
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Stochastic Local Search Algorithms for

Abstract Argumentation with Heuristics

based on Machine Learning

Bachelor’s Thesis
in partial fulfillment of the requirements for

the degree of Bachelor of Science (B.Sc.)
in Informatik

submitted by
Konrad Drees

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Statement

Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen und
Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnommenen Stel-
len als solche kenntlich gemacht. Die Versicherung selbstständiger Arbeit gilt auch
für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen. Die Bachelorar-
beit wurde bisher in gleicher oder ähnlicher Form weder derselben noch einer anderen
Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit der Abgabe der elektro-
nischen Fassung der endgültigen Version der Bachelorarbeit nehme ich zur Kenntnis,
dass diese mit Hilfe eines Plagiatserkennungsdienstes auf enthaltene Plagiate geprüft
werden kann und ausschließlich für Prüfungszwecke gespeichert wird.

Yes No

I agree to have this thesis published in the library. ⇤ ⇤

I agree to have this thesis published on the webpage of
the artificial intelligence group. ⇤ ⇤

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). ⇤ ⇤

The source code is available under a GNU General Public
License (GPLv3). ⇤ ⇤

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). ⇤ ⇤

. .
(Place, Date) (Signature)

iii

X

X

X

X

X

Passan, 22.
8

.202] K . Drees

Zusammenfassung

Abstrakte Argumentationsframeworks sind eine formale Darstellung von Argumen-
tationssystemen und können zur Analyse und Bewertung der Akzeptanz von Argu-
menten verwendet werden. Allerdings kann der Prozess der Bestimmung von Mengen
akzeptabler Argumente sehr rechenintensiv sein. Stochastische lokale Suchalgorith-
men haben sich als wirksam erwiesen, um Optimierungsprobleme zu lösen und eine
einzelne stabile Erweiterungen in einem abstrakten Argumentationsframework zu fin-
den.

Das Hauptziel dieser Arbeit besteht darin, eine Erweiterung eines stochastischen
Suchalgorithmus zu implementieren, wobei der Schwerpunkt auf der Entwicklung von
Heuristiken basiert auf Machune Learning liegt, um die Leistung des Algorithmus zu
verbessern.

Abstract

Abstract argumentation frameworks are a formal representation of argument systems
and can be used for analyzing and evaluating the acceptability of arguments. How-
ever, the process of determining sets of acceptable arguments can be computationally
expensive. Stochastic local search algorithms effectively solve optimization problems
and find stable extensions in an abstract argumentation framework.

The main objective of this thesis is to implement an extension to a stochastic search
algorithm with a focus on developing heuristics based on machine learning techniques
to improve the algorithm’s performance.

v

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Abstract Argumentation . 3

2.1.1 Basic Concepts . 3
2.1.2 Argument Labellings . 4
2.1.3 Computational Problems in Abstract Argumentation Frameworks 5

2.2 Stochastic local search algorithm . 5
2.2.1 Stochastic local search algorithm in argumentation frameworks 5

2.3 Machine Learning . 7
2.3.1 Fundamentals of Machine Learning Model Building 8
2.3.2 Machine Learning Approaches 8
2.3.3 Machine Learning Algorithms 9
2.3.4 Performance metrics of Machine Learning 11

3 State of Research 13
3.1 Current Solvers for Abstract Argumentation Frameworks 13
3.2 Motivation . 14

4 Methodology and Implementation 15
4.1 Graph Generating . 15
4.2 Feature Extractions . 16
4.3 Machine Learning Models . 17
4.4 Optimizations . 19
4.5 Algorithms Implementation . 20
4.6 Experimental Settings . 22

5 Results and Discussions 23
5.1 Model Selections for the Initial Labelling of Arguments 23
5.2 Model Selection for Switching the Arguments Labelling 25
5.3 Feature Selection and Optimisation . 27
5.4 SLS Algorithm . 31

6 Conclusion and Future Work 35

vii

List of Figures

1 An abstract argumentation framework. 3
2 Relationship Between Artificial Intelligence, Machine Learning, and

Deep Learning [RN21]. 7
3 Machine Learning System [RN21]. 8
4 Distribution of Number of Arguments across all Argumentation Frame-

works. 15
5 The Success rate and Runtime of WalkAAF plotted against the Pa-

rameter g. 31
6 Runtime of WalkAAF using GCN plotted against the Parameter g. . . 32

ix

List of Tables

1 Confusion Matrix . 11
2 Distibution of the Classes for the Modelin 17
3 Distibution of the Classes for the Modelrn 18
4 Classification results after training the Modelin. 23
5 Classification report for Modelin using Random Forest. 24
6 Classification report for Modelin using XGBoost. 24
7 Classification report for Modelin using Graph Convolutional Network. 24
8 Feature Importances after training the Modelin across different classifiers. 25
9 Classification results after training the Modelrn. 26
10 Classification report for Modelrn using Random Forest. 26
11 Classification report for Modelrn using XGBoost. 27
12 Classification report for Modelrn using Graph Convolutional Network. 27
13 Feature Importances after training the Modelrn across different classi-

fiers. 28
14 Classification report for Modelrn using XGBoost after feature reduc-

tion.. 29
15 Classification report for Modelin using XGBoost after feature reduc-

tion. 29
16 Classification report for Modelrn using Random Forest after feature

reduction.. 29
17 Classification report for Modelin using Random Forest after feature

reduction. 29
18 Classification report for Modelrn using GCN after feature reduction.. 29
19 Classification report for Modelin using GCN after feature reduction. . 30
20 Best Hyperparameter for the Random Forest Classifier 30
21 Best Hyperparameter for the XGBoost Classifier 30
22 Results of the different WalkAAF with and without Heuristic based on

Machine Learning. 33

xi

1 Introduction

Abstract argumentation frameworks (AAFs) formalize argument systems and eval-
uate their acceptability. They play a crucial role in understanding argumentative
interactions. However, identifying acceptable arguments or stable extensions is com-
putationally complex due to complicated interconnections between the arguments.

Therefore computing an argument’s acceptability requires an entire argumentation
framework, making the task computationally intensive. For instance, determining if
an argument is part of a stable extension is an NP-hard problem [DD17].

Stochastic local search (SLS) algorithms are a promising solution for optimization
challenges. They explore the solution space in a probabilistic manner and adapt
to local optima, making them effective for identifying stable extensions in AAFs, as
demonstrated by WalkAAF solver [Thi18].

With the help of Machine learning, we can create heuristics that help the Stochastic
Local Search predict and guide the algorithm’s steps, potentially resulting in improved
exploration efficiency.

This thesis aims to enhance an SLS algorithm by integrating machine learning-
based heuristics, inspired by recent successes of machine learning in complex decision-
making and optimization tasks, to ultimately improve the algorithm’s performance.

1

2 Theoretical Background

2.1 Abstract Argumentation

The formalism of abstract argumentation frameworks (AF) was introduced by Dung’s
theory of abstract argumentation [Dun95], and Dung distilled argumentations into its
most fundamental elements: arguments and the relationships between them.

Thus the abstract approach is not concerned with the arguments’ internal structure
and focuses only on their interactions. An argumentation framework is a directed
graph with nodes representing arguments and directed edges representing attacks
between arguments. If there is an edge from argument A to argument B, it means
that argument A attacks argument B.

Their abstract nature and theoretical cleanness are among the strengths following
from the simplicity of the formalism [CG09]. Argumentation Frameworks can be
applied to many different domains like knowledge representation and reasoning.

