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Abstract

We show that every gammoid has special digraph representations, such
that a representation of the dual of the gammoid may be easily obtained
by reversing all arcs. In an informal sense, the duality notion of a poset
applied to the digraph of a special representation of a gammoid commutes
with the operation of forming the dual of that gammoid. We use these special
representations in order to define a complexity measure for gammoids, such
that the classes of gammoids with bounded complexity are closed under
duality, minors, and direct sums.
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A well-known result due to J.H. Mason is that the class of gammoids is closed
under duality, minors, and direct sums [5]. Furthermore, it has been shown by
D. Mayhew that every gammoid is also a minor of an excluded minor for the class
of gammoids [6], which indicates that handling the class of all gammoids may get
very involved. In this work, we introduce a notion of complexity for gammoids
which may be used to define subclasses of gammoids with bounded complexity,
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that still have the desirable property of being closed under duality, minors, and
direct sums; yet their representations have a more limited number of arcs than the
general class of gammoids.

1 Preliminaries
In this work, we consider matroids to be pairs M = (E, I) where E is a finite set
and I is a system of independent subsets of E subject to the usual axioms ([7],
Sec. 1.1). If M = (E, I) is a matroid and X ⊆ E, then the restriction of M to
X shall be denoted by M |X ([7], Sec. 1.3), and the contraction of M to X shall
be denoted by M.X ([7], Sec. 3.1). Furthermore, the notion of a digraph shall be
synonymous with what is described more precisely as finite simple directed graph
that may have some loops, i.e. a digraph is a pair D = (V,A) where V is a finite
set and A ⊆ V × V . Every digraph D = (V,A) has a unique opposite digraph
Dopp = (V,Aopp) where (u, v) ∈ Aopp if and only if (v, u) ∈ A. All standard
notions related to digraphs in this work are in accordance with the definitions
found in [2]. A path in D = (V,A) is a non-empty and non-repeating sequence
p = p1p2 . . . pn of vertices pi ∈ V such that for each 1 ≤ i < n, (pi, pi+1) ∈ A. By
convention, we shall denote pn by p−1. Furthermore, the set of vertices traversed
by a path p shall be denoted by |p| = {p1, p2, . . . , pn} and the set of all paths in D
shall be denoted by P(D).

Definition 1.1. Let D = (V,A) be a digraph, and X, Y ⊆ V . A routing from X
to Y in D is a family of paths R ⊆ P(D) such that

(i) for each x ∈ X there is some p ∈ R with p1 = x,

(ii) for all p ∈ R the end vertex p−1 ∈ Y , and

(iii) for all p, q ∈ R, either p = q or |p| ∩ |q| = ∅.

We shall write R : X →→ Y in D as a shorthand for “R is a routing from X to Y
in D”, and if no confusion is possible, we just write X →→ Y instead of R and
R : X →→ Y . A routing R is called linking from X to Y , if it is a routing onto Y ,
i.e. whenever Y = {p−1 | p ∈ R}.

Definition 1.2. Let D = (V,A) be a digraph, E ⊆ V , and T ⊆ V . The gammoid
represented by (D,T,E) is defined to be the matroid Γ(D,T,E) = (E, I) where

I = {X ⊆ E | there is a routing X →→ T in D}.
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The elements of T are usually called sinks in this context, although they are not
required to be actual sinks of the digraph D. To avoid confusion, we shall call the
elements of T targets in this work. A matroid M ′ = (E ′, I ′) is called gammoid, if
there is a digraph D′ = (V ′, A′) and a set T ′ ⊆ V ′ such that M ′ = Γ(D′, T ′, E ′).

Theorem 1.3 ([5], Corollary 4.1.2). Let M = (E, I) be a gammoid and B ⊆ E
a base of M . Then there is a digraph D = (V,A) such that M = Γ(D,B,E).

For a proof, see J.H. Mason’s seminal paper On a Class of Matroids Arising
From Paths in Graphs [5].

