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Zusammenfassung

In dieser Bachelorarbeit werden die theoretischen Ergebnisse aus [CT20] genutzt, um
einen Algorithmus zu entwerfen und zu implementieren, der Quasi-Inkonsistenz in
Regelbasen für Geschäftsregeln erkennen kann. Da das Problem der Erkennung von
Quasi-Inkonsistenz NP-vollständig ist, ist eine direkte effiziente Lösung nicht garan-
tiert. Wir nutzen daher die großen Fortschritte, die in letzter Zeit im Bereich des “SAT-
Solving” gemacht wurden. Dazu wird das Problem in ein Erfüllbarkeitsproblem (SAT)
umgewandelt, welches dann von einem SAT-Solver gelöst werden kann. Anschließend
wird ein Leistungsvergleich zwischen dem von uns entwickelten SAT basierten Algo-
rithmus und einer traditionelleren “Brute Force” Lösung durchgeführt. In diesem Ver-
gleich wird festgestellt, dass der SAT basierte Algorithmus die Probleme für die ver-
wendeten Daten deutlich schneller lösen konnte.

Abstract

In this bachelor’s thesis the theoretical results from [CT20] are used to develop an al-
gorithm that can detect Quasi-Inconsistencies in rule bases for business rules. As the
problem is NP-complete and we are not guaranteed to find an efficient solution for this
directly. Therefore we are taking advantage of recent massive performance increases
in SAT solving. This is done by encoding the underlying problem to a SAT instance,
which is then run through a SAT solver. The performance of the SAT-based approach to
Quasi-Inconsistency detection is evaluated against a more traditional brute force based
implementation of inconsistency detection, where it shows much promise and signifi-
cant performance benefits for the underlying data sets that were used.
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1 Introduction

In this section, we will give an informal introduction into the topic without worrying
too much about notation and strict formal correctness.

1.1 Motivation

A Business rule is “a directive that is intended to influence or guide business behavior
[...] in response to risks, threats or opportunities” [Bus03]. The idea of business rules
is therefore to derive (automated) decisions that are concurrent with a companies poli-
cies and goals. They are declarative statements, meaning that the outcome of the rule
application is independent of the order in which the rules are applied [Gra06]. To get a
better impression of how this could look, let us look at an example rule base:

B1 = {invoicePayment← regularCustomer; prePayment← newCustomer}

This rule base contains two rules that define how customers have to pay for their orders
depending on their history, so this is pretty straightforward and there are no problems
with this rule base.
In traditional knowledge representation knowledge bases are expressed similarly, but
can also contain facts in addition to rules, for example:

K1 = {a← b;¬a← b; b}

With this knowledge base we can see, that we have a fact b which leads to a as well as to
¬ a, which is obviously not correct and therefore call this knowledge base inconsistent
(in the classical sense). This type of inconsistency can be measured and analyzed by
existing traditional methods [CD19]. With business rules however we face a different
problem. The actual facts are not known at the design time of the business rule base.
Therefore we need a more extended definition of inconsistency. If we look at another
example business rule base

B2 = {¬prePayment← newCustomer; prePayment← newCustomer}

it is obvious that this does not make much sense, although it is consistent in a classical
sense. Whenever a new customer places an order we would run into a conflict. We can
clearly see that from a Business Rule Management (BRM) perspective this rule base does
not help us out at all and is even harmful. We need a new concept to deal with these
types of problems.

To address this, the idea of Quasi-Inconsistency has been introduced by [CD19]. The
notion of this type of inconsistency deals with inconsistencies that cannot be detected
by classical methods of inconsistency analysis at design time but will be activated at run
time by the introduction of facts. This type of inconsistency is therefore especially rel-
evant in the domain of business rules management since rule bases are always present
at design time before the facts are introduced during the execution. Specifically, the
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definition (which will be explained more formally later on) demands that rules that are
always being activated together cannot be contradictory if a rule base is to be consis-
tent in this way. Analyzing and detecting if a business rule base is Quasi-Inconsistent
at design time before actually running into unresolvable conflicts in production could
therefore turn out to be a valuable practical world application to ensure compliance
and correct business decisions. In [CT20] a complexity analysis of the decision prob-
lem, whether a rule base is Quasi-Inconsistent was conducted and it was proven that it
is NP-complete. While at first, this seems like a setback, it actually makes the problem
more tractable since there are quite a few inconsistency problems that are even more
difficult in computational complexity than “only” NP [CT20]. It also opens up the pos-
sibility for us to take advantage of modern SAT-solving techniques that have recently
grown better and better at solving these types of “hard” problems.
As SAT is NP-complete, all other NP-complete problems can be reduced to SAT. So-
called SAT solvers can nowadays effectively find solutions to this problem even with
millions of variables and clauses. Since the inception of SAT solvers many new con-
cepts like Conflict Driven Clause Learning (CDCL), Variable State Independent Decaying
Sum (VSIDS), Literal Block Distance (LBD) and many more have led to massive per-
formance increases that are still going on ([BHM21] [Bie21]). The recent performance
increases can be seen in the figures Figure 11 and Figure 12, which show the improve-
ments from 2004 to 2020 in the annual SAT competition and the massive size of prob-
lems that can be solved in reasonable timeframes. Due to this, many real-world science
and engineering problems are now translated to SAT, for example software verification,
Electronic Design Automation, hardware verification and many more. With this being
the case we would like to try to add the decision problem for Quasi-Inconsistency to
said list. Therefore in this Bachelor’s thesis, we propose to develop a SAT encoding of
the problem as well as develop and implement an algorithm to generate this SAT en-
coding from a business rule base so that it can be checked by SAT solvers. Finally, we
will run a performance comparison between the SAT-based approach and a standard
“brute force” implementation.

1.2 Chapter Overview

In our first chapter Introduction, we will informally introduce the notion of business
rules, Quasi-Inconsistency and practical examples as our motivation for this thesis. The
second chapter Preliminaries will contain the necessary groundwork, where we will de-
fine the notation and general formal concepts that will be used throughout the thesis.
In the third chapter Encoding, we will look at ways how we can encode the decision
problem for Quasi-Inconsistency into a propositional logic formula so that it can be
solved by a SAT solver. The fourth chapter Implementation will deal with the imple-
mentation of the algorithm that was developed in chapter three in Java. For this, we
will first define an input file format for business rules that can be read by our program.
The program will then transform this problem into a CNF SAT encoding. As options
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for the output, we will be able to choose between either generating a file in DIMACS
format that can be used to run the problem through any SAT solver or to call an inte-
grated SAT solver directly, which will be able to return the issue that was found. After
having implemented the program, in our fifth chapter Evaluation, we will benchmark
our SAT-based algorithm against a more traditional brute force approach for finding
Quasi-Inconsistencies and discuss the results. Following this, in chapter six Outlook we
will give a brief recap on what we discovered in this thesis and how this work could be
expanded on.

2 Preliminaries

In this chapter, we will lay out the formal groundwork for the ideas that were already
informally mentioned in the introduction and explain some further concepts that we
will need in the further sections. This section is mostly based on the groundwork laid
out in [CT20] and a more comprehensive overview, an introduction to more detailed
concepts and further explanation can be found there.

2.1 Propositional Logic

Variables are statements of facts or just abstract statements. For example creditworthy
from the Introduction is a variable, but it could also be something just like x. A literal
is either a variable or the negation of a variable. We will use the term literal and fact
interchangeably. A disjunction (OR) of literals is called a clause. Boolean formulas are a
combination (with logical AND or OR) of any number of literals. An assignment to a
formula is if every literal in the formula is assigned a truth value (TRUE (1) or FALSE
(0)). We call an assignment satisfying if the boolean formula evaluates to true with this
assignment. A boolean formula is in conjunctive normal form (CNF) if it is a conjunction
(AND) of clauses. Any boolean formula can be transformed to CNF, however by just
using boolean algebraic transformation the formula’s size can increase exponentially
[BHM21].
The boolean satisfiability problem (SAT) is one of the most important problems in com-
puter science [Knu15]. It was the first problem to be proven NP-complete [Coo71] and
can be stated as follows: Given a Boolean formula (F (x1, . . . , xn)) expressed in conjunc-
tive normal form, can we satisfy F by assigning values to its variables in such a way that
(F (x1, . . . , xn)) = 1? Basically, we are asking if there exists a satisfying assignment for
a given formula. As any formula can be expressed in CNF this problem can universally
be answered for any boolean formula.