2.1.1 Basic Concepts

An abstract argumentation framework [Dun95] is a pair AF = (AR,R) where AR
is a set of arguments and R ✓ A ⇥ A is the attack relation. The pair (a, b) 2 R
means that argument a attacks argument b, which can also be denoted as a! b. For
a, b 2 AR define a� = {b | b! a} and a+ = {b | a! b}.

a b c

d

e

Figure 1: An abstract argumentation framework.

An abstract argumentation framework can be visualized as a directed graph in
which arguments are represented as nodes and attacks are represented as arrows.
Figure 1 shows an abstract argumentation framework AF with the arguments AR =
{a, b, c, d, e} and the attacks R = {(a, b), (b, a), (b, c), (c, e), (e, d), (d, c)}

Semantics for abstract argumentation are methods for determining the acceptability
of arguments based on the relationships between them. Dung [Dun95] introduced four
semantics, namely preferred, stable, complete, and grounded semantics, for abstract
argumentation frameworks.

An argument a 2 AR is considered acceptable with respect to a set S of arguments,
if for any argument b 2 AR, if b! a, then b is also attacked by the set S of arguments.

3

A set S of arguments is considered conflict-free if there are no arguments a and b
in S such that a! b.

A set of arguments S is admissible if it is conflict-free and each argument in S is
acceptable with respect to S.

An argument a is considered defeated if it is attacked by an acceptable argument b.
Two main approaches to the definition of argumentation semantics are available

in the literature: the labelling-based approach and the extension-based approach
[BCG18].

In this thesis, the labelling-based approach is used.

2.1.2 Argument Labellings

A labelling L is a function L : A! {in, out, undec} that assigns each argument a 2 A
either the value in, meaning the argument is accepted, out, meaning the argument
is rejected, or undec meaning the status of the argument is undecided [CG09].

Let in(L) for {a | L(a) = in}, out(L) for {a | L(a) = out} and undec(L) for
{a | L(a) = undec}.

The labelling approach semantics can be used to define different types of semantics,
including grounded, preferred, stable, and complete semantics.

A labelling is called conflict-free if there is for no a, b 2 in(L), a! b.
A labelling is called admissible if for all arguments a 2 AR it holds that [CG09]:

1. if a is labelled in then all attackers of a are labelled out

2. if a is labelled out then a has an attacker that is labelled in

An example for an admissible labelling for Figure 1 would be {(a, out), (b, in),
(c, out), (d, out), (e, in)} or {(a, in), (b, out), (c, in), (d, in), (e, out)}.

A labelling is called complete if it is admissible and it additionally for all arguments
a 2 AR holds that [CG09]:

1. if a is labelled undec then it has at least one attacker that is labelled undec and
it does not have an attacker that is labelled in.

Different types of classical semantics can be phrased by imposing further con-
straints. Thus the complete labelling L is [CG09]:

• grounded if and only if in(L) is minimal

• prefered if and only if in(L) is maximal

• stable if and only if undec(L) = ;

The minimality and maximality of the statements are meant to be with respect to
set inclusion [CG09].

4

2.1.3 Computational Problems in Abstract Argumentation Frameworks

Abstract Argumentation Frameworks are useful in representing complex argumenta-
tive structures and interactions. However, computational challenges arise when iden-
tifying acceptable arguments or determining extensions within the framework. Most
algorithmic approaches for solving these problems are sound and complete methods
[KWT22].

Computing an argument’s acceptability requires considering an entire argumenta-
tion framework, making the task computationally intensive. For instance, determining
if an argument is part of a preferred extension is an NP-hard problem [DD17].

An NP-hard (Non-deterministic Polynomial-time hard) problem is a classifica-
tion of problems in computational complexity theory [DD17]. This class consists of
problems for which no efficient (for example in polynomial time) solution has been
found.

Another task is the identification of all or some extensions within the Argumenta-
tion Framework meeting their specific criteria. Each extension is a conflict-free subset
of arguments [BCG18]. Calculating all the complete, stable, or preferred extensions
in large argumentation frameworks can become computationally challenging due to
combining all the subsets.

An overview of computational problems and their time complexity of different prob-
lems related to argumentation frameworks can be found in the literature [KPW17]
and [DD17].

2.2 Stochastic local search algorithm

Stochastic Local Search (SLS) algorithms are used for solving computationally hard
decision and optimization problems and are applied in various areas of computer
science, including machine learning, optimization, and artificial intelligence [HS15].

Combinatorial problems can be categorized into two major groups: combinatorial
decision problems and combinatorial optimization problems [KB21]. The two well-
known combinatorial problems are the Propositional Satisfiability Problem (SAT)
and the Travelling Salesman Problem (TSP), one of the most extensively studied
combinatorial optimization problems [HS15].

Stochastic Local Search algorithms utilize randomness while exploring the solution
space. These algorithms start with an initial solution and then, in each subsequent
step, select a neighboring solution for comparison and replace the current solution
with a better one. The neighboring solution is generally a slightly modified version
of the current solution.

2.2.1 Stochastic local search algorithm in argumentation frameworks

Stochastic Local Search algorithms can be used to evaluate arguments in abstract
argument frameworks and determine the acceptability of arguments based on their
relationships with other arguments.

5

For this thesis, the base algorithm WalkAAF [Thi18] is used, which is a direct
implementation of the GSAT[SLM92] and the WalkSAT [SKC93] idea.

WalkAAF starts with a labelling of an argument framework; in each iteration, a
label of some argument is modified. The aim is to reach stable labelling and to avoid
mislabeled arguments. An argument a 2 A is mislabeled if [Thi18]:

• L(a) = undec

• L(a) = out and there exists no b! a with L(b) = in

• L(a) = in and:
– there is b! a with L(b) 6= out or
– there is a! b with L(b) 6= out

WalkAAF is implemented in Algorithm 1 and expects two input parameters N and
M with N,M 2 N. The parameter N gives the maximal number of restarts before
the algorithm terminates with a failure (FAIL). The number of iterations is given by
the parameter M . Each run starts with a random labelling L in which each argument
a is in or out (line 2). If the labelling L is stable, then the algorithm returns the
stable labelling L. If the labelling L is mislabeled the algorithm selects one of those
mislabeled arguments at random (line 7) and changes its labelling (lines 8�11). Thus
an argument labelled e.g. in will be labelled as out. This labelling process will be
repeated M times and if there is no stable labelling found, the algorithm restarts and
tries for N times before terminating with FAIL. Thus the algorithm can fail even if
there exists stable labelling.

Algorithm 1 WalkAAFN,M algorithm (N,M 2 N)
Input: AF = (AR,R) AAF
Output: L a stable labelling (or FAIL if the search failed)
1: for i = 1 to N do

2: L randomise in and out

3: for j = 1 to M do

4: if L is stable then

5: return L
6: else

7: Pick random mislabeled argument a
8: if L(a) = in then

9: L(a) out

10: else

11: L(a) in

12: return FAIL

Considering the argumentation framework from figure 1 as an input for the algo-
rithm and the randomized labelling from line 2 as:

6

L1(a) = in L1(b) = out L1(c) = in L1(d) = in L1(e) = out

The labelling L1 is mislabelled because L(c) = in and L(d) = in with d ! c.
Therefore the algorithm randomly picks a mislabelled argument, e.g. c, and relabelles
the argument. The new labelling L2 is defined as:

L2(a) = in L2(b) = out L2(c) = out L2(d) = in L2(e) = out

Because L2(e) = out and the argument labelling L(c) = in with c ! e, the
labelling L2 is mislabelled. Argument e will be relabelled and the new labelling L3 is
defined as:

L3(a) = in L3(b) = out L3(c) = out L3(d) = in L3(e) = in

The labelling L3 is mislabelled because of the arguments d and e and the algorithm
continues and ends after M iterations or when a stable labelling Lst is found. The
stable labelling of the argumentation framework from figure 1 is:

L3(a) = out L3(b) = in L3(c) = out L3(d) = out L3(e) = in

2.3 Machine Learning

Machine learning is a subfield of artificial intelligence that uses algorithms that im-
prove with experience or learn the rules without explicitly being programmed [CST21].

