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Abstract

We show that every lattice path matroid of rank at least two has a quite
simple coline, also known as a positive coline. Therefore every orientation
of a lattice path matroid is 3-colorable with respect to the chromatic number
of oriented matroids introduced by J. Nešetřil, R. Nickel, and W. Hochstättler.

Keywords. colorings, lattice path matroids, transversal matroids, oriented
matroids

Recently, in order to verify the generalization of Hadwiger’s Conjecture to
oriented matroids for the case of 3-colorability, Goddyn et. al. [3] introduced the
class of generalized series parallel (GSP) matroids and asked whether it coincides
with the class of oriented matroids without M(K4)-minor. Furthermore, they
showed that a minor closed class C of oriented matroids is a subclass of the GSP-
matroids, if every simple matroid in C contains a flat of codimension 2, i. e. a
coline, which is contained in more flats of codimension 1, i. e. copoints, with only
one extra element, than in larger copoints. We call such a coline quite simple.
They conjectured that every simple gammoid of rank at least 2 has a quite simple
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coline. Gammoids may be characterized as the smallest class of matroids that is
closed under minors and under duality, and which contains all transversal matroids
– a class of matroids that is not closed under minors nor duals. Bicircular matroids
form a minor closed subclass of the transversal matroids, and Goddyn et. al. [3]
verified the existence of a quite simple coline in every simple bicircular matroid
of rank at least 2.

Another minor closed subclass of the transversal matroids is the class of the
lattice path matroids [2]. In this work we show that every simple lattice path ma-
troids of rank at least 2 has a quite simple coline, which implies that orientations of
lattice path matroids are GSP, and therefore we obtain the 3-colorability of every
orientation of a lattice path matroid.

1 Preliminaries
In this work, we consider matroids to be pairs M = (E, I) where E is a finite set
and I is a system of independent subsets of E subject to the usual axioms ([4],
Sec. 1.1). Furthermore, oriented matroids are considered triples O = (E, C, C∗)
where E is a finite set, C is a family of signed circuits and C∗ is a family of signed
cocircuits subject to the axioms of oriented matroids ([1], Ch. 3). Every oriented
matroid O has a uniquely determined underlying matroid defined on the ground
set E, which we shall denote by M(O).3

Definition 1.1 ([3], Definition 4). Let M = (E, I) be a matroid. A flat X ∈
F(M) is called coline ofM , if rkM(X) = rkM(E)−2. A flat Y ∈ F(M) is called
copoint of M on X , if X ⊆ Y and rkM(Y ) = rkM(E)− 1. If further |Y \X| = 1,
we say that Y is a simple copoint on X . If otherwise |Y \X| > 1, we say that Y
is a multiple copoint on X4. A quite simple coline5 is a coline X ∈ F(M), such
that there are more simple copoints on X than there are multiple copoints on X .

The following definitions are basically those found in J.E. Bonin and A. deMier’s
paper Lattice path matroids: Structural properties [2].

Definition 1.2. Let n ∈ N. A lattice path of length n is a tuple (pi)ni=1 ∈ {N,E}n.
We say that the i-th step of (pi)ni=1 is towards the North if pi = N, and towards the
East if pi = E.

3The underlying matroid is the only notion from oriented matroids that is needed for the com-
prehension of this work.

4In [3] multiple copoints are called fat copoints.
5In [3] quite simple colines are called positive colines.
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Definition 1.3. Let n ∈ N, and let p = (pi)
n
i=1 and q = (qi)

n
i=1 be lattice paths of

length n. We say that p is south of q if for all k ∈ {1, 2, . . . , n},∣∣{i ∈ N\ {0}
∣∣ i ≤ k and pi = N

}∣∣ ≤ ∣∣{i ∈ N\ {0}
∣∣ i ≤ k and qi = N

}∣∣ .
We say that p and q have common endpoints, if∣∣{i ∈ N\ {0}

∣∣ i ≤ n and pi = N
}∣∣ = ∣∣{i ∈ N\ {0}

∣∣ i ≤ n and qi = N
}∣∣

holds. We say that the lattice path p is south of q with common endpoints, if p and
q have common endpoints and p is south of q. In this case, we write p � q.

