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Abstract

In 1982 Víctor Neumann-Lara [13] introduced the dichromatic number
of a digraph D as the smallest integer k such that the vertices V of D can
be colored with k colors and each color class induces an acyclic digraph.
In [10] a �ow theory for the dichromatic number transferring Tutte's the-
ory of nowhere-zero �ows (NZ-�ows) from classic graph colorings has been
developed. The purpose of this paper is to pursue this analogy by intro-
ducing a new de�nition of algebraic Neumann-Lara-�ows (NL-�ows) and
a closed formula for their polynomial.
Furthermore we generalize the Equivalence Theorem for nowhere-zero
�ows to NL-�ows in the setting of regular oriented matroids. Finally
we discuss computational aspects of computing the NL-�ow polynomial
for orientations of complete digraphs and obtain a closed formula in the
acyclic case.

1 Introduction

Large parts of graph theory have been driven by the Four Color Problem. In
particular it inspired William T. Tutte to develop his theory of nowhere-zero
�ows [15].
In 1982 Víctor Neumann-Lara [13] introduced the dichromatic number of a di-
graph D as the smallest integer k such that the vertices V of D can be colored
with k colors and each color class induces an acyclic digraph. Moreover, in 1985
he conjectured, that every orientation of a simple planar graph can be acycli-
cally colored with two colors. This intrigueing problem led us to trying to look
for an analogy following Tutte's road map and develop a corresponding �ow
theory, which we named Neumann-Lara-�ows (see [10], [2]).
First, we renew some de�nitions in order to simplify the notation in the forth-
coming proofs. In Section 3 we de�ne the NL-�ow polynomial. A short excursion
to regular matroids yields the Equivalence Theorem for NL-�ows in a general
setting in Section 4. Afterwards we discuss some computational aspects of the
NL-�ow polynomial for orientations of complete digraphs.
Our notation is fairly standard and, if not explicitely de�ned, should follow the
books of Diestel [8] for graphs and Björner et. al. [5] for oriented matroids. Note
that all our digraphs may have parallel and antiparallel arcs.
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2 NL-�ows and NL-co�ows

Let D = (V,A) be a digraph and G a �nite Abelian group. A map f : A −→ G
is a (G-) �ow in D if it satis�es Kirchho�'s law of �ow conservation∑

a∈∂+(v)

f(a) =
∑

a∈∂−(v)

f(a) (1)

in every vertex v ∈ V . Let n be the number of vertices, m the number of
arcs and M the n × m -incidence matrix of D. We may identify f with the
m× 1 -vector f := (f(a1), ..., f(am))> and with this notation, the conservation
condition (1) is equivalent to the matrix equation

Mf = 0, (2)

where 0 denotes the n× 1 -zero vector.

De�nition 1. Let D = (V,A) be a digraph and G a �nite Abelian group. An
NL-G-�ow in D is a �ow f : A −→ G in D such that D/supp(f) is totally cyclic.
For k ≥ 2 and G = Z, a �ow f is an NL-k-�ow, if for all a ∈ A

f(a) ∈ {0,±1, ...,±(k − 1)},

satisfying (1) such that contracting its support yields a totally cyclic digraph.

In the following we show that this de�nition is consistent with the one given in
[10], where aNeumann-Lara �ow (NL-�ow) is de�ned as a pair (f1, f2) : A −→ Z2

of �ows related by the condition

f1(a) = 0⇒ f2(a) > 0 , for all a ∈ A. (3)

De�nition 2. Let D = (V,A) denote a digraph. A set of arcs S ⊆ A is a
dijoin, if S intersects every directed cut.

Lemma 1. S ⊆ A is a dijoin if and only if D/S is totally cyclic, i.e. every
component is strongly connected.

Proof. If D/S is totally cyclic, then it does not contain a directed cut. Hence S
must have intersected every directed cut. If D/S is not totally cyclic it contains
a directed cut, which is a directed cut in D as well. Hence S is not a dijoin.

Proposition 1. Let D = (V,A) be a digraph. A pair of �ows (f1, f2) is an
NL-�ow in D if and only if supp(f1) is a dijoin.