Artificial Intelligence refers to various techniques that allow computers to imitate
human behavior and perform complex tasks independently or with minimal human
involvement. It involves the ability to replicate or even surpass human decision-
making processes [RN21].

Deep learning is a subfield of machine learning that uses concepts based on artificial
neural networks [CST21].

Figure 2: Relationship Between Artificial Intelligence, Machine Learning, and Deep
Learning [RN21].

7

Figure 2 illustrates the relationships between the three domains: artificial intelli-
gence, machine learning, and deep learning. Machine learning includes deep learning,
and both are part of the wider field of artificial intelligence.

2.3.1 Fundamentals of Machine Learning Model Building

With the help of machine learning, machines learn with data to detect patterns.

Figure 3: Machine Learning System [RN21].

Figure 3 shows the high-level flow for a Machine Learning System [RN21]. At first,
a model is created, which is trained with training data. After that, we can use the
trained model and use it on new Data for prediction.

Training involves providing the model with data to enable it to learn rules and
enhance its performance. The data structure employed will vary based on the machine
learning type and the model selected. [RN21].

Extracting features is an important step in automating the identification of patterns
and relationships from large data. These features are used for model building and
are derived from the raw data input. Essentially, a feature describes a property that
provides a suitable representation [JZH21].

When constructing a model, the input data is used by a learning algorithm to iden-
tify patterns and relationships that are relevant to the respective learning task. Ma-
chine Learning requires features for this task. On this basis, each learning algorithm
family applies different model-building mechanisms. For example, when building
a classification model, decision tree algorithms exploit the feature space by incre-
mentally splitting data records into increasingly homogenous partitions following a
hierarchical, tree-like structure [JZH21].

2.3.2 Machine Learning Approaches

When it comes to machine learning, there are several known categories of learning
problems. These include supervised, unsupervised, semi-supervised, and reinforce-
ment learning.

8

• Supervised Learning

These algorithms need external assistance for training a model to predict for
example, the acceptability of arguments based on a set of labeled examples
[Lau22]. Some of the most famous supervised machine learning algorithms in-
clude Decision Tree, Naive Bayes and Support Vector Machine [Lau22].

• Reinforcement Learning

This type of learning is based on training a model to learn from its past expe-
riences. The model receives rewards for making good actions and penalties for
making bad actions. Therefore the algorithm depends on trial and error and
delayed outcome [Lau22].

• Unsupervised Learning

These algorithms learn a few features from the data. When new data is intro-
duced, it uses the previously learned features to recognize the class of the data.
These algorithms are mainly used for clustering and feature reduction [Lau22].

• Semi-Supervised Learning

It is a method that deals with similar issues as supervised learning while in-
corporating techniques from unsupervised learning. It involves providing the
machine with labeled data as well as additional unlabeled data [RN21].

2.3.3 Machine Learning Algorithms

In this thesis, we study the use of these machine learning techniques in a heuristic
with a stochastic local search algorithm in an abstract argumentation framework,
and we will utilize several types of machine learning algorithms for classifications,
including the following:

• Neural Networks (NN)

An artificial neural network generally consists of multiple artificial neurons that
are connected with each other. It works on three layers, with the input layer
taking input, the hidden layer processing the input, and finally, the output layer
sending the calculated output [Lau22].

• Graph Convolutional Networks (GCN)

GCN is a scalable approach for semi-supervised learning on graph-structured
data based on an efficient variant of convolutional neural networks operating
directly on graphs.

9

• GraphSAGE (Graph Sample and Aggregated)

GraphSAGE is a graph neural network (GNN) model developed to generate
embeddings for nodes in graph data, allowing for both inductive learning and
transductive learning. It can be used to generate embeddings for previously
unseen data, making it an inductive model. This is achieved by sampling and
aggregating features from a node’s local neighborhood [HYL18].

• k-Nearest Neighbors (KNN)

The KNN algorithm can be used for classification and regression tasks. It works
by finding the k nearest neighbors of a new data point in the training set and
using their labels or values to predict the label or value of the new data point.
Thus the k-NN classification works in two stages the first is the determination
of the nearest neighbors, and the second is the determination of the class using
those neighbors [CD21].

• Naive Bayes (NB)

Naive Bayes is a learning algorithm that utilizes Bayes rule together with a
strong assumption that the attributes are conditionally independent, given the
class [Web10].

• Decision Tree (DT)

Decision tree is a technique for classification and regression tasks. They work
by partitioning the data based on attributes and making decisions based on the
resulting partitions [Für10].

• Random Forest (RF)

Random forests are a learning technique that combines decision trees to im-
prove the accuracy and robustness of the predictions. They randomly sample
the features and data points and train multiple decision trees on the resulting
subsets [Bre01].

• GradientBoosting (GB)

Gradient Boosting is used for both regression and classification problems, which
works by combining multiple weak predictive models, typically decision trees,
to create a strong predictive model. It is an ensemble learning method that
builds new models to correct the errors made by existing models [Fri01]. One
implementation is e.g. XGBoost.

10

2.3.4 Performance metrics of Machine Learning

When evaluating and selecting machine learning models, various metrics are chosen.
These metrics can also aid in tuning hyperparameters and improving the model.
Metrics play an integral role in assessing the performance of machine learning models.

Table 1: Confusion Matrix
Predicted: Yes Predicted: No

Actual: Yes
True Positive

(TP)
False Negative

(FN)

Actual: No
False Positive

(FP)
True Negative

(TN)

When comparing classification algorithms, a confusion matrix is used to summarize
their performance. Table 1 shows a confusion Matrix, a 2 ⇥ 2 table containing four
values: true positives, false positives, true negatives, and false negatives.

The concept of true positives, false positives, true negatives, and false negatives is
explained below:

• True Positives (TP)

These are cases in which the model predicted ’Yes’, and the actual class is also
’Yes’.

• True Negatives (TN)

These are cases in which the model predicted ’No’, and the actual class is also
’No’.

• False Positives (FP)

These are cases in which the model predicted ’Yes’, but the actual class is ’No’.

• False Negatives (FN)

These are cases in which the model predicted ’No’, but the actual class is ’Yes’.

We validate results by using performance measures such as Accuracy, ROC AUC,
Recall, F1-Score, and precision. These measures are calculated from the confusion
matrix and provide insight into a model’s performance. Below are short descriptions
of each performance measure.

Accuracy is defined as the percentage of correctly classified instances by the classifier
[EK21]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

11

Recall is the proportion of those instances that are actually positive and are pre-
dicted as positive [GSKJ20]:

Recall =
TP

TP + FN
(2)

Precision is defined as positively predicted instances that are actually positive. It
is also denoted as a positive predicted value [GSKJ20]:

Precision =
TP

TP + FP
(3)

The F1-Score is a harmonic mean of precision and recall [EK21] .

F1-Score = 2 · Precision ·Recall

Precision+Recall
(4)

Receiver Operating Characteristic Area Under the curve(ROC AUC) is calculated
by the area under the ROC curve, which is plotted with TPR (True Positive Rate)
and FPR (False Positive Rate) [GSKJ20]:

True Positive Rate =
TP

TP + FN
(5)

False Positive Rate =
FP

FP + TN
(6)

The choice of the most suitable model depends on the specific use case and comes
with the cost of different types of errors. For instance, in certain scenarios, a model
with a higher recall might be preferred over one with better accuracy. Therefore, the
model selection should carefully balance these performance metrics in alignment with
the specific requirements of the use case.

