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Abstract

This bachelor’s thesis proposes an algorithm which combines the 3-valued model
checking of a system model with partial information, represented by a KMTS, against
a CTL formula with the pinpointing of any eventually existing conflicts due to the
partial information. The model checking is based on the Contraction Model Check-
ing introduced by Ribeiro and Andrade [RA15]. The proposed procedures for de-
termining conflicting parts by Guerra et al. [GAW13] are used for pinpointing con-
flicts within the model. This algorithm is also implemented as a Java program with
a KMTS and a CTL formula as input. In case of a indefinite result, the program
lists the responsible parts of the KMTS as Failure Witnesses. The formal definitions
of CTL, Kripke structures and KMTS, plus all definitions necessary for the imple-
mentation of Contraction Model Checking and the Failure Witnesses logic are intro-
duced. Based on these, the implementation approach for the algorithms is devel-
oped and some of the most important parts of the Java implementation are shown.
The thesis is concluded with some experimental test runs of the Java program as
well as an evaluation and presentation of the most important results and findings
of these runs. Finally, a brief outlook is given on how future improvements, be it
extensions to the definition of Failure Witnesses or even an automatic revision of
the input model, could increase the use of the application.
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1 Introduction

Many applications of artificial intelligence (AI) have the need to make decisions
about meaningful actions despite incomplete knowledge of the surroundings. In a
multi-agent scenario, for example, an agent often only knows parts of his environ-
ment. Since these knowledge gaps may influence the agent's decisions, it is impor-
tant to be able to explicitly show for a specific point in time which information an
agent has and which not. If the agent later on receives new pieces of information,
he will have to check whether these contradict with his previous knowledge. If they
were contradictory, the agent should be able to identify the problematic parts of his
body of knowledge and, if necessary, eliminate them. Thus, the maintenance of a
body of knowledge over a certain period of time is made up of consistency checks
and the identification of specific knowledge conflicts.

But not only lack of knowledge can be the reason for working with partial infor-
mation system models. Another use case can be doing this entirely intentionally
having one abstract system model that represents a whole product line of this sys-
tem to minimise the cost of variations. Therefore, the model differentiates which
features or components of a system are optional, alternative or mandatory. If you
take a vending machine, for example, there are many different types of vending
machines for various purposes. Vending machines for tea, coffee, cacao, soup and
more in every possible combination. All these machines can be represented by a
common model that satisfies all the same rules. Nevertheless, this model can have a
variable part that represents those aspects that will be used to adjust the machine to
the needs of different customers [FG08]. One dispenses coffee, another tea, one can
be fed by credit cards or banknotes, another only by coins. The procedure is called
product family engineering.
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Figure 1.1: Highly simplified KMTS of a vending machine. Dashed arrows for gen-
uine may-transitions, solid arrows for must-transitions.

A further example is the world of system development. In early phases generally
not all information about the planned system is available which means there is only
partial information to work with. In addition, a model often represents only a spe-
cial view on a system. Sometimes it is wanted to analyse a system from different
perspectives. For example, an end user of an application will have different require-
ments as more technically involved people. Therefore, collecting these requirements
from these two groups independently will probably lead to several quite different
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models but also cover a good amount of needs. Bringing together these views in one
general system model will surely not come off without some incompatibilities. Not
immediately trying to solve this problems, but to live some time with them to find
better solutions, brings us back to the importance of representing partial informa-
tion in a system model [BMPAFV04]. Even at such an early stage, the model should
be able to be formally verified against the requirements of the system and, when
a desired property is not satisfied, the affected part of the model should be clearly
identifiable [GAW13].

1.1 Related Work

In general, a system model needs a formal structure to represent the underlying sys-
tem. An example for that is the Kripke structure which we will use in this thesis. The
Kripke structure is named after the American philosopher and logician Saul Kripke
[Bun15] who proposed it in the early 1960s as a transition system [Kri63]. A Kripke
Structure is basically made up by states, transitions and a labelling function for the
states. A special form of Kripke structure, which is often used to represent indeter-
mination within the model, is called a Kripke Modal Transition System (KMTS) first
proposed by Huth et al. [HJS01]. A KMTS allows indetermination in state labels
and in transformations. In contrast to a Kripke structure, it consists of two kinds of
transitions, must- and may-transitions. A must-transition is a mandatory transition
absolutely necessary for the structure, while may-transitions may or may not exist.
Also, labels of states can be left empty in a KMTS to show the indetermination at
this point. Figure 1.1 shows a simplified vending machine KMTS model that can
be used as a blueprint of a coffee or a tea machine. Additional may-transitions for
cacao or soup were implied and additional states and transitions for pouring sugar
or milk can easily be thought of as extensions.

The logic for the formulas representing the system requirements in this thesis will
be written in CTL (Computation Tree Logic). Given a Kripke structure K, an initial
state s0 and a CTL formula φ model checking solves the following problem: does
K satisfy φ starting from s0? Ribeiro and Andrade [RA15] have introduced a spe-
cial variant of model checking called Contraction Model Checking to check, instead
of only partial information available, whether a model represents the requirements
of a system. We will use Contraction Model Checking to verify whether a given
model satisfies a given CTL property. Contraction Model Checking can directly be
applied to a KMTS representing partial information. Ribeiro and Andrade have
used the work of Grumberg et al. [GLLS07] and Shoham and Grumberg [SG03] as a
reference for their Contraction Model Checking. Shoham and Grumberg [SG03], on
the other hand, exploit and extend Stirlings game-based framework [Sti01] for CTL
model checking. The 3-valued semantics used are based on the work of Bruns and
Godefroid [BG99]. Additionally, we use the Failure Witnesses detection as proposed
by Guerra et al. [GAW13] to locate exactly the specific problems in a model.

3



1.2 Scope

Temporal knowledge bases as background of a system model are seldom complete
and they often contain only partial information. This can cause conflicts and these
conflicts should be exactly located, because only located conflicts can be solved.
Whatever the reason is for the lack of definite information about a system, the parts
of the model that cause the problems have to be pointed out. In this thesis, the
model checking problem of such a system model will be connected with the task of
exact pinpointing. The goal is to design and implement a complete algorithm for the
combination of model checking with only partial information and pinpointing the
conflicts which eventually occur because of the partial information. To achieve this
goal, a Java program is designed and implemented. This program exactly captures
the Contraction Model Checking of Ribeiro and Andrade [RA15] extended by the
error analysis in Guerra et al. [GAW13]. It already contains some commonly used
optimisations for model checking and will be evaluated against selected experimen-
tal constellations of models and formulas which we call use cases.

1.3 Overview

With regards to the organisation of this thesis, in Section 2 (Preliminaries) we present
CTL, Kripke structures and introduce KMTS. Model checking, especially Contrac-
tion Model Checking, will be introduced in Section 3 (Contraction Model Checking).
Section 4 (Pinpointing Conflicts) is about showing the conflicting areas using so-
called Failure Witnesses. In Section 5 (Implementation Approach) we explain the
approach to implement such algorithms including some ideas about starting points
for eventually necessary performance optimisations, be it regarding time or space.
Also the actual implementation will be presented there. Section 6 (Experiment and
Evaluation) evaluates the implementation with the help of different use cases. Fi-
nally Section 7 (Discussion and Conclusion) completes the topic by discussing the
implementation and some issues that occurred. Appendix A contains all the input
files for the experimental use cases of Section 6 (Experiment and Evaluation) and
some of the generated log files.
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2 Preliminaries

In this section you will be guided through the basics needed for the algorithms men-
tioned above. It starts with some background information about CTL consistency
checks and continues with model checking in general and the intended special ver-
sion of Contraction Model Checking (CMC).

2.1 Computation Tree Logic

The base of our logic is temporal logic. It covers all reasoning approaches about
time and temporal information as well as their formal representation within a logi-
cal framework [GR22].

"The idea of temporal logic is that a formula is not statically true or false in a model,
as it is in propositional and predicate logic. Instead, the models of temporal logic
contain several states and a formula can be true in some states and false in others".
Since "Temporal logics have a dynamic aspect to them [...] they depend on the time
point inside the model"[HR04].

Two well known temporal logics are Linear-time Temporal Logic (LTL) in which
time is linear evolving along a path and Computation Tree Logic (CTL) in which
the model of time is a tree structure with branching paths. In LTL the future is not
determined as in CTL. However, LTL considers different possible futures, each with
one possible path, any of which might be the actual future. But this is not exactly
what we want for our model checking. We want one future with different paths,
each of which could be the actual future path realised and not different futures. We
want to be able to move in a different direction at any given moment. That is what
CTL offers [HR04, Eme91].

2.1.1 CTL Syntax

To represent the requirements of a system, in this thesis, we will use temporal logic
formulas written in CTL. There are different ranges of operators used for CTL for-
mulas and there are different forms to define the CTL syntax. The following defini-
tions specify the form and scope of how we exactly will employ CTL. The following
Backus Naur form is sometimes also called the standard form.

Definition 2.1 [HR04] A CTL formula φ in Backus Naur form, where p is an atomic propo-
sition, is defined as follows:

φ ∶∶= ⊺ | � | p | (¬p) | (φ ∨ φ) | (φ ∧ φ) | EXφ | AXφ| EFφ | AFφ | EGφ |
AGφ |E(φUφ) | A(φUφ) | E(φRφ) | A(φRφ) | (φ→ φ)

The symbols ⊺ and � are CTL formulas always true respective false. Likewise, all
atoms p and all literals l are CTL formulas too. All in the implementation of Section
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5 as input allowed operators are included in this definition.

Definition 2.2 [RA15] A CTL formula φ in negation normal form, where l is a literal, is
defined as follows:

φ ∶∶= ⊺ | � | l | (φ ∨ φ) | (φ ∧ φ) | EXφ | AXφ | E(φUφ) | A(φUφ) | E(φRφ) |
A(φRφ)

"Excluding the conjunction and the disjunction, all the operators must be bound by
path operators" E (a path exists) respective A (all paths) [RA15]. See details e.g. at
Huth and Ryan [HR04]. EX means φ holds in some next state. AX means φ holds
in every next state. E(φUφ′) means φ holds in some path until φ′ holds. A(φUφ′)
means φ holds in all paths until φ′ holds. E(φRφ′)means φ′ holds in some path until
it is released by a holding φ. A(φRφ′) means φ′ holds in all paths until it is released
by a holding φ. All operators that can be handled by the game rules of Contraction
Model Checking in Section 3 are included in this definition.

A Comparison of the two CTL definitions shows: not all operators allowed for in-
put can be dealt with in Contraction Model Checking. In other words, not for all
of these operators exists a game rule in Definition 3.1. Nevertheless, we still want
to allow those inputs, because some of this operators concerned are very common.
Fortunately, all the operators from Definition 2.1 that are missing in Definition 2.2
can be expressed in terms of the other operators from Definition 2.2. The affected
operators and their possible implementation are as follows:

F (some future state) can be implemented as [HR04]:

AFφ ≡ A(⊺U φ)
EFφ ≡ E(⊺U φ)

G (all future states) can be implemented as [HR04]:

AGφ ≡ A(�Rφ)
EGφ ≡ E(�Rφ)

→ (implies) can be implemented as [Ren23]:

φ1 → φ2 ≡ ¬φ1 ∨ φ2

2.1.2 2-valued CTL Semantics

CTL formulas are interpreted over transition systems. If we assume a model of such
a system consisting of sets of states, relations and labels, the definition of a CTL
semantic with only true and false will look like Definition 2.3. We will see later how
a definition for a system that maps partial knowledge might look like.
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Definition 2.3 [HR04, Fin12] (CTL Semantics). Let M = (S, R, L) be a model for CTL
where S is a finite set of states, R ⊆ S × S a transition relation over S, L a labelling function
over states, s ∈ S, s → s1... a path starting from s ∈ S and φ a CTL formula. The relation
M, s ⊧ φ is defined by structural induction on φ:

1. M,s ⊧ ⊺ always
2. M,s ⊧ � never
3. M,s ⊧ l ⇔ l ∈ L(s)
4. M,s ⊧ φ1 ∨ φ2 ⇔M,s ⊧ φ1 or M,s ⊧ φ2

5. M,s ⊧ φ1 ∧ φ2 ⇔M,s ⊧ φ1 and M,s ⊧ φ2

6. M,s ⊧ AXφ ⇔ ∀s→ si ∈ R ∣M,si ⊧ φ
7. M,s ⊧ EXφ ⇔ ∃s→ si ∈ R ∣M,si ⊧ φ
8. M,s ⊧ E(φ1Uφ2) ⇔ ∃s→ s1... ∣ ∃k ∈ N ∣M,sk ⊧ φ2∧∀i ∈ {0, ..., k−1} ∣M,si ⊧ φ1

9. M,s ⊧ A(φ1Uφ2) ⇔ ∀s→ s1... ∣ ∃k ∈ N ∣M,sk ⊧ φ2∧∀i ∈ {0, ..., k−1} ∣M,si ⊧ φ1

10. M,s ⊧ E(φ1Rφ2) ⇔M,s ⊧ ¬A(¬φ1U¬φ2)
11. M,s ⊧ A(φ1Rφ2) ⇔M,s ⊧ ¬E(¬φ1U¬φ2)

2.2 Kripke Structures

CTL assumes a representation of the future over a computation tree that can best
be pictured by Kripke structures. A Kripke structure consists of a set of states con-
nected by transitions. Each state can be labeled by a subset of a set of atomic propo-
sitions.

Definition 2.4 [GAW13] A Kripke structure is a tuple K = (AP,S,S0,R,L) where:

• AP is a set of atomic propositions
• S is a finite set of states
• S0 ⊆ S is a set of initial states
• R ⊆ S × S is the transition relation over S
• L ∶ S → 2AP is a labelling function of truth assignment over states

m
s0

¬m
s1

Figure 2.1: Kripke structure with two states s0, s1 and two transitions.

As an example, the Kripke structure shown in Figure 2.1 would, for an initial state
s0 not satisfy the CTL formula φ = EXm, because starting from s0 there will never
exist a path to a next state labelled with "m", but it would satisfy e.g. φ = A(mU¬m),
because s0 will satisfy with label "m" until on all possible paths s1 is reached which
satisfies with label "¬m".
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2.3 Kripke Modal Transition System (KMTS)

As already revealed above, the capability of handling partial information within a
system model is extremely important. To express the presence of partial informa-
tion, i.e. an existing lack of information within a system, Guerra et. al. [GAW13]
have proposed to use a KMTS, because a KMTS allows indetermination in state la-
bels and in transformations.

Definition 2.5 [GAW13] A KMTS structure is a tuple K = (AP,S,S0,R
+,R−, L) where:

• AP is a set of atomic propositions
• S is a finite set of states
• S0 ⊆ S is a set of initial states
• R− ⊆ S × S is a transition relation over S
• R+ ⊆ S × S is a transition relation over S with R+ ⊆ R−

• L ∶ S → 2Lit with Lit = AP ∪ {¬p ∣ p ∈ AP} is a labelling function that associates
each state in S with a subset of Lit such that for all states s ∈ S and p ∈ AP at most
one of p and ¬ p occurs

In the Definition 2.5 above R+ corresponds to must-transitions and R− corresponds
to may-transitions. Contraction Model Checking requires a KMTS with exactly one
initial state. So, for us, the set S0 of initial states will always contain exactly one
state. Incidentally, the same applies to our Kripke structures. However, this does
not imply any limitation of the generality of our model checking and calculating
regarding Kripke structures or KMTSs. Kripke structures are nothing more than
the variant of a transition system with the semantics of a non-deterministic finite
state machines [AY01] used for logical modelling, where the nodes are called states.
State machines with multiple, let us say k, entry nodes can easily be replaced by a
structure of k state machines, each with a single entry node [BGR01]. Therefore, we
can express everything that a KMTS with multiple initial states could express with
several of our KMTSs with only one initial state.

As a further restriction, we want to specify that a KMTS may not have multiple
transitions with the same outgoing and incoming states. Thus, the transition Rela-
tions R− and R+ have to be sets of transitions. That is important because otherwise
our algorithms would not be able to distinguish multiple transitions from one state
to another. Transitions in Kripke structures do not have any labels, keys or similar
features.

As already mentioned, a KMTS can explicitly represent not only information about
states and transitions between these states like a Kripke structure, but it can also
mark unknown information about state labels and transitions. The transitions marked
this way then maybe exist or maybe not. Likewise, a KMTS itself can be represented
by a set of Kripke structures, called the expansion of the KMTS. This set consists of
one structure for every possible shaping the underlying model can take on. Thus,
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the size of the set is 2m with m as the number of existing indeterminations.

To be able to express the presence of partial information also in the results of our
model checking, Shoham and Grumberg [SG12] proposed 3-valued-model-checking.
This includes beside true and false a third truth value called indefinite. One method
to check such a KMTS would be to check all the structures of the expansion, the
sometimes called CTL models of the KMTS, individually and calculate the result for
the KMTS as is presented in detail by Guerra et al. [GAW13]:

• all CTL model checks are true ⇒ KMTS check is true
• all CTL model checks are false ⇒ KMTS check is false
• otherwise ⇒ KMTS check is indefinite

m
s0 s1

Figure 2.2: KMTS with two indeterminations. The label of s1 is indefinite, also the
transition from s1 to s1. The dashed arrow represents a genuine may
transition, the solid one represents a must transition.

The Kripke structure from Figure 2.1 represents one of the 22 = 4 Kripke structures
respective CTL models of the expansion of the KMTS in Figure 2.2.

m
s0

m
s1

m
s0

¬m
s1

m
s0

m
s1

m
s0

¬m
s1

Figure 2.3: Expansion set of the KMTS in Figure 2.2.

Partial sets of this expansion are called instances of the KMTS.