Proof. Consider an NL-�ow (f1, f2) in D. By (3), the second component f2 is
strictly positive outside supp(f1). Thus, if we contract supp(f1), the restriction
f2|A\supp(f1) is a strictly positive �ow in the resulting digraphD/supp(f1). That
is, every component of D/supp(f1) is strongly connected.
Conversely, let f1 be a �ow in D. If every component of D/supp(f1) is strongly
connected, we certainly �nd a strictly positive �ow f̃2 : A\supp(f1) −→ Z in
D/supp(f1), which in turn must be the restriction of some �ow f2 : A −→ Z
in D using Linear Algebra. Combining f2 and f1, we have built an NL-�ow
(f1, f2).
Lemma 1 completes the proof.
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With this de�nition we get an equivalence theorem in full analogy to the case
of nowhere-zero �ows ( [14], [15]).

Theorem 1. Let D = (V,A) be a digraph. Let k ≥ 2 and G be an Abelian
group of order k. Then the following conditions are equivalent:

(i) There exists an NL-Zk-�ow in D.

(ii) There exists an NL-G-�ow in D.

(iii) There exists an NL-k-�ow in D.

We postpone the proof to Section 4, where it will be stated in the more general
setting of regular matroids.

Now, recall that a map g : A −→ G is a co�ow in D = (V,A) if it satis�es
Kirchho�'s law for (weak) cycles∑

a∈C+

g(a) =
∑
a∈C−

g(a). (4)

Condition (4) is equivalent to the condition that the vector g = (g(a1), ..., g(am))>

is an element of the row space of M, that is g = pM , for some 1 × n -vector
p ∈ GV .

De�nition 3. A feedback arc set of a digraph D = (V,A) is a set S ⊆ A such
that D − S is acyclic.

De�nition 4. Let D = (V,A) be a digraph and G a �nite Abelian group. An
NL-co�ow in D is a co�ow g : A −→ G in D whose support contains a feedback
arc set. For k ∈ Z, a co�ow g is an NL-k-co�ow if, in addition,

g(a) ∈ {0,±1, ...,±(k − 1)} , for all a ∈ A,

satisfying (4) such that its support contains a feedback arc set.

Again, we will show that this de�nition is consistent with the one given in [10],
where aNeumann-Lara co�ow (NL-co�ow) is de�ned as a pair (g1, g2) : A −→ Z2

of co�ows related by the condition

g1(a) = 0⇒ g2(a) > 0 for all a ∈ A. (5)

Proposition 2. Let D = (V,A) be a digraph. A pair of co�ows (g1, g2) is an
NL-co�ow in D if and only if supp(g1) contains a feedback arc set.

Proof. Consider an NL-co�ow (g1, g2). Condition (5) and (4) immediately yield
that D− supp(g1) is acyclic.
On the other hand, let g1 be a co�ow in D. If the subdigraph D− supp(g1)
is acyclic, we can �nd a strictly positive co�ow g2 in D− supp(g1): We use
a topological ordering v1, ..., vn of the vertices, de�ne p(vi) := i and obtain a
strictly positive vector g = pM , as pointed out in [10]. Combining g1 and g2,
we have built an NL-co�ow (g1, g2).

3



Recall (see e.g. [6]) that a digraph D = (V,A) admits a proper vertex coloring
with k colors if and only if there is a nowhere-zero-k-co�ow g : A −→ Zk in D.
Concerning acyclic vertex colorings and NL-co�ows, a similar result is already
obtained in [10]:

Theorem 2 (Hochstättler). A loopless digraph D = (V,A) admits an acyclic
vertex coloring with k colors if and only if there is an NL-k-co�ow in D.

Now, let us take a look at the planar case. Let D = (V,A) be a plane di-
graph with plane dual D∗ = (V ∗, A∗). For a map f : A −→ Z, de�ne a map
f∗ : A∗ −→ Z by

f∗(a∗) := f(a) for each a ∈ A.

Recall [8] that f : A −→ Z is a co�ow in D if and only if f∗ is a �ow in D∗.
We also transfer this relation to NL-�ows and NL-co�ows.

Theorem 3. Let D = (V,A) be a plane digraph. A map g : A −→ Z is an
NL-co�ow in D if and only if the map g∗ is an NL-�ow in D∗.

Proof. Deleting an arc a ∈ A corresponds to contracting a∗ ∈ A∗. Deleting a
set S ⊆ A of arcs until D−S is acyclic corresponds to contracting a set S∗ ⊆ A∗
until all connected components of D∗/S∗ are strong.
Hence, a feedback arc set S ⊆ A corresponds to a dijoin S∗ ⊆ A∗. Thus a co�ow
g in D whose support contains a feedback arc set corresponds to a �ow f := g∗

in D∗ whose support contains a dijoin.

Finally, we are able to state Neumann-Lara's conjecture as

Conjecture 1. Any loopless planar digraph admits an NL-2-co�ow.