2.2 Business Rules

As was mentioned in the introduction business rules are declarative statements that
guide business decisions [Gra06]. There are different formalisms to express business
rules. For our purpose we will use the traditional form of “logic programs with classical
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negation but without default negation” [CT20].
A business rule r has the form: l0 ← l1, . . . , ln. We call l0 the head of the rule and
{l1, . . . , ln} its body. Let us look at an example of this:

r1 = {¬creditworthy ← lowIncome, newCustomer}
head(r1) = ¬creditworthy
body(r1) = {lowIncome, newCustomer}

A business rule base B is a set of business rules. A set of literals X is called a fact base.
"A set of literals X activates a set of rules R, iff there is a sequence < r1; . . . ; rn > with
R = {r1, . . . , rn} so that:

1. body(r1) ⊆ X

2. for all i=2,...,n : body(ri) ⊆ {head(r1), . . . , head(ri−1)} ∪X" [CT20]

We call the set {head(r1), . . . , head(ri−1)} the ActivatedSet of (X1, R1). “A set of facts X
minimally-activates [..] a set of rules R, iff X activates R and there is no proper subset
of X that also activates R.” [CT20]. Let us clarify this with an example:

B = {c← b; b← a}

{a} and {a, b} are activation sets for B. {a} minimally-activates B. A rule base R is
X − inconsistent wrt. to a fact base X if X ∪ActivatedSet(X,R) is inconsistent (in the
classic-logical sense).

2.3 Quasi-Inconsistency

Let B be a rule base, with R1 and R2 being rule bases which are subsets of B. X1 and
X2 are consistent fact bases of possible literals in B. A tuple (X1, X2, R1, R2) is called
an issue iff

1. X1 ⊆ X2

2. X1 minimally-activates R1

3. X2 minimally-activates R2

4. R1 is X1 consistent and R2 is X2 consistent

5. R1 ∪R2 is X2 inconsistent

The rule base B is Quasi-Inconsistent, iff at least one issue can be found for this rule
base. An issue (X1, X2, R1, R2) “describes a case where the activation of one set of rules
R1 implies the activation of a second set of rules R2 and both sets together derive an
inconsistency (while being consistent on their own).”[CT20] As has been expressed in
[CD19] from these requirements we are able to conclude that Quasi-Inconsistency can
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only occur, iff there is a literal a, which is the conclusion of one rule and its negation ¬a
is the conclusion of another rule. This matches our intuitive understanding of Quasi-
Inconsistency that the inconsistency has to be derived from rule conclusions and not
by contradictions of input facts and rule conclusions. We want to check if the minimal
activation requirement is actually necessary to find Quasi-Inconsistency as this is not
clearly obvious from the start. We are going to look at a counterexample, that brings
the point across really well and that was found by running the implementation without
minimal activation enabled. Consider the (non)issue:

X1 = {a2}
X2 = {a2,¬b2}
R1 = {b2← a2}
R2 = {}

This “issue” fulfills all requirements for an issue but minimal activation, but we can
clearly see that it does not fit our understanding of it. The inconsistency is not actually
derived from different rule activations, but by just introducing an additional negated
literal into X2. We could even generalize this approach and almost always find an
issue. We just need to set R2 to the empty set and put one rule into R1. Then we put
the activation literals for this rule into X1 and X2 and add the negated head of the
rule to X2. We can clearly see that this is not the point of Quasi-Inconsistency. If we
add minimal activation this does not work anymore, since R2 cannot be the empty set,
without X2 being empty as well, which would lead to all sets being empty and violating
the inconsistency rule.

From this point on we will call the decision problem if a rule base is Quasi-Inconsistent
DEC-QI, which will return true if the rule base is Quasi-Inconsistent and false if it is not.

3 Encoding

To find out if a rule base is Quasi-Inconsistent we are going to look for issues as de-
fined in subsection 2.3. By looking at the definition of these issues we can partition
the problem into multiple easier problems. We will repeat this definition here since
it is a vital concept for all the following sections. With X1, X2 being sets of facts and
R1, R2 being sets of rules, we basically have to check each of the requirements for a set
(X1, X2, R1, R2) being an issue separately, with those namely being:

1. X1 ⊆ X2

2. X1 minimally-activates R1

3. X2 minimally-activates R2

4. R1 is X1 consistent and R2 is X2 consistent

5. R1 ∪R2 is X2 inconsistent
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We will look at how to find constraints for each of those problems and encode them
into a SAT formula. However we actually split these up into even more problems so
that they are easier to deal with. Specifically since minimal activation is by far the
hardest of these problems, we will divide points two and three into first checking the
activation and then adding another constraint encoding to guarantee its minimality.
All the different requirements can in the end be joined together by logical AND, since
this means that all requirements have to be met by themselves and the only way the
overall formula evaluates to true is if every requirement formula evaluates to true as
well. Since every boolean formula can be transformed into a CNF, we will not focus
on actually formulating our individual requirements in CNF, as this can be more easily
and efficiently achieved by relying on external libraries that focus on handling this type
of problem.

3.1 Notation

In this chapter, we are defining the notation that will be used for the rest of this paper.
We will only define matters that will be used multiple times throughout the paper. If
some notation is only used once it will be explained at the place where it is actually
used. All rules of the input rule base B are indexed with the index k starting from 1 to
m. A will be the set of all possible literals (which are mentioned in the rule base either
in the head or body). H is the set of all possible literals that are rule heads. aq ∈ A
will be one possible literal and hl ∈ H one possible head. Xj denotes a set of facts. Ri

denotes a set of rules.
Variable xj,a is true if atom a (in non-negated form) is included in the set of facts Xj

and false if it is not included. Variable xj,−a is true if the negated atom a (¬a) is included
in the set of facts Xj and false if it is not included.

It is very important to note here that xj,−a ̸= ¬xj,a and vice versa. One means the
literal ¬a is present in the fact base Xj , while the other means that the literal a is not
present in the fact base. This becomes especially important when we talk about activa-
tion variables later on, for example −aAct1 ̸= ¬aAct1 . aAct1 meant that a is in the acti-
vated set of X1, R1 (the rule with head a was activated). aAct1,2 also describes, in which
rule the activation happened. In this case a was activated in rule with index number
2. It is also important to realize that we do not and cannot look at the semantics of
variable names. This means that notCreditworthy is not the same as ¬creditworthy. One
is just a variable with the name notCreditworthy, the other one is the negated variable
creditworthy.

ri,k is true if the rule with the index number k rk is included in the rule set Ri. As
we have seen we can split rules up into head and body with the head only being one
literal. head(rk) will be denoted as hk. The body of a rule rk will be compromised of
bk,1 to bk,pk with o being the index for the different body variables and pk the number
of body literals for one rule k.
aAct(1) is true if a is the head of a rule that was activated in combination of X1 and

R1. aAct(1,2) is true if a is the head of rule 2, which was activated in combination of X1

6



and R1.
From now on we will explain the concepts in this chapter by looking at the following

rule base to demonstrate the examples:

B1 = {c← a, b ; ¬c← a, d ; d← b}

First, we enumerate the rules so that we can refer to them easier and it is clear which
rules we mean:

r1 = c← a, b ; r2 = ¬c← a, d ; r3 = d← b.

If we would like to look at different parts of the rules we can refer to them by the index
notation described above. For example, we can write h1 = c, b1,1 = a, b1,2 = b. For this
rule base we can find the following issue:

X1 = {a, b}
X2 = {a, b}
R1 = {c← a, b}
R2 = {d← b ; ¬c← a, d}

If we use the notation introduced above for our SAT encoding, this issue is:

ISSUE(B1) = {x1,a, x1,b, x2,a, x2,b, r1,1, r2,2, r2,3}

An overview of all different notation concepts with their context is displayed in Ta-
ble 1.