2.3.1 Instances of a KMTS

An instance of a KMTS M represents a subset of Kripke structures from K(M). In-
stances are the basis for the set operations in Section 3.3.1 that will lay the foundation
for the Contraction Model Checking. They can be addressed respective generated
via a sequence of change operations on M.

Definition 2.6 [RA15] A KMTS M(X) denotes the instance of a KMTS which was created
by applying a set X of changes on M .

9



There are three primitive change operations to be used on a KMTS to generate KMTS
instances [RA15].

1. P1(s, s′) deleting a genuine may transition
2. P2(s, s′) transforming a may transition into a must transition
3. P3(s, l) adding a label to a state, when there is not already a label of this

kind assigned to it

Not all combinations of changes on a KMTS are possible. So-called complement
operations exist which a KMTS cannot satisfy at the same time [RA15].

Definition 2.7 [RA15] Let p be a primitive operation, the complement operation of p de-
noted by ¬p is defined as follows:

(i) p = P3(s, l) iff ¬p = P3(s,¬l)
(ii) p = P1(s, s′) iff ¬p = P2(s, s′)

Furthermore, we note two sets of changes as not compatible if both have at least one
complement operation of the other one.

Definition 2.8 [RA15] Let p be a primitive operation. A set X of changes is not compatible
with a set Y of changes, denoting by:

X ≄ Y ⇔ ∃p ∈X ∣ ¬p ∈ Y .

2.3.2 3-valued CTL Semantics

In order to achieve 3-valued model checking results, we need 3-valued CTL seman-
tics. In Ribeiro and Andrade [RA15] all definitions including derivations can be
found necessary to build a complete 3-valued CTL semantic with respect to a KMTS.
There is also a table that lists all these 3-valued CTL semantics applicable for Con-
traction Model Checking.

The representation of these semantics is norm-based as introduced by Grumberg
[Gru10] and continued by Guerra et al. [GAW13]. From this CTL semantics, Guerra
et al. [GAW13] as well as Ribeiro and Andrade [RA15] derived a norm for CTL
formulas on states of a KMTS regarding to an expansion of this KMTS. Deviating
from them, we want to use the symbols ⊺ and �, which are usual in CTL, for true
respective false (see Definition 2.1 and Definition 2.2). For indefinite we define �⊺.

Proposition Let M be a KMTS, K(M) the expansion of M and φ a CTL formula, then

∥φ∥M(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ iff ∀k ∈K(M) ∣ k, s ⊧ φ
� iff ∀k ∈K(M) ∣ k, s ⊭ φ
�⊺ otherwise

The proof for this proposition follows straight from the semantics of KMTS expan-
sions.
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3 Contraction Model Checking

3.1 Game Theory

The core idea of the game theory, on which contraction model checking is based, is
that not loosing is better than winning (see also [GLLS07] for a more detailed expla-
nation). For the game two players are defined. A player ∀ who tries to prove the
formula wrong. As well as a player ∃ who tries to verify the formula. The game
used for the model checking approach consists of a formula which is to be checked
φ. And a graph of configurations which is of the type s ⊢ ψ. s is a state of the
model and ψ is a subformula of φ. The configurations are determined via the de-
composition of the subformulas according to the game rules, considering the states
and transitions of the KMTS model.

All players move from a configuration to another configuration according to their
strategy. A so-called strategy is a function between the configurations of a player
and all the configurations of a game graph. A winning strategy of a player makes
this player win the game no matter what the strategy of the other player involved
in the game is. When both players win, it means that they both have a non-losing
strategy and the game results in � [GAW13].

The model checking approach consists of a game M , s ⊢ φ played over a board
by two players ∃ve and ∀belard. The game rules define the possible moves each
player can make. The board is constructed according to these rules [RA15].

Now, that we know on what the model checking approach is based on. The next
question to answer would be, what actually is model checking?

Model checking is a successful approach for the verification of hardware and soft-
ware in industry. In other words for verifying whether a system model M satis-
fies a specification φ written as a temporal logic formula. "[...][I]t is a computer-
assisted method for the analysis of dynamical systems that can be modeled by state-
transition systems" [CHV18]. Thus, a system model in this context is an abstraction
of a real world problem. Many model checking tools, and most of the educational
approaches to model checking, use Kripke structures to represent their system mod-
els as shown above [CHV18].

An exponential growth in the number of Kripke structures to be checked is one
of the problems of the above mentioned method for an increasing number of inde-
terminations within our model. A solution could be doing the consistency checks
not for the expansion set but directly for the original KMTS. Another problem is that
the common model checking techniques, for example Grumberg et al. [GLLS07], do
not exactly capture the Guerra et al. interpretation of partial information within a
KMTS.
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Both of these problems can be tackled using the Contraction Model Checking intro-
duced by Ribeiro and Andrade [RA15]. In that work Ribeiro and Andrade proposed
the theory of the Contraction Model Checking but without presenting an algorithm
strategy for implementation. Because, according to Ribeiro, the complexity of model
checking with the semantics of Contraction Model Checking is NP-complete1 , it is
advisable to do some investigations on an efficient way of implementation. We will
get to that later in Section 5 when we talk about implementation approaches.

m
s0 s1

Figure 3.1: KMTS M to be model checked with CTL formula for initial state
s0 ⊢ ¬m ∨EX(m).

3.2 The Arena

This model checking technique is based on a game theory approach and defines
a colouring function over a previously build game arena, depending on the given
KMTS and a given CTL formula. In this case the game arena is a tree structure
where the nodes are called configurations. Each configuration can be seen as a pair
of CTL formula and state where the root configuration pictures the given formula.
All the other configurations are more and more decomposed subformulas of this
root formula. This decomposing follows the game rules for the model checking
game presented by Ribeiro and Andrade [RA15] as shown in Definition 3.1. The
links between these configurations are called edges. Depending on the transitions
between the concerned states we also distinguish for the edges between may and
must edges. In Figure 3.2 we see a may edge between the configurations c2 and c3
marked by the dashed arrow.

s0 ⊢ ¬m ∨EX(m)c0

s0 ⊢ ¬mc1 s0 ⊢ EX(m)c2 s1 ⊢m c3

Figure 3.2: Example Arena for the example KMTS of Figure 3.1.

1apud Ribeiro (original author) in personal communication about the cited work, 11.28.2022
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Definition 3.1 [RA15] The game rules are defined as follows:

(1) s ⊢ ψ0 ∨ ψ1

s ⊢ ψi
: i ∈ { 0,1 } (∃ve)

(2) s ⊢ ψ0 ∧ ψ1

s ⊢ ψi
: i ∈ { 0,1 } (∀belard)

(3) s ⊢EX φ
t ⊢ φ : (s,t) ∈ R− (∃ve)

(4) s ⊢AX φ
t ⊢ φ : (s,t) ∈ R− (∀belard)

(5) s ⊢A(φ1Uφ2)

s ⊢ φ2 ∨ (φ1∧AXA(φ1Uφ2))
(∃ve)

(6) s ⊢E(φ1Uφ2)

s ⊢ φ2 ∨ (φ1∧EXE(φ1Uφ2))
(∃ve)

(7) s ⊢A(φ1Rφ2)

s ⊢ φ2 ∧ (φ1∨AXA(φ1Rφ2))
(∃ve)

(8) s ⊢E(φ1Rφ2)

s ⊢ φ2 ∧ (φ1∨EXE(φ1Rφ2))
(∃ve)

3.3 The Colouring

A colouring function is defined to map each configuration of the arena to a truth
value. The truth value set for the initial or root configuration is then the model
checking result. The colouring function is defined over a so-called maximum con-
traction function δ which can be calculated bottom up for every configuration in the
arena using the definitions made by Ribeiro and Andrade [RA15].

In order to be able to use the colouring function Definition 3.11, in which δ is called
maximum contraction, we first have to look at some basic operations.

As mentioned, we interpret a KMTS as a set of Kripke structures respective CTL
models (see Figure 2.3 in Section 2.3). In order to avoid having to decide for every
single one of these Kripke strcutures whether a KMTS satisfies a given CTl prop-
erty, we can check the CTL properties directly on the KMTS M instead of doing
this on the extensions K(M). To be able to do this, we need a couple of operations
over a KMTS which were first introduced by Ribeiro and Andrade [RA15]. These
operations will be presented in the following section.

3.3.1 Basic Set Operations

Definition 3.2 [RA15] Let M,M1,M2 be KMTSs, X1 and X2 two sets of changes, such
that M1 ⊑M , M2 ⊑M and M1 = M(X1), M2 = M(X2). We define the operations intersec-
tion, union and difference with respect to KMTSs as:
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Union: M1 ⊔M2 = {M1,M2}

Intersection: M1 ⊓M2 =
⎧⎪⎪⎨⎪⎪⎩

∅, iff X1 ≄X2

{M(X1 ∪X2)}, otherwise

Difference: M1 /M2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{M1}, iff X1 ≄X2

⋃
pi∈(X1/X2)

{M(X1 ∪ {¬pi})}, otherwise

Sometimes a set of Kripke structures represented by two KMTSs can also be repre-
sented by a single KMTS whose extensions do not contain all of the original Kripke
structures. One can define a contraction operation, which is a special kind of union
of the original two KMTSs, that creates this single KMTS. If two KMTSs cannot be
contracted into one single KMTS, the result of the contraction operation will equal
the union in Definition 3.2.

Definition 3.3 [RA15] Let M be a KMTS, M1 and M2 instances of M generated, by the
sets of changes X1 respective X2. The contraction operation, denoted by M1 ⊔+ M2, is de-
fined as:

M1 ⊔+ M2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{M(X1 ∩X2)}, iff X1 ⊆X2 or X2 ⊆X1 or

∃p ∈X1 s.t. ¬p ∈X2 and

X1 / {p} =X2 / {¬p}
{M1,M2}, otherwise

In order to be able to deal with a set of Kripke structures we need a KMTS which
represents the extensions of these Kripke structures. But sometimes it is not possible
to find one single KMTS that corresponds. In this case, we need a set of KMTSs and
this is why we need to introduce a new term, the Partition Set.

Definition 3.4 [RA15] Let M be a KMTS and Γ a set of instances of it. Γ is a Partition Set
(PS) of M iff ∀M1,M2 ∈ Γ | M1 ⊓M2 = ∅.

Definition 3.5 [RA15] Let Γ and Γ′ be two sets of instances of a KMTS M . Γ and Γ′ are
equivalent, denoting by:

Γ ≡ Γ′, iff ⋃
Mi∈Γ

K(Mi) = ⋃
Mi∈Γ′

K(Mi).

Definition 3.6 [RA15] Let Γ1 and Γ2 be two sets of instances of a KMTS. We define the
difference (//), intersection (E) and union (D) operations as:

Γ1 // Γ2 = ⋃
Mi∈Γ1,Mk∈Γ2

Mi /Mk

Γ1 E Γ2 = ⋃
Mi∈Γ1,Mk∈Γ2

Mi ⊓Mk
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Γ1 D Γ2 = Γ1 ∪ PS(Γ2 // (Γ1 E Γ2))

where PS(Γ) is a Partition Set equivalent to a set of instances Γ.

A special Partition Set is a Full Partition Set.

Definition 3.7 [RA15] Let M be a KMTS and Γ a set of instances of it. We say Γ is a Full
Partition Set (FPS) of M iff Γ is a Partition Set and K(M) = ⋃

Mi∈Γ
K(Mi).

In addition we introduce a Maximal Partition Set.

Definition 3.8 [RA15] Let M be a KMTS, Γ a PS of it and Γ′ a PS resulting from a finite
number of contraction operations on Γ:

Γ′ = ⊔+(Γ)

is a Maximal Partition Set (MPS) if there is no more contraction operation possible on Γ.

We note: If a PS is a FPS, then the corresponding MPS will consist of exactly one
KMTS, namely the KMTS M .

3.3.2 Maximum Contraction Function

Now that the basics are in place, we can go on to the calculation of the Maximum
Contraction Function. But before that we need a little definition about reachable
states.

Definition 3.9 [RA15] Let M be a KMTS. The set of states reachable from a state s ∈ S of M
is the set:

#—

S (s) = { s’∈ S ∣ s→ s’ ∈ R−}.

Definition 3.10 [RA15] Let M be a KMTS, s and s′ states of M , φ a CTL formula and G
the arena for the model checking M ,s0 ⊧ φ. Following from the game rules in Definition
3.1 (see the concerned rule numbers in round brackets) the Maximum Contraction Func-
tion δ is defined recursively, bottom up over the arena G starting at the atomic deadend
configurations, as follows [RA15]:

(0) δ(s ⊢ l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{M} iff l ∈ L(s)
∅ iff ¬l ∈ L(s)
{M({P3(s, l)})} otherwise

(1) δ(s ⊢ φ1 ∨ φ2) = ⊔+(δ(s ⊢ φ1) D δ(s ⊢ φ2))
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(2) δ(s ⊢ φ1 ∧ φ2) = ⊔+(δ(s ⊢ φ1) E δ(s ⊢ φ2))

(3) δ(s ⊢ EXφ) = ⊔+( .
s′∈S⃗(s)

δ(s′ ⊢ φ) E {M({P2(s, s′)})})

(4) δ(s ⊢ AXφ) = ⊔+( ,
s′∈S⃗(s)

δ(s′ ⊢ φ) D {M({P1(s, s′)})})

For the rules (5) to (8) no defined calculation of the Maximum Contraction Func-
tion δ is necessary. These rules offer no choice for the players of the model checking
game, because the configurations that follow from those rules only have one child
configuration each. Thus, the values of the function δ in these configurations are
always equal to the value defined in their respective child configuration.

3.3.3 Colouring Function

All that is left to do is assigning every result of the Maximum Contraction Function
δ to one of the possible truth values ⊺ (true) � (false) �⊺ (indefinite).

Definition 3.11 [RA15] Let M be a KMTS, s states of M , φ a CTL formula. The contrac-
tion model checking is a Colouring Function χ defined as follows:

χ(s ⊢ φ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ iff δ(s ⊢ φ) = {M}
� iff δ(s ⊢ φ) = ∅
�⊺ otherwise

The KMTS from Figure 3.1 using the arena of Figure 3.2 would, for the root con-
figuration c0, evaluate in the model checking result indefinite. This can be derived
bottom up by: Colouring Function χ of configuration c1 is �. χ of configuration
c3 is �⊺, thus, by game rule (3), Colouring Function χ of configuration c2 is also �⊺.
Following game rule (1) this results for the root configuration c0 in χ equals to �⊺,
i.e. indefinite.

3.4 Summary

Common model checking approaches, for example Grumberg et al. [GLLS07], do
not exactly capture the Guerra et al. interpretation [GAW13] of partial informa-
tion within a KMTS. They also do not work directly on a KMTS but on the Kripke
structures of the expansion. As the amount of partial information within a KMTS
grows, the number of these Kripke structures grows exponentially. Therefore, the
consistency checks should be done directly on the original KMTS and not on the
expansion set. Contraction Model Checking, on the other, hand works directly on
a KMTS and captures exactly the Guerra et al. interpretation of partial information
within a KMTS.
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4 Pinpointing Conflicts

When we do not know whether the given model satisfies the given CTL formula,
which means that the result of the model check against the KMTS is indefinite, we
want to know which indeterminables exactly are the problem. To achieve this, the
parts of the game arena that cause the problems, strictly speaking the edges, will
be determined based on the rules introduced by Guerra et al. [GAW13]. These
resulting edges are called Failure Witnesses.

Definition 4.1 [GAW13] The following 5 rules define the Failure Witnesses:

(1) A genuine may edge coming from a configuration of type AX coloured indefinite to
a child configuration coloured false or indefinite.

(2) A genuine may edge coming from a configuration of type EX coloured indefinite to
a child configuration coloured true or indefinite.

(3) A must edge coming from a configuration of type EX coloured indefinite to a child
configuration coloured indefinite.

(4) An edge coming from a configuration of type si ⊢ l ∧ φ to a child configuration si ⊢ l
coloured with indefinite.

(5) An edge from a configuration of type si ⊢ l ∨ φ where its child configuration si ⊢ l is
coloured with indefinite and the other child is coloured indefinite or false.

As it can be seen in Figure 3.2 the colouring of the arena results in indefinite for the
root configuration c0. If we now determine the Failure Witnesses who are causing
this, we will find out it is the genuine may edge from configuration c2 to c3 marked
with a dashed circle in Figure 4.1.

s0 ⊢ ¬m ∨EX(m)c0

s0 ⊢ ¬mc1 s0 ⊢ EX(m)c2 s1 ⊢m c3

Figure 4.1: The failure witness is marked with a dashed circle.

Relevant is rule (2). Assuming that the checked against CTL formula is an absolutely
necessary requirement of the system, you can now try to change the system model
in such a way that the requirement is met. In our case these two change operations
on KMTS M would bring the desired result: P2(s0, s1) → P3(s1,m). Guerra et al.
[GAW13] have also suggested some rules and algorithms how to automate these
adjustments of a system model to the determined failure witnesses. But after all, the
system model could also be correct at this point and the CTL formula would have to
be adjusted. Finally, whether this really make sense would have to be determined
in further investigations and could, therefore, be the subject of further research.
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5 Implementation Approach

In this thesis we implement the Contraction Model Checking [RA15] and use Failure
Witnesses [GAW13] for pinpointing conflicts. This section is intended to give you an
detailed insight about the implementation. Problems including solution approaches
for solving these issues are also discussed.

