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Abstract

In the 1-colouring achievement game, two players alternately choose
pairwise nonadjacent distinct vertices of a given graph. A player looses if
he cannot move any more. We characterize the paths and cycles for which
the first player has a winning strategy. This answers an open question of
Harary and Tuza.
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1 Introduction

Consider the following 1-colouring achievement game on a graph G = (V,E).
At the beginning of the game, every vertex of the graph is unmarked. Two
players move alternately. A move consists in marking an unmarked vertex all of
which neighbours are unmarked. The first player who is unable to move looses
the game. We call this game G∗.

Let n ∈ N and Pn be the path with n vertices, where P0 denotes the empty
graph, and, for n ≥ 3, let Cn be the cycle with n vertices. In this note we
characterize which player has a winning strategy in the games P ∗n resp. C∗n.
This answers an open question raised by Harary and Tuza [4] who examined a
similar k-colouring game on paths and cycles for k ≥ 2.

2 Combinatorial games and nim sum

A combinatorial game is a 2-player game, where the players move alternately.
The game consists of several configurations Si, i = 0, 1, . . . , k, where S0 is the
starting configuration, and each configuration is a set of other configurations,
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the options. The players move alternately, where a move consists in choosing an
option (if any) from the actual configuration. The first player’s actual configu-
ration is S0. If a player is unable to move (since the actual configuration is the
empty set), the game ends and he looses. We furthermore impose that a combi-
natorial game is always finite, i.e. the game ends after a finite number of moves.
Note that each configuration of a combinatorial game defines a combinatorial
game. In the following, we identify the games with their starting configuration.

Let S be the set of configurations of a combinatorial game with starting
configuration S0. Sprague [6] (and later Grundy [3]) showed that there is a
unique mapping g : S −→ N such that

(i) if S′ is an option of S ∈ S, then g(S′) 6= g(S), and

(ii) if g(S) > 0 for S ∈ S, then, for any 0 ≤ k < g(S), the configuration S has
an option S′ with g(S′) = k.

The number g(S0) is called the Grundy value of the game. So, if S0 is the set
{O1, . . . , Om} of options, then

g(S0) = mex{g(O1), . . . , g(Om)}, (1)

where for a finite M ⊆ N the mex is defined as mexM := min(N \M). The
Grundy value describes which player has a winning strategy for the game S:
the first player wins if and only if g(S) > 0.

The sum S(0) + S(1) of two combinatorial games S(0) and S(1) is the game,
where in each move a player chooses some k ∈ {0, 1} and plays in S(k) according
to the rules of the respective games. Sprague [6] showed that the Grundy value
of a sum S(0) + S(1) is the nim sum

g(S(0) + S(1)) = g(S(0))⊕ g(S(1)) (2)

defined by (
n∑

i=0

αi2i

)
⊕

(
n∑

i=0

βi2i

)
:=

n∑
i=0

(αi + βi mod 2)2i (3)

for n ∈ N, αi, βi ∈ {0, 1}.
The nim sum was already considered by Bouton [2] for nim games, in a

generalized version by Moore [5].

3 The 1-colouring achievement game on paths

In this section we discuss the 1-colouring achievement game.

Lemma 3.1. Let n ∈ N. Then

g(P ∗0 ) = 0, g(P ∗1 ) = 1,

and, for n ≥ 2, the options of P ∗n are

P ∗n−2, and P ∗k + P ∗n−k−3 for any 0 ≤ k ≤ n− 3.
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Table 1: The Grundy values of P ∗17n+k

n k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5 2
1 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7 4
2 0 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
3 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4

4 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4

6 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
7 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4

8 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
9 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4

10 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5 5
11 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7 4

Proof. In Pn, the first player may either mark a vertex of degree 1, this leads
to a path Pn−2 which can still be marked, or he can mark a vertex of degree 2,
this leads to 3 unmarkable vertices in the middle, leaving a path Pk at the left
and a path Pn−k−3 at the right.

Using Lemma 3.1, (1) and (2), it is possible to calculate the Grundy value
of P ∗n recursively via

g(P ∗n) = mex{g(P ∗n−2), g(P ∗k )⊕ g(P ∗n−k−3) | 0 ≤ k ≤ n− 3} (4)

for n ≥ 2. The first 204 values are displayed in Table 1.
Table 1 suggests that the sequence of Grundy values g(P ∗n) is periodic with

period 34, except for 0 ≤ n ≤ 51. In fact, this is true.

Lemma 3.2. For all N ≥ 86,

g(P ∗N ) = g(P ∗N−34).

Proof. For 86 ≤ N ≤ 173 the lemma is true by the above table. If N ≥ 174,
we have N − 2 ≥ 172 ≥ 86, hence g(P ∗N−2) = g(P ∗N−34−2) by the induction
hypothesis. Moreover, for 0 ≤ k ≤ N−3 we have k ≥ 86 or N−k−3 ≥ 86, hence
g(P ∗k ) = g(P ∗k−34) or g(P ∗N−k−3) = g(P ∗N−k−3−34) by the induction hyopthesis.
Therefore, g(P ∗k )⊕g(P ∗N−k−3) = g(P ∗k−34)⊕g(P ∗N−k−3) or g(P ∗k )⊕g(P ∗n−k−3) =
g(P ∗k ) ⊕ g(P ∗N−k−3−34). Using Lemma 3.1 this means that, for any option of
P ∗N , there is an option of P ∗N−34 with the same Grundy value. Since, for 0 ≤
k ≤ N − 34 − 3, we have that k ≥ 52 or N − 34 − 3 − k ≥ 52, by a similar
argumentation we conclude that, for any option of P ∗N−34, there is an option of
P ∗N with the same Grundy value. This proves the lemma.

Now we can prove our main result:
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Theorem 3.3. The second player wins the game P ∗n if and only if

(i) n ∈ {0, 14, 34} or

(ii) n ≡ c mod 34 with c ∈ {4, 8, 20, 24, 28}.

Proof. The second player wins on Pn if and only if g(P ∗n) = 0. Thus the theorem
follows from Table 1 and Lemma 3.2.

Theorem 3.4. For n ≥ 3, the first player wins the game C∗n if and only if

(i) n ∈ {3, 17, 37} or

(ii) n ≡ c mod 34 with c ∈ {7, 11, 23, 27, 31}.

Proof. In the first move of the game C∗n the only option is P ∗n−3. Therefore the
first player wins on Cn if and only if the second player wins on Pn−3, thus the
theorem follows from Theorem 3.3.
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Note added

After having completed this paper we came to know that Theorem 3.3 had been
already proved by Berlekamp et al. [1], pages 88–90, i.e. even before the problem
was announced as an open problem by Harary and Tuza [4], as was remarked
in a survey of Tuza [7], see pages 214–215.
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