12

3 State of Research

3.1 Current Solvers for Abstract Argumentation Frameworks

In the last two decades, the study of argumentation has gained importance in Artifi-
cial Intelligence research [BCD07]. One of the most notable methods used is abstract
argumentation frameworks, developed by Dung in his paper ’Acceptability as an Ab-
stract Argumentation Framework’ [Dun95]. This formalism is straightforward and
effective in representing and evaluating arguments for their acceptability. A signifi-
cant challenge in working with abstract argumentation frameworks is the computa-
tional complexity of specific problems, such as determining the acceptability status
of arguments and finding their extensions [KPW17].

As stated in source [CDG+15], two main types of algorithms are used for solv-
ing reasoning problems in abstract argumentation: reduction-based and direct ap-
proaches. Dung-O-Matic

1, ArgSemSAT [CGV19], and ConArg2[BS13] are some
solvers that have been used to compute various semantics. These solvers often use
standard techniques like translation to answer set programming or by applying SAT
reductions. For example, the winner of the preferred semantics track at the 2017
International Competition on Computational Models of Arguments (ICCMA 2017)
is ArgSemSAT. This biennial contest focuses on problems associated with abstract
argumentation frameworks. ArgSemSAT uses multiple calls to an SAT solver to
compute complete labellings, as stated by Cerutti in their paper [CGV19].

Another technique uses Stochastic Local Search algorithms, such as WalkSat

[SLM92] and GSAT [SKC93], which have shown promising results. A significant
contribution in this context is the WalkAAF [Thi18] solver, which is based on the
WalkSAT algorithm. The WalkAAF solver incorporates stochastic local search into
argumentation frameworks and demonstrates a strong performance on various seman-
tics.

Despite the successes of WalkAAF and similar solvers, a key challenge lies in
determining the next move during the local search. WalkAAF added a greedy
move using flipping count in abstract argumentation frameworks. It is here that
heuristics play a crucial role. However, developing efficient and robust heuristics
remains complex and often are problem-specific.

Machine learning has seen significant advancements in techniques that can poten-
tially be used to learn these heuristics from data [KWT22].

Although techniques like reinforcement learning, deep learning, and graph neural
networks have shown success in various domains, their effectiveness in argumentation
frameworks, particularly in learning heuristics for SLS-based solvers, remains to be
explored.

1http://www.arg.dundee.ac.uk/?page_id=279

13

3.2 Motivation

In this thesis, we combine stochastic local search algorithms with machine learning.
Stochastic Local Search (SLS) algorithms have shown great promise in finding a

single stable extension, as demonstrated by WalkAAF solver. SLS algorithms have
the advantage of exploring the search space and achieving solutions without requiring
exhaustive searching.

With the help of Machine learning, we create heuristics that help the SLS pre-
dict and guide the algorithm’s steps, potentially resulting in improved exploration
efficiency.

Therefore, this thesis aims to integrate machine learning techniques into the SLS
algorithm in the context of AFs. Using the predictive ability of machine learning, the
aim is to guide the SLS process toward an efficient exploration of solution space.

14

4 Methodology and Implementation

To assist the SLS Algorithm with Machine Learning-based Heuristics, we must con-
struct two Models: one for initial Labelling and one for selecting subsequent Moves.
To develop these Models, we require a substantial amount of Data, which can be
obtained by generating Argumentation Frameworks and creating many different sce-
narios.

In the following, we will cover Graph Generating and getting the Data, Build-
ing Machine Learning Models, and the implementation of the SLS Algorithm with
heuristics based on machine learning.

4.1 Graph Generating

To have many different Graphs with different properties, we use random graphs based
on the Barabási-Albert-, Watts-Strogatz-, and Erdős-Rényi-model generated using
AFBenchGen2 2. Also, graphs generated by the KWT-Gen of the tweetyproject3 were
used.

Figure 4: Distribution of Number of Arguments across all Argumentation Frame-
works.

To begin, 15000 Argumentation Frameworks are generated using AFBenchGen2.

2https://sourceforge.net/projects/afbenchgen/
3http://tweetyproject.org/r/?r=kwt_gen

15

The number of arguments ranges from 5 to 350, increasing by 5 for each step.
A total of 12000 Argumentation Frameworks were generated, each with a size be-

tween 5 and 25. The number of arguments in each Framework increased by 1.
Using KWT-Gen from the tweetyproject, 1500 Argumentation Frameworks consist-

ing of 100 arguments were created, and another 1500 Argumentation Frameworks
consisting of 150 arguments.

Our data consists of over 30000 Argumentation Frameworks, with over 3500000
individual Arguments.

In Figure 4, we can observe the distribution of the number of arguments present
in all Argumentation Frameworks. The dominant distribution of classes lies between
5 to 25 Arguments. The Argumentation Frameworks created by KWT-Gen from the
tweetyproject are also visible in the graph.

4.2 Feature Extractions

For the Machine Learning Model to be effective, it requires relevant features that
accurately represent the characteristics of the data and the argumentation framework.

Therefore to train and use machine learning models, it is necessary to extract the
following features from all the generated Argumentation Frameworks:

• Predecessors: the number of attacks to the input argument

• Successors: the number of attacks from the input argument

• Predecessors Neighbors: the total number of the attacks by the arguments
attacking the input argument

• Successors Neighbors: the total number of the attacks by the arguments
being attacked by the input argument

• Degree Centrality: the fraction of arguments the argument is connected to
via attacks and getting attacked

• In-Degree Centrality: the fraction of arguments its incoming attacks are
connected to.

• Out-Degree Centrality: the fraction of arguments its outgoing attacks are
connected to.

• Closeness Centrality: measuring the shortness of the path of the input ar-
gument to the other arguments.

• Betweenness Centrality: measuring the extent to which an argument lies on
paths between other arguments.

• Average Neighbor Degree: The average degree of the neighbors of an argu-
ment.

16

• PageRank: ranking the input argument based on the structure of the attacking
arguments

• Edge Node Ratio: The ratio of the total number of attacks to the total
number of arguments.

As computing all features of the arguments can be very time-consuming, the most
relevant features are used through feature selection depending on the machine learning
model. Therefore, we must balance the accuracy of the Machine Learning Model with
the time it takes to calculate the features.

4.3 Machine Learning Models

We require two Machine Learning Models that will assist the SLS Algorithm. As
per algorithm 1, we will need Modelin to label the arguments initially in line 2 and
Modelrn to determine the next switch in the labelling in line 7.

Therefore we need to cast the initial labelling and choosing the next switching into
two different classification problems.

In the first classification problem for the initial labelling, some adjustments to
the WalkAAF algorithm were made. It now returns the labelling with the fewest
mislabeled arguments or, if found, the stable labelling. We applied this algorithm to
all the Argumentation Frameworks we generated and used the best labeling.

As a result, we ended up creating two different classes.

• Class 0: argument with the best labelling ’out’.

• Class 1: argument with the best labelling ’in’.

The distribution for those two classes is shown in the following Table 2:

Table 2: Distibution of the Classes for the Modelin

Total Number of Class 0 Total Number of Class 1 Sum both Classes

2384076 1155502 3539578

Thus we have a Class Balance Ratio of 2.06 with Class 0 double the total amount
of Class 1. The sum of the two classes is the amount of all arguments across all
abstract argumentation frameworks.

The Class Balance Ratio is determined by dividing the total number of Class 0

by the total number of Class 1.
With the label and features, we can train Modelin using the Machine Learning

Techniques referenced in section 2.3.3.

17

For the second classification problem for selecting the next mislabelled argument
for switching, various scenarios were created for each argumentation framework.