5.1 General Procedure

Initially, without taking into account any possible, maybe necessary, optimisations
the general approach of Algorithm 5.1 is to calculate the Maximum Contraction
Function δ (Definition 3.10) for each configuration of the game arena. Afterwards
we will convert this δ-function to a truth value out of true, false or indefinite and
that is what we call the colour of the configuration. The arena will be previously
build top down indexing the generated configurations in a depth first search order
starting with index zero. Index zero is equivalent to the root configuration which is
defined by s0 ⊢ φ. The top down approach is enforced by the game rules.

Algorithm 5.1 General Procedure

1: global variables
2: KMTS M
3: Formula φ
4: State initialState
5: Game game
6: Arena arena
7:
8: procedure GENERALPROCEDURE

9: (M, φ, initialState)← readInputData
10: game ← new Game
11:
12: createArena(null, φ) /* top down */
13:
14: for all created configurations c do /* bottom up */
15: colourConfiguration(arena, c)
16: end for
17:
18: if root configuration coloured indefinite then
19: for all edges do
20: determineFailureWitness
21: end for
22: end if
23: end procedure
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We will do the calculations bottom up. Bottom up means we can run through the
configurations from the highest index down to zero. In this order deadend config-
urations are always calculated first before their parent configurations, regardless of
their position in the tree as recommended by Guerra et al. [GAW13]. A deadend
configuration is a configuration that does not reach any other configuration. This
bottom up approach is enforced by the definition of the colouring function.

Assuming that the model checking result for the root configuration was indefinite,
the next step would be to determine the Failure Witnesses responsible for this re-
sult. To do this, it is sufficient to run once through all edges of the arena. Each edge
is checked against the five rules of Guerra et al. [GAW13] as listed in Definition 4.1.

5.1.1 Create the Arena

For a KMTS M, Formula φ, an initial state initialState and a current configuration c
Algorithm 5.2 creates the arena.

Algorithm 5.2 Create the Arena

1: return value type
2: boolean
3:
4: function CREATEARENA(Configuration currentConfig, Formula φ)
5: if currentConfig == null then
6: arena← new Arena
7: /* currentConfig is set to the root configuration */
8: currentConfig← new Configuration(’c0’, initialState, φ)
9: arena.configurations.add(currentConfig)

10: end if
11:
12: return φ.createConfiguration(game, M, c)
13: end function

Strictly speaking, calling createArena does not create the whole arena but adds a new
configuration to an existing arena. When it is the first call of the program run, two
configurations are added to a new arena, the root configuration directly and the next
configuration by the normal createConfiguration method of the concerned formula.
All calls, except the first one, are recursive calls out of the called createConfiguration
method. When the first call is finished, which means the first createConfiguration call
comes successfully back, the arena is fully set up.

5.1.2 Fixed Point Calculation

Let us now have a look at the calculations of the Maximum Contraction Function
δ itself. Doing it bottom up, as described, the calculation seems to be straightfor-
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ward and always deducible from the respective child configurations. Yet, because
of the apparently circular definitions of the game rules for the operators AU, EU,
AR and ER, it is not. For example, a configuration s ⊢ E(φ1Uφ2) will be decom-
posed for the arena to configuration s ⊢ φ2 ∨ (φ1 ∧ EXE(φ1Uφ2)). It is obvious
that after three more steps of decomposing, assumed we do not change the state
in the EX-configuration, we again reach a configuration with s ⊢ E(φ1Uφ2). This
is sometimes called the fixed point characterisation of CTL [HR04] because in case
of these operators an incremental fixed point approach is used to break the cycle.
Instead of adding an additional EU-configuration, we just attach an edge from the
current EX-configuration to the last created EU-configuration with matching state
and matching formula. An example would be the edge from c14 to c9 in Figure 5.6.
This creates a loop we can cycle until all configurations within the loop are coloured
and the last run brought no more changes as can be seen in Algorithm 5.3.

Algorithm 5.3 Colour the Configurations

1: function COLOURCONFIGURATION(Arena arena, Configuration currentConfig)
2: φ.calculateConfiguration(game, M, arena, currentConfig)
3: setTruthValue(currentConfig)
4:
5: if start of fixed point loop then
6: repeat
7: for all configurations l of the fixed point loop do /* bottom up */
8: φ.calculateConfiguration(game, M, arena, l)
9: setTruthValue(l)

10: end for
11:
12: if start of fixed point loop and l.delta not changed and not null then
13: fixed point found← true
14: end if
15: until fixed point found
16: end if
17: end function

In the case of EU and AU, we start the loop with the assumption that the fixed point
will be the empty set ∅ because we are looking for the greatest fixed point and, if
there is no greater one, we are already finished. Similarly, we start for ER and AR
with {M} because {M} is the maximum possible result and this time we are looking
for the least fixed point. Figure 5.1 shows the result of a fixed point calculation
which took place while model checking the KMTS in Figure 5.9 with CTL formula
for initial state s0 ⊢ EX(m) ∨ E(m U ¬m). By colouring the arena bottom up the start
of a fixed point loop is reached at configuration c9 and delta of c9 is initialised with
the empty set ∅. After one loop delta of c9 reads {M({P3(s1,¬m)})} and after the
next loop this result does not change. Thus, this result is fixed, colouring can go on.

20



c14 , c12 , ___ , null , U , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend
c12 , c10 , , null , U , s1 ⊢ (m ∧ EX(E(m U ¬m)))
c11 , c10 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ ¬m , deadend
c10 , c9 , , null , U , s1 ⊢ (¬m ∨ (m ∧ EX(E(m U ¬m))))
c9 , c8 , c14 , ∅ , U , s1 ⊢ E(m U ¬m)
********** Loop starting: c9 , c14
c14 , c12 , ___ , ∅ , � , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend
c12 , c10 , , ∅ , � , s1 ⊢ (m ∧ EX(E(m U ¬m)))
c11 , c10 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ ¬m , deadend
c10 , c9 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ (¬m ∨ (m ∧ EX(E(m U ¬m))))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ E(m U ¬m)
********** Loop starting: c9 , c14
c14 , c12 , ___ , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend
c12 , c10 , , ∅ , � , s1 ⊢ (m ∧ EX(E(m U ¬m)))
c11 , c10 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ ¬m , deadend
c10 , c9 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ (¬m ∨ (m ∧ EX(E(m U ¬m))))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ E(m U ¬m)
********** Loop ended:

Figure 5.1: Program output of a fixed point calculation.

5.1.3 Determine Failure Witnesses

All Failure Witnesses, respective all edges recognised as Failure Witnesses, are marked
accordingly and will be listed as program output. The KMTS in Figure 5.2, checked
for the already known CTL formula (EXm)∨E(mU¬m), would result in the output
shown in Figure 5.3. All edges marked as Failure Witnesses are there listed accord-
ing to their from-configuration and their to-configuration, both in combination with
the concerned states.

m
s0 s1

Figure 5.2: Input KMTS for the Failure Witnesses example.

********** Model Checking Result:
c0 , , , {M({P2(s0,s1)})} , I , s0 ⊢ (EX(m) ∨ E(m U ¬m)) ,
********** Failure Witnesses:
from:state , to:state , rule , must
c12:s1 , c13:s1 , 4 , true
c10:s1 , c11:s1 , 5 , true
c8:s0 , c9:s1 , 2 , false
c1:s0 , c2:s1 , 2 , false
******************************************

Figure 5.3: Failure Witnesses as listed by program output.
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The responsible rule and whether it is a must edge or not is also displayed. In Figure
5.4 we see the most important parts of the arena for this model checking game. Let
us have a look at the edge(c1, c2), the first Failure Witness. It is a genuine may
edge derived from the may transition(s0, s1) in the KMTS of Figure 5.2. Therefore,
rule 2 applies2. For the second found Failure Witness edge(c10, c11) rule 5 applies3,
because the label of state s1 is not defined. Thus, configuration c11 is coloured
indefinite and configuration c12 is coloured false. Right now, you have to belief the
colour of c12. We will see this later.

s0 ⊢ (EXm) ∨ E(mU ¬m)c0

s0 ⊢ (EXm)c1

s1 ⊢mc2

s0 ⊢ E(mU ¬m) c3

s1 ⊢ E(mU ¬m) c9

s1 ⊢ ¬m ∨ (m ∧ EXE(mU ¬m)) c10

s1 ⊢ ¬mc11 s1 ⊢m ∧ EXE(mU ¬m) c12

...

...

Figure 5.4: Concerned parts of the arena for the Failure Witnesses example.

5.2 Optimisation Strategies

In this section, we will at least think about the existing possibilities to optimise the
construction of the arena as well as the calculations of the individual configurations.
Some possibilities are obvious, but let us start with some considerations about the
to be expected size of the game arena while, at the end, we do a short discussion of
this optimisation ideas.

5.2.1 The Size of the Arena

All the calculation is done on the game arena. This arena is created, as already men-
tioned, by decomposing the given CTL formula while applying the rules for the

2Rule 2: A genuine may edge, coming from a configuration of type EX coloured indefinite, to a child
configuration coloured true or indefinite.

3Rule 5: An edge from a configuration of type si ⊢ l ∨ φ where its child configuration si ⊢ l is
coloured with indefinite and the other child is coloured indefinite or false.

22



model checking game. Therefore, the size and complexity of the arena depends on
the length of the CTL formula i.e. the number of subformulas the given formula φ
can be split into as well as the given KMTS to be checked. Every operator AU, EU,
AR or ER adds at least five more configurations to the arena according to the game
rules. Five only if both formulas before and after the U, respective R, are atomic
otherwise there will eventually be much more. Likewise, every operator EX or AX
multiplies the amount of configurations anywhere below itself by the number of ex-
isting outgoing transitions from the current state.

Based on the commonly known so-called state explosion problem, the state spaces tend
to become very large. Indeed increasing their size exponentially with the number
of variables or components of the underlying system. We could call this the config-
uration explosion problem. Suggestions to overcome the state explosion problem, with
the exception of the BDD data structures4 (Binary Digital Diagrams, compare e.g.
[CG18].) not discussed further here (details see in footnote), are mostly reduced to
abstraction, partial order reduction, induction or composition. Without going into
detail, the common point of these methods is keeping the models simple or at least
breaking them down into several simple models (see e.g. [HR04]).

********** Coloured Arena:
configuration , parent , fploop , delta , colour , state ⊢ formula, info
c0 , , , {M} , �⊺ , s0 ⊢ (EX(m) ∨ E(m U ¬m))
c1 , c0 , , {M({P3(s1,m)})} , �⊺ , s0 ⊢ EX(m)
c2 , c1 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend , may
c3 , c0 , , {M({P3(s1,¬m)})} , �⊺ , s0 ⊢ E(m U ¬m)
c4 , c3 , , {M({P3(s1,¬m)})} , �⊺ , s0 ⊢ (¬m ∨ (m ∧ EX(E(m U ¬m))))
c5 , c4 , , ∅ , � , s0 ⊢ ¬m , deadend
c6 , c4 , , {M({P3(s1,¬m)})} , �⊺ , s0 ⊢ (m ∧ EX(E(m U ¬m)))
c7 , c6 , , {M} , ⊺ , s0 ⊢ m , deadend
c8 , c6 , , {M({P3(s1,¬m)})} , �⊺ , s0 ⊢ EX(E(m U ¬m))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ E(m U ¬m) , may
c10 , c9 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ (¬m ∨ (m ∧ EX(E(m U ¬m))))
c11 , c10 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ ¬m , deadend
c12 , c10 , , ∅ , � , s1 ⊢ (m ∧ EX(E(m U ¬m)))
c13 , c12 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend
c14 , c12 , ___ , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ EX(E(m U ¬m))
******************************************

Figure 5.5: Coloured arena as listed by program output when model checking
KMTS M of Figure 5.2.

4Although BDD-based model checking, often called symbolic model checking, is commonly seen
as the state of the art technique, it does not seem to be a recommended option for this thesis. A
lot of research would have to be done how and to what extent Contraction Model Checking over
a KMTS representing partial information and the with Contraction Model Checking associated
special operations on sets can be mapped with symbolic model checking. That would be far beyond
the scope of this thesis. There is also another knockout criterion. We, this way, would not have any
game arena with the help of whose edges we could determine the Failure Witnesses. Nevertheless,
further research work to combine Contraction Model Checking and Failure Witnesses with the
possibilities of symbolic model checking would be a promising perspective.
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s0 ⊢ (EXm) ∨ E(mU ¬m)c0

s0 ⊢ (EXm)c1

s1 ⊢mc2

s0 ⊢ E(mU ¬m) c3

s0 ⊢ ¬m ∨ (m ∧EXE(mU ¬m)) c4

s0 ⊢ ¬mc5 s0 ⊢m ∧EXE(mU ¬m) c6

s0 ⊢mc7 s0 ⊢ EXE(mU ¬m) c8

s1 ⊢ E(mU ¬m)c9

s1 ⊢ ¬m ∨ (m ∧ EXE(mU ¬m))c10

s1 ⊢ ¬mc11 s1 ⊢m ∧ EXE(mU ¬m) c12

s1 ⊢mc13 s1 ⊢ EXE(mU ¬m) c14

Figure 5.6: Complete arena when model checking KMTS M of Figure 5.2.

That means, we should expect our game arena to be quite big whatever quite big will
mean. It is shown by Figure 5.2 that even the small KMTS with only two states de-
pending on the checked for CTL formula already results in an arena with 15 config-
urations as can be seen in Figure 5.6. Figure 5.5 shows the same arena as it would be
listed during a program run after the colouring of the configurations. The columns
of the list, from left to right, are the current configuration with c0 as the root con-
figuration and the parent configuration, of course empty for c0. The next column
shows the end configuration of a fixpoint calculation loop which starts at the current
configuration in this line. Look at the edge from c14 to c9 in Figure 5.6. Column 4
contains the Maximum Contraction Function δ calculated for the current configura-
tion and column 5 the colour of the configuration (true, false, or indefinite) resulting
from δ. State and formula that define the current configuration finalise the list.

5.2.2 Junctions

Subsequently, we will call configurations with more than one child configuration
junctions. That can be disjunctions, conjunctions as well as EX-junctions or AX-
junctions, depending on the formula that defines the configuration. With us, dis-
junctions and conjunctions always have exactly two children, because the relevant
CTL operators defined in Section 2.1.1 do not allow anything else. Any disjunc-
tions containing true or conjunctions containing false can be immediately decided
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[SK05]. More specifically, disjunctions will be decided as true if one side, respective
one child configuration, is true without calculating the other side. Conjunctions will
be decided as false if one side, respective one child configuration, is false without
calculating the other side. Thus, there is always a chance to colour these junctions
without having calculated both children. The same applies to EX-junctions and AX-
junctions. EX-junctions can be optimised in a similar way as disjunctions and AX-
junctions in a similar way as conjunctions. Although these junctions can have more
than just two children, namely as many as transitions emanate from the affected
state, again one true coloured child decides an EX-junction and one false coloured
child decides an AX-junction.

The more partial respective unknown information exists in a KMTS, the more likely
it is that indefinite results will occur. But, indefinite on one side can never be used to
determine the result of a junction. Therefore, the chances of not having to calculate
all children or, in other words, of finding shortcuts when calculating the configura-
tions decrease with the number of indeterminations occurring in the KMTS. Never-
theless, this optimisations have definitely to be done, not least because at runtime
they generate almost no overhead of any kind even with bad luck at every junction.

5.2.3 On-the-Fly

Consequently thought ahead, for the arena parts below one side of a junction con-
figuration you could not only save on the calculations of the Maximum Contraction
Function, as shown in the last section, but you could also avoid creating the arena
for this part at all. This strategy would be called on-the-fly construction of the game
arena based on the on-the-fly model check approaches for state spaces which can be
seen for example in [HKV96] or [LLM14]. It means, while the arena is being set up,
the configurations are calculated at the same time. In this way, you can achieve that
if you do not have to calculate a configuration, you will not even create this con-
figuration. Unfortunately, as already mentioned in Section 5.1, creating the arena
by decomposing can only be done top down while calculating the Maximum Con-
traction Function according to the calculation rules of Definition 3.10 has to be done
bottom up. That is why, creating and calculating can not really be done in parallel.

A solution might be finding partial trees within the arena configuration tree while
creating the arena in depth first order. The top configuration of such a partial tree
would be the child of a junction configuration. The bottom configuration, in gen-
eral, will be a deadend. We can then calculate from the deadend to the top of the
partial tree and the result will be the truth value of one child of the junction con-
figuration above. Now, as already shown, there is a chance that creating and cal-
culating any other child is no longer necessary. Using on-the-fly, we are creating
the arena and colouring the configurations simultaneously. Whenever creating the
arena top down reaches a deadend, we start colouring configurations bottom up starting
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from this deadend configuration. And, whenever colouring configurations bottom up
reaches the child of a junction that cannot be coloured yet, we will start creating the
arena top down from the next child, if a next child exists. If no next child exists we
will go on up with the normal colouring of the parent junction.