3 The NL-�ow polynomial

In contrast to the de�nition given in [11] we will present a de�nition here,
where the �ow polynomial of the underlying graph is not involved anymore.
Both de�nitions ful�ll the same purpose, that is counting NL-G-�ows.
We have already seen that a �ow is an NL-�ow if and only if its support is a
dijoin of the digraph. This will be the basic observation throughout this section.
In order to develop a closed formula we use a kind of generalization of the
well-known inclusion-exclusion formula, the Möbius inversion (see e.g. [1]).

De�nition 5. Let (P,≤) be a �nite poset, then the Möbius function is de�ned
as follows

µ : P × P → Z, µ(x, y) :=


0 , if x � y

1 , if x = y

−
∑
x≤z<y µ(x, z) , otherwise .

Proposition 3 (see [1]). Let (P,≤) be a �nite poset, f, g : P → K functions
and µ the Möbius function. Then the following equivalence holds

f(x) =
∑
y≥x

g(y), for all x ∈ P ⇐⇒ g(x) =
∑
y≥x

µ(x, y)f(y), for all x ∈ P.

4



With this so called Möbius inversion from above it will su�ce to count all G-
�ows in some given subdigraphs. The next Lemma will be crucial not only for
this purpose.

Lemma 2. Let G be an Abelian group, M ∈ {0,±1}m×n a totally unimodular
matrix of full row rank and b ∈ Gm. Then the number of solutions of Mx = b
is |G|(n−m).

Proof. Choose a basis B of M . Then

Mx = b
⇔ M−1.B Mx = M−1.B b

⇔ (Im, M̃)

(
xB

x{1,...,n}\B

)
= M−1.B b,

where M̃ is a totally unimodular (m× (n−m))-matrix. Thus, for every choice
of values for the columns of M̃ we get exactly one solution of the equation.

The basic observation that a �ow is an NL-�ow i� its support is a dijoin en-
courages to consider the following poset (C,⊇)

C :=
{
A \ C | ∃ C1, ..., Cr directed cuts , such that C =

r⋃
i=1

Ci
}
.

De�nition 6. Let D = (V,A) be a digraph and µ the Möbius function. Then
the NL-�ow polynomial of D is de�ned as

φDNL(x) :=
∑
B∈C

µ(A,B)x|B|−rk(B).

Theorem 4. The number of NL-G-�ows of a digraph D depends only on the
order k of G and is given by φDNL(k).

Proof. Using Proposition 3 with fk, gk : 2A → Z, such that fk(B) indicates all
G-�ows and gk(B) all NL-G-�ows in the subgraph of D induced by B ⊆ A, it
su�ces to show that

fk(Z) =
∑
Y⊆Z

gk(Y ) (6)

holds for all Z ∈ C. Then we obtain

φDNL(k) = gk(A) =
∑
B⊆A

µ(A,B)fk(B)

=
∑
B∈C

µ(A,B)k|B|−rk(B),

since the number of G-�ows on D[B] is given by k|B|−rk(B) due to Lemma 2.
Concerning (6) let Z ∈ C and ϕ be a G-�ow on D[Z]. With d we denote the
number of dicuts in D[Z] and set

Y := Z \
d⋃
i=1

{Ci | Ci is a directed cut in D[Z] and ∃z ∈ Z s.t. ϕ|Ci
(z) = 0} .
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Then clearly Y ∈ C and ϕ|Y is an NL-G-�ow onD[Y ]. So, fk(Z) ≤
∑
Y⊆Z gk(Y ).

The other direction is obvious since every NL-G-�ow g on D[Y ] with Y ⊆ Z can
be extended to a G-�ow g̃ on D[Z], setting g̃(a) := 0G for all a ∈ Z − Y .

Considering duality, our NL-�ow polynomial becomes the NL-co�ow polynomial
of D which equals the chromatic polynomial in [9], [2], counting all acyclic
colorings in D devided by x.

4 Regular Oriented Matroids and the Equivalence

Theorem

The equivalence theorem for nowhere-zero �ows has been generalized to regular
oriented matroids by Crapo [7] and Arrowsmith and Jaeger [3]. Like them, we
can generalize our results of the previous sections to oriented regular matroids,
obtain an analogue Equivalence Theorem and present a polynomial counting all
integer NL-k-�ows which di�ers from the one in De�nition 6.
One of our main tools will be the following variant of Farkas' Lemma (see 3.4.4
(4P) in [5]):

Theorem 5. Let O denote an oriented matroid on a �nite set E given by its
set of covectors and O∗ its dual. Let E = P ∪̇N ∪̇ ∗ ∪̇O be a partition of E and
i0 ∈ P . Either there exists X ∈ O∗ such that i0 ∈ supp(X) ⊆ P ∪ N ∪ ∗,
supp(X) ∩ P ⊆ X+ and supp(X) ∩ N ⊆ X− or there exists Y ∈ O such that
i0 ∈ supp(Y ) ⊆ P ∪N ∪O, supp(Y )∩P ⊆ Y + and supp(Y )∩N ⊆ Y −, but not
both.

