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A Trivariate Dichromate Polynomial for
Digraphs

Winfried Hochstättler, Johanna Wiehe
FernUniversität in Hagen, Germany

Abstract

We define a trivariate polynomial combining the NL-coflow and the
NL-flow polynomial, which build a dual pair counting acyclic colorings of
directed graphs, in the more general setting of regular oriented matroids.

1 Introduction
In 1954 Tutte introduced a bivariate polynomial of an undirected graph G and
called it the dichromate of G [9]. Nowadays better known as the Tutte poly-
nomial it features not only a variety of properties and applications, but also
specializes to many graph-theoretic polynomials. Two of them, the chromatic
and the flow polynomial, counting proper colorings and nowhere-zero flows,
build a pair of dual polynomials in the sense that one polynomial becomes the
other one by taking the dual graph.
Regarding directed graphs, or digraphs for short, acyclic colorings are a natural
generalization of proper colorings. A digraph is acyclically colorable if no color
class contains a directed cycle. This concept is due to Neumann-Lara [7].
In [5] a flow theory for digraphs transferring Tutte’s theory of nowhere-zero
flows to directed graphs has been developed and amplified in [1] and [6], where
the authors introduce a pair of dual polynomials, counting acyclic colorings of
a digraph and the dual equivalent called NL-flows.
In order to combine these two polynomials we will leave the setting of digraphs
and enter the world of oriented matroids. This more general scenery provides a
plethora of useful techniques as well as a common foundation upon which our
new polynomial is built. This foundation is due to a construction of Brylawski
and Ziegler [4] representing a dual pair of oriented matroids as complementary
minors.
Our notation is fairly standard and follows the book of Björner et al. [2] if not
explicitely defined.

1.1 Notation and Previous Results
In [6] we found the following representation of the NL-coflow polynomial count-
ing acyclic colorings in a digraph D = (V,A).
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Definition 1.1. Let µQ be the Möbius function of (Q,⊆) with Q := {B ⊆ A :
D[B] is a totally cyclic subdigraph of D}. Then

ψDNL(x) =
∑
B∈Q

µQ(∅, B)xrk(A/B)

is called the NL-coflow polynomial of D, where, for Y ⊆ A, rk(Y ) is the rank
of the incidence matrix of D[Y ], which equals |V (Y )| − c(Y ), i.e. the number of
vertices minus the number of connected components of D[Y ].

Recall that in our definition of contraction (see [3]) no additional arcs (ele-
ments) are removed, i.e. parallel arcs and loops can occur. This holds for both
the graphic and the matroid contraction.
We will now define this polynomial in the more general setting of (regular) ori-
ented matroids. Note, that all of our results also work in the non-regular case.
Since we are not aware of a meaningful interpretation in this case, all our ma-
troids will be regular, if not explicitely pointed out.
Let M be an oriented matroid on the (finite) groundset E. The covectors of M ,
i.e. compositions of (signed) cocircuits, together with the partial order 0 ≤ +
and 0 ≤ − form the face lattice L of M with minimal element ∅. Since the
NL-flow polynomial (see [1]) only considers directed cuts, we are only interested
in the nonnegative part of L, which we denote by L+ := L ∩ {0,+}E . By L∗
we denote the face lattice of the dual M∗. Again, we are only interested in
the nonnegative part L∗+ which in the graphic case corresponds to the set of
totally cyclic subdigraphs partially ordered by inclusion. Let µ and µ∗ denote
the Möbius function of L+ and L∗+, respectively. By rk and rk∗ we denote the
rank and corank of the respective matroid (minor) and by X we denote the
support of the covector X.
Now we can define the NL-coflow polynomial of an oriented matroid M as

ψMNL(x) :=
∑
X∈L∗+

µ∗(∅, X)xrk(M/X).

Dually we define the NL-flow polynomial of M as

φMNL(x) :=
∑
X∈L+

µ(∅, X)xrk
∗(M\X).