5.2.4 Applying some Optimisations

Algorithm 5.4 General Procedure (optimised)

1: global variables
2: KMTS M
3: Formula φ
4: State initialState
5: Game game
6: Arena arena
7:
8: procedure GENERALPROCEDURE

9: (M, φ, initialState)← readInputData
10: game ← new Game
11: createArena(null, φ)
12:
13: if root configuration coloured indefinite then
14: for all edges "bottom up" do
15: determineFailureWitnesses
16: end for
17: end if
18: end procedure

Please note that the loop for the colourConfiguration method call has vanished in
this optimised version of the GeneralProcedure in Algorithm 5.4. As can be seen in
Algorithm 5.5, colourConfiguration is now already called within createArena. This
makes it possible to pass on the two output possibilities of colourConfiguration in
Algorithm 5.6 to createArena and to use them directly there as return value. The two
possibilities are returned as a boolean type where goOnRight corresponds to true and
goOnUp corresponds to false. After returning from createArena, goOnUp means that
the parent configuration should be processed next, respective should be coloured.
goOnRight means that it should be continued with the next child configuration to
the right of the configuration which has just been edited. In this case, to continue
means that this child configuration should now be created. Of course, only if there
was another child at all.
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Algorithm 5.5 Create the Arena (optimised)

1: return value type
2: boolean
3:
4: function CREATEARENA(Configuration currentConfig, Formula φ)
5: if currentConfig == null then
6: arena← new Arena
7: /* currentConfig is set to the root configuration */
8: currentConfig← new Configuration(’c0’, initialState, φ)
9: arena.configurations.add(currentConfig)

10: end if
11:
12: if φ.createConfiguration(game, M, currentConfig) then
13: return φ.colourConfiguration(arena, currentConfig)
14: else
15: return goOnUp /* behind the bottom end of a fixed point loop */
16: end if
17: end function

This combination of createConfiguration and colourConfiguration in createArena re-
sults in exactly that on-the-fly optimisation process described in Section 5.2.3. The
only exception is when createConfiguration returns false. However, this only happens
if the configuration to be created is the end of a fixed point loop, triggered by one of
the CTL formulas AU, EU, AR or ER. In this case, it also continues upwards but not
to the parent configuration but further up to the start of the fixed point loop.

The logic of the optimisation of junctions described in Section 5.2.2, on the other
hand, takes place in colourConfiguration in Algorithm 5.6. It is processed in the If-
statement between lines 21 and 28 and is actually self-explanatory, not least because
of the comments in the pseudocode.

Because, in a depth first order, the left operand of a dis- or conjunction, respec-
tive the leftmost child of an EX-/AX-junction, will be handled first during the arena
creation process, it is probably advisable to decompose junctions in a way that the
smaller subformula will be placed on the left side. Of course a definition is needed
what smaller means. An approach could be:

Atom < Or, And < EX , AX < EU , AU , ER, AR

That would ensure for the creation of the arena as well as the colouring of the con-
figurations that the side where we expect to get a result faster is always processed
first.
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Algorithm 5.6 Colour the Configurations (optimised)

1: return value type
2: boolean
3:
4: function COLOURCONFIGURATION(Arena arena, Configuration currentConfig)
5: φ.calculateConfiguration(game, M, arena, currentConfig)
6: setTruthValue(currentConfig)
7:
8: if start of fixed point loop then
9: repeat

10: for all configurations l of the fixed point loop do /* bottom up */
11: φ.calculateConfiguration(game, M, arena, l)
12: setTruthValue(l)
13: end for
14:
15: if l.delta not changed and not null then
16: fixed point found← true
17: end if
18: until fixed point found
19: end if
20:
21: if parent of currentConfig is a junction then /* And, Or, AX, EX */
22: if parent of currentConfig is (And or AX) and colour is false or
23: parent of currentConfig is (OR or EX) and colour is true then
24: return goOnUp /* this is a shortcut */
25: else
26: return goOnRight /* this goes to the next child if one exists */
27: end if
28: end if
29:
30: return goOnUp /* this is the normal exit upwards */
31: end function

5.2.5 Discussion of Optimisation Strategies

One possible disadvantage of the above optimisation approaches should be noted.
At least there should be some thoughts allowed whether it is a problem or not.
One of the main points of the thesis is exactly pinpointing the Failure Witnesses.
This would be done following the model checking in the case of an indefinite result.
Implementing some of the above mentioned optimisations, e.g. on-the-fly, would
mean we can only determine the Failure Witnesses for the part of the arena that was
calculated at all. It is hard to say off the cuff whether, therefore, results will be lost
or not. Nevertheless, we decided to include the disjunction and conjunction optimi-
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sations as well as the on-the-fly optimisation into the implementation right from the
start.

The most natural way, not to say the most elegant and also clearest way regard-
ing the code, to build the game arena by decomposing the CTL formulas is surely to
do it by recursive calls for every configuration top down. But, during evaluation, we
should keep in mind that with the expected big arenas, by crossing an upper limit
depending mainly on the available memory, stack overflow exceptions are likely to
occur. Therefore, if necessary and possible, there should be a plan B like using iter-
ations instead of recursion. Perhaps this could be a topic for further research work,
eventually combined with the above mentioned BDDs, since recursive decomposi-
tion is usually how it is done there too.

Future applications of the program will show whether further optimisations in terms
of time or space are necessary at all. Then larger amounts of data are to be processed
using a code that has, in scope of this thesis, been extensively tested for precisely
circumscribed smaller input cases (see Section 8 Future Work). What we can say
right now is that Ribeiro and Andrade [RA15] have claimed the algorithms neces-
sary for CMC as NP-complete. Other authors like Schnoebelen [Sch02] or Acar et
al. [ABM19] come to a result of P-complete for the normal model checking problem
using a model and a CTL formula. The latter explicitly mention the corresponding
satisfiability problem would be NP-complete. Shoham and Grumberg [SG12] name
for a 3-valued model checking a complexity of O(|M|×|φ|) where |M|=|S|+|R|
and |φ|="number of all possible subformulas of φ". This is in linear-time with re-
spect to the size of the game arena. Another variant by Chechik et al. [CDEG04] also
considers fixed point processing The actually impossible worst case would be every-
time and with a loop over all states. This would be complexity O(|S|×|M|×|φ|)
= O(|S|2×|R|×|φ|). All these different complexities are polynomial and thus at
least in the complexity class of P.

At first glance we colour an arena just like Shoham and Grumberg [SG12], since the
existence of indeterminations in the model makes no difference in the size of the de-
rived arena. We use fixed point loops like Chechik et al. [CDEG04]. Even consider-
ing that our fixed point worst case would loop not only all states but the whole arena
the complexity still would be something polynomial like O((|M|×|φ|)2). And still
the question is, will CMC behave similar to these examples or are there some major
differences that make it more complex? Maybe we cannot be sure how long our
fixed point processing needs to converge, because we do not wait for a fixed truth
value but for a no more changing δ-function? At least in case of indefinite that could
be a difference. We cannot and do not want to clarify this questions here and now,
and it would not be appropriate to make assumptions. The topic is not decisive for
the current application of our algorithms and should there be further developments
in the future, the question must be asked again.
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5.3 General Considerations

Probably the most important decision for the implementation of the Contraction
Model Checking was about what programming language will be used. If that was
a strategic decision for a new professional software system, a little market research
about current trends would be appropriate. Thus, let us have a look at the current
most popular languages. There are several indices that try to reflect this. One of
the most common and most recognised is the TIOBE Programming Community in-
dex released monthly by the software company TIOBE since 2001. It is based on
hundreds of different sources and uses as metrics, for example, the number of expe-
rienced engineers worldwide, the number of courses available and the popularity
of the language in search engines. The current edition of the index from march 2023
[TIO23] shows a head-to-head race for the lead. Python, C, Java and C-derivates
like C++ or C# occupy the places 1 to 4 with only minimal differences to each other.
Together these programming languages represent a market share of more than 60 %.

Another argument in favor of the decision would, of course, be a technical advan-
tage of one of the languages for the planned implementation. Without extensive
trials and tests suitability is difficult to reveal. But in our implementation we can
expect decomposing CTL formulas combined with running through the configura-
tions of the arena and that will almost certainly lead to deep recursive method calls.
Unfortunately, as far as I know, the languages mentioned do not differ much in this
area. Sooner or later all the languages will respond to too many open recursive calls
with stack overflow errors [NC13].

Therefore, since there is no compelling argument for one of these programming lan-
guages, the decision is to code thy implementation in Java. This is the programming
language I was at least able to gain some experience through lectures and intern-
ships during my studies. Java is a object-oriented programming language designed
by James Gosling for Sun Microsystems. The first official release came in 1996. 2010
Sun Microsystems was taken over by Oracle. Since then, Oracle continues to de-
velop Java on a regular basis [Par20]. We use the JDK (Java Development Kit) in
version Java SE 18 and as development environment the Eclipse IDE (Integrated
Development Environment) in version 4.23 from 2022-03. This Eclipse version re-
stricts the Java functionalities mostly to the level of SE 17 which was the last so-
called LTS (Long-Term Support) version released by Oracle [Ora23].

5.4 Program Structure

Our Java implementation has got a specific structure which we will elaborate on in
this section. As usual in an Java/Eclipse environment the source code is placed in a
high level package called src. Below src the system is split into five packages. The
five packages are:
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game Everything needed to start and run a model checking game
including setting up the game arena.

model Objects necessary to build a KMTS model.

ctl Objects necessary to build a CTL formula.

input Different data types for reading the input data.

utilities Utilities for set theory operations, handling json files etc..

Let us now take a look at the different packages on a more detailed level.

The package game contains two classes to start a model checking game. One is
called Game, and the other one is called ModelChecking. The class ModelChecking
contains the main method of the system. Here, the input data from a json file is
read, and the game is actually started by creating an instance of the Game class. The
class Game can be seen as the real place where everything around a running model
checking game happens. The arena is build, the configurations are coloured and,
eventually, Failure Witnesses pinpoint the conflicting areas.

The package model contains classes needed to represent a model, respective to
represent a KMTS with states, labels and transitions.

The package ctl contains an interface Formula and classes for every single possible
operand that can occur in a CTL formula. All these classes implement the interface
Formula. The two most important methods this interface offers are createConfigura-
tion to add a new configuration to the arena and calculateConfiguration to calculate
the Maximum Contraction Function for a configuration (see Definition 3.10).

The package input contains data types into which the contents of the json input
file can be read to then be distributed into the actual target classes in the model and
ctl packages.

The package utilities mainly contains a class JsonUtilities for handling json files
and a class SetTheory that contains all pure set theory methods for the Contraction
Model Checking.

5.5 Input Specification

The functional input of the implemented algorithm will be a KMTS M, a CTL for-
mulaφ and an initial state s0. This input for the program is written in Json files. The
exact format of these files can be seen in Listings 5.1 and 5.3 for a small example. As
already mentioned in Section 2.3, deviating from the general definition of a KMTS
(see Definition 2.5), we do not use a set of initial states but only exactly one initial
state "SI" as input. Furthermore, it is noteworthy that the index for the value of the
labels of the states of "S" which selects one of the atomic propositions of "AP" does
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not start with zero as usual in Java and like all other indices in the Json file. That is
because a not before an atomic proposition would be marked as a negative value of
the index. This would not be possible with an index starting at zero, at least not for
the starting index. To keep it flexible, especially for testing, there is a third technical
input file which is also in Json format. This file has to be named runcontrol. The file
names for the two KMTS and CTL files are defined there, a switch opti can be used
to deactivate all optimisations discussed earlier as well as a detailed control of the
runs log file scope. The switch rc turns on and off the log of the runcontrol file itself,
rt controls the displays of timings at some meaningful points of the process. prepro
is responsible for the formula pre-processing, fploop for detailed information about
the fixed point loops, arena shows the completet and coloured arena and stats brings
some statistics about the run. An example can be seen in Listing 5.2. In all three files
a slash at position one of a line declares a comment line.

m
s0

¬m
s1

Figure 5.7: Input KMTS of Listing 5.1.

Listing 5.1 would be the input file for the KMTS in Figure 5.7 and Listing 5.3 would
load the CTL formula (EXm) ∨ E(m U ¬m). Next, we will have a look at the
classes needed to represent a KMTS and in the following understand how to create
instances of these classes from our Json file to get a complete KMTS to work with.

/Input KMTS
{

/Atomic Propositions
"AP": [{"label":"m"}],
/States (Labels defined by ’value’ as index of AP starting at 1)
/ (’not’ marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"}]},

{"name":"s1","label":[{"value":"-1"}]}],
/Initial State (defined by index of S starting at 0)
"SI": "0",
/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"1"}],
/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"1"}],
/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"}]
}

Listing 5.1: Input Json File for KMTS
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/Input Runcontrol
{

/Name of KMTS and CTL Formula file (without file type; file type has to be .json)
"kmtsfile": "KMTS1",
"ctlfile": "CTL1",
/Apply Optimisations (’1’: with Optimisations; ’0’: without Optimisations)
"opti": "1",
/Log Options (’1’: log it; ’0’: do not log it)
/Log Runcontrol
"rc": "1",
/Log Run Timings
"rt": "1",
/Log Preprocessing
"prepro": "1",
/Log Fixed Point Loops
"fploop": "1",
/Log Coloured Arena
"arena": "1",
/Log Statistics
"stats": "1"

}

Listing 5.2: Input Json File for Runcontrol

/Input CTL Formula
{

/CTL Formula)
"CTL": "OR(EX(’m’),EU(’m’,NOT(’m’)))"

}

Listing 5.3: Input Json File for CTL Formula

5.5.1 Basic KMTS Data Types

The Listings of the basic data types used for representation of a KMTS show only the
data structure of these types and not the constructors or other code defined within
these classes.

1 public class KMTS {
2 ArrayList<Atom> AP;
3 ArrayList<State> S;
4 ArrayList<Transition> Rplus;
5 ArrayList<Transition> Rminus;
6 ArrayList<Change> X;
7 }

Listing 5.4: Class KMTS

1 public class State {
2 String name;
3 ArrayList<Formula> label;
4 }

Listing 5.5: Class State

1 public class Transition {
2 State stateFrom;
3 State stateTo;
4 }

Listing 5.6: Class Transition
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1 public class Change {
2 CType type;
3 State state;
4 State stateTo;
5 Formula label;
6 }

Listing 5.7: Class Change

1 public class Atom {
2 String label;
3 }

Listing 5.8: Class Atom

The enum CType, as used in the class Change, offers the three possible characteris-
tics of a change as described in Section 2.3.1. These are the three primitive change
operations P1, P2 and P3.

5.5.2 Json Handling

First, we load the runcontrol file into the data structure InputFileRunControl of List-
ing 5.9.

1 /**
2 * Structure of input runcontrol
3 * (loaded from a json-file called
4 * runcontrol.json).
5 */
6 public class InputFileRunControl {
7 public String kmtsfile;
8 public String ctlfile;
9 public int opti;

10 public int rc;
11 public int rt;
12 public int prepro;
13 public int fploop;
14 public int arena;
15 public int stats;

Listing 5.9: Class
InputFileRunControl

1 /**
2 * Structure of input data for KMTS
3 * (loaded from a json-file).
4 */
5 public class InputFileKMTS {
6 Atom [] AP;
7 InputState [] S;
8 int SI;
9 InputTransition [] T;

10 ListTransition [] Rplus;
11 ListTransition [] Rminus;
12 }

Listing 5.10: Class InputFileKMTS

All the KMTS data will be loaded from the Json file named in the runcontrol into
a defined structure called InputFileKMTS which is shown in Listing 5.10. Loading
means, as of course already for the runcontrol file, that we first read the Json file into a
string variable. Then the content of this string, respective the Json structure from the
file, will be directly parsed into the data type structure of class InputFileKMTS. This
works with the help of the high level api (application program interface) of Gson.
This api is able to parse data from Json structures to object oriented Java structures,
i.e. classes or objects, and vice versa. A Json object is understood here as an instance
of a specific class, with the members then being mapped to instance variables of the
class. We use Gson in version 2.8.6 [SLW23]. With this input we can generate a new
KMTS with the help of the class KMTS, as shown in Section 5.5.1, and mark one
state as the initial state for the game. Similarly, we load the CTL formula from the
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Json file in Listing 5.3 via the structure InputFileCTL shown in Listing 5.11. All that
is left now is to convert the CTL formula into a workable form for our program.

1 /**
2 * Structure of input data for CTL
3 * formula (loaded from a json-file).
4 */
5 public class InputFileCTL {
6 public String CTL;
7 }

Listing 5.11: Class InputFileCTL

5.5.3 Logical Symbol Interpretation for CTL Formulas

In order to be recognised and processed by our program, the logical symbols of
a CTL formula on the left side of the arrows have to be written in a certain way
for the input file. You can see the required format on the right side. This for-
mat for representing CTL formulas in program code is inspired by some small but
committed projects on GitHub, the well known collaboration platform in the net
[Bre22, CFR22].

(1) ⊺ ⇒ TRUE
(2) � ⇒ FALSE
(3) l ⇒ ’l’
(4) ¬φ ⇒ NOT(φ)
(5) φ1 ∨ φ2 ⇒ OR(φ1, φ2)
(6) φ1 ∧ φ2 ⇒ AND(φ1, φ2)
(7) φ1 → φ2 ⇒ IMP(φ1, φ2)

(8) EXφ ⇒ EX(φ)
(9) AXφ ⇒ AX(φ)

(10) EFφ ⇒ EF(φ)
(11) AFφ ⇒ AF(φ)
(12) EGφ ⇒ EG(φ)
(13) AGφ ⇒ AG(φ)

(14) E(φ1Uφ2) ⇒ EU(φ1, φ2)
(15) A(φ1Uφ2) ⇒ AU(φ1, φ2)
(16) E(φ1Rφ2) ⇒ ER(φ1, φ2)
(17) A(φ1Rφ2) ⇒ AR(φ1, φ2)

That is why in Listing 5.3 the CTL formula had to be entered as follows:

(EXm) ∨ E(mU ¬m) ⇒ OR(EX(’m’),EU(’m’,NOT(’m’)))
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This input CTL formula can now be stored and processed during the game as For-
mula using the classes in the ctl package that implement the Formula interface..