3.2 Consistency Fact Base

One constraint that is not directly mentioned in the rules above, is that the fact bases
themselves have to be consistent. This basically means if a literal is part of a fact base,
its negated counterpart is not allowed to be included in this fact base. We can constrain
this by adding the following statements for all possible literals aq (with n being the
number of possible literals) and fact bases:

2∧
j=1

n∧
q=1

¬(xj,aq ∧ xj,−aq)

For our sample rule base B1 and a fact base Xj it looks like this:

Consistency(Xj) =¬(xj,a ∧ xj,−a) ∧ ¬(xj,b ∧ xj,−b) ∧ ¬(xj,c ∧ xj,−c) ∧ ¬(xj,d ∧ xj,−d)

In this equation we can already see that we skipped the clause ¬(xj,−c ∧ xj,−(−c)) since
it is the same as ¬(xj,c ∧ xj,−c). So actually we do not need this for all possible literals,
but only for all possible variables.
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Letter Description Example Explanation

B input rule base
A set of all possible literals
H set of all rule heads
R rule base in potential issue (⊆ B) R1 rule base 1
X fact base in potential issue (⊆ A) X2 fact base 2
a one literal ∈ A aq any possible fact
b one body literal b1,2 second fact of the rule body of r1
h one head literal ∈ H h1 head of the first rule
n #possible literals |A|
m #all rules |B|
p #literals in body pk #literals in body k
i index of rule base Ri rule base number i
j index of fact base Xj fact base number j
o index of body literals b2,o o-th fact of rule body r2
l index of head literals hk head of the k-th rule
k index for rules rk k-th rule
q index for a aq
r boolean value r1,3 rule 3 ∈ R1

x boolean value x2,a fact a ∈ X2

aActi,k boolean value aAct2,3 rule 3 activated a ∈ ActivatedSet(X1, R1)

aActi boolean value aAct2 fact a ∈ ActivatedSet(X1, R1)

Table 1: Notation
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x1,a x2,a result

0 0 1
0 1 1
1 0 0
1 1 1

Table 2: truth table for set inclusion

3.3 Set Inclusion

As X1 has to be a subset of X2 this basically means, that each literal that is present in
X1 has also to be present in X2. The other way around is however not required, a literal
that is included in X2 does not necessarily have to be included in X1. Writing this into
a truth table we get the result shown in Table 2. From this table we can see that this
constraint corresponds to the logical implication from X2 to X1.

x2,a → x1,a = ¬x2,a ∨ x1,a

Therefore we can guarantee set inclusion by adding the following to our formula (for
all possible literals aq):

n∧
q=1

(x2,aq → x1,aq) =

n∧
q=1

(¬x2,aq ∨ x1,aq)

Looking at our example rule base B1 it looks like this:

SetInclusion(X1, X2) =(¬x1,a ∨ x2,a) ∧ (¬x1,b ∨ x2,b) ∧ (¬x1,c ∨ x2,c)∧
(¬x1,d ∨ x2,d) ∧ (¬x1,−c ∨ x2,−c)

3.4 Activation

As mentioned above for this we introduce helper variables hAct(i) for all literals l that
are heads of rules in the overall rule base for our rule base Ri. The requirements for this
basically states, that if a fact base is to activate a rule base, all body atoms of all rules
have to be either in the fact set of the rule base or in the activation set and all rules have
to be activated. Thinking of how to solve this we can partition our problem further and
think of different ideas that need to be true to achieve that. First of all we actually need
to be able to activate rules and thus add new literals to our activated set, which can in
turn activate other rules. We do that by using the following formula:

2∧
j=1

m∧
k=1

((

pk∧
o=1

(xj,bk,o ∨ bk,oActj
) ∧ rj,k)↔ hkActj,k

)
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Take note that we use the same index variable j for rule and fact bases as we only
compare X1 to R1 and X2 to R2, so the index can be the same and we do not need to
unnecesarily complicate our formula. rj,k guarantees that a rule can only be activated
if the rule is actually part of the rule base we are looking at. The conjunction of all
(xj,bo ∨ boActj

) checks if all body literals are either in the fact base Xj or in the activated
set for this rule and fact base combination. If so, the rule will be activated and its head
literal will be added to the activation set. We do this for all rules of the rule base for
each of the two fact bases. Now that we made the actual rule activation happen, we
need to add some constraints:

1. If a rule rk is present in a rule base, its head has to be in the activation set. This
also holds true for the other way around: If a literal is part of an activation set for
a rule, it has to be activated by that rule. We can write this with our notation in
propositional logic as: hkActj,k

↔ rj,k

2. If a literal is activated in one rule rk of the rule base Ri it is "active" everywhere
else in this rule base, but not the other way around: hkActj,k

→ hkActj

3. If a literal is part of an overall activation set in the rule, it has to have been ac-
tivated somewhere (and cannot just be guessed as true by the solver): hkActj

→∨r
l=1 hlActj,l

where r is the number of rules that contain hl as their head. This
constraint guarantees that at least one of the hlActj,l

is present.

We add these formulas for each rule of the rule base and with those we can check
whether a set of facts Xj activates a rule base Ri. To summarize our overall equation
for Activation now looks like this:

2∧
j=1

m∧
k=1

(((

pk∧
o=1

(xj,bk,o ∨ bk,oActj
) ∧ rj,k)↔ hkActj,k

) ∧ (hkActj,k
↔ rj,k)

∧ (hkActj,k
→ hkActj

) ∧ (hkActj
→ ∨rl=1hlActj,l

))

Let us look how this would look for our example rule base B1:

Activation(X1, R1) =((r1,1 ∧ (x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1))↔ cAct1,1)∧
((r1,2 ∧ (x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))↔ ¬cAct1,2)∧
((r1,3 ∧ (x1,b ∨ bAct1))↔ dAct1,3)∧
(cAct1,1 ↔ r1,1) ∧ (−cAct1,2 ↔ r1,2) ∧ (dAct1,3 ↔ r1,3)∧
(cAct1,1 → cAct1) ∧ (¬cAct1,2 → ¬cAct1) ∧ (dAct1,3 → dAct1)

As we can see the third constraint is not added, since all rules have different rule heads
and therefore this is not needed. We do not actually have to add activation literals at
every point. If a literal is not in the head of any rule it can obviously never be activated
and thus does not have to be considered. Actually if we did write it like above, where
we did not include this optimization to make the concept clearer, we would have to
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add constraints so that literals like bAct1 can never be true. Otherwise the SAT solver
could just guess these as true, although they are not in any rule head. We will avoid
this problem by just never adding variables like this in the first place. Thus we remove
the literals aAct1 , bAct1 as they cannot be activated (only c, ¬c and d are heads and can
be activated):

Activation(X1, R1) =((r1,1 ∧ x1,a ∧ x1,b)↔ cAct1,1)∧
((r1,2 ∧ x1,a ∧ (x1,d ∨ dAct1))↔ ¬cAct1,2)∧
((r1,1 ∧ x1,b)↔ dAct1,3)∧
(cAct1,1 ↔ r1,1) ∧ (−cAct1,2 ↔ r1,2) ∧ (dAct1,3 ↔ r1,3)∧
(cAct1,1 → cAct1) ∧ (¬cAct1,2 → ¬cAct1) ∧ (dAct1,3 → dAct1)

3.5 Minimal Activation

Minimal activation means, that if we remove any one literal from a fact base it will not
activate the belonging rule base anymore. To check this we try to think of an encoding
that will remove exactly one literal each from the fact base and check if this leads to the
activation not happening anymore. This needs to be true for every removed literal. We
will have to develop an encoding that takes every literal and every rule into account,
but at run time only checks the condition if the literal was included in the fact base in
the first place. To take care of this the overall formula (for one literal aq) has to be a dis-
junction with ¬xi,aq and “not activation”. This disjunction will let the solver ignore the
other constraints, due to ¬xi,aq being true if it is not in the fact base and thus satisfying
the whole disjunction.
In the second part “not activation”, we will have to check for all rules present, if re-
moving the literal aq from the fact base will lead to it not being activated anymore. A
rule is activated if it is present and all its body literals are in the set, so we do not need
to consider the head of rules as well as the activation, since this already happens in
subsection 3.4. So in our second part we will set every occurrence of aq to false. Let us
look at how the “not activation” part will look like for one fact:

¬(
m∨
k=1

¬rj,k ∨ (

pk∧
o=1

(xi,bk,o ∨ bk,oActj
)))

If we combine this to an overall expression for minimal activation we get:

2∧
j=1

n∧
q=1

(¬xj,aq ∨ ¬(
m∨
k=1

¬rj,k ∨ (

pk∧
o=1

(xj,bk,o ∨ bk,oActj
))))

In this formula we will replace (xj,bk,o for false, if bk,o = aq in every different iteration
of q. Note that in this case the index variable for facts xj and rules rj is the same since
we always have one fact base and one rule base that we analyze. So let us see how our
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idea looks like for our example rule base

MinimalActivation(X1, R1) =

(¬x1,a ∨ ¬((¬r1,1 ∨ ((false ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((false ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,b ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (false ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (false ∨ bAct1))))∧
(¬x1,c ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,d ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (false ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,−c ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))

3.6 Consistency Rule Base To Fact Base

We have already checked the fact bases for consistency within themselves in subsec-
tion 3.2. To achieve consistency between a fact base Xj and a rule base Ri we only have
to guarantee that no rule head is activated, that is inconsistent with the fact base or its
own activation. This can be easily done by adding the following constraints for all n
possible rule heads hk ∈ H :

Consistency(X1, R1) =

m∧
k=1

(hkAct1
→ ¬(x1,−hk

∨ −hkAct1
))

Putting this into a combined formula it is:

Consistency =

2∧
j=1

m∧
k=1

(hkActj
→ ¬(xj,−hk

∨ −hkActj
))

Looking at our example it looks like this:

Consistency(X1, R1) =(cAct1 → ¬(x1,−c ∨ −cAct1)) ∧ (−cAct1 → ¬(x1,c ∨ cAct1))∧
(dAct1 → ¬(x1,−d ∨ −dAct1))

We can further optimize here. In the above formula we have included the variable
−dAct1 . As ¬d is not in any rule head, it cannot possibly be activated. This means we
do not need to consider it for our rule base B1 nor do we need to consider literals that
are not rule heads as activation variables.
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3.7 Inconsistency

Now we want to consider the next prerequisite that we have to meet for an issue:
R1 ∪ R2 is X2-inconsistent. We already know that X2 and R2 together are consistent.
This basically means, that if we add the rule base R1 to our previously consistent com-
bination, some rule from R1 has to get activated which will cause an inconsistency. We
use the same idea as in subsection 3.4 to activate the rule bases. However this time we
model the constraints that we get at least one inconsistency. For this, we will need new
activation variables though, which we will denote with index 3, e.g. hkAct3

. Let us look
at the activation (for one rule k of the rule base) first:

((

pk∧
o=1

(x2,bo ∨ bk,oAct2
∨ bk,oAct3

)) ∧ (r1,k ∨ r2,k))↔ hkAct3,k

As for the constraints, we can skip the first one mentioned in subsection 3.4, as we do
not necessarily need to activate all the rules. The second and third constraints we do
however need:

1. If a literal is activated in one rule rk of the rule base R3 it is "active" everywhere
else in this rule base, but not the other way around: hkAct(3,k)

→ hkAct3

2. If a literal is part of an overall activation set in the rule, it has to have been ac-
tivated somewhere (and cannot just be guessed as true by the solver): hkAct3

→∨r
l=1 hlAct(3,l)

(for notation see subsection 3.4)

Now we need to check, whether this activation will lead to an inconsistency. We do this
by specifying that at least one hkAct3

has to lead to an inconsistency, which is the case if
−hk is present in X2 or in one of the activation sets of Act2 or Act3.

AtLeastOne(hkAct3
∧ (−hkAct3

∨ −hkAct2
∨ x2,−hk

)) =
n∨

k=1

(hkAct3
∧ (−hkAct3

∨ −hkAct2
∨ x2,−hk

))

Combining this we get the formula for Inconsistency(X2, R1 ∪R2):

m∧
k=1

(((

pk∧
o=1

(x2,bk,o ∨ bk,oAct2
∨ bk,oAct3

)) ∧ (r1,k ∨ r2,k))↔ hkAct3,k
∧ (hkAct(3,k)

→ hkAct3
)∧

(hkAct3
→

r∨
l=1

hlAct(3,l)
)) ∧

n∨
k=1

(hkAct3
∧ (−hkAct3

∨ −hkAct2
∨ x2,−hk

))
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If we transfer the whole concept to our example rule base, this is:

Inconsistency(X2, R1 ∪R2) =

(((x2,a ∨ aAct2 ∨ aAct3) ∧ (x2,b ∨ bAct2 ∨ bAct3) ∧ (r2,1 ∨ r1,1))↔ cAct3,1)∧
(((x2,a ∨ aAct2 ∨ aAct3) ∧ (x2,d ∨ dAct2 ∨ dAct3) ∧ (r2,2 ∨ r1,2))↔ −cAct3,2)∧
(((x2,b ∨ bAct2 ∨ bAct3) ∧ (r2,3 ∨ r1,3))↔ dAct3,3)∧
(cAct3,1 → cAct3) ∧ (−dAct3,2 → −cAct3) ∧ (dAct3,3 → dAct3)∧
(cAct3 → cAct3,1) ∧ (−cAct3 → −dAct3,2) ∧ (dAct3 → dAct3,3)∧
((cAct3 ∧ (x2,−c ∨ −cAct3 ∨ −cAct2)) ∨ ((−cAct3 ∧ (x2,c ∨ cAct3 ∨ cAct2)))∨
(dAct3 ∧ (x2,−d ∨ −dAct3 ∨ −dAct2)))

The first three lines are the rules that are directly responsible for the rule activation. In
the next two lines, we guarantee that rule activation in one rule means activation in the
whole set. The last two lines check that at least one inconsistency is found.

3.8 Summary

As we stated before, we need to connect all these separate requirements into a common
formula by joining them together with a logical AND.

DEC −QI(B1) =Consistency(X1) ∧ Consistency(X2) ∧ SetInclusion(X1, X2)∧
Activation(X1, R1) ∧Activation(X2, R2)∧
MinimalActivation(X1, R1) ∧MinimalActivation(X2, R2)∧
Consistency(X1, R1) ∧ Consistency(X2, R2)∧
Inconsistency(X2, R1 ∪R2)
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If we substitute these with our developed encodings in the previous subsections we get
the overall general formula for DEC-QI (for the notation see subsection 3.1 and Table 1):

DEC −QI(B1) =
2∧

j=1

n∧
q=1

¬(xj,aq ∧ xj,−aq) ∧
n∧

q=1

(¬x2,aq ∨ x1,aq)∧

2∧
j=1

m∧
k=1

(((

pk∧
o=1

(xj,bk,o ∨ bk,oActj
) ∧ rj,k)↔ hkActj,k

) ∧ (hkActj,k
↔ rj,k)∧

(hkActj,k
→ hkActj

) ∧ (hkActj
→ ∨rl=1hlActj,l

))∧
2∧

j=1

m∧
k=1

(hkActj
→ ¬(xj,−hk

∨ −hkActj
))∧

m∧
k=1

(((

pk∧
o=1

(x2,bk,o ∨ bk,oAct2
∨ bk,oAct3

)) ∧ (r1,k ∨ r2,k))↔ hkAct3,k
∧ (hkAct(3,k)

→ hkAct3
)∧

(hkAct3
→

r∨
l=1

hlAct(3,l)
)) ∧

n∨
k=1

(hkAct3
∧ (−hkAct3

∨ −hkAct2
∨ x2,−hk

))∧

2∧
j=1

n∧
q=1

(¬xj,aq ∨ ¬(
m∨
k=1

¬rj,k ∨ (

pk∧
o=1

(xj,bk,o ∨ bk,oActj
))))

