

Immanuel Albrecht:

Duality Respecting Representations and Compatible Complexity Measures for Gammoids

Technical Report feu-dmo049.18 Contact: immanuel.albrecht@fernuni-hagen.de

FernUniversität in Hagen Fakultät für Mathematik und Informatik Lehrgebiet für Diskrete Mathematik und Optimierung D – 58084 Hagen

**2010 Mathematics Subject Classification:** 05B35, 05C20, 06D50 **Keywords:** gammoids, digraphs, duality, complexity measure

# Duality Respecting Representations and Compatible Complexity Measures for Gammoids

Immanuel Albrecht

June 21, 2018

#### Abstract

We show that every gammoid has special digraph representations, such that a representation of the dual of the gammoid may be easily obtained by reversing all arcs. In an informal sense, the duality notion of a poset applied to the digraph of a special representation of a gammoid commutes with the operation of forming the dual of that gammoid. We use these special representations in order to define a complexity measure for gammoids, such that the classes of gammoids with bounded complexity are closed under duality, minors, and direct sums.

Keywords. gammoids, digraphs, duality, complexity measure

A well-known result due to J.H. Mason is that the class of gammoids is closed under duality, minors, and direct sums [5]. Furthermore, it has been shown by D. Mayhew that every gammoid is also a minor of an excluded minor for the class of gammoids [6], which indicates that handling the class of all gammoids may get very involved. In this work, we introduce a notion of complexity for gammoids which may be used to define subclasses of gammoids with bounded complexity,

I. Albrecht: FernUniversität in Hagen, Fakultät für Mathematik und Informatik, Lehrgebiet für Diskrete Mathematik und Optimierung, D-58084 Hagen, Germany; e-mail: Immanuel.Albrecht@fernuni-hagen.de

Mathematics Subject Classification (2010): 05B35, 05C20, 06D50

that still have the desirable property of being closed under duality, minors, and direct sums; yet their representations have a more limited number of arcs than the general class of gammoids.

## **1** Preliminaries

In this work, we consider *matroids* to be pairs  $M = (E, \mathcal{I})$  where E is a finite set and  $\mathcal{I}$  is a system of independent subsets of E subject to the usual axioms ([7], Sec. 1.1). If  $M = (E, \mathcal{I})$  is a matroid and  $X \subseteq E$ , then the restriction of M to X shall be denoted by M|X ([7], Sec. 1.3), and the contraction of M to X shall be denoted by M.X ([7], Sec. 3.1). Furthermore, the notion of a *digraph* shall be synonymous with what is described more precisely as *finite simple directed graph* that may have some loops, i.e. a digraph is a pair D = (V, A) where V is a finite set and  $A \subseteq V \times V$ . Every digraph D = (V, A) has a unique *opposite digraph*  $D^{\text{opp}} = (V, A^{\text{opp}})$  where  $(u, v) \in A^{\text{opp}}$  if and only if  $(v, u) \in A$ . All standard notions related to digraphs in this work are in accordance with the definitions found in [2]. A *path* in D = (V, A) is a non-empty and non-repeating sequence  $p = p_1 p_2 \dots p_n$  of vertices  $p_i \in V$  such that for each  $1 \leq i < n$ ,  $(p_i, p_{i+1}) \in A$ . By convention, we shall denote  $p_n$  by  $p_{-1}$ . Furthermore, the set of vertices traversed by a path p shall be denoted by  $|p| = \{p_1, p_2, \dots, p_n\}$  and the set of all paths in Dshall be denoted by  $\mathbf{P}(D)$ .

**Definition 1.1.** Let D = (V, A) be a digraph, and  $X, Y \subseteq V$ . A *routing* from X to Y in D is a family of paths  $R \subseteq \mathbf{P}(D)$  such that

- (i) for each  $x \in X$  there is some  $p \in R$  with  $p_1 = x$ ,
- (ii) for all  $p \in R$  the end vertex  $p_{-1} \in Y$ , and
- (iii) for all  $p, q \in R$ , either p = q or  $|p| \cap |q| = \emptyset$ .

We shall write  $R: X \rightrightarrows Y$  in D as a shorthand for "R is a routing from X to Y in D", and if no confusion is possible, we just write  $X \rightrightarrows Y$  instead of R and  $R: X \rightrightarrows Y$ . A routing R is called *linking* from X to Y, if it is a routing onto Y, i.e. whenever  $Y = \{p_{-1} \mid p \in R\}$ .