5.5.4 Pre-Processing

The game rules defined by Ribeiro and Andrade [RA15] for Contraction Model
Checking can only handle CTL formulas in negation normal form and also only
special operators of CTL (see Definition 2.2). Thus, there are two possibilities. Ei-
ther we restrict the input exactly to the processable CTL operators and forms or we
convert the input into a processable CTL formula with the help of the transforma-
tions shown in Section 2.1.1. We chose the second possibility, because, as already
mentioned, some of the missing operators are very common. Therefore, every in-
put CTL formula has first to be subject of some pre-processing. This pre-processing
consists of two stages. The first stage reduces a given CTL formula to the valid oper-
ators for Contraction Model Checking through equivalence transformations. Some
examples would be (compare [HR04]):

the formula φ1 → φ2 would be transformed to ¬φ1 ∨φ2;
the formula AFφ would be transformed to A(⊺U φ).

The second phase brings the resulting CTL formula into negation normal form. The
algorithm we use for this is inspired by [Ren23]. Figure 5.8 shows the result of such
a pre-processing using a small and clear example in the output form as it will be
logged by the program.

Input Initial State: s1
Input KMTS-AP: Start, Close, Heat, Error,
Input CTL Formula: AG((Start ∨ Error) → AFHeat)
Contraction Model Checking Form: A((¬(Start ∨ Error) ∨ A(⊺ U Heat)) R �)
Negation Normal Form: A(((¬Start ∧ ¬Error) ∨ A(⊺ U Heat)) R �)
******************************************

Figure 5.8: Program output of pre-processing a CTL formula.

5.5.5 Colour the Configurations

As shown in Section 3.3.1, we need quite a lot of special set operations, all defined
by Ribeiro and Andrade [RA15], to be able to calculate the Maximum Contraction
Function δ. The implementation of all these operations is stored centrally in the
SetTheory class of the utilities package. This class is used as a library for all set theory
calculations. An overview of the content of this set operations library follows:
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Operations on Sets of Changes

• unionArrayListChanges(ArrayList<Change>, ArrayList<Change>)
returns ArrayList<Change>, defines Operator (∪)

• intersectionArrayListChanges(ArrayList<Change>, ArrayList<Change>)
returns ArrayList<Change>, defines Operator (∩)

• differenceArrayListChanges(ArrayList<Change>, ArrayList<Change>)
returns ArrayList<Change>, defines Operator (/)

Working with Changes

• complementChange(Change) (Definition 2.7)
returns Change

• compatibleChanges(ArrayList<Change>, ArrayList<Change>) (Definition 2.8)
returns Boolean

• existsComplementChange(ArrayList<Change>, ArrayList<Change>)
returns Boolean

Operations on KMTSs (Definition 3.2)

• unionKMTS(KMTS, KMTS, KMTS)
returns List<KMTS>, defines Operator (⊔)

• intersectionKMTS(KMTS, KMTS, KMTS)
returns List<KMTS>, defines Operator (⊓)

• differenceKMTS(KMTS, KMTS, KMTS)
returns List<KMTS>, defines Operator (/)

Operations on KMTSs (Definition 3.3)

• contractionOperation(KMTS, KMTS, KMTS)
returns List<KMTS>, defines Operator (⊔+)

Operations on Sets of KMTSs (Definition 3.6)

• unionSetKMTS(KMTS, List<KMTS>, List<KMTS>)
returns List<KMTS>, defines Operator (D)

• intersectionSetKMTS(KMTS, List<KMTS>, List<KMTS>)
returns List<KMTS>, defines Operator (E)

• differenceSetKMTS(KMTS, List<KMTS>, List<KMTS>)
returns List<KMTS>, defines Operator (//)
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Operations on Partition Sets of KMTSs

• isFPS(List<KMTS>) (Definition 3.7)
returns Boolean

• isPS(KMTS, List<KMTS>) (Definition 3.4)
returns Boolean

• PS(KMTS, List<KMTS>) (Definition 3.4)
returns List<KMTS>

• MPS(KMTS, List<KMTS>) (Definition 3.8)
returns List<KMTS>

As an example how these operations look like in Java, in Listing 5.12 the imple-
mentation of the last one of the listed methods is shown. Its about the creation of a
Maximum Partition Set (MPS) according to Definition 3.8.

1 /**
2 * Create Maximum Partition Set from a set of instances of M.
3 *
4 * @param M - KMTS
5 * @param inSet - set of instances of M
6 * @return Set of instances of M as result
7 */
8 static List<KMTS> MPS(KMTS M, List<KMTS> inSet) {
9 if (inSet == null || inSet.size() == 0) return null;

10 if (inSet.size() <= 1) return inSet;
11

12 List<KMTS> sk = new ArrayList<>(inSet);
13 Boolean noMPS = true;
14

15 while (noMPS) {
16 noMPS = false;
17 KMTS[] tempArray = sk.toArray(new KMTS[0]);
18

19 for (int i = 0; i < tempArray.length - 1; i++) {
20 List<KMTS> coResult = contractionOperation(M, tempArray[i], tempArray[i + 1]);
21

22 if (coResult.size() == 1) {
23 noMPS = true;
24 sk.addAll(coResult);
25 sk.remove(tempArray[i]);
26 sk.remove(tempArray[i + 1]);
27 break;
28 }
29 }
30 }
31

32 return sk;
33 }

Listing 5.12: Create Maximum Partition Set (Method MPS of class SetTheory)
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5.6 Example

Here a short example is presented which, nevertheless, will show some of the above
mentioned features. The KMTS of Figure 5.9 consists of two states and two transi-
tions. It has one indetermination, namely the label of the state s1.

m
s0 s1

Figure 5.9: KMTS M to be model checked with CTL formula for initial state
s0 ⊢ EX(m ∨ EX(¬m)) ∨ A(¬m U m).

Figure 5.10 shows the program output of a model checking run for this KMTS
against the formula named in Figure 5.9. Although, both sides of the disjunction
within the EX operator result in indefinite (c3, c4), the disjunction itself evaluates
true (c2) and, therefore, also the enclosing EX operator (c1). For this reason, the
right side of the outer disjunction of the root configuration c0 did not even have to
be decomposed. Instead, a junction short cut to the finish could be taken, because
with the on-the-fly optimising this part of the arena was not needed at all to see that
the overall model checking result already was known as true. This is particularly re-
markable, since otherwise the AU operator would have led to a complex fixed point
calculation.

********** Coloured Arena:
configuration , parent , fploop , delta , colour , state ⊢ formula, info
c0 , , , {M} , ⊺ , s0 ⊢ EX(m ∨ EX(¬m)) ∨ A(¬m U m) , shortcut
c1 , c0 , , {M} , ⊺ , s0 ⊢ EX(m ∨ EX(¬m))
c2 , c1 , , {M} , ⊺ , s1 ⊢ m ∨ EX(¬m)
c3 , c2 , , {M({P3(s1,m)})} , �⊺ , s1 ⊢ m , deadend
c4 , c2 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ EX(¬m)
c5 , c4 , , {M({P3(s1,¬m)})} , �⊺ , s1 ⊢ ¬m , deadend
******************************************
Configurations: 6 , Thereof Deadends: 2
Junctions: 2 , Junction Short Cuts used 1
Fixpoint Loops: 0 , Calculations within Fixpoint Loops: 0
MPS generated: 3 , Contraction Operations: 1
Recursion Calls: 6 , Max Recursion Depth: 5
******************************************
********** Model Checking Result:
c0 , , , {M} , ⊺ , s0 ⊢ EX(m ∨ EX(¬m))) ∨ A(¬m U m) , shortcut

Figure 5.10: Coloured arena as listed by program output when model checking
KMTS M of Figure 5.9.

Another very interesting point in this example is the mentioned fact that two indef-
inite operators of a disjunction are no guarantee that the disjunction itself will also
result in indefinite. Having a look at the Maximum Contraction Functions (see Defi-
nition 3.10) of the two child configurations c3 and c4 in the delta column of Figure
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5.10, you can see that the two concerned changes P3(s1,m) and P3(s1,¬m) are com-
plement operations of each other. Thus, the union of the two instances of the KMTS
M defined by M(P3(s1,m)) and M(P3(s1,¬m)) will result in the set {M} containing the
whole KMTS itself, and this {M} is clearly the trigger for colouring the configuration
c2 true as can be seen in Definition 3.11.

5.7 Class Diagram

We are now ready to create a high level class diagram of our system like the one
from Figure 5.11. This class diagram pictures only the most important classes with
a selection of relations between them. No attributes or methods are shown in order
to keep it easy for a better overview.
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Figure 5.11: High level class diagram.

The central point of the system is the Game class surrounded by the input KMTS, the
input Formula and the constructed Arena. Between the classes And and Atom which
both implement the interface Game, you can imagine about 15 more classes like Or,
EX, AX and so on also implementing the interface and representing CTL operators.
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6 Experiment and Evaluation

Unfortunately, I could not find any necessary amount of Kripke structures, not to
mention KMTSs, to use as test input for the implementation. This is because most
of the models in model checking contests like the one at the Sorbonne University
[ABC+19, LIP23], for example, are portrayed in Petri nets [Pet81]. A Petri net is a
graph with two types of nodes called places and transitions. Arcs connect the nodes
and a marking of a Petri net is a function from the set of places to the non negative
integers [IM13]. Unfortunately, these data sets could not be used for the imple-
mentation tests, because Contraction Model Checking expects a KMTS as input. Of
course, there are possibilities to transform Petri nets to transition systems like Kripke
structures [FGHHO20, Oli21]. Islam and McCaull [IM13],for example, propose the
following for representing a Petri net as a Kripke structure: the states are markings
and there is a transition in the Kripke structure from state M to M’ whenever a tran-
sition in the Petri net creates a marking M’ from M. Yet, to my knowledge, there is
no simple way to do this and a complicated transformation resulting in even more
complicated Kripke structures would be far beyond the scope of this thesis. That is
why I composed a set of test cases as comprehensive as possible to create a stable
basis for this first draft of a Contraction Model Checking implementation.

Below you can see a selection of use cases that I consider interesting enough to
take a closer look at. Input data files, for the cases listed here, are attached to the
GitHub project in the \data folder and are also listed together with some log files
in Appendix A. If some experimental runs show interesting or, above all, surpris-
ing results, you will find the details in the corresponding evaluation results section.
Of course, the implemented Java program was tested against many more and more
extensive cases.

6.1 Temporal Operator Until

We will simply use some easy combinations of CTL formulas containing an Until
operator bound with different path operators. First, we check over a KMTS with
no indetermination (Figure 6.1) and then we add one indetermination concerning a
label for a second round (Figure 6.2).
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6.1.1 Use Cases

m
s0

m
s1

m
s2

m
s3

m

s4

¬m
s5

m
s6

m
s7

Figure 6.1: KMTS1: Use Case for Operator Until.

(a) Corresponding formula (CTL1): s0 ⊢ E(mU¬m)
Expected result: true

(b) Corresponding formula (CTL2): s0 ⊢ E(¬mUm)
Expected result: true

(c) Corresponding formula (CTL3): s0 ⊢A(mU¬m)
Expected result: false

(d) Corresponding formula (CTL4): s0 ⊢A(¬mUm)
Expected result: true
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Figure 6.2: KMTS2: Use Case for Operator Until.

(e) Corresponding formula (CTL1): s0 ⊢ E(mU¬m)
Expected result: indefinite (Failure Witnesses around s5)

(f) Corresponding formula (CTL2): s0 ⊢ E(¬mUm)
Expected result: true

(g) Corresponding formula (CTL3): s0 ⊢A(mU¬m)
Expected result: false
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(h) Corresponding formula (CTL4): s0 ⊢A(¬mUm)
Expected result: true

6.1.2 Evaluation

All runs with the exception of use case 6.1.1 (e) brought the expected results. For
us an expected but, nevertheless, noteworthy result was the value true for model
checking the use cases 6.1.1 (f) and (h), although not one label ¬m existed in the
KMTS concerned. Reason is, s0 with label m always holds for s0 ⊢ E(¬mUm). No
value before reaching the target value is as good as the right value.

Not entirety expected was the result of use case 6.1.1 (e) (see Figure 6.3) where,
of course, indefinite was expected. The Failure Witnesses coming from rules (4) and
(5) were expected because of the indetermination in state s5 of KMTS2 in Figure 6.2,
namely the missing label. But to see the edge from configuration c5 to configura-
tion c6 which originates in the transition between state s0 and state s1 marked as
Failure Witness coming from rule (3) was a surprise. Although no indetermination
was anywhere to find near the mentioned transition in the concerned KMTS, var-
ious tests showed that this result was correct for the definition of rule (3) as listed
in Section 4. Furthermore, this definition captures exactly the definition of Guerra
et al. in [GAW13]. We will discuss this topic later in this work. First of all, we just
briefly show you the extended version of the rule (3) from the tests which, in our
case, delivered the best results.

(3) A must edge, coming from a configuration of type EX coloured indefinite, to a
child configuration coloured indefinite.

becomes

(3) A must edge, coming from a configuration of type EX coloured indefinite, to a
child configuration si ⊢ l coloured indefinite.

The required form of the formula in the target configurations limits these to dead-
ends.

********** Model Checking Result:
c0 , , , {M({P3(s5,¬m)})} , �⊺ , s0 ⊢ E(m U ¬m)) ,
********** Failure Witnesses:
from:state , to:state , rule , must
c5:s0 , c6:s1 , 3 , true
c31:s5 , c32:s5 , 5 , true
c33:s5 , c34:s5 , 4 , true
******************************************

Figure 6.3: Failure Witnesses for use case 6.1.1 (e) (KMTS2/CTL1).
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6.2 Genuine May Transitions

Now we want to emphasize indeterminations caused by may transitions and their
effects. We start with two very simple KMTSs and then move on to somewhat more
complex structures even including transition cycles. A path within a KMTS that at
some point meets a state that has already been visited, is called a transition cycle.

6.2.1 Use Cases

¬m
s0

m
s1

m
s2

Figure 6.4: KMTS3: Use Case for Genuine May Transitions.

(a) Corresponding formula (CTL5): s0 ⊢m ∨EX(m)
Expected result: indefinite (Failure Witnesses around s1)

¬m
s0

m
s1

m
s2

Figure 6.5: KMTS4: Use Case for Genuine May Transitions.

(b) Corresponding formula (CTL5): s0 ⊢m ∨EX(m)
Expected result: true
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Figure 6.6: KMTS5: Use Case for Genuine May Transitions.
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(c) Corresponding formula (CTL5): s0 ⊢m ∨EX(m)
Expected result: true

(d) Corresponding formula (CTL6): s0 ⊢m ∨AX(m)
Expected result: true

(e) Corresponding formula (CTL7): s0 ⊢ E(mUn)
Expected result: true
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Figure 6.7: KMTS6: Use Case for Genuine May Transitions.

(f) Corresponding formula (CTL7): s0 ⊢ E(mUn)
Expected result: indefinite (Failure Witnesses around s1 and s7)

6.2.2 Evaluation

The experimental runs of use case 6.2.1 (a) to (d) brought the expected results. Figure
6.8 shows the responsible Failure Witness as listed for the coloured value indefinite
of use case 6.2.1 (a).

********** Model Checking Result:
c0 , , , {M({P2(s0,s1)})} , �⊺ , s0 ⊢ m ∨ EX(m) ,
********** Failure Witnesses:
from:state , to:state , rule , must
c2:s0 , c3:s1 , 2 , false
******************************************

Figure 6.8: Failure Witnesses for use case 6.2.1 (a) (KMTS3/CTL5).

One could also emphasise the result true for use case 6.2.1 (d) although the transition
from s0 to s1 is a genuine may transition and the formula s0 ⊢m ∨AX(m) requires
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satisfying on all paths.The explanation for this phenomenon can be imagined even
without calculation. A genuine may transition does exist or does not exist. If it
exists, because with state s1 labeled m, the connected child configuration will be
coloured true and so all paths satisfy. If it does not exist, the only remaining path via
state s2 satisfies and so again all paths satisfy.

********** Model Checking Result:
c0 , , , {M({P2(s0,s1)}),M({P2(s5,s7),P1(s0,s1)})} , �⊺ , s0 ⊢ E(m U n) ,
********** Failure Witnesses:
from:state , to:state , rule , must
c5:s0 , c6:s1 , 2 , false
c37:s5 , c38:s7 , 2 , false
******************************************

Figure 6.9: Failure Witnesses for use case 6.2.1 (f) (KMTS6/CTL7).

KMTS5 of Figure 6.6 and KMTS6 of Figure 6.7 introduce the possibility of having
labeled a state with more than one label, in this case the atomic propositions m and
n. The only difference between the two KMTSs is the additional may transition from
s5 to s7 in KMTS6. Both are model checked against the formula s0 ⊢ E(¬m Un).
For KMTS5, as expected, the model checking results in true. The satisfying path
s0 > s2 > s5 > s7 was easily found. As expected, for KMTS6 the model checking
results in indefinite. Figure 6.9 shows the Failure Witnesses. This time there are two
witnesses, because both places would, by changing the concerned transition to a
must transition, turn the model checking result to true.

6.3 Applied Optimisations

We apply again some use cases from Section 6.2.1. But this time we do a second run
for every case with switched off optimisation option to see the difference.

6.3.1 Use Cases

(a) Corresponding formula (CTL5): s0 ⊢m ∨EX(m) on KMTS3 of Figure 6.4
Expected result: indefinite (Failure Witnesses around s1)

(b) Corresponding formula (CTL5): s0 ⊢m ∨EX(m) on KMTS4 of Figure 6.5
Expected result: true

(c) Corresponding formula (CTL7): s0 ⊢ E(mUn) on KMTS6 of Figure 6.7
Expected result: indefinite (Failure Witnesses around s1 and s7)
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6.3.2 Evaluation

As expected, the result of the first two use cases remained the same without any
optimisations. Use case 6.3.1 (a) brought with optimisations a noticeable saving in
generated configurations (33 configurations with optimisations to 48 configurations
without optimisations). This is shown in Figure 6.10.