Now let us take a peek at how all of this combined will look for our rule base B1:

SetInclusion(X1, X2) =

(¬x1,a ∨ x2,a) ∧ (¬x1,b ∨ x2,b) ∧ (¬x1,c ∨ x2,c) ∧ (¬x1,d ∨ x2,d) ∧ (¬x1,−c ∨ x2,−c)

Consistency(X1) =

¬(x1,a ∧ x1,−a) ∧ ¬(x1,b ∧ x1,−b) ∧ ¬(x1,c ∧ x1,−c) ∧ ¬(x1,d ∧ x1,−d)

Consistency(X2) =

¬(x2,a ∧ x2,−a) ∧ ¬(x2,b ∧ x2,−b) ∧ ¬(x2,c ∧ x2,−c) ∧ ¬(x2,d ∧ x2,−d)

Activation(X1, R1) =

((r1,1 ∧ x1,a ∧ x1,b)↔ cAct1,1) ∧ ((r1,2 ∧ x1,a ∧ (x1,d ∨ dAct1))↔ ¬cAct1,2)∧
((r1,1 ∧ x1,b)↔ dAct1,3) ∧ (cAct1,1 ↔ r1,1) ∧ (−cAct1,2 ↔ r1,2) ∧ (dAct1,3 ↔ r1,3)∧
(cAct1,1 → cAct1) ∧ (¬cAct1,2 → ¬cAct1) ∧ (dAct1,3 → dAct1)

Activation(X2, R2) =

((r2,1 ∧ x2,a ∧ x2,b)↔ cAct2,1) ∧ ((r2,2 ∧ x2,a ∧ (x2,d ∨ dAct2))↔ ¬cAct2,2)∧
((r2,1 ∧ x2,b)↔ dAct2,3) ∧ (cAct2,1 ↔ r2,1) ∧ (−cAct2,2 ↔ r2,2) ∧ (dAct2,3 ↔ r2,3)∧
(cAct2,1 → cAct2) ∧ (¬cAct2,2 → ¬cAct2) ∧ (dAct2,3 → dAct2)
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Activation(X2, R2) =

(¬r2,1 ∨ (cAct(2,1) ↔ ((x2,a ∨ aAct(2)) ∨ (x2,b ∨ bAct(2))))))∧
(¬r2,2 ∨ (−cAct(2,2) ↔ ((x2,a ∨ aAct(2)) ∨ (x2,d ∨ dAct(2))))))∧
(¬r2,3 ∨ (dAct(2,3) ↔ (x2,b ∨ bAct(2))))∧
(cAct(2,1) ↔ r2,1) ∧ (−cAct(2,2) ↔ r2,2) ∧ (dAct(2,3) ↔ r2,3)∧
(cAct(2,1) → cAct(2)) ∧ (−cAct(2,2) → −cAct(2)) ∧ (dAct(2,3) → dAct(2))

(cAct(2) → cAct(2,1)) ∧ (−cAct(2) → −cAct(2,2)) ∧ (dAct(2) → dAct(2,3))

MinimalActivation(X1, R1) =

(¬x1,a ∨ ¬((¬r1,1 ∨ ((false ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((false ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,b ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (false ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (false ∨ bAct1))))∧
(¬x1,c ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,d ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (false ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))∧
(¬x1,−c ∨ ¬((¬r1,1 ∨ ((x1,a ∨ aAct1) ∧ (x1,b ∨ bAct1)))∧
(¬r1,2 ∨ ((x1,a ∨ aAct1) ∧ (x1,d ∨ dAct1))) ∧ (¬r1,3 ∨ (x1,b ∨ bAct1))))

MinimalActivation(X2, R2) =

(¬x2,a ∨ ¬((¬r2,1 ∨ ((false ∨ aAct2) ∧ (x2,b ∨ bAct2)))∧
(¬r2,2 ∨ ((false ∨ aAct2) ∧ (x2,d ∨ dAct2))) ∧ (¬r2,3 ∨ (x2,b ∨ bAct2))))∧
(¬x2,b ∨ ¬((¬r2,1 ∨ ((x2,a ∨ aAct2) ∧ (false ∨ bAct2)))∧
(¬r2,2 ∨ ((x2,a ∨ aAct2) ∧ (x2,d ∨ dAct2))) ∧ (¬r2,3 ∨ (false ∨ bAct2))))∧
(¬x2,c ∨ ¬((¬r2,1 ∨ ((x2,a ∨ aAct2) ∧ (x2,b ∨ bAct2)))∧
(¬r2,2 ∨ ((x2,a ∨ aAct2) ∧ (x2,d ∨ dAct2))) ∧ (¬r2,3 ∨ (x2,b ∨ bAct2))))∧
(¬x2,d ∨ ¬((¬r2,1 ∨ ((x2,a ∨ aAct2) ∧ (x2,b ∨ bAct2)))∧
(¬r2,2 ∨ ((x2,a ∨ aAct2) ∧ (false ∨ dAct2))) ∧ (¬r2,3 ∨ (x2,b ∨ bAct2))))∧
(¬x2,−c ∨ ¬((¬r2,1 ∨ ((x2,a ∨ aAct2) ∧ (x2,b ∨ bAct2)))∧
(¬r2,2 ∨ ((x1,a ∨ aAct2) ∧ (x2,d ∨ dAct2))) ∧ (¬r2,3 ∨ (x2,b ∨ bAct2))))

Consistency(X1, R1) =

(cAct1 → ¬(x1,−c ∨ −cAct1)) ∧ (−cAct1 → ¬(x1,c ∨ cAct1)) ∧ (dAct1 → ¬(x1,−d ∨ −dAct1))

Consistency(X2, R2) =

(cAct2 → ¬(x2,−c ∨ −cAct2)) ∧ (−cAct2 → ¬(x2,c ∨ cAct2)) ∧ (dAct2 → ¬(x2,−d ∨ −dAct2))
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Inconsistency(X2, R1 ∪R2) =

(((x2,a ∨ aAct2 ∨ aAct3) ∧ (x2,b ∨ bAct2 ∨ bAct3) ∧ (r2,1 ∨ r1,1))↔ cAct3,1)∧
(((x2,a ∨ aAct2 ∨ aAct3) ∧ (x2,d ∨ dAct2 ∨ dAct3) ∧ (r2,2 ∨ r1,2))↔ −cAct3,2)∧
(((x2,b ∨ bAct2 ∨ bAct3) ∧ (r2,3 ∨ r1,3))↔ dAct3,3)∧
(cAct3,1 → cAct3) ∧ (−dAct3,2 → −cAct3) ∧ (dAct3,3 → dAct3)∧
(cAct3 → cAct3,1) ∧ (−cAct3 → −dAct3,2) ∧ (dAct3 → dAct3,3)∧
((cAct3 ∧ (x2,−c ∨ −cAct3 ∨ −cAct2)) ∨ ((−cAct3 ∧ (x2,c ∨ cAct3 ∨ cAct2)))∨
(dAct3 ∧ (x2,−d ∨ −dAct3 ∨ −dAct2)))

This is what our final encoding for our sample rule base looks like. At a first glance, it
appears like a really big formula for such a small rule base. However, if we consider
that SAT solvers can solve formulas with millions of variables and clauses (Figure 11,
Figure 12), this is actually pretty small in comparison. We can put the formula into a
SAT solver and determine if it is Quasi-Inconsistent. In Figure 2 we can see the output
of our encoding. It returns an issue, which is the same one that we already mentioned
in subsection 3.1.

4 Implementation

In this chapter, we will look into how we can implement our findings from section 3
into an actual application. We will use Java as our programming language and rely
heavily on the LogicNG library1. The source code is hosted on GitHub 2. This reposi-
tory also includes a “pom.xml” file, so that the project can be built with Apache Maven.
For convenience’s sake, a runnable *.jar file for the current version with all necessary
libraries is also put into the project’s main folder.