Initially, one random labelling of the argumentation framework was chosen. Then,
all mislabelled arguments were selected. Each mislabelled argument’s label was
switched one by one, and the difference in the number of mislabelled arguments
before and after the switching was calculated.

Also, the current labelling before switching of the argument was saved, creating
a dictionary with the difference of the mislabelled for the ’out’ labelling and ’in’
labelling.

For example, if the current labelling is ’in’ with total of 6 mislabelled arguments
and after switching it to ’out’ with the new total of 3 mislabelled arguments, we
saved the difference 3 to the label ’in’. Therefore switching the arguments labelling
from ’in’ to ’out’ results to 3 less mislabelled arguments.

After that, the amount of positive impacts (leading to fewer mislabelled arguments)
and the amount of negative impacts (leading to more mislabelled arguments) for each
argument is calculated.

When the number of positive impacts is bigger than the negative impact ones, we
have

As a result, we ended up creating two different classes:

• Class 0: When the number of positive impacts is smaller than the negative
impact ones.

• Class 1: When the number of positive impacts is bigger than the negative
impact ones.

The distribution for those two classes is shown in the following Table 3:

Table 3: Distibution of the Classes for the Modelrn

Total Number of Class 0 Total Number of Class 1 Sum both Classes

2694916 4384240 7079156

Thus we have a Class Balance Ratio of 0.61 with Class 1 double the total amount
of Class 0. The sum of the two classes is double that of all arguments across all
abstract argumentation frameworks because we used the labelling ’in’ and ’out’ as
a feature for Machine Learning.

With the label and features, we can train Modelrn using the Machine Learning
Techniques referenced in section 2.3.3.

For the training of Modelrn and Modelin, 80% of the classes and features as training
data were used and 20% were used as test data.

The Implementation of the Neural Network is based on [KKT22]. We used Graph
Convolutional Networks (GCN) and GraphSage. Each model features one pre-message

18

passing layer (256- dim Multi-Layer Percepton), three message passing layers (deter-
mined by the respective GNN model), and two post-message passing layers (256-dim
Multi-Layer Percepton).

4.4 Optimizations

Hyperparameters are parameters that are not learned directly within the estimators.
In scikit-learn, the constructor of the estimators accepts them as parameters, allowing
those for optimization.

For the Random Forest Classifier and XGBoost Classifier an Exhaustive

Grid Search is used for hyperparameter optimization.
Exhaustive search over specified parameter values for an estimator. The implemen-

tation GridSearchCV 4 uses a ’fit’ and a ’score’ method. GridSearchCV will run the
model using each combination of hyperparameters in the grid and select a scoring
metric by which the model’s performance will be evaluated. The ROC AUC Score is
used for the model performance evaluation.

For the Random Forest Classifier these parameters will be optimized:

• Number of estimators: The Number of Trees in the Forest.

• Maximum Depth: The maximum depth of the tree.

• Minimum Samples Leaf: The minimum number of samples required at a
leaf node.

• Minimum Samples Split: The minimum number of samples required to split
an internal node.

For the XGBoost Classifierr these parameters will be optimized:

• Number of Estimators: Number of gradient boosted trees.

• Learning Rate: Boosting learning rate.

• Minimum child weight: Minimum sum of instance weight needed in a child.

• Maximum Depth: The maximum depth of the tree.

Hyperparameter optimization can significantly improve performance. But it is also
worthwhile to consider the computational trade-offs because it can be computationally
expensive.

4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html#sklearn.model_selection.GridSearchCV

19

4.5 Algorithms Implementation

The different Machine Learning Models are evaluated using the metrics and the best
ones are selected for the WalkAAF Algorithm. In total three new SLS algorithms
based on WalkAAF are implemented. The first one uses Machine Learning to select
the next mislabelled argument, while the second one also includes the initial labelling.
The third one only uses machine learning model for the initial labelling. Also, a new
Parameter P is added for controlling how often the machine learning heuristic will
be used. The first one is shown in Algorithm 2, which uses the Modelrn on line 9 for
selecting the best argument.

Algorithm 2 WalkAAFML
N,M algorithm (N,M 2 N, P 2 [0, 1])

Input: AF = (AR,R) AAF
Output: L a stable labelling (or FAIL if the search failed)
1: extract features of all the arguments
2: for i = 1 to N do

3: L randomise in and out

4: for j = 1 to M do

5: if L is stable then

6: return L
7: else

8: if random < P then

9: predict the best argument for label flipping
10: else

11: Pick random mislabeled argument a
12: if L(a) = in then

13: L(a) out

14: else

15: L(a) in

16: return FAIL

The second algorithm is shown in algorithm 4, which uses the Modelrn on line 11
for selecting the best argument and Modelin for the best initial labelling. The idea
is that it predict the initial labelling one time and if the first times fails did not lead
to a stable labelling, the random labelling will be used.

20

Algorithm 3 WalkAAFML
N,M algorithm (N,M 2 N, P 2 [0, 1])

Input: AF = (AR,R) AAF
Output: L a stable labelling (or FAIL if the search failed)
1: extract features of all the arguments
2: L predict the best initial labelling
3: for i = 1 to N do

4: if predicted initial labelling did not lead to a stable labelling then

5: L randomise in and out

6: for j = 1 to M do

7: if L is stable then

8: return L
9: else

10: if random < P then

11: predict the best argument for label flipping
12: else

13: Pick random mislabeled argument a
14: if L(a) = in then

15: L(a) out

16: else

17: L(a) in

18: return FAIL

The third algorithm is shown in algorithm 4, which uses the Modelin for the best
initial labelling.

21

Algorithm 4 WalkAAFML
N,M algorithm (N,M 2 N, P 2 [0, 1])

Input: AF = (AR,R) AAF
Output: L a stable labelling (or FAIL if the search failed)
1: extract features of all the arguments
2: L predict the best initial labelling
3: for i = 1 to N do

4: if predicted initial labelling did not lead to a stable labelling then

5: L randomise in and out

6: for j = 1 to M do

7: if L is stable then

8: return L
9: else

10: Pick random mislabeled argument a
11: if L(a) = in then

12: L(a) out

13: else

14: L(a) in

15: return FAIL

For the three algorithms, the features of all the arguments of the abstract argu-
mentation framework are calculated on line 1.

4.6 Experimental Settings

Our experiment aims to evaluate the effect of machine learning models on the SLS-
algorithm.

We trained and evaluated the different machine learning techniques, k-Nearest
Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), Decision Tree (DT), Gra-
dientBoosting (GB) using scikit-learn3 [PVG+11], the machine learning framework
for Python.

The two Neural Networks, Graph Convolutional Network (GCN) and GraphSAGE
are trained and evaluated using the Pytorch library, a machine learning framework
for Python. Each model is trained for 1000 epochs, and the metrics are calculated
using the last epoch.

The SLS algorithms are implemented in Python and use the networkx library for
calculating the features of the abstract argumentation frameworks.

We use the four best features identified in the feature selection as input for the
classifiers.

For evaluating the usage of the machine learning models on the SLS-Algorithm. We
run the three Algorithms on a Benchmark Set of Abstract Argumentation Frameworks
from the International Competition on Computational Models of Argumentation (IC-
CMA) and compare their runtime and success rate.

22

5 Results and Discussions

5.1 Model Selections for the Initial Labelling of Arguments

After the training Modelin, the models were tested on 20% of the overall data. The
classification results were calculated using the built-in Python functions of each clas-
sifier. Also, all the features were used for training.

Table 4: Classification results after training the Modelin.