(i) With optimisations:

******************************************
Configurations: 33 , Thereof Deadends: 11
Junctions: 12 , Junction Short Cuts used: 1
Fixpoint Loops: 1 , Calculations within Fixpoint Loops: 4
MPS generated: 11 , Contraction Operations: 0
Recursion Calls: 34 , Max Recursion Depth: 21
******************************************

(ii) Without optimisations:

******************************************
Configurations: 48 , Thereof Deadends: 16
Junctions: 17 , Junction Short Cuts used: 0
Fixpoint Loops: 2 , Calculations within Fixpoint Loops: 8
MPS generated: 17 , Contraction Operations: 0
Recursion Calls: 50 , Max Recursion Depth: 21
******************************************

Figure 6.10: Statistics for use case 6.3.1 (a) (KMTS3/CTL5).

As can be seen in Figure 6.11, for use case 6.3.1 (b), the savings were even more
extreme. Here the ratio was 3 configurations created with optimisations to 48 con-
figurations created without optimisations.

(i) With optimisations:

******************************************
Configurations: 3 , Thereof Deadends: 1
Junctions: 1 , Junction Short Cuts used: 1
Fixpoint Loops: 0 , Calculations within Fixpoint Loops: 0
MPS generated: 0 , Contraction Operations: 0
Recursion Calls: 3 , Max Recursion Depth: 3
******************************************

(ii) Without optimisations:

******************************************
Configurations: 48 , Thereof Deadends: 16
Junctions: 17 , Junction Short Cuts used: 0
Fixpoint Loops: 2 , Calculations within Fixpoint Loops: 8
MPS generated: 9 , Contraction Operations: 0
Recursion Calls: 50 , Max Recursion Depth: 21
******************************************

Figure 6.11: Statistics for use case 6.3.1 (b) (KMTS4/CTL5).

For use case 6.3.1 (c) we could exaggerate that the savings with optimisations were
infinitely large, because without the optimisation option the experimental runs ended
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in an endless loop along the already mentioned transition cycles within KMTS6. The
cause was, that a KMTS constellation with a transition cycle, also for Contraction
Model Checking obviously allowed, during the construction of the arena according
to the defined rules of the game led to the loop.

We added some code to stop the loop as soon as it occurs. The loop is recognised
by the fact that a configuration is to be created with a state that already exists in
the state path of the current configuration with absolutely the same CTL formula.
This state must be different to the state of the current configuration because, other-
wise, a fixed point loop, as usual, would have been triggered already. Nevertheless,
the situation will be handled quite similarly to a fixed point loop. In contrast to a
fixed point loop, we mark the loop end in the log with "VVV" in stead of "___". For
KMTS6 of Figure 6.7 this would be the case for every configuration created with a
state s0, coming from a configuration with state s7, because of the transition from
s7 to s0 and trying to apply the exact same formula s0 ⊢ E(mUn) as was applied
at the beginning to the root configuration s0.

We can now compare the results of the two runs and find a quite interesting dif-
ference between them. Although the actual model checking result of the runs with
and without optimisations are indefinite and absolutely identical with regard to the
calculated Maximum Contraction Function, the determined Failure Witnesses dif-
fer. Figure 6.12 shows one more Failure Witness for the not optimised runs. Thus,
our concerns from Section 5.2.5 have become true. It seems that we lost a Failure
Witness due to optimisations.

(i) With optimisations:

********** Model Checking Result:
c0 , , , {M({P2(s0,s1)}),M({P2(s5,s7),P1(s0,s1)})} , I , s0 ⊢ E(m U n)
******************************************
********** Failure Witnesses:
from:state , to:state , rule , must
c5:s0 , c6:s1 , 2 , false
c37:s5 , c38:s7 , 2 , false
******************************************

(ii) Without optimisations:

********** Model Checking Result:
c0 , , , {M({P2(s0,s1)}),M({P2(s5,s7),P1(s0,s1)})} , I , s0 ⊢ E(m U n)
******************************************
********** Failure Witnesses:
from:state , to:state , rule , must
c5:s0 , c6:s1 , 2 , false
c27:s7 , c28:s7 , 4 , true
c41:s5 , c42:s7 , 2 , false
******************************************

Figure 6.12: Model Checking Result for use case 6.3.1 (c) (KMTS6/CTL7).

A closer look at the additional Failure Witness line shows that it is caused by game
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rule (4). This rule, as listed in Section 4, is: an edge coming from a configuration
of type si ⊢ l ∧ φ to a child configuration si ⊢ l coloured with indefinite. So, we
talk about a conjunction with an atomic proposition as the first child. This first
child has to be coloured indefinite to trigger the rule. Rule (5), the analogous rule for
disjunctions, reads: an edge coming from a configuration of type si ⊢ l∨φ to a child
configuration si ⊢ l coloured with indefinite and the other child is coloured indefinite
or false. The additional condition in rule (5) for the other child means that no Failure
Witness would be triggered if the other child already decided the disjunction. Why
should this not also apply to conjunctions and, thus, to rule (4)? The following
change to game rule (4) brought good test results.

(4) An edge coming from a configuration of type si ⊢ l∧φ to a child configuration
si ⊢ l coloured with indefinite.

becomes

(4) An edge coming from a configuration of type si ⊢ l∧φ to a child configuration
si ⊢ l coloured with indefinite and the other child is coloured indefinite or true.

A conjunction is finally decided when one operand is false. The restriction for the
other child limits the result to cases that have not already been decided by the other
child, because only such cases could be Failure Witnesses.

An interesting side effect of the endless loop problem was the understanding, what
size of an arena the Java program can sustain. The termination always occurred af-
ter some 3000 created configurations caused by a stack overflow exception because
of round about 2000 not released recursive calls.

6.4 Literature Examples

To finalise our experiments, we now will have a look at two example cases from
our main underlying literature by Ribeiro and Andrade [RA15] and Guerra et al.
[GAW13]. These are particularly interesting for the consideration of fixed point pro-
cessing, respectively the determination of Failure Witnesses. The related KMTSs are
shown in Figure 6.13, respectively Figure 6.14. The third example is a slightly sim-
plified version of the the well-known microwave oven scenario presented by Clarke
et al. [CGP99] like it is used by Biswas and Deka [BD13] for online lectures. It will
highlight the possibilities of the implementation concerning several meaningful la-
bels, transition cycles as well as the functionality of the preprocessing. KMTS, CTL
formulas and logfiles can be found in Appendix A.3.

6.4.1 Use Cases

(a) Corresponding formula (CTL_RA15): s0 ⊢ EX(m) ∨E(mU¬m)
Expected result: true
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m
s0 s1

Figure 6.13: KMTS_RA15: Example
by Ribeiro and Andrade.

m
s0 s1

Figure 6.14: KMTS_GAW13: Exam-
ple by Guerra et al..

(b) Corresponding formula (CTL_GAW13): s0 ⊢ AX(AG(¬m) ∨AF (m))
Expected result: indefinite (Failure Witnesses around s1)

(c) KMTS_Microwave: Microwave oven scenario (see Appendix A.3).
Corresponding formula (CTL_Microwave1): s0 ⊢ AG(¬(¬Close ∧Heat))
No heating with open door - Expected result: true
Corresponding formula (CTL_Microwave2): s0 ⊢ AG(Start→ AF (Heat))
Starting at some point results in heating - Expected result: false

6.4.2 Evaluation

The details of use cases 6.4.1 (a) fixed point loop have already been discussed using
Figure 5.1 in Section 5.1.2. Figure 5.5 in Section 5.2.1 shows the game arena of this
use case with the fixed point loop marked between configuration c9 and configura-
tion c14. The complete logfile including fixed point loop and arena can be found in
Appendix A.4.

********** Failure Witnesses:
from:state , to:state , rule , must
c16:s1 , c11:s1 , 1 , false
c12:s1 , c13:s1 , 5 , false
c7:s1 , c8:s0 , 1 , false
c7:s1 , c2:s1 , 1 , false
c3:s1 , c4:s1 , 4 , false
******************************************

Figure 6.15: Failure Witnesses for use case 6.4.1 (b) (KMTS_GAW13/CTL_GAW13).

The KMTS in Figure 6.14 for use case 6.4.1 (b) contains three indeterminations. Two
transitions and one state label. This large number, especially compared to the size
of the KMTS, leads to quite an amount of Failure Witnesses listed in Figure 6.15.
What is most interesting about this list of Failure Witnesses is the fact that two of
them relate to edges resulting from fixed point loops. These are the edges from
configuration c16 to configuration c11 in the first line and from configuration c7 to
configuration c2 in the fourth line. Again the complete logfile can be found in Ap-
pendix A.4. For the microwave oven scenario, the evaluation is left to the interested
reader. As mentioned, all necessary information can be found in Appendix A.3.
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7 Discussion and Conclusion

In this thesis, an algorithm for model checking of structures with partial informa-
tion templated as KMTSs was proposed. The algorithm is based on the theory of
Contraction Model Checking (CMC) introduced by Ribeiro and Andrade [RA15]
and extends this theory by pinpointing any conflicts by Failure Witnesses within
the model that may have arisen as a result of the partial information. The Failure
Witnesses logic was taken over by Guerra et al. [GAW13]. The complete algorithms
were also implemented as a Java program.

The first part of the thesis contains formal definitions of CTL, Kripke structures and
KMTSs including the associated semantics. Then the definitions, necessary for the
implementation of CMC and Failure Witnesses, are presented. Based on these pre-
liminaries, an implementation approach for the algorithms was developed and sup-
plemented by a description of the most important parts of the Java implementation.
The topic was rounded off by a series of experimental test runs of the Java program
and an evaluation and presentation of the most important results and findings of
these runs.

CMC is a game based approach that interprets a KMTS as a set of Kripke struc-
tures, called the expansion of the KMTS. This was first introduced by Guerra et al.
[GAW13] but, to my knowledge, CMC is the first method that directly checks the
KMTS and not the Kripke structure of the expansion. The mentioned experimental
runs showed that this new method could be successfully implemented, not least,
because of the absolutely complete theoretical CMC definitions of Ribeiro and An-
drade [RA15]. The fact that CMC does not require a CTL formula first to be formally
translated into a µ-calculus formula [BW18], as Guerra et al. [GAW13] and its pi-
oneers [GLLS07, SG12] proposed, turned out to be very positive. CMC can handle
the pure CTL formulas because of the game rules formulated in CTL. Nevertheless,
the incoming CTL formulas have to be preprocessed. Actually, CMC can only han-
dle the temporal operators X , U and R, always bound by one of the path operators
E respective A, but that does no harm. The translations for F , G and →, proposed,
in Section 2.1.1, work without a problem for almost all kinds of CTL formulas. It
is obvious that the fewer operators that have to be taken into account for coding,
the easier and shorter is the development of the Java code. Considering also that U
and R only differ in details, but not in the necessary program logic, this selection
by Ribeiro and Andrade [RA15] cannot be overestimated, although it seems quite
idiosyncratic compared to other model checker variants which mostly use X , G and
U for a minimal representation of CTL. Of course, the allowed operators could be
restricted even further, because not every combination of temporal and path opera-
tors, sometimes called connectives, is necessary for a minimal representation of CTL.
Martin [Mar01] shows that, for example, the connectives EX , AU and EU would be
sufficient for this purpose. That means for CMC that only the three game rules con-
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cerning these connectives would be needed, of course, in addition to the rules for
the logical operators And and Or, because all other connectives can be translated to
these. However, his extreme solution has one disadvantage. The resulting CTL for-
mulas of this translations would quickly become very confusing and what is worth
very large. This would lead, via decomposing, to very large arenas and that is what
we actually wanted to prevent. From this point of view, the six in the game rules
of CMC used connectives EX , AX , EU , AU , ER and AR seem to be a very good
compromise.

As shown in Section 6, some of the indefinite resulting use cases pointed out too
many Failure Witnesses. At least, the existence of these Failure Witnesses could not
be explained. To reduce the number to a degree that we considered correct, it was
necessary to slightly adapt two of the Failure Witness rules from Section 4. The
adaptions are listed here again. Of course, under different circumstances in a dif-
ferent environment, the original rule variations may have been correct and the only
possible solution. In any case, with the stronger restrictions of the new versions, the
results for our experimental runs came out much better.

(3) A must edge, coming from a configuration of type EX coloured indefinite, to a
child configuration si ⊢ l coloured indefinite.

Effect: the required form of the formula in the target configurations limits these to
deadends.

(4) An edge coming from a configuration of type si ⊢ l∧φ to a child configuration
si ⊢ l coloured with indefinite and the other child is coloured indefinite or true.

Effect: a conjunction is finally decided when one operand is false. The restriction for
the other child limits the result to cases that have not already been decided by the
other child, because only such cases could be Failure Witnesses.

The experimental runs carried out could all be measured in thousandth of a sec-
ond. Not only because of the lack of extensive test cases, but mostly because of the
necessity of testing as many different constellations as possible in a very short time
available. Nevertheless, a good amount of optimisation was already implemented
right from the beginning. Specifically, the on-the-fly optimisation was created suc-
cessfully and completely. Of course, the measurable success always depends on the
specific circumstances. Sometimes, depending on the involved KMTS and CTL for-
mula, only a few configurations of an arena are saved during construction, other
times a large part of the arena must not get created at all to receive a result. In any
case, you can never notice a worsening through the optimisation. Also the original
fears that Failure Witnesses could be lost as a result of optimisation have not mate-
rialised.
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Another problem that only came up during the test runs was the fact that transi-
tion cycles in the KMTS could lead to endless loops when building the arena and
therefore to infinite arenas. That is because the arena is build top down from each
configuration to their children. Thus, if it happens that the state of a new configura-
tion has already been on the state path covered to this point of the game, it will start
all over again from here. Considering the time available, we decided for a maybe
quick and dirty solution. If the constellation is recognised, the loop will be broken
by handling the situation as it would be a normal fixed point loop. Further investi-
gation in the future is necessary to see whether information for colouring the arena
is lost as a result of this procedure.

The unintentional endless loops also had their good side. They helped to deter-
mine fairly accurate how many recursive calls the Java program can handle since
that depends on the exact size, number and type of classes that have to be stored
on the stack at every recursive call. This number is not easy to determine other
than by experimental challenge. The stack overflow exception occurred regularly
after about 2000 not yet returned recursive calls. That means, the arena can have a
maximum depth of about 2000 configurations which is quite a lot. The cycling runs
created for this depth regularly over 3000 configurations. This means, at least for
the current development stage of the Java program, that there is no need at all to
worry about the recursive calls.
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8 Future Work

Due to the short development time, there are still a few open issues in connection
with our implementation. Some of them are already commented in the code as
TODOs like, for example, checking the input data, error output at all critical code
passages or improvements in the mentioned transition cycles, in particular allow
more than one cycle to start at one configuration. Yet, the current level of develop-
ment of the algorithms and the Java program should be a good starting point for
future work. Here one topic could be testing with large amounts of data, i.e. with
large models and challenging formulas, and any eventually necessary adjustments
to the program. Ideally, these big data tests should be based on real-life use cases.
As we have already found, it is difficult, if not impossible, to obtain such data in the
form of KMTS models. What is widely used and what would be easily available are
test cases in the form of Petri nets, for example in connection with the already men-
tioned yearly French model checking contest[LIP23]. A solution could be to search
for an applicable existing algorithm to transform Petri nets to a KMTS or, at least, to
a Kripke structure as an intermediate step. Should this search be not successful, the
algorithm can also be developed from scratch. As earlier mentioned, comparable
approaches can definitely be found in the literature [IM13, FGHHO20, Oli21]. They
would have to be adapted to the specific requirements.

The most important point for future research on the subject could be a scientifically
sound statement at a level of significance to be determined about the reliability of
the CMC results. For this, the results of the CMC Java implementation, developed
through this thesis, should be compared to a model checking of the individual CTL
models that represent a KMTS according to Guerra et al. [GAW13]. Of course, here it
would be very important that an existing, available and reliable model checker, and
not an in-house development or even this Java implementation itself, is used for the
model checking of the individual Kripke structures. The effort involved in selecting
such a model checker should not be underestimated, but this seems to be the only
way to achieve really verifiable statements when comparing the results. Maybe the
survey for model checkers by Raj and Suryaprasad [RJ16] could be a helpful starting
point. Whether something like this could and should be approached in conjunction
with the already mentioned desirable translation of Petri nets to usable Kripke struc-
tures or even KMTSs, would have to be carefully determined beforehand.

With the developments of this thesis, only conflicts responsible for the model check-
ing outcome indefinite can be pointed out. Would it not be desirable to also pinpoint
the reasons for an outcome of false? Of course, new Failure Witnesses rules would
have to be established first. Apart from that, it would be a small program change
with, in my opinion, a major impact on the usability of the application.

Furthermore, so far conflicts can only be pointed out but not revised. One more in-
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teresting aspect for the future, based on the implementation of the Failure Witnesses
logic, could be the automatic revision of the KMTS models proposed by Guerra et
al. [GAW13]. What would that mean for some of the real world use cases presented
in the introduction? Including such a revision directly in the model checking im-
plementation could have positive and negative aspects. Maybe the system model in
form of a KMTS represents the surroundings of an agent and the agent gets contra-
dictory information from different sources. For example, a sensor in a self-driving
car detects an obstacle, other sensors do not report it. Can an automatic revision
take place and what should be the result? Revising this conflict would solve the
problem in the software of the car. No matter whether the solution was to remove
the obstacle from the agents, respective the cars, belief or not, if it was the wrong
decision it could lead to a car accident. Either through a collision with the obsta-
cle or through an emergency braking that other road users could not have foreseen.
Thus, in this case, pinpointing the problem is still important, but a simple revision
may not be a solution or at least has to be handled with care. On the other hand,
imagine the KMTS represents the target system model to be created in a system de-
velopment process. Would it not be nice to be able to check the interim results of
this model against the pre-established system requirements and not only get back a
right, a wrong or a do not know, but an automatically to the different requirements
adapted new system model?