4.1 Program Overview

In this subsection, we will briefly explain how our program is structured. The program
is started with the main method in the class MainQiSAT. As a first step, the supplied
input arguments are read and processed by the class ArgumentHandler, where the va-
lidity of the parameters is checked and then written into our configuration object of
type QiSatConfiguration. A detailed explanation of what parameters are possible, all of
which are stored in the configuration object, can be found in subsection 4.4. Next up
we will load up a parser object for the input. This can either be an instance of the class
DeclareModelParser if the input file is in Comma Separated Value (CSV) format or an
instance of BusinessRuleFileParser if it is a text rule file. Both of these implement the in-
terface InputFileParser so we can easily exchange this for a new parser type if the need
arises. The selected parser will then process the input and save it into our own data
structure, which consists of (Java) records Literal and Rule as well as a RuleBase object

1https://logicng.org/
2https://github.com/tehmischi/qi-encoding-sat
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which contains these records. Once the input is transformed and saved the next step is
to generate the SAT encoding. This is done in multiple steps by different classes, that
all implement the SatEncoding interface. These encoding classes execute the steps that
are described in section 3. As previously mentioned to generate formulas in proposi-
tional logic we use the LogicNG library, which has very efficient implementations with
factory methods to avoid unnecessary object generation as well as efficient CNF con-
version. Another advantage is, that we can directly use this library to call a SAT solver,
which is our next step after generating the encoding. There are two possible return
values from the SAT solver: UNSAT or a satisfying assignment. With the return value
UNSAT, we can immediately print out that the rule base is not Quasi-Inconsistent and
exit the program. If a satisfying assignment is returned, this needs to be converted back
into an output format that is easily understandable. As we have chosen the variable
names in subsection 3.1 exactly for this purpose, this is easily achieved. An instance of
the class OutputStringFormatter converts the assignment into a String that contains the
issue in a recognizable form that can be printed out to the console. An example of this
output can be seen in Figure 3. This is the standard program flow, if other parameters
are specified this flow can obviously be deviated from, which will be explained further
on in this chapter.

4.2 Input

The program reads a text file that has the following layout:

//Comments

l0, l1 l2 . . . ln;

. . .

x0, x1 x2 . . . xn;

Rules are separated by Semicolons (for a better view it is recommended to use new-
lines, though this is not necessary). Inside a rule, the head of the rule comes first and is
separated from the body by a comma. As the comma is used as a separator, variables
with a comma are not allowed. Comments are escaped by a double slash (//) at the
start of a line or by surrounding multiple lines with /* and */. This is the same com-
ment format that is used by Java and many other programming languages.
We can see how our example rule base from section 3 could look like in Figure 1.

Alternatively, it can also read a CSV file that was generated by using MINERFul on
real-world data as described in subsubsection 5.2.1.

4.3 Output

Depending on what the supplied input parameters were, the program will first print
the data it will operate on. In all cases, this is the rule base file (or CSV file) that serves
as our data base. If the option “-dimacs” is active it will also print out the output file
path(see Figure 5). In all other cases, it will tell us what SAT solver is being used before
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/*
Example rule base file for the rule base:
c <- a,b
not c <- a,d
d <- b

*/
c, a b;
-c, a d;
d, b;

Figure 1: Rule Base File for B1

Figure 2: screenshot of the output for example rule base B1

running the inconsistency detection. The principal output (for all options but DIMACS)
either returns an issue if the rule base is Quasi-Inconsistent or returns UNSAT if the rule
base is not Quasi-Inconsistent. In Figure 2 we can see the output for our example rule
base B1 that we used in section 3. A further example output for a slightly bigger rule
base B6 can be seen in Figure 3.

4.4 Parameters

A brief overview of possible options can be found in Table 3. Parameters with a single
dash “-” (-f, -dimacs, -solver) need to be specified with an additional option, whereas
parameters with a double dash “--” (--debug, --timer, --benchmark) do not require fur-
ther options. All “double dash” options are disabled by default and “single dash” op-
tions have a sane default value that they will fall back to. The most important parameter
to give to our software is “-f FileName”, where we need to specify the path to a rule base
file as described in subsection 4.2 or to a CSV file generated by MINERful. The program
will determine the type of file automatically by assuming that if the file has the ending
*.csv it is a MINERful generated file and for all other endings it will assume a rule base
file in text format. If this parameter is not specified or the given file path does not exist,
it will default to “-f examples/RuleBase1.txt”, which is a part of the GitHub Repository
and contains our sample rule base B1 as shown in Figure 1.

With “-solver SolverName” we can choose which of the SAT solvers that are integrated
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Figure 3: screenshot of the output for example rule base B6

within LogicNG we want to use. The possible options for SolverName are “minisat”,
“minicard” and “glucose”. If no solver is specified or SolverName does not match any
of the options mentioned above the SAT solver Glucose is used by default.

If we want to test different solvers that are not integrated into LogicNG we also have
the option to output our SAT encoding to a text file in DIMACS file format, by adding
the parameter “-dimacs FilePath”. Of course, the user executing the program will have
to have write access to the location specified, otherwise the software will throw an ex-
ception. DIMACS is the standard input for basically every SAT solver [BHM21]. This
text file then can be used to call any preferred SAT solver, which might be useful to
compare how different SAT solvers perform for our type of problem. When running
with this option the program will not run any integrated SAT solver, but generate two
output files: “Filename.cnf” which will contain the DIMACS encoding as well as “File-
name.map” which includes the mapping from our encoding to the DIMACS encoding.
We need this *.map file since in DIMACS format we only enumerate all variables start-
ing with 1 and lose all further information (which in our case we need to show issues).
Without this *.map file we would only be able to determine whether our rule base is
Quasi-Inconsistent, but not show the issue(s). As mentioned before the “-dimacs” op-
tion will not run any SAT solvers by itself and thus supersedes or ignores all other
commands but “-f FileName”. If the parameter “-dimacs” is run without any options it
will default to placing the files “dimacs.cnf” and “dimacs.map” into the current work-
ing directory (if possible).

The option “--debug” enables additional output that can help us debug the program
and detect problems. The standard output as described in subsection 4.3 either prints
out an Issue to the console if the rule base is Quasi-Inconsistent or tells us that the rule
base is not Quasi-Inconsistent. With debug mode enabled we get two major additional
data points. Firstly it will print out the generated SAT encoding to the console before
it is run through the solver. This can be helpful to be able to determine whether the
implementation is working as intended and whether the conversion to SAT is correct.
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Figure 4: output for B6 with execution times

Secondly, if an issue is found it will print out the whole satisfying assignment of our
SAT formula and not just the parts we need to display issues. Specifically, this means
all additional generated variables, e.g. activation variables. An example output for this
compared to the standard output can be seen in Figure 9.

By adding “--timer” to our run parameters we will get different run time printouts
in milliseconds to the console. We will be shown the overall program run time, the
run time of the SAT solver (including the conversion to CNF) as well as the program
execution time for the pre-processing tasks (reading the input, encoding the problem to
SAT). This will be necessary to be able to judge how efficient our SAT encoding-based
approach is going to be compared to other methods that will be discussed later on in
section 5 and to get a general understanding of how fast it actually is.

The option “--benchmark” extends the timer option by already running the alter-
native approaches described in section 5 and printing out their respective run times.
This way we can directly compare the different methods and evaluate how much their
efficiency differs. Figure 7 and Figure 6 show how sample outputs of this would look.

None of these parameters are necessary to run the program. If wrong parameters or
options are entered these will be just skipped, an error message will be printed out and
the software will run with default options (see Figure 5 and Figure 8).

5 Evaluation

In this section, we will look into how our SAT implementation of Quasi-Inconsistency
detection performs compared to a brute force method. As a data base, we will look
at real-world data on the one hand, as well as “easy” artificial rule bases from various
papers.
The benchmarks will be performed on a reasonably new Desktop PC with the following
relevant specifications:
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Figure 5: -dimacs parameter output with default options

parameter option default value

-f FileName Path to File examples/Rulebase1.txt
-dimacs FileName Path to File CurrentDirectory/dimacs
-solver SolverName glucose,minisat,minicard glucose
--debug none off
--timer none off
--benchmark none off

Table 3: parameter options for the program

• CPU: AMD Ryzen 7 3700X 8-Core Processor 8 x 3,6 GHz (16 Threads)

• RAM: 32GB DDR4 2133 MHz

• Operating System: Windows 10 21H2 (OS Version: 10.0.19045.2311)

The SAT solver will only be able to run on one core of the system, whereas the brute
force approach is going to be parallelized to run on all cores. We will use the LogicNG
implementations of Minisat and Glucose as our SAT solvers. The program will be run
for every rule base with the parameter --benchmark to get the run times of the different
implementations as a console printout.