Classifier Accuracy ROC AUC

NB 0.47 0.58
DT 0.78 0.75
RF 0.84 0.79
KNN 0.82 0.78
XGBoost 0.84 0.79
GradientBoost 0.84 0.78

GCN 0.86 0.83
GraphSAGE 0.84 0.72

The results of each classifier are shown in table 4. From the classical Machine
Learning techniques, the Random Forest and XGBoost, and GradientBoost did have
the best overall score, with Random Forest and XGBoost having an Accuracy of 84%
and ROC AUC of 79%. GradientBoost has the same overall Accuracy, but the ROC
AUC is a bit worse at 78%, so the difference is negligible.

The reason is that XGBoost and Gradientboost both use Decision Trees as base
learners, just like Random Forest [CG16]. Also, XGBoost and GradientBoost use
both Gradient Boosting[CG16].

The model based on Naive Bayes has the worst overall metrics with an Accuracy
of 47% and a ROC AUC of 58%.

Looking at the neural networks Graph Convolutional Networks (GCN) and Graph-
SAGE, GCN does have the better Accuracy and ROC AUC Scores with an Accuracy
of 97% and ROC AUC of 83%. The Graph Convolutional Network (GCN) has the
best overall scores of all the classifiers. Generally, neural networks seem suited to
labelling the arguments in an Abstract Argumentation Framework. Overall Graph
Convolutional Network (GCN), Random Forest, and XGBoost seem to have the best
results for the initial labelling problem and will be used for further optimizations and
discussions.

Table 5 shows the Classification report of the Modelin using the Random Forest
classifier. The Precision for Class 0 is 0.84 meaning means that 84% of the instances
predicted as Class 0 were actually Class 0 and the Precision for Class 1 is 0.94 meaning
means that 94% of the instances predicted as Class 1 were actually Class 1. The model
has a higher precision for Class 1 but a lower recall for Class 1. This suggests that

23

Table 5: Classification report for Modelin using Random Forest.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.84 0.94 0.84
Recall 0.94 0.63 0.84
F1-Score 0.89 0.72 0.84

while the model is confident about the instances it labels as Class 1, it misses quite
a few actual Class 1 instances, meaning the model performs well in identifying Class
0 instances but needs to work on Class 1. For Class 0, the model has a good balance
between precision and recall, as evidenced by similar values and high F1-Score. It is
also noted that the model has a reasonably high accuracy. Still, this metric needs to
be more accurate given the class imbalance with a Class Balance Ratio of 2, meaning
there is around double the amount of Class 0 than Class 1.

Table 6: Classification report for Modelin using XGBoost.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.84 0.84 0.84
Recall 0.94 0.64 0.84
F1-Score 0.89 0.73 0.84

Table 6 shows the Classification report of the Modelin using the XGBoost classifier.
Both the XGBoost model and the Random Forest model have similar performances
with slight variances. The XGBoost model shows marginally better results in terms
of Class 1 recall. The minor performance boost might be due to XGBoost’s regular-
ization, handling of missing data, and the gradient boosting framework.

Table 7: Classification report for Modelin using Graph Convolutional Network.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.91 0.93 0.92
Recall 0.92 0.89 0.91
F1-Score 0.92 0.91 0.91

The Graph Convolutional Network performs well in accuracy and classifying Class
0 instances. However, the performance in Class 1, specifically in terms of recall,
indicates some room for improvement. Overall GCN has a better performance than
XGBoost and Random Forest. It is also noted that GCN exploit graph structures to
make predictions, and the structure of the argumentation frameworks influences their
performance.

24

Since using and calculating all the features is computationally expensive, only four
features will be selected for the next model training. The feature score was calcu-
lated using the built-in function of the classifier Random Forest, Decision Tree, and
Gradient Boosting. Obtaining feature importance in GCNs can be challenging since
GCN operate on graphs, where both the nodes and edges can have different features
[KW17].

Table 8: Feature Importances after training the Modelin across different classifiers.

Feature Random Forest Gradient Boosting Decision Tree

Betweenness Centrality 0.15 0.07 0.09
Closeness Centrality 0.14 0.04 0.15
Predecessors 0.12 0.56 0.27
Pagerank 0.11 0.03 0.11
In Degree Centrality 0.10 0.02 0.04
Predecessors Neighbors 0.08 0.10 0.07
Degree Centrality 0.07 0.00 0.03
Average Neighbor Degree 0.06 0.02 0.04
Out Degree Centrality 0.05 0.01 0.03
Successors Neighbors 0.05 0.00 0.04
Edge Node Ratio 0.04 0.11 0.11
Successors 0.03 0.02 0.01

Table 8 shows the Importances of the used features for the Random Forest, Gra-
dient Boosting and Decision Tree classifiers, provided by the built-in functions. The
Gradient Boosting model heavily uses the amount of Predecessors feature, showing
a preference compared to the Random Forest and Decision Tree models. Centrality
measures, like Betweenness Centrality, are considered more important in Random
Forest and Decision Tree. The different feature importances show that each classifier
might have different relationships in the data, leading to different feature importances.

For the initial labelling of an Abstract Argumentation Framework, the classifier
GCN, RF, and XGBoost seem best suited.

5.2 Model Selection for Switching the Arguments Labelling

After the training Modelrn, the different models were tested on 20% of the overall
data. The classification results were also calculated using the built-in Python func-
tions of each classifier. Also, all the features were used for training just like the
Modelin.

The results of each classifier are shown in table 9. Among the conventional algo-
rithms, the Random Forest outperforms others with an Accuracy of 90% and an ROC
AUC of 87%. The Decision Tree is close with an accuracy of 85%. XGBoost performs
the same with an accuracy of 89% and has the highest ROC AUC of 89% among the

25

Table 9: Classification results after training the Modelrn.

Classifier Accuracy ROC AUC

NB 0.61 0.68
DT 0.85 0.84
RF 0.90 0.87
KNN 0.88 0.87
XGBoost 0.89 0.89
GradientBoost 0.88 0.88

GCN 0.86 0.77
GraphSAGE 0.82 0.73

traditional models. The Naive Bayes classifier shows the least performance with an
accuracy of 61%.

When we examine graph-based classifiers, the Graph Convolutional Network achieves
an Accuracy of 86%. However, its ROC AUC of 77% indicates that it has some prob-
lems with class discrimination. GraphSAGE lags slightly behind GCN, achieving an
accuracy of 0.82 and a ROC AUC of 73%.

The graph-based classifiers perform a bit worse than in the Modelin, indicating
that it is more suitable for the initial labelling of the Arguments in an Abstract
Argumentation Framework.

Overall Graph Convolutional Network, Random Forest, and XGBoost also seem to
have the best results and will be used for further optimizations and discussions.

Table 10: Classification report for Modelrn using Random Forest.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.87 0.91 0.89
Recall 0.85 0.92 0.90
F1-Score 0.86 0.92 0.89

Table 10 shows the Classification report for Modelrn using Random Forest. For
Class 0, the precision is 0.87, indicating that out of all the instances predicted as
Class 0, 87% are correctly classified. Class 1, on the other hand, has a slightly higher
precision of 0.91. The Random Forest model performs very good for both classes, with
a slightly better performance in detecting Class 1 instances. The balance between
precision and recall, as indicated by the F1-scores, suggests that the model is robust
in its predictions for the given data.

Table 11 shows the Classification report for Modelrn using XGBoost. With a
recall of 0.85 for Class 0, XGBoost manages to recognize 85% of the total Class 0
samples correctly. For Class 1, the model shows a higher recall of 0.92, hinting that

26

Table 11: Classification report for Modelrn using XGBoost.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.87 0.91 0.89
Recall 0.85 0.92 0.89
F1-Score 0.86 0.92 0.89

it performs better identifying Class 1 instances. XGBoost shows strong performance
in identifying Class 1 instances. It maintains a consistent balance between precision
and recall, as seen by the F1-score.