**Definition 1.2.** Let D = (V, A) be a digraph,  $E \subseteq V$ , and  $T \subseteq V$ . The *gammoid* represented by (D, T, E) is defined to be the matroid  $\Gamma(D, T, E) = (E, \mathcal{I})$  where

 $\mathcal{I} = \{ X \subseteq E \mid \text{there is a routing } X \rightrightarrows T \text{ in } \mathbf{D} \}.$ 

The elements of T are usually called *sinks* in this context, although they are not required to be actual sinks of the digraph D. To avoid confusion, we shall call the elements of T targets in this work. A matroid  $M' = (E', \mathcal{I}')$  is called *gammoid*, if there is a digraph D' = (V', A') and a set  $T' \subseteq V'$  such that  $M' = \Gamma(D', T', E')$ .

**Theorem 1.3** ([5], Corollary 4.1.2). Let  $M = (E, \mathcal{I})$  be a gammoid and  $B \subseteq E$  a base of M. Then there is a digraph D = (V, A) such that  $M = \Gamma(D, B, E)$ .

For a proof, see J.H. Mason's seminal paper *On a Class of Matroids Arising From Paths in Graphs* [5].

#### **2** Special Representations

**Definition 2.1.** Let (D, T, E) be a representation of a gammoid. We say that (D, T, E) is a *duality respecting representation*, if

$$\Gamma(D^{\mathrm{opp}}, E \setminus T, E) = (\Gamma(D, T, E))^*$$

where  $(\Gamma(D, T, E))^*$  denotes the dual matroid of  $\Gamma(D, T, E)$ .

**Lemma 2.2.** Let (D, T, E) be a representation of a gammoid with  $T \subseteq E$ , such that every  $e \in E \setminus T$  is a source of D, and every  $t \in T$  is a sink of D. Then (D, T, E) is a duality respecting representation.

*Proof.* We have to show that the bases of  $N = \Gamma(D^{\text{opp}}, E \setminus T, E)$  are precisely the complements of the bases of  $M = \Gamma(D, T, E)$  ([7], Thm. 2.1.1). Let  $B \subseteq E$  be a base of M, then there is a linking  $L: B \rightrightarrows T$  in D, and since T consists of sinks, we have that the single vertex paths  $\{x \in \mathbf{P}(D) \mid x \in T \cap B\} \subseteq L$ . Further, let  $L^{\text{opp}} = \{p_n p_{n-1} \dots p_1 \mid p_1 p_2 \dots p_n \in L\}$ . Then  $L^{\text{opp}}$  is a linking from T to B in  $D^{\text{opp}}$  which routes  $T \setminus B$  to  $B \setminus T$ . The special property of D, that  $E \setminus T$  consists of sources and that T consists of sinks, implies, that for all  $p \in L$ , we have  $|p| \cap E = \{p_1, p_{-1}\}$ . Observe that thus

$$R = \{ p \in L^{\text{opp}} \mid p_1 \in T \setminus B \} \cup \{ x \in \mathbf{P}(D^{\text{opp}}) \mid x \in E \setminus (T \cup B) \}$$

is a linking from  $E \setminus B = (T \cup (E \setminus T)) \setminus B$  onto  $E \setminus T$  in  $D^{\text{opp}}$ , thus  $E \setminus B$  is a base of N. An analog argument yields that for every base B' of N,  $E \setminus B'$  is a base of M. Therefore  $\Gamma(D^{\text{opp}}, E \setminus T, E) = (\Gamma(D, T, E))^*$ .  $\Box$  **Definition 2.3.** Let M be a gammoid and (D, T, E) with D = (V, A) be a representation of M. Then (D, T, E) is a standard representation of M, if (D, T, E) is a duality respecting representation,  $T \subseteq E$ , every  $t \in T$  is a sink in D, and every  $e \in E \setminus T$  is a source in D.

The name *standard representation* is justified, since the real matrix  $A \in \mathbb{R}^{T \times E}$  obtained from D through the Lindström Lemma [4, 1] is a *standard matrix representation* of  $\Gamma(D, T, E)$  up to possibly rearranging the columns ([8], p.137).