De�nition 7. Let O denote the set of covectors of an oriented matroid on a
�nite set E. We say that O is totally cyclic, if the all +-vector is in O∗, i.e. it is
a vector. S ⊆ E is a dijoin, if (Y ∈ O\{0} and Y � 0) implies supp(Y )∩S 6= ∅,
i.e. S meets every positive cocircuit.

Proposition 4. S ⊆ E is a dijoin if and only if O/S is totally cyclic.

Proof. Set P = E \ S, ∗ = S and N = O = ∅. Since S is a dijoin, there is no
non-zero vector Y ∈ O such that supp(Y ) ⊆ P and supp(Y ) ∩ P = Y +. Thus,
by Theorem 5 for every e ∈ P there exists Xe ∈ O∗ such that e ∈ supp(Xe) and
supp(Xe) ∩ P ⊆ X+

e . The composition of these vectors Xe1 ◦ ... ◦Xer ∈ O∗ is
the all +-vector in O∗ \ S, which proves that O/S is totally cyclic. The other
implication is an immediate consequence from Theorem 5.

Now we can de�ne NL-�ows in the setting of oriented regular matroids:

De�nition 8. Let M ∈ {0,±1}m×n be a totally unimodular matrix and let O
be the corresponding regular matroid. An NL-�ow in O is a vector x ∈ O such
that O/supp(x) is totally cyclic.
For k ≥ 2 an NL-k-�ow is an NL-�ow in O with

x ∈ {0,±1, ...,±(k − 1)}n.

If G is an Abelian group of order k, then an NL-G-�ow is an NL-�ow with

x ∈ Gn.
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It is clear that with this de�nition we can de�ne the NL-�ow polynomial as
before and immediately obtain the equivalence of the �rst two statements in
Theorem 1 by Theorem 4. The crucial Lemma 2 for the proof of Theorem 4
dealt with totally unimodular matrices anyway.
The only implication we are left to verify for an equivalence theorem for NL-
�ows in regular oriented matroids is (i) implies (iii), since (iii) implies (i) is
trivial by taking the integer �ow mod k. The following Lemma su�ces for that
purpose. It could be deduced from Proposition 5 in [3]. We give a short proof
for completeness.

Lemma 3. Let M ∈ {0,±1}m×n be a totally unimodular matrix and let x
denote a Zk-�ow in the corresponding regular matroid O, i.e. Mx ≡ 0 mod k.
Then there exists a k-�ow y ∈ {0,±1, ...,±(k − 1)}n in O such that y ≡ x
mod k.

Proof. Choose y ∈ {0,±1, ...,±(k − 1)}n satisfying y ≡ x mod k that mini-
mizes ‖My‖1 =

∑m
i=1 |(My)i|. We claim that y must be as required. Assume

not and set Y + := {i | y > 0}, Y 0 := {i | y = 0}, Y − := {i | y < 0},
P := {i | (My)i > 0} and N := {i | (My)i < 0}. By assumption P ∪ N 6= ∅.
Without loss of generality we only consider the case P 6= ∅, switching signs
yields the other case. Hence let i0 ∈ P . There cannot exist u ∈ Rm such
that uP ≥ 0, ui0 > 0, uN ≤ 0, u>MY + ≤ 0 and u>MY − ≥ 0 for the �rst
three inequalities imply u>My > 0 and the last two u>My ≤ 0. Hence by
Theorem 5, applied to the pair of oriented matroids de�ned by the kernel and
the row space of the totally unimodular matrix M̃ := (M, IP , IN ), there exists
(ỹ>, z>P , z

>
N )> with ỹY + ≤ 0, ỹY − ≥ 0, ỹY 0 = 0, zP ≥ 0, zi0 > 0, zN ≤ 0 such

that Mỹ = −IP zP − INzN . Since M is totally unimodular we may assume that
ỹ, zP and zN have entries in {0, 1,−1} only. Thus, y+kỹ ∈ {0,±1, ...,±(k−1)}n
and y + kỹ ≡ x mod k. But since My is divisible by k we have

‖M(y + kỹ)‖1 = ‖My − kIP zP − kINzN‖1 < ‖My‖1,

contradicting the choice of y.