Definition 1.4. Let n ∈ N, and let p, q ∈ {E,N}n be lattice paths such that p � q.
We define the set of lattice paths between p and q to be

P [p, q] =
{
r ∈ {N,E}n

∣∣ p � r � q
}
.

Definition 1.5. A matroid M = (E, I) is called strong lattice path matroid, if
its ground set has the property E = {1, 2, . . . , |E|} and if there are lattice paths
p, q ∈ {E,N}|E| with p � q, such that M = M [p, q], where M [p, q] denotes the
transversal matroid presented by the family A[p,q] = (Ai)

rkM (E)
i=1 ⊆ E with

Ai =
{
j ∈ E

∣∣∣ ∃(rj)|E|j=1 ∈ P[p, q] : rj = N and |{k ∈ E | k ≤ j, rk = N}| = i
}
,

i.e. each Ai consists of those j ∈ E, such that there is a lattice path r between
p and q such that the j-th step of r is towards the North for the i-th time in total.
Furthermore, a matroid M = (E, I) is called lattice path matroid, if there is a
bijection ϕ : E −→ {1, 2, . . . , |E|} such that ϕ[M ] =

(
ϕ[E],

{
ϕ[X]

∣∣ X ∈ I})
is a strong lattice path matroid.

Example 1.6. (Fig. 1a) Let us consider the two lattice paths p = (E,E,N,E,N,N)
and q = (N,N,E,N,E,E). We have p � q and the strong lattice path matroid
M [p, q] is the transversal matroid M(A) presented by the family A = (Ai)

3
i=1

of subsets of {1, 2, . . . , 6} where A1 = {1, 2, 3}, A2 = {2, 3, 4, 5}, and A3 =
{4, 5, 6}.

Theorem 1.7 ([2], Theorem 2.1). Let p, q be lattice paths of length n, such that
p � q. Let B ⊆ 2{1,2,...,n} consist of the bases of the strong lattice path matroid
M =M [p, q] on the ground set E = {1, 2, . . . , n}. Let

ϕ : P[p, q] −→ B, (ri)
n
i=1 7→ {j ∈ N | 1 ≤ j ≤ n, rj = N}.

Then ϕ is a bijection between the family of lattice paths P[p, q] between p and q
and the family of bases of M .
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Proof. Clearly, ϕ is well-defined: let r = (ri)
n
i=1 ∈ P[p, q], and let m = rkM(E),

then there are j1 < j2 < . . . < jm such that ri = N if and only if i ∈
{j1, j2, . . . , jm}. Thus the map

ιr : ϕ(r) −→ {1, 2, . . . ,m},

where ιr(i) = k for k such that i = jk, witnesses that the set ϕ(r) ⊆ {1, 2, . . . , n}
is indeed a transversal of A[p,q], and therefore a base of M [p, q]. It is clear from
Definition 1.5 that ϕ is surjective. It is obvious that if we consider only lattice
paths of a fixed given length n, then the indexes of the steps towards the North
uniquely determine such a lattice path. Thus ϕ is also injective.

Theorem 1.8 ([2], Theorem 3.1). The class of lattice path matroids is closed
under minors, duals and direct sums.

2 The Western Coline

a) b) c)

pq
1 2 3

2 3 4 5

4 5 6

Figure 1: a) Lattice paths for Ex. 1.6, b,c) situation in Prop.2.1 (ii) and (iii).

Proposition 2.1. Let p = (pi)
n
i=1, q = (qi)

n
i=1 be lattice paths of length n such

that p � q. Let j ∈ E = {1, 2, . . . , n} and M =M [p, q]. Then

(i) rkM ({1, 2, . . . , j}) = |{i ∈ {1, 2, . . . , j} | qi = N}|.