**Theorem 2.4.** Let  $M = (E, \mathcal{I})$  be a gammoid, and  $B \subseteq E$  a base of M. There is a digraph D = (V, A) such that (D, B, E) is a standard representation of M.

*Proof.* Let  $D_0 = (V_0, A_0)$  be a digraph such that  $\Gamma(D_0, B, E) = M$  (Theorem 1.3). Furthermore, let V be a set with  $E \subseteq V$  such that there is an injective map ':  $V_0 \longrightarrow V \setminus E, v \mapsto v'$ . Without loss of generality we may assume that  $V = E \cup V'_0$ . We define the digraph D = (V, A) such that

$$A = \{ (u', v') \mid (u, v) \in A_0 \} \cup \{ (b', b) \mid b \in B \} \cup \{ (e, e') \mid e \in E \setminus B \}.$$

For every  $X \subseteq E$ , we obtain that by construction, there is a routing  $X \rightrightarrows B$ in  $D_0$  if and only if there is a routing  $X \rightrightarrows B$  in D. Therefore (D, B, E) is a representation of M with the additional property that every  $e \in E \setminus B$  is a source in D, and every  $b \in B$  is a sink in D. Thus (D, B, E) is a duality respecting representation of M (Lemma 2.2).

#### **3** Gammoids with Low Arc-Complexity

**Definition 3.1.** Let M be a gammoid. The *arc-complexity of M* is defined to be

 $C_A(M) = \min \{ |A| \mid ((V, A), T, E) \text{ is a standard representation of } M \}.$ 

**Lemma 3.2.** Let  $M = (E, \mathcal{I})$  be a gammoid,  $X \subseteq E$ . Then the inequalities  $C_A(M|X) \leq C_A(M)$ ,  $C_A(M.X) \leq C_A(M)$ , and  $C_A(M) = C_A(M^*)$  hold.

*Proof.* Let M be a gammoid and let (D, T, E) be a standard representation of M with D = (V, A) for which |A| is minimal among all standard representations of M. Then  $(D^{\text{opp}}, E \setminus T, E)$  is a standard representation of  $M^*$  that uses the same number of arcs. Thus  $C_A(M) = C_A(M^*)$  holds for all gammoids M. Let  $X \subseteq E$ . If  $T \subseteq X$ , then (D, T, X) is a standard representation of M|X

and therefore  $C_A(M|X) \leq C_A(M)$ . Otherwise let  $Y = T \setminus X$ , and let  $B_0 \subseteq X$ be a set of maximal cardinality such that there is a routing  $R_0: B_0 \rightrightarrows Y$  in D. Let D' = (V, A') be the digraph that arises from D by a sequence of operations as described in Theorem 4.1.1 [5] and Corollary 4.1.2 [5] with respect to the routing  $R_0$ . Observe that every  $b \in B_0$  is a sink in D' and that |A'| = |A|. We argue that  $(D', (T \cap X) \cup B_0, X)$  is a standard representation of M|X: Let  $Y_0 = \{p_{-1} \mid p \in R_0\}$  be the set of targets that are entered by the routing  $R_0$ . It follows from Corollary 4.1.2 [5] that the triple  $(D', (T \cap X) \cup B_0 \cup (Y \setminus Y_0), E)$  is a representation of M. The sequence of operations we carried out on D preserves all those sources and sinks of D, which are not visited by a path  $p \in R_0$ . So we obtain that every  $e \in E \setminus (T \cup B_0)$  is a source in D', and that every  $t \in T \cap X$  is a sink in D'. Thus the set  $T' = (T \cap X) \cup B_0$  consists of sinks in D', and the set  $X \setminus T' \subseteq D'$  $E \setminus (T \cup B_0)$  consists of sources in D'. Therefore  $(D', (T \cap X) \cup B_0, X)$  is a standard representation, and we give an indirect argument that  $(D', (T \cap X) \cup B_0, X)$ represents M|X. Clearly,  $(D', (T \cap X) \cup B_0 \cup (Y \setminus Y_0), X)$  is a representation of M|X. Since we assume that  $(D', (T \cap X) \cup B_0, X)$  does not represent M|X, there must be a set  $X_0 \subseteq X$  such that there is a routing  $Q_0: X_0 \rightrightarrows (T \cap X) \cup B_0 \cup (Y \setminus Y_0)$ and such that there is no routing  $X_0 \rightrightarrows (T \cap X) \cup B_0$ , both in D'. Thus there is a path  $q \in Q_0$  with  $q_{-1} \in Y \setminus Y_0$  and  $q_1 \in X$ . Consequently we have a routing  $Q'_1 = \{q\} \cup \{b \in \mathbf{P}(D') \mid b \in B_0\}$  in D'. This implies that there is a routing  $B_0 \cup \{q_1\} \rightrightarrows Y$  in D, a contradiction to the maximal cardinality of the choice of  $B_0$ above. Thus our assumption must be wrong, and  $(D', (T \cap X) \cup B_0, X)$  is a standard representation of M|X. Consequently  $C_A(M|X) \leq C_A(M)$  holds again. Finally, we have  $C_A(M.X) = C_A((M^*|X)^*) = C_A(M^*|X) \le C_A(M^*) =$  $C_A(M).$ 