By the discussion preceding the last Lemma this implies the Equivalence The-
orem for NL-�ows:

Theorem 6. Let O be an oriented matroid given by a totally unimodular matrix
M . Let k ≥ 2 and G be an Abelian group of order k. Then the following
conditions are equivalent:

(i) There exists an NL-Zk-�ow in O.

(ii) There exists an NL-G-�ow in O.

(iii) There exists an NL-k-�ow in O. �

In [3] it is shown that the number of integer NZ-k-�ows is also given by a
polynomial in k which di�ers from the �ow polynomial de�ned by algebraic NZ-
�ows. In the following we will show that this theorem generalizes to NL-�ows
as well. The next Proposition provides the main tool concerning this intent.
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Proposition 5 (Ehrhart, see [12]). Given a convex polytope P , whose vertices
belong to Zd, and for a positive integer t, let ψP (t) = #(tP ∩ Zd) denote the
number of integer points in the dilated polytope tP = {tx|x ∈ P}. Then ψP (t)
is a polynomial in t.

Theorem 7. Let M ∈ {0,±1}m×n be a totally unimodular matrix with full row
rank, O the corresponding regular matroid on the �nite ground set E and let
k ≥ 2. Then the number of NL-k-�ows in O is a polynomial in k.

Proof. We pursue the same strategy as in the proof of Theorem 4 and set
fk, gk : 2E −→ Z such that fk(F ) counts all k-�ows in O(F ) and gk(F ) all NL-
k-�ows respectively. As proven in Theorem 4 fk(Z) =

∑
Y⊆Z gk(Y ) holds for

all Z ∈ C. With Proposition 3 in mind it now su�ces to prove that fk(F ) is a
polynomial in k for all F ⊆ E.
For p ≤ m, q ≤ n let F ∈ {0,±1}p×q denote the totally unimodular submatrix
of M with full row rank corresponding to O(F ). Due to (2) we are looking for
the number of solutions of Fx = 0, where x ∈ Zq and

−(k − 1) ≤ xi ≤ k − 1

holds for all 1 ≤ i ≤ q. Without loss of generality let the �rst p columns of F
build a basis of Rp, denoted by FB and denote the other q − p columns with
FN . Analoguesly denote the �rst p entries of x with xB , the others with xN .
Then

Fx = FBxB + FNxN = 0
⇔ xB + F−1B FNxN = 0

⇔ xB = −F−1B FNxN =: −F̃xN ,

where F̃ ∈ {0,±1}p×q−p is totally unimodular.
Thus we are looking for the number of solutions xN ∈ Zq−p with

−(k − 1) ≤ xi ≤ k − 1 ∀i ∈ N,
−(k − 1) ≤ (−F̃xN )i ≤ k − 1 ∀i ∈ B,

i.e. the number of the vertices of the following convex polytope

Q(F ) :=

xN ∈ Zq−p |

IN
−IN
F̃
−F̃

xN ≤

k − 1
...

k − 1

 ∈ Z2q

 = (k − 1)P (F ),

where

P (F ) :=


xN
k − 1

∈ Zq−p |


IN
−IN
F̃
−F̃

 xN
k − 1

≤

1
...
1

 ∈ Z2q

 .

Since M is totally unimodular, F is totally unimodular, as well. This implies
that all vertices of P (F ) are integer and Proposition 5 yields that the number
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of integer points in Q(F ) is given by a polynomial in k, namely ψP (F )(k − 1).
Thus, the number of NL-k-�ows

gk(E) =
∑
F⊆E

µ(E,F )fk(F ) =
∑
F⊆E

µ(E,F )ψP (F )(k − 1)

is a polynomial in k, too.

5 Applications on orientations of tournaments

5.1 Complete acyclic digraphs

As an application we examine complete acyclic digraphs D = (V,A). Recall
that all acyclic digraphs with n ≥ 1 vertices are isomorphic, thus the NL-�ow
polynomial does not depend on the orientation of the given digraph.
Moreover acyclic digraphs allow a topological ordering (see [4]), which is an
ordering of the vertices v1, ..., vn of D such that for every arc (vi, vj) ∈ A we
have i < j.
In the complete case this ordering is even unique since complete acyclic digraphs
contain a hamiltonian path:

Lemma 4 (see e.g. [4]). Every complete acyclic digraph allows a unique topo-
logical ordering.

a

b c

e d −→ a

b

c

d

e

g

g

g

g

Figure 1: topological ordering of K5

Now, recall that a complete acyclic digraph with n ≥ 1 vertices has exactly
n−1 dicuts, in the following denoted by C1, ..., Cn−1. As a result the in Section
3 de�ned poset (C,⊇) admits a simple structure.