2 Special Representations
Definition 2.1. Let (D,T,E) be a representation of a gammoid. We say that
(D,T,E) is a duality respecting representation, if

Γ(Dopp, E\T,E) = (Γ(D,T,E))∗

where (Γ(D,T,E))∗ denotes the dual matroid of Γ(D,T,E).

Lemma 2.2. Let (D,T,E) be a representation of a gammoid with T ⊆ E, such
that every e ∈ E\T is a source of D, and every t ∈ T is a sink of D. Then
(D,T,E) is a duality respecting representation.

Proof. We have to show that the bases of N = Γ(Dopp, E\T,E) are precisely the
complements of the bases of M = Γ(D,T,E) ([7], Thm. 2.1.1). Let B ⊆ E be a
base of M , then there is a linking L : B →→ T in D, and since T consists of sinks,
we have that the single vertex paths {x ∈ P(D) | x ∈ T ∩B} ⊆ L. Further, let
Lopp = {pnpn−1 . . . p1 | p1p2 . . . pn ∈ L}. Then Lopp is a linking from T to B in
Dopp which routes T\B to B\T . The special property of D, that E\T consists
of sources and that T consists of sinks, implies, that for all p ∈ L, we have
|p| ∩ E = {p1, p−1}. Observe that thus

R = {p ∈ Lopp | p1 ∈ T\B} ∪ {x ∈ P(Dopp) | x ∈ E\ (T ∪B)}

is a linking from E\B = (T ∪̇ (E\T )) \B onto E\T in Dopp, thus E\B is a base
of N . An analog argument yields that for every base B′ of N , E\B′ is a base of
M . Therefore Γ(Dopp, E\T,E) = (Γ(D,T,E))∗.
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Definition 2.3. Let M be a gammoid and (D,T,E) with D = (V,A) be a repre-
sentation of M . Then (D,T,E) is a standard representation of M , if (D,T,E) is
a duality respecting representation, T ⊆ E, every t ∈ T is a sink in D, and every
e ∈ E\T is a source in D.

The name standard representation is justified, since the real matrix A ∈ RT×E

obtained from D through the Lindström Lemma [4, 1] is a standard matrix repre-
sentation of Γ(D,T,E) up to possibly rearranging the columns ([8], p.137).

Theorem 2.4. Let M = (E, I) be a gammoid, and B ⊆ E a base of M . There is
a digraph D = (V,A) such that (D,B,E) is a standard representation of M .

Proof. Let D0 = (V0, A0) be a digraph such that Γ(D0, B,E) = M (Theo-
rem 1.3). Furthermore, let V be a set with E ⊆ V such that there is an injective
map ′ : V0 −→ V \E, v 7→ v′. Without loss of generality we may assume that
V = E ∪̇ V ′0 . We define the digraph D = (V,A) such that

A = {(u′, v′) | (u, v) ∈ A0} ∪ {(b′, b) | b ∈ B} ∪ {(e, e′) | e ∈ E\B}.

For every X ⊆ E, we obtain that by construction, there is a routing X →→ B
in D0 if and only if there is a routing X →→ B in D. Therefore (D,B,E) is a
representation of M with the additional property that every e ∈ E\B is a source
in D, and every b ∈ B is a sink in D. Thus (D,B,E) is a duality respecting
representation of M (Lemma 2.2).

3 Gammoids with Low Arc-Complexity
Definition 3.1. Let M be a gammoid. The arc-complexity of M is defined to be

CA(M) = min
{
|A|

∣∣ ((V,A), T, E) is a standard representation of M
}
.

Lemma 3.2. Let M = (E, I) be a gammoid, X ⊆ E. Then the inequalities
CA(M |X) ≤ CA(M), CA(M.X) ≤ CA(M), and CA(M) = CA(M∗) hold.