(ii) The element j is a loop in M if and only if∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ pi = N

}∣∣ = ∣∣{i ∈ {1, 2, . . . , j} ∣∣ qi = N
}∣∣ ,

i.e. the j-th step is forced to go towards East for all r ∈ P[p, q] (Fig. 1b).
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(iii) For all k ∈ E with j < k, j and k are parallel edges in M if and only if∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ pi = N

}∣∣ =
∣∣{i ∈ {1, 2, . . . , k − 1}

∣∣ pi = N
}∣∣

=
∣∣{i ∈ {1, 2, . . . , j} ∣∣ qi = N

}∣∣− 1

=
∣∣{i ∈ {1, 2, . . . , k} ∣∣ qi = N

}∣∣− 1,

i.e. the j-th and k-th steps of any r ∈ P[p, q] are in a common corridor
towards the East that is one step wide towards the North (Fig. 1c).

Proof. For every r ∈ P[p, q], we have r � q, therefore r is south of q, thus
for all k ∈ E,

∣∣{j ∈ {1, 2, . . . , k} ∣∣ rk = N
}∣∣ ≤ ∣∣{j ∈ {1, 2, . . . , k} ∣∣ qk = N

}∣∣.
Consequently,

{
i ∈ {1, 2, . . . , j}

∣∣ qi = N
}

is a maximal independent subset of
{1, 2, . . . , j} and so statement (i) holds. An element j ∈ E is a loop in M , if and
only if rkM({j}) = 0, which is the case if and only {j} is not independent in M .
This is the case if and only if for all bases B of M , j /∈ B holds, because every
independent set is a subset of a base.The latter holds if and only if for all (ri)ni=1 ∈
P[p, q] the j-th step is towards the East, i.e. rj = E. This, in turn, is the case if
and only if

∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ pi = N

}∣∣ = ∣∣{i ∈ {1, 2, . . . , j} ∣∣ qi = N
}∣∣.

Thus statement (ii) holds, too. Let j, k ∈ E with j < k. It is easy to see that if
j and k are in a common corridor, then every lattice path r = (ri)

n
i=1 of length n

with rj = rk = N cannot be between p and q, i.e. p � r � q cannot hold: a lattice
path r with rj = rk = N is either below p at j − 1 or above q at k. Thus {j, k}
cannot be independent in M . By (i), neither j nor k can be a loop in M , thus j
and k must be parallel edges in M . Conversely, let j < k be parallel edges in M .
Then j is not a loop in M , so there is a path r1 = (r1i )

n
i=1 ∈ P[p, q] with r1j = N

which is minimal with regard to �, and then∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ r1i = N

}∣∣ = ∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ pi = N

}∣∣ .
Since j and k are parallel edges, {j, k} 6⊆ B for all basesB ofM . Therefore there
is no r = (ri)

n
i=1 ∈ P[p, q] such that ri = rk = N. This yields the equation∣∣{i ∈ {1, 2, . . . , k} ∣∣ qi = N

}∣∣ =
∣∣{i ∈ {1, 2, . . . , j} ∣∣ r1i = N

}∣∣
=
∣∣{i ∈ {1, 2, . . . , j − 1} | r1i = N

}∣∣+ 1.

Since k is not a loop in M , it follows that∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ pi = N

}∣∣ = ∣∣{i ∈ {1, 2, . . . , j} ∣∣ qi = N
}∣∣− 1.

Thus (iii) holds.
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Lemma 2.2. Let p = (pi)
n
i=1 and q = (qi)

n
i=1 be lattice paths of length n, such

that p � q, and such that M = M [p, q] is a strong lattice path matroid on E =
{1, 2, . . . , n} which has no loops. Let j ∈ E such that qj = N. Then

{1, 2, . . . , j − 1} = clM ({1, 2, . . . , j − 1}) .

Furthermore, for all k ∈ E with k ≥ j,

rkM ({1, 2, . . . , j − 1} ∪ {k}) = rkM ({1, 2, . . . , j − 1}) + 1.

Proof. By Proposition 2.1 (i), we have

rkM({1, 2, . . . , j − 1}) =
∣∣{i ∈ {1, 2, . . . , j − 1}

∣∣ qi = N
}∣∣ .

