Immanuel Albrecht:

Duality Respecting Representations and Compatible Complexity Measures for Gammoids

Technical Report feu-dmo049.18
Contact: immanuel.albrecht@fernuni-hagen.de

FernUniversität in Hagen
Fakultät für Mathematik und Informatik
Lehrgebiet für Diskrete Mathematik und Optimierung
D - 58084 Hagen

2010 Mathematics Subject Classification: 05B35, 05C20, 06D50
Keywords: gammoids, digraphs, duality, complexity measure

Duality Respecting Representations and Compatible Complexity Measures for Gammoids

Immanuel Albrecht

June 21, 2018

Abstract

We show that every gammoid has special digraph representations, such that a representation of the dual of the gammoid may be easily obtained by reversing all arcs. In an informal sense, the duality notion of a poset applied to the digraph of a special representation of a gammoid commutes with the operation of forming the dual of that gammoid. We use these special representations in order to define a complexity measure for gammoids, such that the classes of gammoids with bounded complexity are closed under duality, minors, and direct sums.

Keywords. gammoids, digraphs, duality, complexity measure
A well-known result due to J.H. Mason is that the class of gammoids is closed under duality, minors, and direct sums [5]. Furthermore, it has been shown by D. Mayhew that every gammoid is also a minor of an excluded minor for the class of gammoids [6], which indicates that handling the class of all gammoids may get very involved. In this work, we introduce a notion of complexity for gammoids which may be used to define subclasses of gammoids with bounded complexity,

[^0]that still have the desirable property of being closed under duality, minors, and direct sums; yet their representations have a more limited number of arcs than the general class of gammoids.

1 Preliminaries

In this work, we consider matroids to be pairs $M=(E, \mathcal{I})$ where E is a finite set and \mathcal{I} is a system of independent subsets of E subject to the usual axioms ([7], Sec. 1.1). If $M=(E, \mathcal{I})$ is a matroid and $X \subseteq E$, then the restriction of M to X shall be denoted by $M \mid X$ ([7], Sec. 1.3), and the contraction of M to X shall be denoted by M.X ([7], Sec. 3.1). Furthermore, the notion of a digraph shall be synonymous with what is described more precisely as finite simple directed graph that may have some loops, i.e. a digraph is a pair $D=(V, A)$ where V is a finite set and $A \subseteq V \times V$. Every digraph $D=(V, A)$ has a unique opposite digraph $D^{\text {opp }}=\left(V, A^{\text {opp }}\right)$ where $(u, v) \in A^{\text {opp }}$ if and only if $(v, u) \in A$. All standard notions related to digraphs in this work are in accordance with the definitions found in [2]. A path in $D=(V, A)$ is a non-empty and non-repeating sequence $p=p_{1} p_{2} \ldots p_{n}$ of vertices $p_{i} \in V$ such that for each $1 \leq i<n,\left(p_{i}, p_{i+1}\right) \in A$. By convention, we shall denote p_{n} by p_{-1}. Furthermore, the set of vertices traversed by a path p shall be denoted by $|p|=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and the set of all paths in D shall be denoted by $\mathbf{P}(D)$.

Definition 1.1. Let $D=(V, A)$ be a digraph, and $X, Y \subseteq V$. A routing from X to Y in D is a family of paths $R \subseteq \mathbf{P}(D)$ such that
(i) for each $x \in X$ there is some $p \in R$ with $p_{1}=x$,
(ii) for all $p \in R$ the end vertex $p_{-1} \in Y$, and
(iii) for all $p, q \in R$, either $p=q$ or $|p| \cap|q|=\emptyset$.

We shall write $R: X \rightrightarrows Y$ in D as a shorthand for " R is a routing from X to Y in D ", and if no confusion is possible, we just write $X \rightrightarrows Y$ instead of R and $R: X \rightrightarrows Y$. A routing R is called linking from X to Y, if it is a routing onto Y, i.e. whenever $Y=\left\{p_{-1} \mid p \in R\right\}$.