It is easy to see that both coflow polynomials coincide in the graphic case.
Our new definition of the NL-flow polynomial also coincides with the graphic
one in [1] since rk∗(Y ) = |Y | − rk(Y ) holds for any minor, in particular for
Y := M \B,B ∈ C1.

2 Setting
Since our polynomials are defined on different face lattices we have to find a
common lattice including both. In [4] Brylawski and Ziegler give the following
beautiful construction which provides the desired lattice.

1In [1] the NL-flow polynomial of a digraph D = (V,A) is defined on the poset (C,⊇) with
C := {A \ C : ∃ C1, . . . , Cr directed cuts s.t. C =

⋃
i=1...r

Ci}.
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LetM be an oriented matroid on the groundset E = {1, . . . , n} with rank r and
M∗ its dual. Suppose that B := {1, . . . , r} is a basis of M and {r + 1, . . . , n} is
the corresponding basis of M∗. Furthermore set E1 := B, E2 := E \ B and

Ê := E1 ∪ E2 ∪A ∪B = E ∪A ∪B

with A := {n + 1, . . . , n + r} and B := {n + r + 1, . . . , 2n} and let M1 be the
oriented matroid on Ê, that is obtained by extending M by elements n+ i that
are parallel to the elements i for 1 ≤ i ≤ r and that are loops for r+ 1 ≤ i ≤ n.
Similarly, let M2 be the oriented matroid on Ê that is obtained by extending
M∗ by elements n + i that are loops for 1 ≤ i ≤ r and that are parallel to the
elements i for r+ 1 ≤ i ≤ n. Then M1 has rank r and M2 has rank n− r. Their
union (see chapter 7.6 in [2])

M̂ := M1 ∪M2

has rank n. Note that the construction of the oriented matroid union highly
depends on the choice of the basis B. Due to Theorem 2 in [4] we have

M̂ \A/B = M and M̂/A \B = M∗.

In the case where M is realizable, M̂ is also realizable. Namely, if M can be
represented by

(
Ir C

)
, where Ir denotes the identity matrix of rank r, then

M1 and M2 are represented by
(
Ir C Ir 0

)
and

(
−C> In−r 0 In−r

)
,

respectively. Now let
(
−C> In−r 0 In−r

)ε be the matrix obtained by mul-
tiplying the i−th column by ε2n−i for all i ∈ {1, . . . , 2n} and ε > 0 sufficiently
small. Then the combined matrix(

Ir C Ir 0
(−C> In−r 0 In−r)

ε

)
represents M̂ (see Proposition 8.2.7 of [2] and [4]). Note that even if M and
M∗ are regular, this might not be true for M̂ . However, the face lattice of M̂ ,
which we will denote by L̂, will serve our purpose.
In the following subsections we will find a characterization of the covectors of
M and its dual in this supermatroid M̂ .

2.1 Cocircuits and Covectors
Given a cocircuit D in M or in M∗ we find a corresponding cocircuit D̂ in
M̂ such that D ⊆ D̂. Furthermore we will find that, given D− = ∅, then also
D̂− = ∅ holds. Due to the construction of M̂ we will first extend D to a cocircuit
inM1, which then is already a cocircuit in M̂ . For the proof we will first look at
the underlying unoriented matroid and then compute the signatures in a second
step. We write x||y iff x and y are parallel elements as constructed above.

Lemma 2.1. Let D be a cocircuit inM and set D1 := {a ∈ A : a||e, e ∈ D∩E1}.
Then D̂ := D ∪D1 is a cocircuit in M1.