Proof. Let M be a gammoid and let (D,T,E) be a standard representation of
M with D = (V,A) for which |A| is minimal among all standard representa-
tions of M . Then (Dopp, E\T,E) is a standard representation of M∗ that uses
the same number of arcs. Thus CA(M) = CA(M∗) holds for all gammoids M .
Let X ⊆ E. If T ⊆ X , then (D,T,X) is a standard representation of M |X
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and therefore CA(M |X) ≤ CA(M). Otherwise let Y = T\X , and let B0 ⊆ X
be a set of maximal cardinality such that there is a routing R0 : B0

→→ Y in D.
Let D′ = (V,A′) be the digraph that arises from D by a sequence of opera-
tions as described in Theorem 4.1.1 [5] and Corollary 4.1.2 [5] with respect to
the routing R0. Observe that every b ∈ B0 is a sink in D′ and that |A′| = |A|.
We argue that (D′, (T ∩ X) ∪ B0, X) is a standard representation of M |X: Let
Y0 = {p−1 | p ∈ R0} be the set of targets that are entered by the routing R0. It
follows from Corollary 4.1.2 [5] that the triple (D′, (T ∩X)∪B0∪(Y \Y0) , E) is a
representation of M . The sequence of operations we carried out on D preserves all
those sources and sinks of D, which are not visited by a path p ∈ R0. So we obtain
that every e ∈ E\ (T ∪B0) is a source in D′, and that every t ∈ T ∩X is a sink in
D′. Thus the set T ′ = (T ∩X) ∪ B0 consists of sinks in D′, and the set X\T ′ ⊆
E\ (T ∪B0) consists of sources in D′. Therefore (D′, (T ∩X)∪B0, X) is a stan-
dard representation, and we give an indirect argument that (D′, (T ∩X)∪B0, X)
represents M |X . Clearly, (D′, (T ∩X)∪B0 ∪ (Y \Y0) , X) is a representation of
M |X . Since we assume that (D′, (T ∩X)∪B0, X) does not represent M |X , there
must be a set X0 ⊆ X such that there is a routing Q0 : X0

→→ (T∩X)∪B0∪(Y \Y0)
and such that there is no routing X0

→→ (T ∩ X) ∪ B0, both in D′. Thus there
is a path q ∈ Q0 with q−1 ∈ Y \Y0 and q1 ∈ X . Consequently we have a rout-
ing Q′1 = {q} ∪ {b ∈ P(D′) | b ∈ B0} in D′. This implies that there is a routing
B0∪{q1} →→ Y in D, a contradiction to the maximal cardinality of the choice of B0

above. Thus our assumption must be wrong, and (D′, (T ∩X)∪B0, X) is a stan-
dard representation of M |X . Consequently CA(M |X) ≤ CA(M) holds again.
Finally, we have CA(M.X) = CA ((M∗|X)∗) = CA (M∗|X) ≤ CA(M∗) =
CA(M).

Definition 3.3. Let f : N −→ N\ {0} be a function. We say that f is super-
additive, if for all n,m ∈ N\ {0}

f(n + m) ≥ f(n) + f(m)

holds.

Definition 3.4. Let f : N −→ N\ {0} be a super-additive function, and let M =
(E, I) be a gammoid. The f -width of M shall be

Wf (M) = max

{
CA ((M.Y ) |X))

f (|X|)

∣∣∣∣ X ⊆ Y ⊆ E

}
.

Theorem 3.5. Let f : N −→ N\ {0} be a super-additive function, and let 0 < q ∈
Q. LetWf,q denote the class of gammoids M with Wf (M) ≤ q. The classWf,q

is closed under duality, minors, and direct sums.
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Proof. Let M = (E, I) be a gammoid and X ⊆ Y ⊆ E. It is obvious from
Definition 3.4 that Wf ((M.Y ) |X) ≤ Wf (M), and consequentlyWf,q is closed
under minors. Since CA(M) = CA(M∗) and since every minor of M∗ is the dual
of a minor of M ([7], Prop. 3.1.26), we obtain that Wf (M) = Wf (M∗). Thus
Wf,q is closed under duality.