Definition 1.2. Let $D=(V, A)$ be a digraph, $E \subseteq V$, and $T \subseteq V$. The gammoid represented by (D, T, E) is defined to be the matroid $\Gamma(D, T, E)=(E, \mathcal{I})$ where

$$
\mathcal{I}=\{X \subseteq E \mid \text { there is a routing } X \rightrightarrows T \text { in } \mathrm{D}\} .
$$

The elements of T are usually called sinks in this context, although they are not required to be actual sinks of the digraph D. To avoid confusion, we shall call the elements of T targets in this work. A matroid $M^{\prime}=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ is called gammoid, if there is a digraph $D^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ and a set $T^{\prime} \subseteq V^{\prime}$ such that $M^{\prime}=\Gamma\left(D^{\prime}, T^{\prime}, E^{\prime}\right)$.

Theorem 1.3 ([5], Corollary 4.1.2). Let $M=(E, \mathcal{I})$ be a gammoid and $B \subseteq E$ a base of M. Then there is a digraph $D=(V, A)$ such that $M=\Gamma(D, B, E)$.

For a proof, see J.H. Mason's seminal paper On a Class of Matroids Arising From Paths in Graphs [5].

2 Special Representations

Definition 2.1. Let (D, T, E) be a representation of a gammoid. We say that (D, T, E) is a duality respecting representation, if

$$
\Gamma\left(D^{\mathrm{opp}}, E \backslash T, E\right)=(\Gamma(D, T, E))^{*}
$$

where $(\Gamma(D, T, E))^{*}$ denotes the dual matroid of $\Gamma(D, T, E)$.
Lemma 2.2. Let (D, T, E) be a representation of a gammoid with $T \subseteq E$, such that every $e \in E \backslash T$ is a source of D, and every $t \in T$ is a sink of D. Then (D, T, E) is a duality respecting representation.

Proof. We have to show that the bases of $N=\Gamma\left(D^{\text {opp }}, E \backslash T, E\right)$ are precisely the complements of the bases of $M=\Gamma(D, T, E)$ ([7], Thm. 2.1.1). Let $B \subseteq E$ be a base of M, then there is a linking $L: B \rightrightarrows T$ in D, and since T consists of sinks, we have that the single vertex paths $\{x \in \mathbf{P}(D) \mid x \in T \cap B\} \subseteq L$. Further, let $L^{\text {opp }}=\left\{p_{n} p_{n-1} \ldots p_{1} \mid p_{1} p_{2} \ldots p_{n} \in L\right\}$. Then $L^{\text {opp }}$ is a linking from T to B in $D^{\text {opp }}$ which routes $T \backslash B$ to $B \backslash T$. The special property of D, that $E \backslash T$ consists of sources and that T consists of sinks, implies, that for all $p \in L$, we have $|p| \cap E=\left\{p_{1}, p_{-1}\right\}$. Observe that thus

$$
R=\left\{p \in L^{\mathrm{opp}} \mid p_{1} \in T \backslash B\right\} \cup\left\{x \in \mathbf{P}\left(D^{\mathrm{opp}}\right) \mid x \in E \backslash(T \cup B)\right\}
$$

is a linking from $E \backslash B=(T \dot{\cup}(E \backslash T)) \backslash B$ onto $E \backslash T$ in $D^{\text {opp }}$, thus $E \backslash B$ is a base of N. An analog argument yields that for every base B^{\prime} of $N, E \backslash B^{\prime}$ is a base of M. Therefore $\Gamma\left(D^{\text {opp }}, E \backslash T, E\right)=(\Gamma(D, T, E))^{*}$.

Definition 2.3. Let M be a gammoid and (D, T, E) with $D=(V, A)$ be a representation of M. Then (D, T, E) is a standard representation of M, if (D, T, E) is a duality respecting representation, $T \subseteq E$, every $t \in T$ is a sink in D, and every $e \in E \backslash T$ is a source in D.