Now fix some k ∈ E with k ≥ j. Since M has no loop, there is a base B
of M with k ∈ B and thus a lattice path r = (ri)

n
i=1 ∈ P[p, q] with rk = N

(Theorem 1.7). We can construct a lattice path s = (si)
n
i=1 ∈ P[p, q] that follows

q for the first j−1 steps, then goes towards the East until it meets r, and then goes
on as r does (Fig. 2a). The base Bs = {i ∈ E | si = N} that corresponds to the
constructed path yields

rkM({1, 2, . . . , j − 1} ∪ {k}) ≥
∣∣({1, 2, . . . , j − 1} ∪ {k}

)
∩Bs

∣∣
= 1 +

∣∣{i ∈ {1, 2, . . . , j − 1}
∣∣ qi = N

}∣∣
= 1 + rkM({1, 2, . . . , j − 1}).

Since rkM is unit increasing, adding a single element to a set can increase the rank
by at most one, thus the inequality in the above formula is indeed an equality.

Figure 2: The lattice paths s in the proof of a) Lem. 2.2 and b) Thm. 2.3.

a) b)

k

jq

r

j2

j1 k′

kq

r
< j1 ≥ j1
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This implies that k /∈ clM({1, 2, . . . , j − 1}). Since k was arbitrarily chosen with
k ≥ j, we obtain {1, 2, . . . , j − 1} = clM({1, 2, . . . , j − 1}).
Theorem 2.3. Let p = (pi)

n
i=1, q = (qi)

n
i=1 be lattice paths, such that p � q

and such that M = M [p, q] = (E, I) has no loop and no parallel edges, and
rkM(E) ≥ 2. Let Nq = {i ∈ E | qi = N}, j1 = maxNq, and j2 = maxNq\ {j1}.
Then the following holds

(i) {1, 2, . . . , j2 − 1} is a coline ofM , we shall call it the Western coline ofM .

(ii) {1, 2, . . . , j1 − 1} is a copoint on the Western coline of M , which is a mul-
tiple copoint whenever j1 − j2 ≥ 2.

(iii) For every k ≥ j1 the set {1, 2, . . . , j2 − 1} ∪ {k} is a simple copoint on the
Western coline of M .

Proof. Lemma 2.2 provides that the set W = {1, 2, . . . , j2 − 1} as well as the set
X = {1, 2, . . . , j1 − 1} is a flat of M . By construction of j1 and j2 we have that
rk(W ) = rk(E)− 2 and rk(X) = rk(E)− 1. Thus W is a coline of M — so (i)
holds — and X is a copoint of M , which follows from and the construction of j2
and j1. Since |X\W | = |{j2, j2 + 1, . . . , j1 − 1}| = j1 − j2 we obtain statement
(ii). Let k ≥ j1, and let Xk = {1, 2, . . . , j2 − 1} ∪ {k}. Lemma 2.2 yields that
rk(Xk) = rk(E)−1, thus cl(Xk) is a copoint on the Western colineW . It remains
to show that cl(Xk) = Xk, which implies that Xk is indeed a simple copoint on
W . We prove this fact by showing that for all k′ ≥ j1, rk(Xk ∪ {k′}) = rk(E) by
constructing a lattice path. Without loss of generality we may assume that k < k′.
Since M has no loops and no parallel edges, there is a lattice path r = (ri)

n
i=1 ∈

P[p, q] with rk = rk′ = N. There is a lattice path s = (si)
n
i=1 ∈ P[p, q] that

follows q for the first j2 − 1 steps, then goes towards the East until it meets r, and
then goes on as r does (Fig. 2b). The constructed path s yields that

rk(Xk ∪ {k′}) ≥ |(W ∪ {k, k′}) ∩ {i ∈ E | si = N}|
= 2 + |W ∩ {i ∈ E | qi = N}|
= 2 + rk(W ) = 1 + rk(Xk) = 1 + rk(Xk′),

where X ′k = W ∪ {k′}. Thus k′ /∈ cl(Xk) and k /∈ cl(X ′k). This completes the
proof of statement (iii).