Proposition 6. Let D = (V,A) be a complete acyclic digraph with |V | = n ≥ 2
and (C,⊇) as above. Then C is isomorphic to 2[n−1].

Proof. Denote for some set J of indices CJ := ∪j∈JCj . Thus the elements of C
are A \ CJ , for J ⊆ [n− 1] and the following map

ϕ : C → 2[n−1], ϕ(A \ CJ) := J

is well-de�ned since there are exactly n− 1 dicuts. Moreover each set of indices
J ∈ 2[n−1] induces exactly one element in C, hence ϕ is bijective.
Now, let (A \ CJ) ⊇ (A \ CI) for some I, J ⊆ [n − 1], thus CJ ⊆ CI and let
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j ∈ J .
Assume j /∈ I. Then clearly Cj 6= Ci, for all i ∈ I, but a ∈ CI for each a ∈ Cj .
Thus there are i1, ..., is ∈ I all di�erent from j with Cj ⊆

⋃s
k=1 Cik . Hence

#comp(D) + s = #comp(D \ (Ci1 ∪ ... ∪ Cis))
= #comp(D \ (Ci1 ∪ ... ∪ Cis ∪ Cj)) = #comp(D) + s+ 1,

where #comp(·) counts the connected components. As a result of this contra-
diction we have j ∈ I and ϕ is an order isomorphism.

As a result we get

φDNL(k) =
∑
J∈C

µ(A, J)k|J|−rk(J)

=
∑

J∈2[n−1]

(−1)|J| k|A\∪i∈JCi|−rk(A\∪i∈JCi), (7)

since µ(A, J) = (−1)|A\J| = (−1)|J|, for all J ∈ 2[n−1]. This immediately leads
to the following theorem.

Theorem 8. Let D = (V,A) be a complete acyclic digraph with |V | = n.
For 1 ≤ p ≤ n denote by (k1, ..., kp) the composition of n into p parts, i.e.∑p
i=1 ki = n, with ki ≥ 1, i = 1, ..., p. Then the NL-�ow polynomial is given by

φDNL(x) =

n∑
p=1

(−1)p−1
∑

(k1,...,kp)

p∏
i=1

x(
ki−1

2 ).

Proof. Let n ≥ 2, otherwise we have φDNL(x) = 1, the empty �ow. For J ∈ 2[n−1]

let D[CJ ] denote the subgraph of D induced by A \ ∪i∈JCi and p = |J |+ 1 the
number of connected components in D[CJ ]. We only have to count the number
of arcs in D[CJ ], since the rank is given by n− p.
Deleting |J | dicuts of the given complete digraph yields a subgraph with p
strongly connected components, each containing ki ≥ 1, i = 1, .., p, vertices and
thus

(
ki
2

)
arcs, satisfying

∑p
i=1 ki = n.

Since the digraph is complete and acyclic, every combination is presumed, hence,
with (7), the number of NL-k-�ows is given by

n∑
p=1

(−1)p−1
∑

(k1,...,kp)∑p
i=1 ki=n

k
∑p

i=1 (
ki
2 )−(n−p).

The claim follows, using
(
m
2

)
− (m− 1) =

(
m−1
2

)
, for all m ∈ N.

Now we can compute several NL-�ow polynomials of complete acyclic digraphs
with n vertices in comparably short time:
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n φDNL(x)

1 1

2 0

3 x− 1

4 x3 − 2x+ 1

5 x6 − 2x3 + x

6 x10 − 2x6 + x3 − x2 + 2x− 1

7 x15 − 2x10 + x6 − 2x4 + 2x3 + 3x2 − 4x+ 1

8 x21 − 2x15 + x10 − 2x7 + x6 + 6x4 − 4x3 − 3x2 + 2x

Obviously there are a lot of regularities and we can explicitely give the exponent
of the two leading terms and their coe�cients.

Proposition 7. Let D = (V,A) be a complete acyclic digraph with n ≥ 1
vertices.

(i) The leading term of φDNL(x) equals x
(n−1

2 ).

(ii) Assume n ≥ 4. Then the second term with highest exponent equals −2x(
n−2
2 ).