Proof. First we prove that D̂ meets every basis of M1.
Let b be a basis of M1. Since all elements in B are loops b ⊆ (E ∪ A) has to
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hold. If b ⊆ E then b is a basis of M and D̂ ∩ b = (D ∩ b) ∪ (D1 ∩ b) 6= ∅. If
b ⊆ E ∪A we find a basis

b′ = b \ (b ∩A) ∪ {e ∈ E1 : e||f, f ∈ b ∩A}

in M with D ∩ b′ 6= ∅.
For the minimality of D̂, let d ∈ D̂. If d ∈ D we find a basis b in M with
(D \ d) ∩ b = ∅. Otherwise, if d ∈ D1, there exists an f ∈ D ∩ E1 with f ||d.
Thus there exists a basis b inM , which is also a basis ofM1, with (D\f)∩b = ∅.
Due to the definition of D1 we also have that (D1 \ d) ∩ b = ∅. Then, by basis
exchange

b1 := (b \ f) ∪ d

is a basis of M1 with (D̂ \ d) ∩ b1 = ∅.

Lemma 2.2. If D = (D+, D−) is a signed cocircuit in M with D− = ∅, then
D̂ := (D+ ∪D1, ∅) is a signed cocircuit in M1.

Proof. With χ1 and χM denote the chirotope of M1 and M respectively.
Let e, f ∈ D, e 6= f and (x2, . . . , xr) be any ordered basis of the hyperplane
E \D in M . Furthermore set

σM (e, f) := χM (e, x2, . . . , xr)χM (f, x2, . . . , xr) ∈ {1,−1}.

Then, due to Lemma 3.5.8 in [2] and sinceD− = {f ∈ D\e : σM (e, f) = −1} = ∅
by assumption, we have σM (e, f) = 1 for all f ∈ D \ e.
Now, let e, f ∈ D̂∩D, e 6= f and let X = (x2, . . . , xr) be an ordered basis of the
hyperplane Ê \ D̂ in M1. Let k be the first index such that xi ∈ A for all i ≥ k
and xi ∈ E for all i < k. Since all elements in A are parallel to the elements
in E1 in M1 we find a basis X ′ = (x′2, . . . , x

′
r) = (x2, . . . , xk−1, yk, . . . , yr) of

the hyperplane E \ D in M by mapping all elements xi from X ∩ A to their
corresponding parallels yi in E1 which cannot be in X since this is a basis. Now
let τ be a permutation of the elements inX ′, such that τ(X ′) = (x′τ(2), . . . , x

′
τ(r))

is ordered in E. Then we find

σ1(e, f) = χ1(e, x2, . . . , xr) · χ1(f, x2, . . . , xr)

= χ1(e, x2, . . . , xk−1, yk, . . . , yr) · χ1(f, x2, . . . xk−1, yk, . . . yr)

= χ1(e, x′τ(2), . . . , x
′
τ(r)) · χ1(f, x′τ(2), . . . , x

′
τ(r)) · sgn(τ)2 = σM (e, f) = 1.

Thus f ∈ D̂+ for all f ∈ D̂ ∩ D. Otherwise, if f ∈ D̂ ∩ D1, then there exists
g ∈ E1, g||f with g ∈ D. Similarly as above we find σ1(e, g) = σM (e, g) = 1 and
so also f ∈ D̂+ has to hold for all f ∈ D̂ ∩D1. As a result D̂− = ∅.

We are left to prove that D̂ is also a (signed) cocircuit in M̂ . Again, we will
first take a look at the underlying unoriented case, where the oriented matroid
union becomes the usual matroid union. Let I1 and I2 be the independent sets
in M1 and M2 respectively. Then M̂ = (Ê, I), where

I = {I1 ∪ I2 : I1 ∈ I1 and I2 ∈ I2}

are the independent sets of M̂ . As an immediate result every basis b of M̂ can
be written as b = b1 ∪ b2, where b1 is a basis of M1 and b2 is a basis of M2.
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Lemma 2.3. Let D be a cocircuit in M1. Then D is also a cocircuit in M̂ .