Table 12: Classification report for Modelrn using Graph Convolutional Network.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.76 0.81 0.79
Recall 0.66 0.87 0.79
F1-Score 0.71 0.84 0.79

Table 11 shows the Classification report for Modelrn using Graph Convolutional
Network. Class 0 has a precision of 0.76, meaning that of all the instances predicted
as Class 0. Class 1 exhibits a higher precision of 0.81, suggesting that the model
has a slightly better performance for detecting instances of this class. The Graph
Convolutional Network’s performance is quite acceptable, especially its ability to
detect Class 1 instances. The differences in precision and recall for the two classes
hint at possible areas for model improvements.

Table 13 shows the Importance of the used features for the Random Forest, Gradient
Boosting, and Decision Tree classifiers provided by the built-in functions. The actual
labelling of the argument has a huge influence on all three models shown in the Feature
’State’. This underscores the expectation that the actual labelling would be a useful
feature in the prediction.

Centrality measures are more important in Random Forest and Decision Tree, Gra-
dient Boosting seems to see the feature less important. This shows that the classifiers
interpret the interconnectedness and influence within the argumentation framework
differently.

The actual labelling is the most dominant feature for selecting the next argument
for labelling switching. A combination of topological, centrality and network metrics
also contribute significantly to the features, just like in the features of Modelin.

5.3 Feature Selection and Optimisation

Since using all the features would be computationally expensive, the following features
will be used for both models for each traditional and graph-based classifier. For the

27

Table 13: Feature Importances after training the Modelrn across different classifiers.

Feature Random Forest Gradient Boosting Decision Tree

State 0.29 0.38 0.22
Predecessors 0.09 0.20 0.07
Closeness Centrality 0.09 0.00 0.07
Predecessors Neighbors 0.08 0.06 0.08
Edge Node Ratio 0.08 0.17 0.22
Pagerank 0.07 0.00 0.07
Betweenness Centrality 0.07 0.00 0.07
Successors Neighbors 0.05 0.10 0.09
Average Neighbor Degree 0.04 0.01 0.03
In Degree Centrality 0.04 0.00 0.02
Out Degree Centrality 0.03 0.01 0.02
Degree Centrality 0.03 0.00 0.02
Successors 0.03 0.05 0.02

actual models, these features are used for Modelin and Modelrn:

• Betweenness Centrality

• Closeness Centrality

• Predecessors

• Pagerank

Modelin also uses Feature ’State’, the actual labelling ’in’ or ’out’ of the argu-
ment.

When comparing table 8 with 13, there’s a distinct difference in how features are
prioritized. For instance, in Modelrn, the ’State’ feature (actual labelling) holds
considerable weight across models. In Modelin the feature ’Predecessors’ is important,
especially in Gradient Boosting.

Some features like Closeness Centrality and Pagerank maintain consistent impor-
tance across the different classifiers, suggesting their general utility in capturing the
characteristics of the argumentation framework. On the other hand, features like Be-
tweenness Centrality shows model-dependent significance, indicating that their im-
portance may be useful in specific machine learning technique.

The classification reports from the different classifiers are shown in Table 14 to
Table ??.

Overall the performance of all classifiers went down, because fewer features, thus
information about the argument or the argumentation framework, is lost. Also, it
is best not to overengineer Machine Learning Models; you have to find a good bal-
ance between performance and accuracy. Too many features about the argumentation

28

Table 14: Classification report for Modelrn using XGBoost after feature reduction..

Metric Class 0 Class 1 Weighted Avg.

Precision 0.81 0.90 0.86
Recall 0.83 0.88 0.85
F1-Score 0.82 0.89 0.86

Table 15: Classification report for Modelin using XGBoost after feature reduction.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.83 0.83 0.83
Recall 0.94 0.59 0.78
F1-Score 0.88 0.69 0.82

Table 16: Classification report for Modelrn using Random Forest after feature reduc-
tion..

Metric Class 0 Class 1 Weighted Avg.

Precision 0.82 0.90 0.87
Recall 0.84 0.89 0.86
F1-Score 0.83 0.89 0.87

Table 17: Classification report for Modelin using Random Forest after feature reduc-
tion.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.83 0.83 0.83
Recall 0.94 0.59 0.78
F1-Score 0.88 0.69 0.82

Table 18: Classification report for Modelrn using GCN after feature reduction..

Metric Class 0 Class 1 Weighted Avg.

Precision 0.72 0.78 0.76
Recall 0.61 0.85 0.74
F1-Score 0.66 0.81 0.76

frameworks lead to longer feature extraction runtime and longer runtime of the ma-
chine learning model, but too few features lead to worsening accuracy but better
runtime.

29

Table 19: Classification report for Modelin using GCN after feature reduction.

Metric Class 0 Class 1 Weighted Avg.

Precision 0.87 0.83 0.86
Recall 0.93 0.72 0.84
F1-Score 0.90 0.77 0.86

The Hyperparameter of the classifiers XGBoost and Random Forest are optimized
using the GridSearchCV function from the sklearn library. Table 20 shows the hy-
perparameter of the Random Forest Classifier after optimization and Table 21 the
hyperparameter of the XGBoost after optimization.

Table 20: Best Hyperparameter for the Random Forest Classifier

Model Max Depth Min Leaf Min Split Num. Estimators

Modelin 30 1 10 200
Modelrn 20 1 10 200

Table 21: Best Hyperparameter for the XGBoost Classifier

Model Learning Rate Max Depth Min Weight Num. Estimators

Modelin 0.1 7 1 500
Modelrn 0.1 7 5 500

For the SLS Algorithms, the Classifiers Random Forests and the Graph Convo-
lutional Networks are chosen and will be used for the heuristics based on machine
learning, because those have the overall best performances after feature reduction and
optimization.

30

5.4 SLS Algorithm

Figure 5: The Success rate and Runtime of WalkAAF plotted against the Parameter
g.

The WalkAAf Algorithm with a heuristic based on Machine Learning uses an addi-
tional parameter g to control how often the heuristic is applied. The optimal value for
g is determined by testing it against a Test Set of Argumentation Frameworks with
various g values. The timeout for the Algorithm was less than 3 minutes, allowing
us to find the optimal g because using the heuristic is computationally expensive.
Figure 5 shows a plot of the Averegate Time the Algorithm uses for solving an Argu-
mentation Framework against the different values of g and the success rate(how many
Argumentation frameworks are solved) against different values of g. The WALKAAF
Algorithm uses the Random Forest Classifier.

In the first plot, it is evident that the more the WalkAAF Algorithm uses the
Heuristic, the longer it takes to solve an Argumentation Framework. As a result,
when the value of g is 0.5 or higher, the algorithm’s success rate drops suddenly
because it times out more frequently.

The success rate of the algorithm increases gradually as the use of heuristics in-
creases, until the value of g reaches 0.5 or higher.

Therefore the Heuristic based on Machine Learning has a positive effect on finding
a single stable extension.

For further experiments, the value of g is set to 0.3 for the classical machine learning
techniques which seem to be a good trade-off between runtime and success rate.

31

Figure 6: Runtime of WalkAAF using GCN plotted against the Parameter g.

Figure 6 displays the runtime of the WalkAAF Algorithm with GCN as a classifier.
The comparison between the Random Forest classifier and GCN shows significant
differences. There is nearly no difference in runtime when using GCN except for
values of g over 0.7. This shows that the GCN is significantly faster than Random
Forest even though you have to use the whole Argumentation Framework as a Feature
Matrix.