Proof. We only need to consider the case where p = 1, since the exponent of
φDNL(x) is maximum for k1 = n. The next lower exponent occurs when p = 2,
having k1 = n− 1, k2 = 1 and vice versa.

Let us now look at the constant term of the polynomial.

Lemma 5. Let D = (V,A) be a complete acyclic digraph with n ≥ 3 vertices
and c(n) denote the constant term of φDNL(x). Then the following recursion
holds

c(n) = −(c(n− 1) + c(n− 2)).

Proof. Since we are interested in the constant term of φDNL(x) we only need to
consider the cases where ki ∈ {1, 2} for all 1 ≤ i ≤ n and get the following
distinction.

c(n) =
∑

k2+...+kp=n−1
k1=1

ki∈{1,2}

(−1)p−1 +
∑

k2+...+kp=n−2
k1=2

ki∈{1,2}

(−1)p−1

r:=p−1
= −

∑
k1+...+kr=n−1

ki∈{1,2}

(−1)r−1 −
∑

k1+...+kr=n−2
ki∈{1,2}

(−1)r−1

= −(c(n− 1) + c(n− 2)).
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This observation yields the following proposition.

Proposition 8. Let D = (V,A) be a complete acyclic digraph with n ≥ 1
vertices, then the constant term of φDNL(x) is given by

c(n) = φDNL(0) =


−1 , if n mod 3 = 0,

1 , if n mod 3 = 1,

0 , if n mod 3 = 2.

Proof. Lemma 5 immediately yields

c(n+ 3) = −
(
c(n+ 2) + c(n+ 1)

)
= −

(
−
(
c(n+ 1) + c(n)

)
+ c(n+ 1)

)
= c(n)

and the base cases from above prove the claim.

Observing the linear term we get:

Proposition 9. Let D = (V,A) be a complete acyclic digraph with n ≥ 4
vertices, then the linear term of φDNL(x) is given by

l(n) =
1

3


n , if n mod 3 = 0,

−2(n− 1) , if n mod 3 = 1,

n− 2 , if n mod 3 = 2.

Proof. In this case exactly one part of the composition, call it kj , equals 3,
while the other parts have to be either 1 or 2. Let c(n) be the constant term of
φDNL(x), then we have

l(n) =
∑

k1+...+kp−1=n−1
j 6=p

ki∈{1,2},i6=j

(−1)p−1 +
∑

k1+...+kp−1=n−2
j 6=p

ki∈{1,2},i6=j

(−1)p−1 +
∑

k1+...+kp−1=n−3
j=p

ki∈{1,2}

(−1)p−1

= −l(n− 1)− l(n− 2)− c(n− 3)

Now we can proceed per induction, using Proposition 8.

l(n+ 1) = −l(n)− l(n− 1)− c(n− 2)

IV
= −1

3


n

−2(n− 1)

n− 2

− 1

3


(n− 1)− 2

n− 1

−2((n− 1)− 1)

−


1 , if n mod 3 = 0

0 , if n mod 3 = 1

−1 , if n mod 3 = 2

=
1

3


−2((n+ 1)− 1) , if n+1 mod 3 = 1

(n+ 1)− 1 , if n+1 mod 3 = 2

n+ 1 , if n+1 mod 3 = 0

5.2 Complete digraphs

Considering an arbitrary complete digraph D = (V,A) the NL-�ow polynomial
depends on its orientation. Let d ∈ N denote the number of maximal strongly
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connected components and denote their vertex sets with S1, ..., Sd. Since we
cannot cut through cycles there are exactly d − 1 dicuts and the poset C is
isomorphic to 2[d−1]. Similarly as in (7) we conclude

φDNL(k) =
∑

J∈2[d−1]

(−1)|J| k|A\∪i∈JCi|−rk(A\∪i∈JCi), (8)

where Ci, i = 1, ..., d− 1 denote the dicuts in D.
Recall that the maximal strongly connected components form a partition of the
given digraph. Consequently we consider the following map, called condensation

λ : V → {1, ..., d}
v 7→ i, with v ∈ Si,

which induces the complete acyclic digraph on d vertices.

λ−→

Figure 2: condensation of a tournament

As a result of Lemma 4 the vertices of D[λ(V )] can be ordered topologically,
thus the strongly connected components of D allow a similar ordering.

Theorem 9. Let D = (V,A) be a complete digraph with d ≥ 1 strongly con-
nected components, each containing k1, ..., kd vertices, such that the subgraph of
D induced by λ(V ) is topologically ordered. For 1 ≤ p ≤ d consider the com-
position (d1, ..., dp) of d into p parts, i.e.