The name standard representation is justified, since the real matrix $A \in \mathbb{R}^{T \times E}$ obtained from D through the Lindström Lemma $[4,1]$ is a standard matrix representation of $\Gamma(D, T, E)$ up to possibly rearranging the columns ([8], p.137).

Theorem 2.4. Let $M=(E, \mathcal{I})$ be a gammoid, and $B \subseteq E$ a base of M. There is a digraph $D=(V, A)$ such that (D, B, E) is a standard representation of M.

Proof. Let $D_{0}=\left(V_{0}, A_{0}\right)$ be a digraph such that $\Gamma\left(D_{0}, B, E\right)=M$ (Theorem 1.3). Furthermore, let V be a set with $E \subseteq V$ such that there is an injective map ': $V_{0} \longrightarrow V \backslash E, v \mapsto v^{\prime}$. Without loss of generality we may assume that $V=E \dot{\cup} V_{0}^{\prime}$. We define the digraph $D=(V, A)$ such that

$$
A=\left\{\left(u^{\prime}, v^{\prime}\right) \mid(u, v) \in A_{0}\right\} \cup\left\{\left(b^{\prime}, b\right) \mid b \in B\right\} \cup\left\{\left(e, e^{\prime}\right) \mid e \in E \backslash B\right\}
$$

For every $X \subseteq E$, we obtain that by construction, there is a routing $X \rightrightarrows B$ in D_{0} if and only if there is a routing $X \rightrightarrows B$ in D. Therefore (D, B, E) is a representation of M with the additional property that every $e \in E \backslash B$ is a source in D, and every $b \in B$ is a sink in D. Thus (D, B, E) is a duality respecting representation of M (Lemma 2.2).

3 Gammoids with Low Arc-Complexity

Definition 3.1. Let M be a gammoid. The arc-complexity of M is defined to be

$$
\mathrm{C}_{A}(M)=\min \{|A| \mid((V, A), T, E) \text { is a standard representation of } M\} .
$$

Lemma 3.2. Let $M=(E, \mathcal{I})$ be a gammoid, $X \subseteq E$. Then the inequalities $\mathrm{C}_{A}(M \mid X) \leq \mathrm{C}_{A}(M), \mathrm{C}_{A}(M . X) \leq \mathrm{C}_{A}(M)$, and $\mathrm{C}_{A}(M)=\mathrm{C}_{A}\left(M^{*}\right)$ hold.