For further experiments, the value of g is set to 0.4 for the Neural Network.
We tested the plain WalkAAF without any Heuristcs, then WalkAAF with a

Modelrn for choosing the next Argument for Flipping (Algorithm 1), then WalkAAF
with the Modelin choosing the initial Labelling of the Arguments (Algorithm 2) and
then WalkAAF with the Combination of the two Models Modelrn and Modelin (Al-
gorithm 3). First, the models are based on Random Forest and then on GCN. The
algorithms are tested ten times on the benchmark set for their average runtime and
success rate. The results are then displayed in the following table.

32

Table 22: Results of the different WalkAAF with and without Heuristic based on
Machine Learning.

Algorithm Avg. Runtime [s] Success Rate

WalkAAF 33.16 0.69

WalkAAF RF (Algorithm 1) 149.97 0.63
WalkAAF RF (Algorithm 2) 46.56 0.66
WalkAAF RF (Algorithm 3) 143.27 0.69

WalkAAF GCN (Algorithm 1) 30.73 0.69
WalkAAF GCN (Algorithm 2) 32.33 0.65
WalkAAF GCN (Algorithm 3) 30.34 0.69

Overall, the WalkAAF without the Random Forests classifier outperforms the
WalkAAF with it. The use of Random Forests led to longer runtimes and timeouts
(6 minutes). Algorithm 2 performed better than Algorithm 1 and Algorithm 3 with
the Random Forests classifier. This is because using the Random Forests classifier for
argument selection was slow and resulted in overall worse performance.

Using Graph Convolutional Network with WalkAAF shows promising results. Al-
gorithm 1 and Algorithm 3 outperform Algorithm 2 and even the original WalkAAF
without heuristicss.

This thesis shows that Graph Convolutional Networks are a suitable option for
heuristics based on machine learning in Data represented as Graphs, such as Abstract
Argumentation Frameworks.

Overall the results depend on the model quality and classification problem.
The problem of selecting the next argument to switch its labell and the initial

labelling was turned into a binary problem, but the models can be trained into a
multi-classification problem or into a non binary classification with a different labeling
approach.

33

6 Conclusion and Future Work

SLS Algorithms like WalkAAF can be optimized using machine learning-based heuris-
tics. This thesis demonstrated that Graph Convolutional Networks (GCNs) outper-
form classical machine learning algorithms, such as Random Forests when used as
heuristics. GCNs perform better due to the use of data that represent graphs, specif-
ically Abstract Argumentation Frameworks.

Training the GCN model can be optimized through the use of other classification
methods, such as binary and non-binary approaches, as well as unsupervised and semi-
supervised learning. Additionally, incorporating different neural network algorithms
can improve the model’s performance.

Also, cooperating with other Heuristics not based on Machine Learning can lead
to a better performance of the SLS Algorithm. Greedy Moves showed a promising
Heiristic. But other heuristics, like choosing the Argument with the highest count of
Attackers can be cooperated.

Furthermore, as with most machine learning models, the GCN models benefit from
a more bigger, diverse dataset and extended training durations. This may lead to
overall better predictions of the model because the models still have some Problems
in deciding the next best move.

In conclusion, this work sets the stage for more advanced integration of neural
networks into SLS algorithms. There is significant potential for further research in
this direction.

35

References

[BCD07] T.J.M. Bench-Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artificial Intelligence, 171(10):619–641, 2007. Argumentation
in Artificial Intelligence.

[BCG18] Pietro Baroni, Martin Wigbertus Antonius Caminada, and Massimiliano
Giacomin. Abstract argumentation frameworks and their semantics. In
Handbook off Formal Argumentation, 2018.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[BS13] Stefano Bistarelli and Francesco Santini. Conarg: a tool to solve
(weighted) abstract argumentation frameworks with (soft) constraints,
2013.

[CD21] Pádraig Cunningham and Sarah Jane Delany. K-nearest neighbour clas-
sifiers - a tutorial. ACM Comput. Surv., 54(6), jul 2021.

[CDG+15] GÃ¼nther Charwat, Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wall-
ner, and Stefan Woltran. Methods for solving reasoning problems in ab-
stract argumentation – a survey. Artificial Intelligence, 220:28–63, mar
2015.

[CG09] Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal
argumentation. Studia Logica, 93(2-3):109–145, nov 2009.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, page 785â€“794,
New York, NY, USA, 2016. Association for Computing Machinery.

[CGV19] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. How we
designed winning algorithms for abstract argumentation and which insight
we attained. Artificial Intelligence, 276:1–40, 2019.

[CST21] Paul D. Crutcher, Neeraj Kumar Singh, and Peter Tiegs. Machine Learn-
ing, pages 225–240. Apress, Berkeley, CA, 2021.

[DD17] Wolfgang Dvorak and Paul E. Dunne. Computational problems in formal
argumentation and their complexity. FLAP, 2017.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial intelligence, 77(2):321–357, 1995.

[EK21] Bradley J. Erickson and Felipe Kitamura. Magician’s corner: 9. perfor-
mance metrics for machine learning models. Radiology: Artificial Intelli-
gence, 3(3):e200126, may 2021.

37

[Fri01] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2001.

[Für10] Johannes Fürnkranz. Decision Tree, pages 263–267. Springer US, Boston,
MA, 2010.

[GSKJ20] Aakanshi Gupta, Bharti Suri, Vijay Kumar, and Pragyashree Jain. Ex-
tracting rules for vulnerabilities detection with static metrics using ma-
chine learning. International Journal of System Assurance Engineering
and Management, 12(1):65–76, sep 2020.

[HS15] Holger H. Hoos and Thomas StÃ¼tzle. Stochastic local search algorithms:
An overview. In Springer Handbook of Computational Intelligence, pages
1085–1105. Springer Berlin Heidelberg, 2015.

[HYL18] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs, 2018.

[JZH21] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning
and deep learning. Electronic Markets, 31(3):685–695, apr 2021.

[KB21] Muhamet Kastrati and Marenglen Biba. Stochastic local search: a state-
of-the-art review. International Journal of Electrical and Computer Engi-
neering (IJECE), 11(1):716, feb 2021.

[KKT22] Jonas Klein, Isabelle Kuhlmann, and Matthias Thimm. Graph neural
networks for algorithm selection in abstract argumentation. In ArgML@
COMMA, pages 81–95, 2022.

[KPW17] Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity
of enumerating the extensions of abstract argumentation frameworks. In
Proceedings of the 26th International Joint Conference on Artificial Intel-
ligence, IJCAI’17, page 1145â€“1152, Melbourne, Australia, 2017. AAAI
Press.

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks, 2017.

[KWT22] Isabelle Kuhlmann, Thorsten Wujek, and Matthias Thimm. On the im-
pact of data selection when applying machine learning in abstract argu-
mentation. In Proceedings of the 9th International Conference on Compu-
tational Models of Argumentation (COMMA’22), 2022.

[Lau22] Sindayigaya Laurent. Machine learning algorithms: A review. Information
Systems Journal, ISJ-RA-3392:6, 08 2022.

38

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duches-
nay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res.,
12(null):2825â€“2830, nov 2011.

[RN21] Stuart Russell and Peter Norvig. Artificial Intelligence, Global Edition A
Modern Approach. Pearson Deutschland, 2021.

[SKC93] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies
for satisfiability testing. In Cliques, Coloring, and Satisfiability, 1993.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method
for solving hard satisfiability problems. In AAAI Conference on Artificial
Intelligence, 1992.

[Thi18] Matthias Thimm. Stochastic local search algorithms for abstract argu-
mentation under stable semantics. In Proceedings of the 7th International
Conference on Computational Models of Argumentation (COMMA’18),
2018.

[Web10] Geoffrey I. Webb. Naïve Bayes, pages 713–714. Springer US, Boston, MA,
2010.

39

