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Abstract

Global steel and iron production is responsible for 7.2 % of global greenhouse gases
[Rit20]. To find emission-reduction strategies in this sector, researchers build global
models of the steel cycle using a variety of modelling approaches and prediction
techniques.

This thesis investigates inflow-driven and stock-driven dynamic stock modelling
and proposes a new change-driven modelling approach. Additionally, the predic-
tion technique by Pauliuk et al. [PWMA13] is compared to an approach proposed
by Prof. Dürrwächter as well as a new machine learning-based technique using long
short-term memory (LSTM) networks.

The three model approaches and three prediction techniques are implemented
and combined to produce nine forecasts of the global steel production. Here, data
available in 2008 is used to predict the years 2009-2022. Subsequently, this is com-
pared to the actual production data in this time period to assess the performance of
the methods.

Strengths and weaknesses of the six used methods are discussed. Overall, inflow-
driven models and LSTM predictions performed best. The most accurate predicting
model combination was the change-driven approach combined with the LSTM pro-
ducing predictions with a mean absolute percentage error of 4.45 %. However, due
to implausible lifetime projections in the change-driven model, its use was discour-
aged.

Hence, the inflow-driven approach combined with the LSTM prediction is used to
derive final predictions. The resulting global production forecast suggest that the
global steel demand until 2100 might be 25 % higher than previously [PWMA13]
assumed, resulting in higher greenhouse gas emissions.
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1. Introduction

Energy usage in industry is responsible for nearly a quarter of global greenhouse
gas emissions. Iron and steel production accounts for the biggest proportion of that,
7.2 % in total [Rit20] (s. Fig. 1). Following the 2015 Paris agreement, governments
worldwide set targets to decarbonise their industries and ultimately also their iron
and steel production.

Figure 1: Iron and Steel production share in global greenhouse gas emissions (Figure
taken from [Rit20]).

There are a variety of methods to achieve these targets in this sector. These include
subsidising steel recycling, producing materials more efficiently, replacing steel with
more sustainable materials like wood or investing in technologies to reuse steel di-
rectly instead of remelting it during recycling. However, it is not always clear which
of these methods is the most successful in decarbonisation, especially in relation to
their costs.

To explore these - and many more - challenges, the Potsdam Institute for Cli-
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mate Impact Research (PIK) requires a model of the global steel cycle, as part of
their model of the Earth’s energy-economy-emissions system, REMIND ([BBB+21],
s. Section 2.5).

Modelling and predicting the steel cycle is complicated - an adequate representa-
tion in stocks and flows needs to be developed and available data needs to be found,
analysed and realistically incorporated. Prof. Stefan Pauliuk first approached this
feat in depth in his much cited 2013 work [PWM13][PWMA13]. But his approach
and predictions are ten years old and several new methods have since been devel-
oped. Additionally, with the rise of artificial intelligence over the last years, the
question presents itself whether and how machine learning techniques could be ap-
plied in this field.

1.1. Related Work

A lot of the background for this project is in these 2013 papers from Prof. Stefan
Pauliuk and Prof. Daniel B. Müller: ’Steel all over the world: Estimating in-use
stocks of iron for 200 countries’, ’The steel scrap age’ and ’Carbon emissions of in-
frastructure development’. They provided a first estimate of global ’in-use’ steel
stocks, the total amount of steel currently present in construction, cars, products,
etc. in each country of the world [PWM13]. Based on this, they predicted the devel-
opment of these stocks and analysed the effect on steel production and steel scrap
generation in the coming decades.

Some major findings of their work suggest that if steel demand trends continue,
the energy demand of the steel sector will be immense, threatening the target to limit
the global temperature increase to below 2°C [MLL+13] as well as building up large
stocks of steel scrap that cannot be recycled [PWMA13]. These examples showcase
the efficacy of such models to predict potential risks and unforeseen dynamics.

Several other models of the steel cycle have since proposed [RTLW+22, IEA22,
YWM21]. They all use techniques such as Material Flow Analysis (MFA) and Dy-
namic Stock Modelling (DSM) to set up their models. Predictions are often based
on analysing past stock behaviour and coming up with a formula to predict steel
stocks, estimating the rest of the model from there.

1.2. Goal

This thesis will analyse Pauliuk and others’ approaches to steel cycle modelling and
prediction, and develop a method to test and compare them. This will then be used
to propose an updated model (SIMSON, s. Section 2.5), to serve as a basis for steel
economy modelling in REMIND. Three modelling and three prediction approaches
will be examined and combined to assess how well they would have predicted the
last 14 years (2009-2022) of the global steel cycle.
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1.3. Overview

Tools and techniques that are needed throughout the thesis are discussed in Section
2. In Section 3, the setup and methodology of the experiments is discussed in detail.