**Definition 3.3.** Let  $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$  be a function. We say that f is superadditive, if for all  $n, m \in \mathbb{N} \setminus \{0\}$ 

$$f(n+m) \ge f(n) + f(m)$$

holds.

**Definition 3.4.** Let  $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$  be a super-additive function, and let  $M = (E, \mathcal{I})$  be a gammoid. The *f*-width of *M* shall be

$$W_f(M) = \max\left\{\frac{C_A\left((M,Y)|X\right)}{f\left(|X|\right)} \mid X \subseteq Y \subseteq E\right\}.$$

**Theorem 3.5.** Let  $f : \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$  be a super-additive function, and let  $0 < q \in \mathbb{Q}$ . Let  $\mathcal{W}_{f,q}$  denote the class of gammoids M with  $W_f(M) \leq q$ . The class  $\mathcal{W}_{f,q}$  is closed under duality, minors, and direct sums.

*Proof.* Let  $M = (E, \mathcal{I})$  be a gammoid and  $X \subseteq Y \subseteq E$ . It is obvious from Definition 3.4 that  $W_f((M,Y)|X) \leq W_f(M)$ , and consequently  $\mathcal{W}_{f,q}$  is closed under minors. Since  $C_A(M) = C_A(M^*)$  and since every minor of  $M^*$  is the dual of a minor of M ([7], Prop. 3.1.26), we obtain that  $W_f(M) = W_f(M^*)$ . Thus  $\mathcal{W}_{f,q}$  is closed under duality.

Now, let  $M = (E, \mathcal{I})$  and  $N = (E', \mathcal{I}')$  with  $E \cap E' = \emptyset$  and  $M, N \in \mathcal{W}_{f,q}$ . The cases where either  $E = \emptyset$  or  $E' = \emptyset$  are trivial, now let  $E \neq \emptyset \neq E'$ . Furthermore, let  $X \subseteq Y \subseteq E \cup E'$ . The direct sum commutes with the forming of minors in the sense that

$$((M \oplus N).Y) | X = ((M.Y \cap E) | X \cap E) \oplus ((N.Y \cap E') | X \cap E').$$

Let (D, T, E) and (D', T', E') be representations of M and N where D = (V, A)and D' = (V', A') such that  $V \cap V' = \emptyset$ . Then  $((V \cup V', A \cup A'), T \cup T', E \cup E')$ is a representation of  $M \oplus N$ , and consequently  $C_A(M \oplus N) \leq C_A(M) + C_A(N)$ holds for all gammoids M and N, thus we have

$$C_A\left(\left((M \oplus N).Y\right)|X\right) \leq C_A\left(M_{X,Y}\right) + C_A\left(N_{X,Y}\right)$$

where  $M_{X,Y} = (M.Y \cap E) | X \cap E$  and  $N_{X,Y} = (N.Y \cap E') | X \cap E'$ . The cases where  $C_A(M_{X,Y}) = 0$  or  $C_A(N_{X,Y}) = 0$  are trivial, so we may assume that  $X \cap E \neq \emptyset \neq X \cap E'$ . We use the super-additivity of f at (\*) in order to derive

$$\frac{C_A\left(\left((M \oplus N).Y\right)|X\right)}{f\left(|X|\right)} \leq \frac{C_A\left(M_{X,Y}\right) + C_A\left(N_{X,Y}\right)}{f\left(|X|\right)} \leq \frac{q \cdot f\left(|X \cap E|\right) + q \cdot f\left(|X \cap E'|\right)}{f\left(|X|\right)} \leq q$$

As a consequence we obtain  $W_f(M \oplus N) \leq q$ , and therefore  $\mathcal{W}_{f,q}$  is closed under direct sums.