The sense and benefit of an automatic revision, therefore, depends heavily on the
actual application. But there are certainly applications that could derive a great
benefit from such an integrated revision. Thus, expanding this work in the future
to include an automatic revision of the system model based on the conflicts found
should definitely be considered.
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A Appendix

A.1 CTL Files

This is an example with content provided by Ribeiro and Andrade [RA15].

Listing A.1: CTL_RA15.json

/Input CTL Formula (Example by Ribeiro and Andrade [RA15])
{
/CTL Formula)
"CTL": "OR(EX(’m’),EU(’m’,NOT(’m’)))"
}

These are the experimental CTL Json files used in Section 6 (Experiment and Evaluation).

Listing A.2: CTL1.json

/Input CTL Formula
{
/CTL Formula
"CTL": "EU(’m’,NOT(’m’))"
}

Listing A.3: CTL2.json

/Input CTL Formula
{
/CTL Formula
"CTL": "EU(NOT(’m’),’m’)"
}

Listing A.4: CTL3.json

/Input CTL Formula
{
/CTL Formula
"CTL": "AU(’m’,NOT(’m’))"
}

Listing A.5: CTL4.json

/Input CTL Formula
{
/CTL Formula
"CTL": "AU(NOT(’m’),’m’)"
}

Listing A.6: CTL5.json

/Input CTL Formula
{
/CTL Formula
"CTL": "OR(’m’,EX(’m’))"
}
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Listing A.7: CTL6.json

/Input CTL Formula
{
/CTL Formula
"CTL": "OR(’m’,AX(’m’))"
}

Listing A.8: CTL7.json

/Input CTL Formula
{
/CTL Formula
"CTL": "EU(’m’,’n’)"
}

A.2 KMTS Files

This is an example with content provided by Ribeiro and Andrade [RA15].

Listing A.9: KMTS_RA15.json

/Input KMTS (Example by Ribeiro and Andrade [RA15])
{
/Atomic Propositions
"AP": [{"label":"m"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"}]},

{"name":"s1","label":[]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"1"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"0"},

{"transition":"1"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"}]
}
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These are the eperimental KMTS Json files used in Section 6 (Experiment and Evaluation).

Listing A.10: KMTS1.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"}]},

{"name":"s1","label":[{"value":"1"}]},
{"name":"s2","label":[{"value":"1"}]},
{"name":"s3","label":[{"value":"1"}]},
{"name":"s4","label":[{"value":"1"}]},
{"name":"s5","label":[{"value":"-1"}]},
{"name":"s6","label":[{"value":"1"}]},
{"name":"s7","label":[{"value":"1"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"2"},
{"stateFrom":"2","stateTo":"3"},
{"stateFrom":"3","stateTo":"4"},
{"stateFrom":"1","stateTo":"5"},
{"stateFrom":"5","stateTo":"6"},
{"stateFrom":"6","stateTo":"7"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"}]

}
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Listing A.11: KMTS2.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"}]},

{"name":"s1","label":[{"value":"1"}]},
{"name":"s2","label":[{"value":"1"}]},
{"name":"s3","label":[{"value":"1"}]},
{"name":"s4","label":[{"value":"1"}]},
{"name":"s5","label":[]},
{"name":"s6","label":[{"value":"1"}]},
{"name":"s7","label":[{"value":"1"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"2"},
{"stateFrom":"2","stateTo":"3"},
{"stateFrom":"3","stateTo":"4"},
{"stateFrom":"1","stateTo":"5"},
{"stateFrom":"5","stateTo":"6"},
{"stateFrom":"6","stateTo":"7"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"}]

}
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Listing A.12: KMTS3.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"-1"}]},

{"name":"s1","label":[{"value":"1"}]},
{"name":"s2","label":[{"value":"1"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"2"},
{"stateFrom":"2","stateTo":"2"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"1"},

{"transition":"2"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"}]

}
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Listing A.13: KMTS4.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"-1"}]},

{"name":"s1","label":[{"value":"1"}]},
{"name":"s2","label":[{"value":"1"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"1","stateTo":"2"},
{"stateFrom":"2","stateTo":"2"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"0"},

{"transition":"2"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"}]

}
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Listing A.14: KMTS5.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"},{"label":"n"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"},{"value":"-2"}]},

{"name":"s1","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s2","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s3","label":[{"value":"-1"},{"value":"-2"}]},
{"name":"s4","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s5","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s6","label":[{"value":"-1"},{"value":"-2"}]},
{"name":"s7","label":[{"value":"2"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"0","stateTo":"2"},
{"stateFrom":"1","stateTo":"3"},
{"stateFrom":"1","stateTo":"4"},
{"stateFrom":"4","stateTo":"7"},
{"stateFrom":"2","stateTo":"5"},
{"stateFrom":"2","stateTo":"6"},
{"stateFrom":"5","stateTo":"7"},
{"stateFrom":"7","stateTo":"0"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"1"},

{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"7"},
{"transition":"8"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"7"},
{"transition":"8"}]

}
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Listing A.15: KMTS6.json

/Input KMTS
{
/Atomic Propositions
"AP": [{"label":"m"},{"label":"n"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S": [{"name":"s0","label":[{"value":"1"},{"value":"-2"}]},

{"name":"s1","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s2","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s3","label":[{"value":"-1"},{"value":"-2"}]},
{"name":"s4","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s5","label":[{"value":"1"},{"value":"-2"}]},
{"name":"s6","label":[{"value":"-1"},{"value":"-2"}]},
{"name":"s7","label":[{"value":"2"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",

/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"0","stateTo":"2"},
{"stateFrom":"1","stateTo":"3"},
{"stateFrom":"1","stateTo":"4"},
{"stateFrom":"4","stateTo":"7"},
{"stateFrom":"2","stateTo":"5"},
{"stateFrom":"2","stateTo":"6"},
{"stateFrom":"5","stateTo":"7"},
{"stateFrom":"7","stateTo":"0"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"1"},

{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"8"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"7"},
{"transition":"8"}]

}
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A.3 The Microwave Oven Scenario

Figure A.1: KMTS_Microwave: The Microwave Oven Scenario.

Listing A.16: KMTS_Microwave.json

/Input KMTS (Example by )
{
/Atomic Propositions
"AP": [{"label":"Start"},{"label":"Close"},{"label":"Heat"},{"label":"Error"}],

/States (Labels defined by "value" as index of AP starting at 1)
/ ("not" marked as negativ value)
"S":[
{"name":"s0","label":[{"value":"-1"},{"value":"-2"},{"value":"-3"},{"value":"-4"}]},
{"name":"s1","label":[{"value":"-1"},{"value":"2"},{"value":"-3"},{"value":"-4"}]},
{"name":"s2","label":[{"value":"-1"},{"value":"2"},{"value":"3"},{"value":"-4"}]},
{"name":"s3","label":[{"value":"1"},{"value":"2"},{"value":"-3"},{"value":"-4"}]},
{"name":"s4","label":[{"value":"1"},{"value":"2"},{"value":"3"},{"value":"-4"}]},
{"name":"s5","label":[{"value":"1"},{"value":"-2"},{"value":"-3"},{"value":"4"}]},
{"name":"s6","label":[{"value":"1"},{"value":"2"},{"value":"-3"},{"value":"4"}]}],

/Initial State (defined by index of S starting at 0)
"SI": "0",
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/Transitions (States defined by index of S starting at 0)
"T": [{"stateFrom":"0","stateTo":"1"},

{"stateFrom":"2","stateTo":"0"},
{"stateFrom":"2","stateTo":"1"},
{"stateFrom":"1","stateTo":"0"},
{"stateFrom":"1","stateTo":"3"},
{"stateFrom":"2","stateTo":"2"},
{"stateFrom":"3","stateTo":"4"},
{"stateFrom":"4","stateTo":"2"},
{"stateFrom":"0","stateTo":"5"},
{"stateFrom":"5","stateTo":"6"},
{"stateFrom":"6","stateTo":"5"},
{"stateFrom":"6","stateTo":"1"}],

/Must Transitions (Transitions defined by index of T starting at 0)
"Rplus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"7"},
{"transition":"8"},
{"transition":"9"},
{"transition":"10"},
{"transition":"11"}],

/May Transitions (Transitions defined by index of T starting at 0)
"Rminus": [{"transition":"0"},

{"transition":"1"},
{"transition":"2"},
{"transition":"3"},
{"transition":"4"},
{"transition":"5"},
{"transition":"6"},
{"transition":"7"},
{"transition":"8"},
{"transition":"9"},
{"transition":"10"},
{"transition":"11"}]

}

Listing A.17: CTL_Microwave1.json

/Input CTL Formula (Microwave oven: no heating with open door)
{
/CTL Formula)
"CTL": "AG(NOT(AND(NOT(’Close’),’Heat’)))"
}

Listing A.18: CTL_Microwave2.json

/Input CTL Formula (Microwave oven: starting at some point results in heating)
{
/CTL Formula)
"CTL": "AG(IMP(’Start’,AF(’Heat’)))"
}
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Listing A.19: Logfile Microwave Oven Scenario 1

********** Runcontrol:
kmtsfile: KMTS_Microwave.json
ctlfile : CTL_Microwave1.json
opti : 1
rc : 1
rt : 0
prepro : 1
fploop : 0
arena : 1
stats : 1

******************************************
Input CTL formula: AG(¬(¬Close ∧ Heat))

********** Input Data:
Input initial state: s0
Input KMTS.AP: Start, Close, Heat, Error,
Contraction Model Checking Form: A(� R ¬(¬Close ∧ Heat))
Negation Normal Form: A(� R (Close ∨ ¬Heat))

******************************************
********** Coloured Arena:
configuration, parent, fploop, delta, colour, state ⊢ formula, info
c0 , , c14 , {M} , T , s0 ⊢ A(� R (Close ∨ ¬Heat))
c1 , c0 , , {M} , T , s0 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat))

))))
c2 , c1 , , {M} , T , s0 ⊢ (Close ∨ ¬Heat)
c3 , c2 , , ∅ , F , s0 ⊢ Close , deadend
c4 , c2 , , {M} , T , s0 ⊢ ¬Heat , deadend
c5 , c1 , , {M} , T , s0 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c6 , c5 , , ∅ , F , s0 ⊢ � , deadend
c7 , c5 , , {M} , T , s0 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c8 , c7 , c35 , {M} , T , s1 ⊢ A(� R (Close ∨ ¬Heat))
c9 , c8 , , {M} , T , s1 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat))

))))
c10 , c9 , , {M} , T , s1 ⊢ (Close ∨ ¬Heat) , shortcut
c11 , c10 , , {M} , T , s1 ⊢ Close , deadend
c12 , c9 , , {M} , T , s1 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c13 , c12 , , ∅ , F , s1 ⊢ � , deadend
c14 , c12 , VVV , {M} , T , s1 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c15 , c14 , , {M} , T , s3 ⊢ A(� R (Close ∨ ¬Heat))
c16 , c15 , , {M} , T , s3 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c17 , c16 , , {M} , T , s3 ⊢ (Close ∨ ¬Heat) , shortcut
c18 , c17 , , {M} , T , s3 ⊢ Close , deadend
c19 , c16 , , {M} , T , s3 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c20 , c19 , , ∅ , F , s3 ⊢ � , deadend
c21 , c19 , , {M} , T , s3 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c22 , c21 , , {M} , T , s4 ⊢ A(� R (Close ∨ ¬Heat))
c23 , c22 , , {M} , T , s4 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c24 , c23 , , {M} , T , s4 ⊢ (Close ∨ ¬Heat) , shortcut
c25 , c24 , , {M} , T , s4 ⊢ Close , deadend
c26 , c23 , , {M} , T , s4 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c27 , c26 , , ∅ , F , s4 ⊢ � , deadend
c28 , c26 , , {M} , T , s4 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c29 , c28 , c35 , {M} , T , s2 ⊢ A(� R (Close ∨ ¬Heat))
c30 , c29 , , {M} , T , s2 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c31 , c30 , , {M} , T , s2 ⊢ (Close ∨ ¬Heat) , shortcut
c32 , c31 , , {M} , T , s2 ⊢ Close , deadend
c33 , c30 , , null , U , s2 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
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c34 , c33 , , ∅ , F , s2 ⊢ � , deadend
c35 , c33 , VVV , null , U , s2 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c36 , c7 , c50 , {M} , T , s5 ⊢ A(� R (Close ∨ ¬Heat))
c37 , c36 , , {M} , T , s5 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c38 , c37 , , {M} , T , s5 ⊢ (Close ∨ ¬Heat)
c39 , c38 , , ∅ , F , s5 ⊢ Close , deadend
c40 , c38 , , {M} , T , s5 ⊢ ¬Heat , deadend
c41 , c37 , , {M} , T , s5 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c42 , c41 , , ∅ , F , s5 ⊢ � , deadend
c43 , c41 , , {M} , T , s5 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c44 , c43 , , {M} , T , s6 ⊢ A(� R (Close ∨ ¬Heat))
c45 , c44 , , {M} , T , s6 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c46 , c45 , , {M} , T , s6 ⊢ (Close ∨ ¬Heat) , shortcut
c47 , c46 , , {M} , T , s6 ⊢ Close , deadend
c48 , c45 , , {M} , T , s6 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c49 , c48 , , ∅ , F , s6 ⊢ � , deadend
c50 , c48 , VVV , {M} , T , s6 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c51 , c50 , , {M} , T , s1 ⊢ A(� R (Close ∨ ¬Heat))
c52 , c51 , , {M} , T , s1 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c53 , c52 , , {M} , T , s1 ⊢ (Close ∨ ¬Heat) , shortcut
c54 , c53 , , {M} , T , s1 ⊢ Close , deadend
c55 , c52 , , null , U , s1 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c56 , c55 , , ∅ , F , s1 ⊢ � , deadend
c57 , c55 , VVV , null , U , s1 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c58 , c57 , , {M} , T , s3 ⊢ A(� R (Close ∨ ¬Heat))
c59 , c58 , , {M} , T , s3 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c60 , c59 , , {M} , T , s3 ⊢ (Close ∨ ¬Heat) , shortcut
c61 , c60 , , {M} , T , s3 ⊢ Close , deadend
c62 , c59 , , {M} , T , s3 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c63 , c62 , , ∅ , F , s3 ⊢ � , deadend
c64 , c62 , , {M} , T , s3 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c65 , c64 , , {M} , T , s4 ⊢ A(� R (Close ∨ ¬Heat))
c66 , c65 , , {M} , T , s4 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c67 , c66 , , {M} , T , s4 ⊢ (Close ∨ ¬Heat) , shortcut
c68 , c67 , , {M} , T , s4 ⊢ Close , deadend
c69 , c66 , , {M} , T , s4 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c70 , c69 , , ∅ , F , s4 ⊢ � , deadend
c71 , c69 , , {M} , T , s4 ⊢ AX(A(� R (Close ∨ ¬Heat)))
c72 , c71 , c78 , {M} , T , s2 ⊢ A(� R (Close ∨ ¬Heat))
c73 , c72 , , {M} , T , s2 ⊢ (((Close ∨ ¬Heat)) ∧ ((� ∨ AX(A(� R (Close ∨ ¬Heat

))))))
c74 , c73 , , {M} , T , s2 ⊢ (Close ∨ ¬Heat) , shortcut
c75 , c74 , , {M} , T , s2 ⊢ Close , deadend
c76 , c73 , , null , U , s2 ⊢ (� ∨ AX(A(� R (Close ∨ ¬Heat))))
c77 , c76 , , ∅ , F , s2 ⊢ � , deadend
c78 , c76 , VVV , null , U , s2 ⊢ AX(A(� R (Close ∨ ¬Heat)))

******************************************
Configurations: 79 , Thereof Deadends: 24
Junctions: 39 , Junction Short Cuts used: 9
Fixpoint Loops: 5 , Calculations within Fixpoint Loops: 50
MPS generated: 51 , Contraction Operations: 0
Recursion Calls: 88 , Max Recursion Depth: 29

******************************************
********** Model Checking Result:
c0 , , c14 , {M} , T , s0 ⊢ A(� R (Close ∨ ¬Heat))

******************************************
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Listing A.20: Logfile Microwave Oven Scenario 2

********** Runcontrol:
kmtsfile: KMTS_Microwave.json
ctlfile : CTL_Microwave2.json
opti : 1
rc : 1
rt : 0
prepro : 1
fploop : 0
arena : 1
stats : 1

******************************************
Input CTL formula: AG(Start → AF(Heat))

********** Input Data:
Input initial state: s0
Input KMTS.AP: Start, Close, Heat, Error,
Contraction Model Checking Form: A(� R (¬Start ∨ A(⊺ U Heat)))
Negation Normal Form: A(� R (¬Start ∨ A(⊺ U Heat)))

******************************************
********** Coloured Arena:
configuration, parent, fploop, delta, colour, state ⊢ formula, info
c0 , , c13 , ∅ , F , s0 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c1 , c0 , , ∅ , F , s0 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start ∨ A

(⊺ U Heat)))))))
c2 , c1 , , {M} , T , s0 ⊢ (¬Start ∨ A(⊺ U Heat)) , shortcut
c3 , c2 , , {M} , T , s0 ⊢ ¬Start , deadend
c4 , c1 , , ∅ , F , s0 ⊢ (� ∨ AX(A(� R (¬Start ∨ A(⊺ U Heat)))))
c5 , c4 , , ∅ , F , s0 ⊢ � , deadend
c6 , c4 , , ∅ , F , s0 ⊢ AX(A(� R (¬Start ∨ A(⊺ U Heat))))
c7 , c6 , c43 , ∅ , F , s1 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c8 , c7 , , ∅ , F , s1 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start ∨ A