Proof. Let b = b1∪b2 be a basis of M̂ , where b1 is a basis ofM1 and b2 is a basis
of M2. Since D is a cocircuit in M1, in particular D ∩ b1 6= ∅ and so D ∩ b 6= ∅
has to hold.
For the minimality let d ∈ D. SinceD is a cocircuit inM1 we find (D\d)∩b1 = ∅
for some basis b1 in M1. Then b := b1 ∪ B is a basis of M̂ since B is a basis
of M2 and B ∩ b1 = ∅ since all elements in B are loops in M1. As a result
(D \ d) ∩ b = ∅.

Lemma 2.4. If D = (D+, D−) is a signed cocircuit in M1, then D is a signed
cocircuit in M̂ .

Proof. Let e, f ∈ D, e 6= f and X := (x2, . . . , xn) be any lexicographically
minimal ordered basis of the hyperplane Ê \ D in M̂ . According to Lemma
3.5.8 and Theorem 7.6.4 in [2] we find

σ̂(e, f) := χ̂(e, x2, . . . , xn) · χ̂(f, x2, . . . , xn)

=

{
χ1(e, x2, . . . , xr)χ2(xr+1, . . . , xn)χ1(f, x2, . . . , xr)χ2(xr+1, . . . , xn)

χ1(x2, . . . , xr+1)χ2(e, xr, . . . , xn)χ1(x2, . . . , xr+1)χ2(f, xr, . . . , xn)

=

{
σ1(e, f)

σ2(e, f),

where the first case occurs if (e, x2, . . . , xr) builds a basis ofM1 and (xr+1, . . . , xn)
is a basis of M2 and the second case occurs if (x2, . . . , xr+1) builds a basis of
M1 and (e, xr+1, . . . xn) is a basis of M2. As a result, one of the following
alternatives holds:

• D+ = {e} ∪ {f ∈ D \ e : σ1(e, f) = 1}, D− = {f ∈ D \ e : σ1(e, f) = −1}

• D+ = {e} ∪ {f ∈ D \ e : σ2(e, f) = 1}, D− = {f ∈ D \ e : σ2(e, f) = −1}.

Analogously, one can define D2 := {b ∈ B : b||e, e ∈ D ∩E2} and prove that
if D = (D+, ∅) is a signed cocircuit in M∗, then D̂ := (D+ ∪D2, ∅) is a signed
cocircuit in M̂ . Since covectors are compositions of cocircuits, the results above
readily yield:

Proposition 2.5.

(i) Let X be a covector in M and Ã := {a ∈ A : a||e, e ∈ X ∩ E1}. Then
X̂ := (X+ ∪ Ã, ∅) is a covector in M̂ .

(ii) Let X be a covector in M∗ and B̃ := {b ∈ B : b||e, e ∈ X ∩ E2}. Then
X̂ := (X+ ∪ B̃, ∅) is a covector in M̂ .

2.2 The Face Lattice of M̂
We have already seen that both the covectors of M and of M∗ can be found
in the face lattice of M̂ . In the following we will show the converse: Having
a covector of M̂ of that specific shape we determined in the previous section,
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its restriction to E corresponds to a covector of M or of M∗, respectively.
Furthermore we will see that the corresponding Möbius functions coincide. The
following lemma will be crucial for both. Here, (X̂ ∩ A)||(X̂ ∩ E1) means, that
for all x ∈ A, y ∈ E1 we have x, y ∈ X̂ if and only if x||y.
Due to a recurrent analogy we will only give the proofs of each of the first
alternatives.

Lemma 2.6. Let X̂ = (X̂+, ∅) be a signed cocircuit of M̂ with X̂ ∩ B = ∅
(X̂ ∩A = ∅). Then (X̂ ∩A)||(X̂ ∩ E1) (resp. (X̂ ∩B)||(X̂ ∩ E2)).