Proof. Let M be a gammoid and let (D, T, E) be a standard representation of M with $D=(V, A)$ for which $|A|$ is minimal among all standard representations of M. Then $\left(D^{\text {opp }}, E \backslash T, E\right)$ is a standard representation of M^{*} that uses the same number of arcs. Thus $\mathrm{C}_{A}(M)=\mathrm{C}_{A}\left(M^{*}\right)$ holds for all gammoids M. Let $X \subseteq E$. If $T \subseteq X$, then (D, T, X) is a standard representation of $M \mid X$
and therefore $\mathrm{C}_{A}(M \mid X) \leq \mathrm{C}_{A}(M)$. Otherwise let $Y=T \backslash X$, and let $B_{0} \subseteq X$ be a set of maximal cardinality such that there is a routing $R_{0}: B_{0} \rightrightarrows Y$ in D. Let $D^{\prime}=\left(V, A^{\prime}\right)$ be the digraph that arises from D by a sequence of operations as described in Theorem 4.1.1 [5] and Corollary 4.1.2 [5] with respect to the routing R_{0}. Observe that every $b \in B_{0}$ is a sink in D^{\prime} and that $\left|A^{\prime}\right|=|A|$. We argue that $\left(D^{\prime},(T \cap X) \cup B_{0}, X\right)$ is a standard representation of $M \mid X$: Let $Y_{0}=\left\{p_{-1} \mid p \in R_{0}\right\}$ be the set of targets that are entered by the routing R_{0}. It follows from Corollary 4.1.2 [5] that the triple $\left(D^{\prime},(T \cap X) \cup B_{0} \cup\left(Y \backslash Y_{0}\right), E\right)$ is a representation of M. The sequence of operations we carried out on D preserves all those sources and sinks of D, which are not visited by a path $p \in R_{0}$. So we obtain that every $e \in E \backslash\left(T \cup B_{0}\right)$ is a source in D^{\prime}, and that every $t \in T \cap X$ is a sink in D^{\prime}. Thus the set $T^{\prime}=(T \cap X) \cup B_{0}$ consists of sinks in D^{\prime}, and the set $X \backslash T^{\prime} \subseteq$ $E \backslash\left(T \cup B_{0}\right)$ consists of sources in D^{\prime}. Therefore $\left(D^{\prime},(T \cap X) \cup B_{0}, X\right)$ is a standard representation, and we give an indirect argument that $\left(D^{\prime},(T \cap X) \cup B_{0}, X\right)$ represents $M \mid X$. Clearly, $\left(D^{\prime},(T \cap X) \cup B_{0} \cup\left(Y \backslash Y_{0}\right), X\right)$ is a representation of $M \mid X$. Since we assume that $\left(D^{\prime},(T \cap X) \cup B_{0}, X\right)$ does not represent $M \mid X$, there must be a set $X_{0} \subseteq X$ such that there is a routing $Q_{0}: X_{0} \rightrightarrows(T \cap X) \cup B_{0} \cup\left(Y \backslash Y_{0}\right)$ and such that there is no routing $X_{0} \rightrightarrows(T \cap X) \cup B_{0}$, both in D^{\prime}. Thus there is a path $q \in Q_{0}$ with $q_{-1} \in Y \backslash Y_{0}$ and $q_{1} \in X$. Consequently we have a routing $Q_{1}^{\prime}=\{q\} \cup\left\{b \in \mathbf{P}\left(D^{\prime}\right) \mid b \in B_{0}\right\}$ in D^{\prime}. This implies that there is a routing $B_{0} \cup\left\{q_{1}\right\} \rightrightarrows Y$ in D, a contradiction to the maximal cardinality of the choice of B_{0} above. Thus our assumption must be wrong, and $\left(D^{\prime},(T \cap X) \cup B_{0}, X\right)$ is a standard representation of $M \mid X$. Consequently $\mathrm{C}_{A}(M \mid X) \leq \mathrm{C}_{A}(M)$ holds again. Finally, we have $\mathrm{C}_{A}(M . X)=\mathrm{C}_{A}\left(\left(M^{*} \mid X\right)^{*}\right)=\mathrm{C}_{A}\left(M^{*} \mid X\right) \leq \mathrm{C}_{A}\left(M^{*}\right)=$ $\mathrm{C}_{A}(M)$.
Definition 3.3. Let $f: \mathbb{N} \longrightarrow \mathbb{N} \backslash\{0\}$ be a function. We say that f is superadditive, if for all $n, m \in \mathbb{N} \backslash\{0\}$

$$
f(n+m) \geq f(n)+f(m)
$$

holds.
Definition 3.4. Let $f: \mathbb{N} \longrightarrow \mathbb{N} \backslash\{0\}$ be a super-additive function, and let $M=$ (E, \mathcal{I}) be a gammoid. The f-width of M shall be

$$
\mathrm{W}_{f}(M)=\max \left\{\left.\frac{\left.\mathrm{C}_{A}((M \cdot Y) \mid X)\right)}{f(|X|)} \right\rvert\, X \subseteq Y \subseteq E\right\}
$$

Theorem 3.5. Let $f: \mathbb{N} \longrightarrow \mathbb{N} \backslash\{0\}$ be a super-additive function, and let $0<q \in$ \mathbb{Q}. Let $\mathcal{W}_{f, q}$ denote the class of gammoids M with $\mathrm{W}_{f}(M) \leq q$. The class $\mathcal{W}_{f, q}$ is closed under duality, minors, and direct sums.