(⊺ U Heat)))))))
c9 , c8 , , {M} , T , s1 ⊢ (¬Start ∨ A(⊺ U Heat)) , shortcut
c10 , c9 , , {M} , T , s1 ⊢ ¬Start , deadend
c11 , c8 , , ∅ , F , s1 ⊢ (� ∨ AX(A(� R (¬Start ∨ A(⊺ U Heat)))))
c12 , c11 , , ∅ , F , s1 ⊢ � , deadend
c13 , c11 , VVV , ∅ , F , s1 ⊢ AX(A(� R (¬Start ∨ A(⊺ U Heat))))
c14 , c13 , , {M} , T , s3 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c15 , c14 , , {M} , T , s3 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start

∨ A(⊺ U Heat)))))))
c16 , c15 , , {M} , T , s3 ⊢ (¬Start ∨ A(⊺ U Heat))
c17 , c16 , , ∅ , F , s3 ⊢ ¬Start , deadend
c18 , c16 , , {M} , T , s3 ⊢ A(⊺ U Heat)
c19 , c18 , , {M} , T , s3 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c20 , c19 , , ∅ , F , s3 ⊢ Heat , deadend
c21 , c19 , , {M} , T , s3 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c22 , c21 , , {M} , T , s3 ⊢ ⊺ , deadend
c23 , c21 , , {M} , T , s3 ⊢ AX(A(⊺ U Heat))
c24 , c23 , c32 , {M} , T , s4 ⊢ A(⊺ U Heat)
c25 , c24 , , {M} , T , s4 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat))))) , shortcut
c26 , c25 , , {M} , T , s4 ⊢ Heat , deadend
c27 , c15 , , {M} , T , s3 ⊢ (� ∨ AX(A(� R (¬Start ∨ A(⊺ U Heat)))))
c28 , c27 , , ∅ , F , s3 ⊢ � , deadend
c29 , c27 , , {M} , T , s3 ⊢ AX(A(� R (¬Start ∨ A(⊺ U Heat))))
c30 , c29 , , {M} , T , s4 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c31 , c30 , , {M} , T , s4 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start

∨ A(⊺ U Heat)))))))
c32 , c31 , ___ , {M} , T , s4 ⊢ (¬Start ∨ A(⊺ U Heat))
c33 , c32 , , ∅ , F , s4 ⊢ ¬Start , deadend
c34 , c31 , , {M} , T , s4 ⊢ (� ∨ AX(A(� R (¬Start ∨ A(⊺ U Heat)))))
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c35 , c34 , , ∅ , F , s4 ⊢ � , deadend
c36 , c34 , , {M} , T , s4 ⊢ AX(A(� R (¬Start ∨ A(⊺ U Heat))))
c37 , c36 , c43 , {M} , T , s2 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c38 , c37 , , {M} , T , s2 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start

∨ A(⊺ U Heat)))))))
c39 , c38 , , {M} , T , s2 ⊢ (¬Start ∨ A(⊺ U Heat)) , shortcut
c40 , c39 , , {M} , T , s2 ⊢ ¬Start , deadend
c41 , c38 , , null , U , s2 ⊢ (� ∨ AX(A(� R (¬Start ∨ A(⊺ U Heat)))))
c42 , c41 , , ∅ , F , s2 ⊢ � , deadend
c43 , c41 , VVV , null , U , s2 ⊢ AX(A(� R (¬Start ∨ A(⊺ U Heat))))
c44 , c6 , , ∅ , F , s5 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))
c45 , c44 , , ∅ , F , s5 ⊢ (((¬Start ∨ A(⊺ U Heat))) ∧ ((� ∨ AX(A(� R (¬Start ∨

A(⊺ U Heat))))))) , shortcut
c46 , c45 , , ∅ , F , s5 ⊢ (¬Start ∨ A(⊺ U Heat))
c47 , c46 , , ∅ , F , s5 ⊢ ¬Start , deadend
c48 , c46 , c59 , ∅ , F , s5 ⊢ A(⊺ U Heat)
c49 , c48 , , ∅ , F , s5 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c50 , c49 , , ∅ , F , s5 ⊢ Heat , deadend
c51 , c49 , , ∅ , F , s5 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c52 , c51 , , {M} , T , s5 ⊢ ⊺ , deadend
c53 , c51 , , ∅ , F , s5 ⊢ AX(A(⊺ U Heat))
c54 , c53 , , ∅ , F , s6 ⊢ A(⊺ U Heat)
c55 , c54 , , ∅ , F , s6 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c56 , c55 , , ∅ , F , s6 ⊢ Heat , deadend
c57 , c55 , , ∅ , F , s6 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c58 , c57 , , {M} , T , s6 ⊢ ⊺ , deadend
c59 , c57 , VVV , ∅ , F , s6 ⊢ AX(A(⊺ U Heat))
c60 , c59 , c71 , ∅ , F , s1 ⊢ A(⊺ U Heat)
c61 , c60 , , null , U , s1 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c62 , c61 , , ∅ , F , s1 ⊢ Heat , deadend
c63 , c61 , , null , U , s1 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c64 , c63 , , {M} , T , s1 ⊢ ⊺ , deadend
c65 , c63 , , null , U , s1 ⊢ AX(A(⊺ U Heat))
c66 , c65 , , null , U , s0 ⊢ A(⊺ U Heat)
c67 , c66 , , null , U , s0 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c68 , c67 , , ∅ , F , s0 ⊢ Heat , deadend
c69 , c67 , , null , U , s0 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c70 , c69 , , {M} , T , s0 ⊢ ⊺ , deadend
c71 , c69 , VVV , null , U , s0 ⊢ AX(A(⊺ U Heat))
c72 , c65 , , {M} , T , s3 ⊢ A(⊺ U Heat)
c73 , c72 , , {M} , T , s3 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat)))))
c74 , c73 , , ∅ , F , s3 ⊢ Heat , deadend
c75 , c73 , , {M} , T , s3 ⊢ (⊺ ∧ AX(A(⊺ U Heat)))
c76 , c75 , , {M} , T , s3 ⊢ ⊺ , deadend
c77 , c75 , , {M} , T , s3 ⊢ AX(A(⊺ U Heat))
c78 , c77 , , {M} , T , s4 ⊢ A(⊺ U Heat)
c79 , c78 , , {M} , T , s4 ⊢ (Heat ∨ ((⊺ ∧ AX(A(⊺ U Heat))))) , shortcut
c80 , c79 , , {M} , T , s4 ⊢ Heat , deadend

******************************************
Configurations: 81 , Thereof Deadends: 25
Junctions: 37 , Junction Short Cuts used: 6
Fixpoint Loops: 6 , Calculations within Fixpoint Loops: 129
MPS generated: 88 , Contraction Operations: 0
Recursion Calls: 89 , Max Recursion Depth: 26

******************************************
********** Model Checking Result:
c0 , , c13 , ∅ , F , s0 ⊢ A(� R (¬Start ∨ A(⊺ U Heat)))

******************************************
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A.4 Logfiles

These are logfiles generated by experimental execution of model checking use cases
from Section 6.4 (Literature Examples).

Listing A.21: Logfile use case 6.4.1 (a)

********** Runcontrol:
kmtsfile: KMTS_RA15.json
ctlfile : CTL_RA15.json
opti : 1
prepro : 1
fploop : 1
arena : 1
stats : 1

******************************************
Input CTL formula: EX(m) ∨ E(m U ¬m)

********** Input Data:
Input initial state: s0
Input KMTS.AP: m,
Contraction Model Checking Form: EX(m) ∨ E(m U ¬m)
Negation Normal Form: EX(m) ∨ E(m U ¬m)

******************************************
time since start program - 1 - before createArena
time since start program - 1 - 0 configurations created
c14 , c12 , ___ , null , U , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c10 , , null , U , s1 ⊢ m ∧ EX(E(m U ¬m))
c11 , c10 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c10 , c9 , , null , U , s1 ⊢ ¬m ∨ (m ∧ EX(E(m U ¬m)))
c9 , c8 , c14 , ∅ , U , s1 ⊢ E(m U ¬m)

********** Loop starting: c9 , c14
c14 , c12 , ___ , ∅ , F , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c10 , , ∅ , F , s1 ⊢ m ∧ EX(E(m U ¬m))
c11 , c10 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c10 , c9 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m ∨ (m ∧ EX(E(m U ¬m)))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , I , s1 ⊢ E(m U ¬m)

********** Loop starting: c9 , c14
c14 , c12 , ___ , {M({P3(s1,¬m)})} , I , s1 ⊢ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c10 , , ∅ , F , s1 ⊢ m ∧ EX(E(m U ¬m))
c11 , c10 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c10 , c9 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m ∨ (m ∧ EX(E(m U ¬m)))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , I , s1 ⊢ E(m U ¬m)

********** Loop ended:

******************************************
********** Coloured Arena:
configuration, parent, fploop, delta, colour, state ⊢ formula, info
c0 , , , {M} , T , s0 ⊢ EX(m) ∨ E(m U ¬m)
c1 , c0 , , {M({P3(s1,m)})} , I , s0 ⊢ EX(m)
c2 , c1 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c3 , c0 , , {M({P3(s1,¬m)})} , I , s0 ⊢ E(m U ¬m)
c4 , c3 , , {M({P3(s1,¬m)})} , I , s0 ⊢ ¬m ∨ (m ∧ EX(E(m U ¬m)))
c5 , c4 , , ∅ , F , s0 ⊢ ¬m , deadend
c6 , c4 , , {M({P3(s1,¬m)})} , I , s0 ⊢ m ∧ EX(E(m U ¬m))
c7 , c6 , , {M} , T , s0 ⊢ m , deadend
c8 , c6 , , {M({P3(s1,¬m)})} , I , s0 ⊢ EX(E(m U ¬m))
c9 , c8 , c14 , {M({P3(s1,¬m)})} , I , s1 ⊢ E(m U ¬m)
c10 , c9 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m ∨ (m ∧ EX(E(m U ¬m)))
c11 , c10 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
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c12 , c10 , , ∅ , F , s1 ⊢ m ∧ EX(E(m U ¬m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c14 , c12 , ___ , {M({P3(s1,¬m)})} , I , s1 ⊢ EX(E(m U ¬m))

******************************************
Configurations: 15 , Thereof Deadends: 5
Junctions: 5 , Junction Short Cuts used: 0
Fixpoint Loops: 1 , Calculations within Fixpoint Loops: 8
MPS generated: 12 , Contraction Operations: 1
Recursion Calls: 16 , Max Recursion Depth: 10

******************************************
********** Model Checking Result:
c0 , , , {M} , T , s0 ⊢ EX(m) ∨ E(m U ¬m)

******************************************
time since start program - 9 - end program

Listing A.22: Logfile use case 6.4.1 (b)

********** Runcontrol:
kmtsfile: KMTS_GAW13.json
ctlfile : CTL_GAW13.json
opti : 1
prepro : 1
fploop : 1
arena : 1
stats : 1

******************************************
Input CTL formula: AX(AG(¬m) ∨ AF(m))

********** Input Data:
Input initial state: s0
Input KMTS.AP: m,
Contraction Model Checking Form: AX(A(� R ¬m) ∨ A(⊺ U m))
Negation Normal Form: AX(A(� R ¬m) ∨ A(⊺ U m))

******************************************
time since start program - 4 - before createArena
time since start program - 4 - 0 configurations created
c7 , c5 , ___ , null , U , s1 ⊢ AX(A(� R ¬m))
c6 , c5 , , ∅ , F , s1 ⊢ � , deadend
c5 , c3 , , null , U , s1 ⊢ � ∨ AX(A(� R ¬m))
c4 , c3 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c3 , c2 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m ∧ (� ∨ AX(A(� R ¬m)))
c2 , c1 , c7 , {M({P3(s1,¬m)})} , I , s1 ⊢ A(� R ¬m)

********** Loop starting: c2 , c7
c7 , c5 , ___ , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ AX(A(� R ¬m))
c6 , c5 , , ∅ , F , s1 ⊢ � , deadend
c5 , c3 , , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ � ∨ AX(A(� R ¬m))
c4 , c3 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c3 , c2 , , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ ¬m ∧ (� ∨ AX(A(� R ¬m)))
c2 , c1 , c7 , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ A(� R ¬m)

********** Loop starting: c2 , c7
c7 , c5 , ___ , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ AX(A(� R ¬m))
c6 , c5 , , ∅ , F , s1 ⊢ � , deadend
c5 , c3 , , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ � ∨ AX(A(� R ¬m))
c4 , c3 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c3 , c2 , , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ ¬m ∧ (� ∨ AX(A(� R ¬m)))
c2 , c1 , c7 , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ A(� R ¬m)

********** Loop ended:
c16 , c14 , ___ , null , U , s1 ⊢ AX(A(⊺ U m))
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c15 , c14 , , {M} , T , s1 ⊢ ⊺ , deadend
c14 , c12 , , null , U , s1 ⊢ ⊺ ∧ AX(A(⊺ U m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c11 , , null , U , s1 ⊢ m ∨ (⊺ ∧ AX(A(⊺ U m)))
c11 , c1 , c16 , ∅ , U , s1 ⊢ A(⊺ U m)

********** Loop starting: c11 , c16
c16 , c14 , ___ , {M({P1(s1,s1)})} , I , s1 ⊢ AX(A(⊺ U m))
c15 , c14 , , {M} , T , s1 ⊢ ⊺ , deadend
c14 , c12 , , {M({P1(s1,s1)})} , I , s1 ⊢ ⊺ ∧ AX(A(⊺ U m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c11 , , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ m ∨ (⊺ ∧ AX(A

(⊺ U m)))
c11 , c1 , c16 , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ A(⊺ U m)

********** Loop starting: c11 , c16
c16 , c14 , ___ , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ AX(A(⊺ U m))
c15 , c14 , , {M} , T , s1 ⊢ ⊺ , deadend
c14 , c12 , , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ ⊺ ∧ AX(A(⊺ U

m))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c12 , c11 , , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ m ∨ (⊺ ∧ AX(A

(⊺ U m)))
c11 , c1 , c16 , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ A(⊺ U m)

********** Loop ended:

******************************************
********** Coloured Arena:
configuration, parent, fploop, delta, colour, state ⊢ formula, info
c0 , , , {M({P1(s1,s0),P3(s1,¬m)}),M({P3(s1,m)})} , I , s0 ⊢ AX(A(� R ¬m) ∨

A(⊺ U m))
c1 , c0 , , {M({P1(s1,s0),P3(s1,¬m)}),M({P3(s1,m)})} , I , s1 ⊢ A(� R ¬m) ∨ A(⊺

U m)
c2 , c1 , c7 , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ A(� R ¬m)
c3 , c2 , , {M({P1(s1,s0),P3(s1,¬m)})} , I , s1 ⊢ ¬m ∧ (� ∨ AX(A(� R ¬m)))
c4 , c3 , , {M({P3(s1,¬m)})} , I , s1 ⊢ ¬m , deadend
c5 , c3 , , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ � ∨ AX(A(� R ¬m))
c6 , c5 , , ∅ , F , s1 ⊢ � , deadend
c7 , c5 , ___ , {M({P1(s1,s0),P3(s1,¬m)}),M({P1(s1,s0),P1(s1,s1),P3(s1,m)})} , I ,

s1 ⊢ AX(A(� R ¬m))
c8 , c7 , , ∅ , F , s0 ⊢ A(� R ¬m) , may
c9 , c8 , , ∅ , F , s0 ⊢ ¬m ∧ (� ∨ AX(A(� R ¬m))) , shortcut
c10 , c9 , , ∅ , F , s0 ⊢ ¬m , deadend
c11 , c1 , c16 , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ A(⊺ U m)
c12 , c11 , , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ m ∨ (⊺ ∧ AX(A

(⊺ U m)))
c13 , c12 , , {M({P3(s1,m)})} , I , s1 ⊢ m , deadend
c14 , c12 , , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ ⊺ ∧ AX(A(⊺ U

m))
c15 , c14 , , {M} , T , s1 ⊢ ⊺ , deadend
c16 , c14 , ___ , {M({P3(s1,m)}),M({P1(s1,s1),P3(s1,¬m)})} , I , s1 ⊢ AX(A(⊺ U m))
c17 , c16 , , {M} , T , s0 ⊢ A(⊺ U m) , may
c18 , c17 , , {M} , T , s0 ⊢ m ∨ (⊺ ∧ AX(A(⊺ U m))) , shortcut
c19 , c18 , , {M} , T , s0 ⊢ m , deadend

******************************************
Configurations: 20 , Thereof Deadends: 6
Junctions: 9 , Junction Short Cuts used: 2
Fixpoint Loops: 2 , Calculations within Fixpoint Loops: 16
MPS generated: 19 , Contraction Operations: 13
Recursion Calls: 22 , Max Recursion Depth: 9

******************************************
********** Model Checking Result:
c0 , , , {M({P1(s1,s0),P3(s1,¬m)}),M({P3(s1,m)})} , I , s0 ⊢ AX(A(� R ¬m) ∨

A(⊺ U m))
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******************************************
time since start program - 15 - before determineFailureWitnesses

********** Failure Witnesses:
from:state , to:state , rule , must
c16:s1 , c11:s1 , 1 , false
c12:s1 , c13:s1 , 5 , false
c7:s1 , c8:s0 , 1 , false
c7:s1 , c2:s1 , 1 , false
c3:s1 , c4:s1 , 4 , false

******************************************
time since start program - 16 - end program
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