∑p
i=1 di = d, with di ≥ 1, for all

1 ≤ i ≤ p. Then the NL-�ow polynomial is given by

φDNL(x) =

d∑
p=1

(−1)p−1
∑

(d1,...,dp)

p∏
j=1

x(
nj−1

2 ), with

nj :=

δ(j)∑
s=δ(j−1)+1

ks and δ(j) :=

j∑
r=1

dr.

Proof. Denote the strongly connected components of D with K1, ...,Kd, such
that the topologically ordering of λ(V ) is preserved. Analoguesly to the proof
of Theorem 8 we only have to count the number of vertices in each partition of
D[λ(V )] induced by some composition (d1, ..., dp), where each vertex 1 ≤ v ≤ d
corresponds to a strongly connected component Kv, each containing kv vertices
in D.
So, let (d1, ..., dp) be an arbitrary composition of d with p parts, hence there
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are dj , 1 ≤ j ≤ p, vertices in each part of D[λ(V )]. Let Dj denote the set of
vertices in the corresponding strongly connected components in D. Then

D1 =

d1⋃
i=1

Ki, D2 =

d1+d2⋃
i=d1+1

Ki , ..., Dp =

d1+...+dp⋃
i=d1+...+dp−1+1

Ki.

Thus there are

|Dj | =

∑j
r=1 dr∑

i=
∑j−1

r=1 dr+1

ki

vertices in the j-th corresponding part of D.

6 Open Problems

Whereas the computation of the �ow polynomial of complete graphs seems to
be quite hard in contrast to the computation of the chromatic polynomial of
complete graphs, it turns out that we �nd the contrary in the directed case. We
have no idea how the dichromatic polynomial of complete digraphs looks like
while the computation of the NL-�ow polynomial was not that challenging.

Considering the cographic oriented matroid our �ow polynomial becomes the
NL-co�ow polynomial of D which equals the chromatic polynomial [2] for the
dichromatic number divided by x. The natural question arises whether, as in
the classical case, there exists a meaningful two variable polynomial combining
both? Moreover, does such a polynomial or the two single variable polynomials
have any meaning in the case of general oriented matroids?

References

[1] M. Aigner, Kombinatorik, Grundlagen und Zähltheorie, Springer, Berlin,
1975.

[2] B. Altenbokum, Algebraische NL-Flüsse und Polynome, Master's thesis,
FernUniversität in Hagen, 2018.

[3] D. Arrowsmith and F. Jaeger, On the enumeration of chains in regular
chain-groups, J. Combin. Theory, Series B, 32 (1982), pp. 75�89.

[4] J. Bang-Jensen and G. Z. Gutin, Digraphs, Theory, Algorithms and
Applications, Springer, 2nd ed., 2010.

[5] A. Björner, M. L. Vergnas, B. Sturmfels, N. White, and G. M.

Ziegler, Oriented Matroids, Cambridge University Press, Mar. 1993.

[6] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer London,
2008.

[7] H. H. Crapo, The tutte polynomial, Aequationes Mathematicae, 3 (1969),
pp. 211�229.

14



[8] R. Diestel, Graph Theory, Springer, 3rd ed., Feb. 2006.

[9] A. Harutyunyan, Brooks-type Results for Coloring of Digraphs, PhD the-
sis, Simon Fraser University, 2011.

[10] W. Hochstättler, A �ow theory for the dichromatic number, European
J. Combin., 66 (2017), pp. 160�167.

[11] , The NL-�ow polynomial, Tech. Rep. feU-dmo047.18, FernUniversität
in Hagen, 2018.

[12] J. A. D. Loera, J. Rambau, and F. Santos, Triangulations, Algo-
rithms and computation in Mathematics, Springer, 2010.

[13] V. Neumann-Lara, The dichromatic number of a digraph, J. of Combin.
Theory, Series B, 33 (1982), pp. 265�270.

[14] J. Ne²et°il and A. Raspaud, Duality, nowhere-zero �ows, colorings and
cycle covers, KAM-DIMATIA Series (99-422), (1999).

[15] W. T. Tutte, A contribution to the theory of chromatic polynomials,
Canad. J. Math., 6 (1954), pp. 80�91.

15


	Introduction
	NL-flows and NL-coflows
	The NL-flow polynomial
	Regular Oriented Matroids and the Equivalence Theorem
	Applications on orientations of tournaments
	Complete acyclic digraphs
	Complete digraphs

	Open Problems