Proof. Let $M=(E, \mathcal{I})$ be a gammoid and $X \subseteq Y \subseteq E$. It is obvious from Definition 3.4 that $\mathrm{W}_{f}((M . Y) \mid X) \leq \mathrm{W}_{f}(M)$, and consequently $\mathcal{W}_{f, q}$ is closed under minors. Since $\mathrm{C}_{A}(M)=\mathrm{C}_{A}\left(M^{*}\right)$ and since every minor of M^{*} is the dual of a minor of M ([7], Prop. 3.1.26), we obtain that $\mathrm{W}_{f}(M)=\mathrm{W}_{f}\left(M^{*}\right)$. Thus $\mathcal{W}_{f, q}$ is closed under duality.

Now, let $M=(E, \mathcal{I})$ and $N=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ with $E \cap E^{\prime}=\emptyset$ and $M, N \in \mathcal{W}_{f, q}$. The cases where either $E=\emptyset$ or $E^{\prime}=\emptyset$ are trivial, now let $E \neq \emptyset \neq E^{\prime}$. Furthermore, let $X \subseteq Y \subseteq E \cup E^{\prime}$. The direct sum commutes with the forming of minors in the sense that

$$
((M \oplus N) . Y) \mid X=((M . Y \cap E) \mid X \cap E) \oplus\left(\left(N . Y \cap E^{\prime}\right) \mid X \cap E^{\prime}\right)
$$

Let (D, T, E) and $\left(D^{\prime}, T^{\prime}, E^{\prime}\right)$ be representations of M and N where $D=(V, A)$ and $D^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ such that $V \cap V^{\prime}=\emptyset$. Then $\left(\left(V \cup V^{\prime}, A \cup A^{\prime}\right), T \cup T^{\prime}, E \cup E^{\prime}\right)$ is a representation of $M \oplus N$, and consequently $\mathrm{C}_{A}(M \oplus N) \leq \mathrm{C}_{A}(M)+\mathrm{C}_{A}(N)$ holds for all gammoids M and N, thus we have

$$
\mathrm{C}_{A}(((M \oplus N) \cdot Y) \mid X) \leq \mathrm{C}_{A}\left(M_{X, Y}\right)+\mathrm{C}_{A}\left(N_{X, Y}\right)
$$

where $M_{X, Y}=(M . Y \cap E) \mid X \cap E$ and $N_{X, Y}=\left(N . Y \cap E^{\prime}\right) \mid X \cap E^{\prime}$. The cases where $\mathrm{C}_{A}\left(M_{X, Y}\right)=0$ or $\mathrm{C}_{A}\left(N_{X, Y}\right)=0$ are trivial, so we may assume that $X \cap E \neq \emptyset \neq X \cap E^{\prime}$. We use the super-additivity of f at $(*)$ in order to derive

$$
\begin{aligned}
\frac{\mathrm{C}_{A}(((M \oplus N) . Y) \mid X)}{f(|X|)} & \leq \frac{\mathrm{C}_{A}\left(M_{X, Y}\right)+\mathrm{C}_{A}\left(N_{X, Y}\right)}{f(|X|)} \\
& \leq \frac{q \cdot f(|X \cap E|)+q \cdot f\left(\left|X \cap E^{\prime}\right|\right)}{f(|X|)} \stackrel{(*)}{\leq} q
\end{aligned}
$$

As a consequence we obtain $\mathrm{W}_{f}(M \oplus N) \leq q$, and therefore $\mathcal{W}_{f, q}$ is closed under direct sums.