5.1 Brute Force Algorithm

We need another approach with which we can compare the performance results of our
SAT-solving method. Therefore we are going to implement a very basic and easy brute
force algorithm that checks for Quasi-Inconsistency. The basic approach for this algo-
rithm will be to check all possible combinations of facts and rules whether they contain
an issue. For this, we first analyze our rule base and extract all literals into a set that
contains all possible literals. The power set of this set includes all possible sets of facts
(X1, X2) that we have to check for issues. The same is obviously also true for all rules,
so we need the power set of all rules that are part of the rule base. To get these power
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sets we use the efficient power set implementation of the Google Guava Library. 3. We
need to check each possible of these combinations if it is an issue. For this, we need our
definition from subsection 2.3 again. The five requirements for an issue will be checked
in the following way:

1. X1 ⊆ X2: For every literal in X1 whether it is also contained in X2, if we find
one literal that is in X1 but not in X2 we can go to the next combination and if all
literals are in X2 we go to the next step.

2. X1 ivates R1: First we check if X1 activates R1. To do this we create copies of our
sets X1 and R1. We run a loop over all rules in R1 to check if any rule is activated
by X1(copy). If a rule is activated we add the rule head to X1(copy) and remove
this rule from R1(copy). The loop continues either until R1(copy) is the empty set
in which case X1 activates R1 or until we do not add any more items to X1(copy)
in a loop run, which means that X1 does not activate R1. We can also use this
function to check for minimal activation. If we get the result that X1 activates R1

we check for every subset of X1 with a cardinality that is exactly one less than X1

if it activates R1. If any of these sets activates R1, then X1 does not ivate R1. If
none of the sets activate R1, we have proven that X1 ivates R1.

3. X2 ivates R2: We use the same method as described above for X1 and R1

4. R1 is X1 consistent and R2 is X2 consistent: We do this check by using the acti-
vation function described above. To check if R1 is X1 consistent we just need to
check if X1(copy) is consistent in the last run of the loop. If X1(copy) is consistent
to itself then so is R1 wrt. X1. The consistency check itself is done by checking
that no literal has its opposite within the set.

5. R1 ∪ R2 is X2 inconsistent: For this, we also use the activation algorithm from
above. Unlike with condition 4 however, we are now looking for inconsistency
and not the absence thereof. We do this by calling the activation function with X2

as the fact base and R1 ∪ R2 as the rule base. We go through the activation loop
until we can find no more possible activations and then check X2(copy) for incon-
sistencies. If we find an inconsistency then is requirement is satisfied otherwise
not.

These points will be checked in order and if one of these requirements fails to be met
we skip to the next combination that we need to check. In our implementation, the
parallelized version of the iteration over all combinations is executed in the class brute-
ForceLoop in stacked for loops (1) while the checking will be done by the class check-
BruteForce.

3https://github.com/google/guava
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Algorithm 1 Brute Force Loop Algorithm

1: procedure BRUTEFORCELOOP(Rule Base)
2: X <- PowerSet(allPossibleFacts(RuleBase))
3: R <- PowerSet(allRules(RuleBase))
4: for x1 : X do
5: for x2 : X do
6: for r1 : R do
7: for r2 : R do
8: checkBruteForce(x1,x2,r1,r2)

5.2 Data

We mentioned before that we will use two types of data that we will try to benchmark
our application on: real-world data and “easy” artificial data from different papers.
In this section, we are going to explain how we get to this data base. All examples
that we will run the benchmark on are included in the Project’s GitHub repository 4 in
the folder examples. The artificial rule bases are named “RuleBaseX.txt” where X is the
corresponding number in Bx, whereas the real-world data is named after its source file
from the BPI Challenge, e.g. “DomesticDeclarations.csv”.

5.2.1 Mining Real-World Data

Inspired by the process of using real-world data to analyze inconsistencies described
in [CTD21], we will try to use similar transaction data sets to generate a business rule
base, which we can later analyze. As our transaction input data, we will use different
data sets from various years of the Business Process Intelligence (BPI) Challenge. Our main
analysis will be regarding the BPI 2020 Challenge, which is based on travel and reim-
bursement logs from the Eindhoven University of Technology [vDon20]. Additionally,
we will also briefly look at the data sets for the BPI Challenge 2013 [Ste14], BPI Chal-
lenge 2015 [vDon15] and BPI Challenge 2016 [DvD16].
We will mine the transaction data with the tool MINERful [CM15]. This tool will an-
alyze the transaction from *.xes files that are part of the BPI challenges and gives us
output rules for the formalism Declare [DM22]. This is a formalism, however, which is
more complex than the logic programs we are looking at in our framework. Among
other things Declare takes timing into account in most templates, which we cannot rea-
sonably represent with our encoding. All possible rule types for Declare are shown in
Figure 10. By looking at this table, we can see that we can only reasonably transfer a
small subset of templates into our encoding. We have chosen to include the templates
“Response” and “NotResponse” since they are the most straightforward but should
still give us a reasonable rule base. A brief overview of how MINERful works can be
found on its GitHub Wiki5 with a more detailed explanation in the corresponding pa-

4https://github.com/tehmischi/qi-encoding-sat
5https://github.com/cdc08x/MINERful/wiki
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Figure 6: BPI2020 - DomesticDeclarations output example

per [CM15]. As we do not want to go into much detail here, we basically have the
three relevant parameters Support, Confidence Level and Interest Factor, that we need to
specify when running MINERful. Summarized in a simplified manner this means that
a combination of these values determines how likely it is that a rule is relevant for us
and correct. The formal definitions and a more extensive explanation can be found in
[CM15].

5.2.2 Artificial Data

We will use the following artificial rule bases:

B1 ={c← a, b ; ¬c← a, d ; d← b}
B2 ={b← a ; c← b ; ¬c← a}
B3 ={e← a ; ¬e← c ; c← a ; e← b}
B4 ={c← a ; ¬c← a, b}
B5 ={c← a, f ; ¬c← h, d ; d← b ; f ← b ; h← a}
B6 ={d← a ; e← b ; f ← c ; j ← d, e, f ;

g ← a ; h← b ; i← c ; ¬j ← g, h, i}

5.3 Results

First, we will look at the results for our artificial rule bases to get an initial impression.
Then we will see how our approach can handle real-world data. The shown results
in Table 4 were achieved with the Glucose as the default solver for our program. The
other solvers (MiniSat and MiniCard) were even about 5-10 % faster for all rule bases
on average. As can be seen in Table 4 the brute force approach runs into its limits even
with relatively small rule bases like B6, where finding an issue already takes longer
than 40 minutes compared to the 64ms of our SAT solving. The number of variations
that have to be tried in the brute force increases exponentially with the input variables

25



Figure 7: Benchmark output for B1

Rule Base Result SAT Brute Force BF full

B1 Quasi-Inconsistent 42ms 442ms 996ms
B2 Quasi-Inconsistent 40ms 133ms 266ms
B3 Quasi-Inconsistent 41ms 694ms 2211ms
B4 Quasi-Inconsistent 39ms 77ms 139ms
B5 Quasi-Inconsistent 50ms 10435ms 76772ms
B6 Quasi-Inconsistent 64ms 2478851ms > 2 days

Table 4: Results for artificial rule bases B1 - B6
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Rule Base #Rules #Literals Overall Combinations