Proof. Let x ∈ X̂∩E1. Since X̂ is a cocircuit of M̂ there exists a basis b = b1∪b2
of M̂ such that (X̂ \ x) ∩ b = ∅, where b1 is a basis of M1 and b2 of M2. It
follows that (X̂ \ x)∩ b1 = ∅ for some basis b1 of M1 and x ∈ b1. Let y ∈ A and
y||x in M1. By basis exchange we obtain a new basis

b′1 := (b1 \ x) ∪ y

ofM1 and therefore also a basis b′1∪b2 of M̂ with (b′1∪b2)∩X̂ = y, in particular
y ∈ X̂ ∩A holds. The other direction can be proven similarly.

Lemma 2.7. Let X̂ = (X̂+, ∅) be a signed cocircuit of M̂ .

(i) If X̂ ∩B = ∅, then X = X̂ ∩E := (X̂+ ∩E, X̂− ∩E) is a signed cocircuit
of M and X− = ∅.

(ii) If X̂ ∩A = ∅, then X = X̂ ∩E := (X̂+ ∩E, X̂− ∩E) is a signed cocircuit
of M∗ and X− = ∅.

Proof. Let B1 be a basis of M . Then B1 ∪ B is a basis of M̂ . Since X̂ is a
cocircuit of M̂ it meets every basis, in particular we find X̂ ∩ (B1 ∪B) 6= ∅. As
we have X̂ ∩ B = ∅ it follows immediately that X̂ meets every basis B1 of M .
Since B1 ⊆ E also X ∩B1 6= ∅ has to hold.
For the minimality of X in M remove x ∈ E from X̂, then there exists a basis
(b1 ∪ b2) of M̂ such that (X̂ \x)∩ (b1 ∪ b2) = ∅. As a result also (X̂ \x)∩ b1 = ∅
holds for some basis b1 of M1. Now let b be the basis of M , where all the
elements of b1 ∩A are replaced by their parallels in E1, i.e.

b := (b1 ∩ E) ∪ {e ∈ E1 : e||f, f ∈ b1 ∩A}.

Due to Lemma 2.6 (X̂ ∩A)||(X̂ ∩ E1) holds, which yields that (X \ x) ∩ b = ∅.
In order to determine the signatures of X let e ∈ X̂ and (x2, . . . , xn) be an
ordered basis of the hyperplane Ê \ X̂ such that (x2, . . . , xr) is a basis of the
ordered hyperplane E \X. Since X̂− = ∅ Lemma 3.5.8 in [2] yields that

σ̂(e, f) = χ̂(e, x2, . . . , xn) · χ̂(f, x2, . . . , xn) = 1

for all f ∈ X̂ \ e. As we have M = M̂ \A/B we find

σM (e, f) = χM (e, x2, . . . , xr)χM (f, x2, . . . , xr)

= χ̂(e, x2, . . . , xr, b1, . . . , bn−r)χ̂(f, x2, . . . , xr, b1, . . . , bn−r) = 1,

where b1, . . . , bn−r is the ordered basis of B in M̂ .
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Again, the previous lemma generalizes naturally to covectors. Let us now
take a look at the corresponding rank functions. By rkL, rkL∗ and rkL̂ we
denote the rank functions of the respective face lattices of M,M∗ and M̂ .

Lemma 2.8. Let X = (X+, ∅) be a covector of M (of M∗) and let X̂ be the
corresponding covector in M̂ . Then rkL(X) = rkL̂(X̂) (rkL∗(X) = rkL̂(X̂)).

Proof. Since all the covectors Y with Y ⊆ X have corresponding covectors Ŷ
with Ŷ ⊆ X̂ it is clear that rkL(X) ≥ rkL̂(X̂) holds.
For the other direction let X̂ = Y ◦ Ẑ, where Y is a cocircuit of M̂ . Then, since
X̂ ∩B = ∅ also Ẑ ∩B = ∅ holds and so, due to Lemma 2.7, Ẑ ∩E is a covector
of M . Inductively we get rkL(X) ≤ rkL̂(X̂) completing the proof.

