^{*}$

n	$k=0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	$\mathbf{0}$	1	1	2	0	3	1	1	0	3	3	2	2	4	$\mathbf{0}$	5	$\mathbf{2}$
1	$\mathbf{2}$	3	3	0	1	1	3	0	2	1	1	0	4	5	$\mathbf{2}$	7	4
2	$\mathbf{0}$	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
3	$\mathbf{2}$	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
4	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
5	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
6	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
7	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
8	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
9	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4
10	8	1	1	2	0	3	1	1	0	3	3	2	2	4	4	5	5
11	9	3	3	0	1	1	3	0	2	1	1	0	4	5	3	7	4

Proof. In P_{n}, the first player may either mark a vertex of degree 1 , this leads to a path P_{n-2} which can still be marked, or he can mark a vertex of degree 2 , this leads to 3 unmarkable vertices in the middle, leaving a path P_{k} at the left and a path P_{n-k-3} at the right.

Using Lemma 3.1, (1) and (2), it is possible to calculate the Grundy value of P_{n}^{*} recursively via

$$
\begin{equation*}
g\left(P_{n}^{*}\right)=\operatorname{mex}\left\{g\left(P_{n-2}^{*}\right), g\left(P_{k}^{*}\right) \oplus g\left(P_{n-k-3}^{*}\right) \mid 0 \leq k \leq n-3\right\} \tag{4}
\end{equation*}
$$

for $n \geq 2$. The first 204 values are displayed in Table 1 .
Table 1 suggests that the sequence of Grundy values $g\left(P_{n}^{*}\right)$ is periodic with period 34 , except for $0 \leq n \leq 51$. In fact, this is true.

Lemma 3.2. For all $N \geq 86$,

$$
g\left(P_{N}^{*}\right)=g\left(P_{N-34}^{*}\right)
$$

Proof. For $86 \leq N \leq 173$ the lemma is true by the above table. If $N \geq 174$, we have $N-2 \geq 172 \geq 86$, hence $g\left(P_{N-2}^{*}\right)=g\left(P_{N-34-2}^{*}\right)$ by the induction hypothesis. Moreover, for $0 \leq k \leq N-3$ we have $k \geq 86$ or $N-k-3 \geq 86$, hence $g\left(P_{k}^{*}\right)=g\left(P_{k-34}^{*}\right)$ or $g\left(P_{N-k-3}^{*}\right)=g\left(P_{N-k-3-34}^{*}\right)$ by the induction hyopthesis. Therefore, $g\left(P_{k}^{*}\right) \oplus g\left(P_{N-k-3}^{*}\right)=g\left(P_{k-34}^{*}\right) \oplus g\left(P_{N-k-3}^{*}\right)$ or $g\left(P_{k}^{*}\right) \oplus g\left(P_{n-k-3}^{*}\right)=$ $g\left(P_{k}^{*}\right) \oplus g\left(P_{N-k-3-34}^{*}\right)$. Using Lemma 3.1 this means that, for any option of P_{N}^{*}, there is an option of P_{N-34}^{*} with the same Grundy value. Since, for $0 \leq$ $k \leq N-34-3$, we have that $k \geq 52$ or $N-34-3-k \geq 52$, by a similar argumentation we conclude that, for any option of P_{N-34}^{*}, there is an option of P_{N}^{*} with the same Grundy value. This proves the lemma.

Now we can prove our main result:

Theorem 3.3. The second player wins the game P_{n}^{*} if and only if
(i) $n \in\{0,14,34\}$ or
(ii) $n \equiv c \bmod 34$ with $c \in\{4,8,20,24,28\}$.

Proof. The second player wins on P_{n} if and only if $g\left(P_{n}^{*}\right)=0$. Thus the theorem follows from Table 1 and Lemma 3.2.

Theorem 3.4. For $n \geq 3$, the first player wins the game C_{n}^{*} if and only if
(i) $n \in\{3,17,37\}$ or
(ii) $n \equiv c \bmod 34$ with $c \in\{7,11,23,27,31\}$.

Proof. In the first move of the game C_{n}^{*} the only option is P_{n-3}^{*}. Therefore the first player wins on C_{n} if and only if the second player wins on P_{n-3}, thus the theorem follows from Theorem 3.3.

References

[1] E.R. Berlekamp, J.H. Conway, and R.K. Guy, "Winning ways for your mathematical plays", Academic Press, 1982
[2] C.L. Bouton, Nim, a game with a complete mathematical theory, Ann. of Math. (2) 3 (1901-1902), 35-39
[3] P.M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8
[4] F. Harary and Zs. Tuza, Two graph-colouring games, Bull. Austral. Math. Soc. 48 (1993), 141-149
[5] E.H. Moore, A generalization of the game called Nim, Ann. of Math. (2) 11 (1910), 93-94
[6] R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J., First Series 41 (1935), 438-444
[7] Zs. Tuza, Graph colorings with local constraints, Discuss. Math. Graph Theory 17 (1997), 161-228

Note added

After having completed this paper we came to know that Theorem 3.3 had been already proved by Berlekamp et al. [1], pages 88-90, i.e. even before the problem was announced as an open problem by Harary and Tuza [4], as was remarked in a survey of Tuza [7], see pages 214-215.