B1 3 5 65,536
B2 3 4 16,384
B3 4 5 262,144
B4 2 4 4,096
B5 5 6 4,194,304
B6 8 11 274,877,906,944

Table 5: Possible Combinations for Brute Force

Rule Base Result SAT Brute Force BF full

DomesticDeclarations Not Quasi-Inconsistent 42ms 60687ms 60687ms
InternationalDeclarations Not Quasi-Inconsistent 51ms > 1 day > 1 day
PermitLogs Not Quasi-Inconsistent - - -
PrepaidTravelCost Not Quasi-Inconsistent 41ms 37697ms 37697ms
RequestForPayment Not Quasi-Inconsistent 40ms 1422ms 1422ms

Table 6: BPI 2020 - support 0.95, confidence 0.5, interest 0.125

and rules. As we have two power sets each for variables and rules which themselves
have a cardinality of 2n the number of possible combinations is:

#Combinations = 4#Rules ∗ 4#Literals

Table 5 shows the number of possible variations for our rule bases to get a better im-
pression of how massive the growth actually is. As input size increases exponentially
so does the required computation time, although slightly slower. However, this still
makes the brute force approach unfeasible for almost any practical application. As a
next step, we try out our benchmark with all data sets from the BPI 2020 Challenge.
To mine these rules we used the options support 0.95, confidence 0.5 and interest 0.125
since these were the general recommended values from the authors. Unfortunately, we
were not able to find Quasi-Inconsistencies for these data sets as can be seen in Table 6.
The brute force approach for the data set InternationalDeclarations was canceled after a
run time of about 24 hours. Roughly extrapolating from the results in Table 4 (where
the growth in the run time of full brute force check increases almost completely as fast
as exponential input size) and estimating this conservatively we expect it would take
at least 210 (exponential growth would be about 216) times longer than Domestic Decla-
rations. This would amount to more than 40 days to finish. We have seen that we are
already running into the limits of our brute force approach, but we still want to look at
more data - this time just with our SAT implementation. As we want to challenge our
program a bit more, we are now using the biggest data set available to us (BPI 2015)
and mine it with lower thresholds to get even more rules. As we can see in Table 7 even
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Rule Base Result Solving Time #Rules

BPIC15_1 Quasi-Inconsistent 281ms 150
BPIC15_2 Quasi-Inconsistent 534ms 285
BPIC15_3 Quasi-Inconsistent 393ms 220
BPIC15_4 Quasi-Inconsistent 297ms 190
BPIC15_5 Quasi-Inconsistent 463ms 213

Table 7: BPI 2015 - support 0.5, confidence 0.05, interest 0.02

Rule Base Result SAT Brute Force BF full

DomesticDeclarations Quasi-Inconsistent 50ms 6344ms 68312
InternationalDeclarations Quasi-Inconsistent 63ms - > 1 day
PermitLogs Not Quasi-Inconsistent - - -
PrepaidTravelCost Quasi-Inconsistent 41ms 484ms 36877ms
RequestForPayment Quasi-Inconsistent 45ms 283ms 4740ms

Table 8: BPI 2020 - modified data

with 200 rules our program still finishes the check in a reasonable time frame. How-
ever, we still have not found any Quasi-Inconsistencies in our real-world data, which
should really be there, as we have lots of rules and have chosen very low limits for rule
inclusion. Looking at the base data (also located in the examples folder in the repos-
itory) we actually notice, that just with mining Declare BPI data with MINERful and
Templates Response and NotResponse we will never get a Quasi-Inconsistency since ei-
ther MINERful or the BPI data never returns NotResponse or negated rule heads at all.
As it is a necessary requirement for Quasi-Inconsistency to have opposing rule heads,
we will never be able to find any Quasi-Inconsistency this way! This is true for all other
BPI data sets that were mentioned before as well, so will not look at them further, since
they provide similar results.

Due to these results and our realization that we will not find Quasi-Inconsistencies
with these data sets and mining techniques, we tried to manipulate the data, so that
we construct a (false) inconsistent rule base from our real data so that we can test our
algorithm. So far with the real data, we have only seen how fast the program will
determine that a rule base is consistent wrt. Quasi-Inconsistency. However, we also
want to know how fast actual issues can be found. We use “wrong” manipulated data
for this, as a more complex approach (or a semantic analysis of the rules) would be out
of scope for this paper. To do this we randomized the handling of the Declare templates
Response and NotResponse in our Declare parser. This means that for all rule heads it is
now randomly chosen if they are negated or not. Like this we can at least get an idea, of
how fast the SAT-solving techniques finds issues compared to the brute force method.
The results of one run of these tests are on display in Table 8. Due to the randomness
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of the rule selection, these are obviously not exactly reproducible each time, but the
overview just serves to give a general idea, while all of this should be taken with a
grain of salt. As a final test of our SAT implementation, we used the largest single data
set BPIC15_2 with support 0.1, confidence 0.01 and interest 0.01 to get a rule base of 615
rules. Our algorithm was able to detect the consistency of this rule base in only 961ms.

5.4 Discussion

As we have seen in subsection 5.3 the idea to encode DEC-QI into SAT has been really
quite successful. It delivers a significantly improved performance compared to tradi-
tional approaches and is able to solve the problem for rule bases that would be out of
reach for standard approaches due to the exponential increase of input size and parame-
ters. Our brute force approach ran into its limit really early even with very easy artificial
rule bases. Unfortunately for the practical applications, we were only able to analyze a
very limited amount of subset of templates for the formalism DECLARE. This led to the
problems we described that we were not able to find any Quasi-Inconsistencies in our
real-world data. Also, this type of problem made other, better approaches than brute
force not meaningful to even try. For example, the improved graph-based algorithm in
[Cor20] checks whether opposite literals exist in rule heads in its very first step, which
is exactly the problem with our data, so it would immediately terminate in each case.
Still, despite these problems, the results from just looking at the run times of the SAT
solving part seem pretty impressive.

6 Outlook

In this thesis, we have established that a SAT-based approach to inconsistency detection
is possible and at least a viable alternative to more traditional ways of inconsistency
analysis. However, we were only able to test the implementation on very limited data
sets that were not optimal for our comparison. Therefore there are still a lot of open
questions that need to be answered. The first and most obvious step for future work
to build on this paper in our opinion would be to try to extract more meaningful real-
world data to benchmark our implementation against. A good comparison algorithm
would be the already mentioned graph algorithm from [Cor20]. Multiple ways come to
mind, how “better” data could be found. One way would certainly be to try to include
the other non-temporal templates from Declare in the parser. Another idea could be to
semantically analyze the data generated by MINERful since some inconsistencies could
be found that way, e.g. by transforming facts that mention “DENIED” or “REJECTED”
as found in BPI 2020 to ¬ “APPROVED”. What could be also tried is just looking for
other ways to parse this or other data to get a rule formalism other than Declare that is
more similar to our logic program based rule format. Furthermore, it might be possible
to include some of the easier temporal templates into our encoding by modifying it.
However, at first glance, this looks much harder than just using different data. Once
reasonably complex and large real data sets have been found one could also try to use
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Figure 8: screenshot of the output of mined BPI2020 data

our program to benchmark different SAT solvers with this real-world data as most SAT
benchmarks are synthetic ([BHM21]).
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Figure 10: Declare Templates as shown in [DM22]
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Figure 11: SAT solving competition winners comparison
https://twitter.com/ArminBiere/status/1288132283443142661/photo/1

Figure 12: Distribution for Figure 11 instances
https://twitter.com/ArminBiere/status/1288552471141507073/photo/1

37

https://twitter.com/ArminBiere/status/1288132283443142661/photo/1
https://twitter.com/ArminBiere/status/1288552471141507073/photo/1

	Introduction
	Motivation
	Chapter Overview

	Preliminaries
	Propositional Logic
	Business Rules
	Quasi-Inconsistency

	Encoding
	Notation
	Consistency Fact Base
	Set Inclusion
	Activation
	Minimal Activation
	Consistency Rule Base To Fact Base
	Inconsistency
	Summary

	Implementation
	Program Overview
	Input
	Output
	Parameters

	Evaluation
	Brute Force Algorithm
	Data
	Mining Real-World Data
	Artificial Data

	Results
	Discussion

	Outlook