As an immediate result, also the corresponding Möbius functions coincide.
Aside from this we will find a common expression of the exponents of the NL-
flow and the NL-coflow polynomial in terms of the rank in the face lattice of
M̂ . In order to do so we will use Corollary 4.1.15 (i) in [2]:

rkL(X) = rk(M)− rk(M \X) ∀X ∈ L. (1)

Lemma 2.9. Let X̂ ∈ L̂+ and X := X̂ ∩ E.

(i) If X̂ ∩A = ∅, then rk(M/X) = rkL̂(X̂) + |E \X| − (n− r).

(ii) If X̂ ∩B = ∅, then rk∗(M \X) = rkL̂(X̂) + |E \X| − r.

Proof. (i) Due to Lemma 2.7, X ∈ L∗+. Dualizing, (1) and Lemma 2.8 yield

rk(M/X) = rk∗(M∗ \X) = |E \X| − rk(M∗ \X)

= |E \X|+ rkL∗(X)− rk(M∗) = |E \X|+ rkL̂(X̂)− (n− r).

(ii) Due to Lemma 2.7 X ∈ L+. (1) and Lemma 2.8 yield

rk∗(M \X) = |E \X| − rk(M \X) = |E \X|+ rkL(X)− rk(M)

= |E \X|+ rkL̂(X̂)− r.

3 A New Polynomial
Finally we are able to define a new polynomial in three variables which somehow
generalizes both, the NL-flow and the NL-coflow polynomial. In order to switch
between the NL-flow and the NL-coflow polynomial we use two of the three
variables as some kind of toggle. Whenever the support of a covector of M̂ is
non-empty in A (or in B resp.), this covector cannot correspond to one of M∗
(orM resp.) and will be rejected. Due to Lemma 2.7, covectors that correspond
neither to a covector of M nor to one of M∗ will also be rejected, since they
have non-empty support in A as well as in B. This is why we can define our
polynomial on the whole face lattice L̂+.
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Definition 3.1. Let M be a regular, oriented matroid on a finite groundset E,
B the basis of M chosen to construct M̂ and µ̂ the Möbius function of the face
lattice of M̂ . Then we define

ΩM,B
NL (x, y, z) :=

∑
X∈L̂+

µ̂(∅, X)xrkL̂(X)+|E\(X∩E)|y|X∩A|z|X∩B|,

which we call the dichromate of a digraph representing M in the graphic case.

Theorem 3.2. Let M be a regular, oriented matroid on E with |E| = n and
let r be its rank. Then

ΩM,B
NL (x, 0, 1) = xn−r · ψMNL(x)

for any basis B of M .

Proof. Due to the definition it immediately follows that

ΩM,B
NL (x, 0, 1) =

∑
X∈L̂+

X∩A=∅

µ̂(∅, X)xrkL̂(X)+|E\(X∩E)|

for any basis B of M . Lemma 2.7 (ii) yields that the sum only considers
X ∩ E ∈ L∗+, since it is a covector of M∗ with positive entries only. The re-
spective Möbius functions coincide due to Lemma 2.8. Lemma 2.9 (i) completes
the proof.

Using Lemmas 2.7 (i), 2.8 and 2.9 (ii), the following can be proven completely
analogously.

Theorem 3.3. Let M be a regular, oriented matroid on E with |E| = n and
let r be its rank. Then

ΩM,B
NL (x, 1, 0) = xr · φMNL(x)

for any basis B of M .

4 Outlook
We are not aware of any meaningful interpretation in the non-regular case.
Nevertheless the polynomial exists in this case and since the union does not
need to preserve regularity we have in any event already crossed this line.
Since the contraction of arcs might generate new directed cycles and loops it
is clear that our polynomials do not satisfy the (classical) deletion-contraction
formula. Presumably the most agreed concept of digraph minors in the context
of acyclic colorings are butterfly minors (see [8]). Unfortunately digraphs that
are not butterfly contractible can be arbitrarily complicated.
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