Now, let M = (E, I) and N = (E ′, I ′) with E ∩ E ′ = ∅ and M,N ∈ Wf,q.
The cases where either E = ∅ or E ′ = ∅ are trivial, now let E 6= ∅ 6= E ′.
Furthermore, let X ⊆ Y ⊆ E ∪ E ′. The direct sum commutes with the forming
of minors in the sense that

((M ⊕N).Y ) |X =
(

(M.Y ∩ E) |X ∩ E
)
⊕ ((N.Y ∩ E ′)|X ∩ E ′) .

Let (D,T,E) and (D′, T ′, E ′) be representations of M and N where D = (V,A)
and D′ = (V ′, A′) such that V ∩V ′ = ∅. Then

(
(V ∪ V ′, A ∪ A′), T ∪ T ′, E ∪ E ′

)
is a representation of M⊕N , and consequently CA(M⊕N) ≤ CA(M)+CA(N)
holds for all gammoids M and N , thus we have

CA

(
((M ⊕N).Y ) |X

)
≤ CA

(
MX,Y

)
+ CA

(
NX,Y

)
where MX,Y = (M.Y ∩ E) |X ∩ E and NX,Y = (N.Y ∩ E ′)|X ∩ E ′. The cases
where CA(MX,Y ) = 0 or CA(NX,Y ) = 0 are trivial, so we may assume that
X ∩ E 6= ∅ 6= X ∩ E ′. We use the super-additivity of f at (∗) in order to derive

CA

(
((M ⊕N).Y ) |X

)
f (|X|)

≤
CA

(
MX,Y

)
+ CA

(
NX,Y

)
f (|X|)

≤ q · f (|X ∩ E|) + q · f (|X ∩ E ′|)
f (|X|)

(∗)
≤ q.

As a consequence we obtain Wf (M⊕N) ≤ q, and thereforeWf,q is closed under
direct sums.

4 Further Remarks and Open Problems
Let r, n ∈ N with n ≥ r, the uniform matroid of rank r on n elements is the ma-
troid Ur,n = ({1, 2, . . . , n}, Ir,n) where Ir,n =

{
X ⊆ {1, 2, . . . , n}

∣∣ |X| ≤ r
}

.
Let T = {1, 2, . . . , r}, X = {r + 1, r + 2, . . . , n}, and D = (X ∪ T,X × T ).
Then Ur,n = Γ(D,T, T ∪ X). Thus CA (Ur,n) ≤ r · (n− r). Unfortunately, we
were not able to find a known result in graph or digraph theory that implies:
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Conjecture 4.1.
CA (Ur,n) = r · (n− r).

A slightly weaker version is the following:

Conjecture 4.2. For every q ∈ Q there is a gammoid M = (E, I) with

CA(M) ≥ q · |E| .

For the rest of this work, we set f : N −→ N\ {0}, x 7→ max {1, x}, we
denote Wf by W, and we fix an arbitrary choice of q ∈ Q with q > 0. Clearly,
if Conjecture 4.2 holds, then (Wf,i)i∈N\{0} is strictly monotonous sequence of
subclasses of the class of gammoids, such that every subclass is closed under
duality, minors, and direct sums. For which super-additive f and q ∈ Q\ {0}may
Wf,q be characterized by finitely many excluded minors? For which such classes
can we list a sufficient (possibly infinite) set of excluded minors that decide class
membership ofWf,q?

A consequence of a result of S. Kratsch and M. Wahlström ([3], Thm. 3)
is, that if a matroid M = (E, I) is a gammoid, then there is a representation
(D,T,E) of M with D = (V,A) and |V | ≤ rkM(E)2 · |E| + rkM(E) + |E|. It
is easy to see that if M ∈ Wf,q, then there is a representation (D,T,E) of M
with D = (V,A) and |V | ≤ b2q · f (|E|)c, since every arc is only incident with
at most two vertices. Therefore, deciding Wf,q-membership with an exhaustive
digraph search appears to be easier than deciding gammoid-membership with an
exhaustive digraph search.
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