Theorem 2.4. Let M = (E, I) be a strong lattice path matroid with rkM(E) ≥ 2
such that |E| = n and such thatM has neither a loop nor a pair of parallel edges.
Then either the Western coline is quite simple, or the element n ∈ E is a coloop,
and in the latter case there is either another coloop or rkM(E) ≥ 3.
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Proof. If j1 ≤ n − 1 as defined in Theorem 2.3, W = {1, 2, . . . , j2 − 1} has
at most a single multiple copoint and at least two simple copoints, therefore it is
quite simple. Otherwise j1 = n is a coloop. If there is another coloop e1, then
{1, 2, . . . , n− 1}\{e1} is a quite simple coline with two simple copoints. If n is
the only coloop, the rank of M is 2, and there is no other coloop, then this would
imply that there are parallel edges — a contradiction to the assumption that M is
a simple matroid.

3 Lattice Path Matroids are 3-Colorable
Corollary 3.1. Every simple lattice path matroid M = (E, I) with rkM(E) ≥ 2
has a quite simple coline.

Proof. Without loss of generality, we may assume that M is a strong lattice path
matroid on E = {1, 2, . . . , n}, and we may use j1 and j2 as defined in Theo-
rem 2.3. From Theorem 2.4, we obtain the following: If j1 < n, the Western
coline is quite simple. Otherwise, if j1 = n, then n is a coloop. If there is an-
other coloop e1, then {1, 2, . . . , n− 1}\{e1} is a quite simple coline. If there is no
other coloop, then we have rkM(E) ≥ 3, and the contraction M ′ = M |′E\ {n}
is a strong lattice path matroid without loops, without parallel edges, and without
coloops, such that rkM ′(E\ {n}) = rkM(E) − 1 ≥ 2. Thus the corresponding
j′1 < n− 1 and the Western coline W ′ of M ′ is quite simple in M ′ (Theorem 2.4).
But then W̃ = W ′ ∪ {n} is a coline of M , and X̃ is a copoint on W̃ with respect
to M if and only if X ′ = X̃\ {n} is a copoint on W ′ with respect to M ′. Since∣∣∣W̃\X̃∣∣∣ = |W ′\X ′|, we obtain that W̃ is a quite simple coline of M .

Definition 3.2 ([3], Definition 2). Let O be an oriented matroid. We say that O
is generalized series-parallel, if every non-trivial minor O′ of O with a simple
underlying matroid M(O′) has a {0,±1}-valued coflow which has exactly one or
two nonzero-entries.

Lemma 3.3 ([3], Lemma 5). If an orientable matroidM has a quite simple coline,
then every orientationO ofM has a {0,±1}-valued coflow which has exactly one
or two nonzero-entries.

For a proof, see [3].

Remark 3.4. A simple matroid of rank 1 has only one element, no circuit and
a single cocircuit consisting of the sole element of the matroid; so every rank-1



Lattice Path Matroids are 3-Colorable 9

oriented matroid is generalized series-parallel. Observe that every simple matroid
M = (E, I) with rkM(E) = 2 is a lattice path matroid, as it is isomorphic to the
strong lattice path matroid M [p, q] where p = (pi)

|E|
i=1 with

pi =

{
E if i < |E| − 2,

N otherwise,

and where q = (qi)
|E|
i=1 with

qi =

{
N if i ≤ 2,

E otherwise.

Therefore Lemma 3.3 and Corollary 3.1 yield thatO has a {0,±1}-valued coflow
which has exactly one or two nonzero-entries. Consequently, every oriented ma-
troid O = (E, C, C∗) with rkM(O)(E) ≤ 2 is generalized series-parallel.

Corollary 3.5. All orientations of lattice path matroids are generalized series-
parallel.

Proof. Lemma 3.3, Remark 3.4, Theorem 1.8 and Corollary 3.1.

Theorem 3.6 ([3], Theorem 3). Let O = (E, C, C∗) be a generalized series-
parallel oriented matroid such that M(O) has no loops. Then there is a nowhere-
zero coflow F ∈ Z.C∗ such that |F (e)| < 3 for all e ∈ E. Thus χ(O) ≤ 3.

For a proof, see [3].

Corollary 3.7. Let O be an oriented matroid such that M(O) is a lattice path
matroid without loops. Then χ(O) ≤ 3.

Proof. Theorem 3.6 and Corollary 3.5.
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