#### **4** Further Remarks and Open Problems

Let  $r, n \in \mathbb{N}$  with  $n \geq r$ , the uniform matroid of rank r on n elements is the matroid  $U_{r,n} = (\{1, 2, \ldots, n\}, \mathcal{I}_{r,n})$  where  $\mathcal{I}_{r,n} = \{X \subseteq \{1, 2, \ldots, n\} \mid |X| \leq r\}$ . Let  $T = \{1, 2, \ldots, r\}, X = \{r + 1, r + 2, \ldots, n\}$ , and  $D = (X \cup T, X \times T)$ . Then  $U_{r,n} = \Gamma(D, T, T \cup X)$ . Thus  $C_A(U_{r,n}) \leq r \cdot (n - r)$ . Unfortunately, we were not able to find a known result in graph or digraph theory that implies: **Conjecture 4.1.** 

$$C_A(U_{r,n}) = r \cdot (n-r).$$

A slightly weaker version is the following:

**Conjecture 4.2.** For every  $q \in \mathbb{Q}$  there is a gammoid  $M = (E, \mathcal{I})$  with

$$C_A(M) \ge q \cdot |E|$$
.

For the rest of this work, we set  $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}, x \mapsto \max\{1, x\}$ , we denote  $W_f$  by W, and we fix an arbitrary choice of  $q \in \mathbb{Q}$  with q > 0. Clearly, if Conjecture 4.2 holds, then  $(\mathcal{W}_{f,i})_{i \in \mathbb{N} \setminus \{0\}}$  is strictly monotonous sequence of subclasses of the class of gammoids, such that every subclass is closed under duality, minors, and direct sums. For which super-additive f and  $q \in \mathbb{Q} \setminus \{0\}$  may  $\mathcal{W}_{f,q}$  be characterized by finitely many excluded minors? For which such classes can we list a sufficient (possibly infinite) set of excluded minors that decide class membership of  $\mathcal{W}_{f,q}$ ?

A consequence of a result of S. Kratsch and M. Wahlström ([3], Thm. 3) is, that if a matroid  $M = (E, \mathcal{I})$  is a gammoid, then there is a representation (D, T, E) of M with D = (V, A) and  $|V| \leq \operatorname{rk}_M(E)^2 \cdot |E| + \operatorname{rk}_M(E) + |E|$ . It is easy to see that if  $M \in W_{f,q}$ , then there is a representation (D, T, E) of M with D = (V, A) and  $|V| \leq \lfloor 2q \cdot f(|E|) \rfloor$ , since every arc is only incident with at most two vertices. Therefore, deciding  $W_{f,q}$ -membership with an exhaustive digraph search appears to be easier than deciding gammoid-membership with an exhaustive digraph search.

Acknowledgments. This research was partly supported by a scholarship granted by the FernUniversität in Hagen.

### References

- [1] F. Ardila. Transversal and cotransversal matroids via the Lindstrom lemma. *ArXiv Mathematics e-prints*, May 2006.
- [2] Jørgen Bang-Jensen and Gregory Gutin. *Digraphs: Theory, Algorithms and Applications*. Springer, London, 2nd edition, 2009.
- [3] Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices: New Tools for Kernelization. In *Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science*, FOCS '12, pages 450–459, Washington, DC, USA, 2012. IEEE Computer Society.

- [4] Bernt Lindström. On the vector representations of induced matroids. *Bull. London Math. Soc*, (5), 1973.
- [5] J.H. Mason. On a class of matroids arising from paths in graphs. *Proceedings of the London Mathematical Society*, 3(1):55–74, 1972.
- [6] D. Mayhew. The antichain of excluded minors for the class of gammoids is maximal. *ArXiv e-prints*, January 2016.
- [7] James Oxley. *Matroid theory*, volume 21 of *Oxford Graduate Texts in Mathematics*. Oxford University Press, Oxford, second edition, 2011.
- [8] D.J.A. Welsh. Generalized versions of Hall's theorem. *Journal of Combinatorial Theory, Series B*, 10(2):95–101, 1971.