4 Further Remarks and Open Problems

Let $r, n \in \mathbb{N}$ with $n \geq r$, the uniform matroid of rank r on n elements is the matroid $U_{r, n}=\left(\{1,2, \ldots, n\}, \mathcal{I}_{r, n}\right)$ where $\mathcal{I}_{r, n}=\{X \subseteq\{1,2, \ldots, n\}| | X \mid \leq r\}$. Let $T=\{1,2, \ldots, r\}, X=\{r+1, r+2, \ldots, n\}$, and $D=(X \cup T, X \times T)$. Then $U_{r, n}=\Gamma(D, T, T \cup X)$. Thus $\mathrm{C}_{A}\left(U_{r, n}\right) \leq r \cdot(n-r)$. Unfortunately, we were not able to find a known result in graph or digraph theory that implies:

Conjecture 4.1.

$$
\mathrm{C}_{A}\left(U_{r, n}\right)=r \cdot(n-r)
$$

A slightly weaker version is the following:
Conjecture 4.2. For every $q \in \mathbb{Q}$ there is a gammoid $M=(E, \mathcal{I})$ with

$$
\mathrm{C}_{A}(M) \geq q \cdot|E|
$$

For the rest of this work, we set $f: \mathbb{N} \longrightarrow \mathbb{N} \backslash\{0\}, x \mapsto \max \{1, x\}$, we denote W_{f} by W , and we fix an arbitrary choice of $q \in \mathbb{Q}$ with $q>0$. Clearly, if Conjecture 4.2 holds, then $\left(\mathcal{W}_{f, i}\right)_{i \in \mathbb{N} \backslash\{0\}}$ is strictly monotonous sequence of subclasses of the class of gammoids, such that every subclass is closed under duality, minors, and direct sums. For which super-additive f and $q \in \mathbb{Q} \backslash\{0\}$ may $\mathcal{W}_{f, q}$ be characterized by finitely many excluded minors? For which such classes can we list a sufficient (possibly infinite) set of excluded minors that decide class membership of $\mathcal{W}_{f, q}$?

A consequence of a result of S. Kratsch and M. Wahlström ([3], Thm. 3) is, that if a matroid $M=(E, \mathcal{I})$ is a gammoid, then there is a representation (D, T, E) of M with $D=(V, A)$ and $|V| \leq \operatorname{rk}_{M}(E)^{2} \cdot|E|+\mathrm{rk}_{M}(E)+|E|$. It is easy to see that if $M \in \mathcal{W}_{f, q}$, then there is a representation (D, T, E) of M with $D=(V, A)$ and $|V| \leq\lfloor 2 q \cdot f(|E|)\rfloor$, since every arc is only incident with at most two vertices. Therefore, deciding $\mathcal{W}_{f, q}$-membership with an exhaustive digraph search appears to be easier than deciding gammoid-membership with an exhaustive digraph search.

Acknowledgments. This research was partly supported by a scholarship granted by the FernUniversität in Hagen.

References

[1] F. Ardila. Transversal and cotransversal matroids via the Lindstrom lemma. ArXiv Mathematics e-prints, May 2006.
[2] Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algorithms and Applications. Springer, London, 2nd edition, 2009.
[3] Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices: New Tools for Kernelization. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS '12, pages 450-459, Washington, DC, USA, 2012. IEEE Computer Society.
[4] Bernt Lindström. On the vector representations of induced matroids. Bull. London Math. Soc, (5), 1973.
[5] J.H. Mason. On a class of matroids arising from paths in graphs. Proceedings of the London Mathematical Society, 3(1):55-74, 1972.
[6] D. Mayhew. The antichain of excluded minors for the class of gammoids is maximal. ArXiv e-prints, January 2016.
[7] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011.
[8] D.J.A. Welsh. Generalized versions of Hall's theorem. Journal of Combinatorial Theory, Series B, 10(2):95-101, 1971.

[^0]: I. Albrecht: FernUniversität in Hagen, Fakultät für Mathematik und Informatik, Lehrgebiet für Diskrete Mathematik und Optimierung, D-58084 Hagen, Germany; e-mail: Immanuel.Albrecht@fernuni-hagen.de

 Mathematics Subject Classification (2010): 05B35, 05C20, 06D50

