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Abstract

In the 1-colouring achievement game, two players alternately choose
pairwise nonadjacent distinct vertices of a given graph. A player looses if
he cannot move any more. We characterize the paths and cycles for which
the first player has a winning strategy. This answers an open question of
Harary and Tuza.
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1 Introduction

Consider the following 1-colouring achievement game on a graph G = (V, E).
At the beginning of the game, every vertex of the graph is unmarked. Two
players move alternately. A move consists in marking an unmarked vertex all of
which neighbours are unmarked. The first player who is unable to move looses
the game. We call this game G*.

Let n € N and P, be the path with n vertices, where Py denotes the empty
graph, and, for n > 3, let C}, be the cycle with n vertices. In this note we
characterize which player has a winning strategy in the games P} resp. C.
This answers an open question raised by Harary and Tuza [1] who examined a
similar k-colouring game on paths and cycles for & > 2.

2 Combinatorial games and nim sum

A combinatorial game is a 2-player game, where the players move alternately.
The game consists of several configurations S;, ©t = 0,1,...,k, where Sy is the
starting configuration, and each configuration is a set of other configurations,



the options. The players move alternately, where a move consists in choosing an
option (if any) from the actual configuration. The first player’s actual configu-
ration is Sp. If a player is unable to move (since the actual configuration is the
empty set), the game ends and he looses. We furthermore impose that a combi-
natorial game is always finite, i.e. the game ends after a finite number of moves.
Note that each configuration of a combinatorial game defines a combinatorial
game. In the following, we identify the games with their starting configuration.

Let S be the set of configurations of a combinatorial game with starting
configuration Sy. Sprague [0] (and later Grundy [3]) showed that there is a
unique mapping g : S — N such that

(i) if S’ is an option of S € S, then ¢g(S’) # g(S5), and
(i) if g(S) > 0 for S € S, then, for any 0 < k < g(.9), the configuration S has
an option S’ with g(S") = k.

The number ¢(Sy) is called the Grundy value of the game. So, if Sy is the set
{O1,...,0,} of options, then

g(SO) zmex{g(Ol),...,g(Om)}, (1)

where for a finite M C N the mex is defined as mexM := min(N\ M). The
Grundy value describes which player has a winning strategy for the game S:
the first player wins if and only if g(S) > 0.

The sum S© + S of two combinatorial games S and S is the game,
where in each move a player chooses some k € {0,1} and plays in S*) according
to the rules of the respective games. Sprague [0] showed that the Grundy value
of a sum S© + S is the nim sum

g(5© 4+ 8W) = g(5©) @ g(SM) (2)
defined by
(Z aiQi) ® <Z @«2") = (i +6; mod 2)2' (3)
1=0 =0 1=0

forn e N, oy, 8; € {0,1}.
The nim sum was already considered by Bouton [2] for nim games, in a
generalized version by Moore [5].

3 The 1-colouring achievement game on paths

In this section we discuss the 1-colouring achievement game.
Lemma 3.1. Let n € N. Then
9(Fy) =0,  g(P)=1,
and, for n > 2, the options of Py are
Pr o, and P+ Py_4_5 for any 0 <k <n-—3.

n



Table 1: The Grundy values of Py, .

[n[k=0[1]2[3]4[5]6[7[8[]9]10 1112131415 16 |
0 O[1J1[2Jo[3]1[1]Jo[3] 3] 2] 2[ 4[] 0] 5] 2
1 2 [3[3fJofJ1J1r[3fof2]1] 1[ o] 4] 5] 2] 7[ 4
2 o1 [1[2fJo3]1[1[o[3] 3] 2] 2] 4] 4] 5[ 5
3 2 [3]3fJoJ1J1|3fJof2]1] 1] o] 4] 5] 3] 7[ 4
4 8J1J1J2J0[3[1]J1Jo[3] 3[ 2] 2] 4] 4] 5] 5
5 9[3[3JoJ1[1[3JoJ2[1[ 1] o] 4] 5] 3] 7] 4
6 811 J2J0[3[1J1]Jo[3] 3] 2] 2] 4] 4] 5] 5
7 9[3[3]Jof1[1[3]JoJ2[1[ 1] o] 4] 5] 3] 7] 4
8 8J1J1J2Jo0[3[1]1Jo[3] 3[ 2] 2] 4] 4] 5] 5
9 9[3[3JoJ1[1[3JoJ2[1[ 1] o] 4] 5] 3] 7] 4
10 811 J2J0[3[1J1]Jo[3] 3] 2] 2] 4] 4] 5] 5
11 9[3[3]Jof1[1[3]JoJ2[1[ 1] o] 4] 5] 3] 7] 4

Proof. In P,, the first player may either mark a vertex of degree 1, this leads
to a path P, 5 which can still be marked, or he can mark a vertex of degree 2,
this leads to 3 unmarkable vertices in the middle, leaving a path Py at the left
and a path P,_j_3 at the right. O

Using Lemma 3.1, (1) and (2), it is possible to calculate the Grundy value
of P} recursively via

9(Py) = mex{g(P;_5),9(Py) © g(Py_j—3) [0 <k <n—3} (4)

for n > 2. The first 204 values are displayed in Table 1.
Table 1 suggests that the sequence of Grundy values g(P) is periodic with
period 34, except for 0 < n < 51. In fact, this is true.

Lemma 3.2. For all N > 86,

9(PN) = 9(Px_34)-

Proof. For 86 < N < 173 the lemma is true by the above table. If N > 174,
we have N —2 > 172 > 86, hence g(Py_,) = 9(P{_54_5) by the induction
hypothesis. Moreover, for 0 < k < N—3 we have k > 86 or N—k—3 > 86, hence
9(PE) = g(Py_sy) or g(Py_j_3) = 9(Pj_j_5_34) by the induction hyopthesis.
Therefore, g(Py)®9(Py_j_3) = 9(Fi_34) ®9(Py__3) or g(B7) ®g(Py_;_3) =
9(Py) & g(PX_k_5_54)- Using Lemma 3.1 this means that, for any option of
Pj;, there is an option of Py_,, with the same Grundy value. Since, for 0 <
k < N —34 — 3, we have that k > 52 or N — 34 — 3 — k > 52, by a similar
argumentation we conclude that, for any option of Pf;_5,, there is an option of
Py with the same Grundy value. This proves the lemma. O

Now we can prove our main result:



Theorem 3.3. The second player wins the game P, if and only if
(i) n €{0,14,34} or
(i) n =c mod 34 with ¢ € {4,8,20,24,28}.

Proof. The second player wins on P, if and only if g(P;¥) = 0. Thus the theorem
follows from Table 1 and Lemma 3.2. O

Theorem 3.4. Forn > 3, the first player wins the game C7 if and only if
(i) n € {3,17,37} or
(i) n =c mod 34 with c € {7,11,23,27,31}.

Proof. In the first move of the game C} the only option is P_5. Therefore the
first player wins on C,, if and only if the second player wins on P, _3, thus the
theorem follows from Theorem 3.3. U
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Note added

After having completed this paper we came to know that Theorem 3.3 had been
already proved by Berlekamp et al. [1], pages 88-90, i.e. even before the problem
was announced as an open problem by Harary and Tuza [1], as was remarked
in a survey of Tuza [7], see pages 214-215.
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