Subsequently, the results are presented in Section 4, followed by a discussion of
them in Section 5. Lastly, the thesis is concluded in Section 6, including an outlook
on possible future work in this field.

2. Preliminaries

Before explaining the concrete setup and design of the investigation, this section
explains some of the tools used in more detail. Sections 2.1 and 2.2 cover dynamic
stock modelling and material flow analysis as the basis of global steel modelling.
In section 2.3, previous research and techniques on steel stock prediction are sum-
marised. Long short-term memory networks as a potential new machine-learning
based approach to steel stock prediction is presented in section 2.4. Lastly, in section
2.5 an overview of SIMSON, the model which this investigation aims to inform, is
given.

2.1. Dynamic stock modelling

Dynamic stock modelling (DSM) is a method to relate inflows, outflows, stocks and
lifetimes of a material in a process to each other. In our case, this is steel in the use-
phase, so the steel currently in use in various products in the world (measured in
weight (here: metric tonnes)). A visualisation is depicted in Fig. 2.

The inflow is the steel in new products, such as new cars or buildings. The stock
is the total amount of steel that is in use in a given time period. At some point,
the steel leaves the use phase again because it reaches its ’end-of-life’ and then gets
recycled or ends up in landfills. This point is defined by the steel’s lifetime - cars
might for example have an average lifetime of 30 years. Lastly, the amount of steel
reaching its end of life in a given time period represents the outflow of the model.

Figure 2: Overview of dynamic stock modelling.

In DSM it is assumed that a product might have a lifetime mean τ , with standard

3



deviation (SD) σ so that the steel inflow into the stock in a given year leaves the stock
(outflow) according to the normal (Gaussian) probability distribution function (here
λ). Hence the following Eqs. 1-4 can be used to relate the entities to one another
[PWMA13].

Sc(t) = I(t)−O(t) (1)

S(t) =
∑
t′≤t

Sc(t
′) (2)

λ(t, t′, τ, σ) =
1√
2πσ

e
−(t−t′−τ)2

2σ2 (3)

O(t) =
∑
t′≤t

I(t′)λ(t, t′, τ, σ) (4)

Here, I(t) denotes the inflow in a given year t, O(t) the outflow, S(t) the stocks
and Sc(t) the stock change.

There are two popular approaches in dynamic stock modelling: the inflow-driven
and the stock-driven approach. In the former, inflow data and lifetime estimates are
used to obtain stocks and outflow, whereas with the latter, stock and lifetime data
are used to estimate inflow and outflow.

Note that technically, given any two of the four quantities inflows, stocks, out-
flows and lifetimes Eqs. 1-4 can be used to estimate the other two (given that lifetime
mean and SD might change over time).

2.2. (Dynamic) Material Flow Analysis

Material flow analysis (MFA) is a technique to quantify the life cycle of materials
and substances. Its structure is made out of processes, flows between those pro-
cesses and stocks within a process. In the steel cycle, there might for example be
a process ’Use-phase’, a flow from production to the use phase and stocks of steel
accumulating in the use-phase, for example in buildings. A visualisation of the
structure of a simple MFA from Pauliuk (2011) is shown in Fig. 3.

Two more aspects define MFAs. Firstly, MFAs always have a spatial and a tem-
poral boundary. Processes, flows and stocks are examined within a clearly defined
region over a specific period of time as well as flows into and out of this region.
Secondly, mass balance always must always be ensured in an MFA. This means that
the sum of inflows minus the sum of outflows of a process must always equal the
change of stocks in a process. If there are no stocks being accumulated in a process,
e.g. in the ’Production’ process in Fig. 3, this stock change must be zero.

Dynamic Material Flow Analysis (DMFA) is a sub-discipline of MFA. Here, sev-
eral MFAs are developed over a longer period of time. Rostek et al. for example
conducted an investigation into how the steel cycle in the EU changed between 2002
and 2019 [RTLW+22]. Hence, they created an MFA for each year in the time frame
and could analyse the change of stocks and flows in the cycle over 18 years.
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Figure 3: A simple MFA example of the flow of Cadmium with the EU (space) and
the year 2009 (time) as the system boundaries, taken from [Pau11]. Five
processes are displayed and numbered.

2.3. Steel stock prediction

Dynamic stock modelling and material flow analysis provide the required tools to
approach steel cycle modelling. Concerning the past, data on flows, stocks and
lifetimes can be gathered to inform the model. This section describes how predicting
the future of such models has been addressed in other work.

A particular area of interest in this field is how global steel production will change
due to its greenhouse gas emissions. One approach could be to establish trends
based on past production.

However, the approach taken more commonly is to predict steel stock develop-
ment first and then infer production from there (s. [PWMA13, YWM21, PSL23]).
This is based on the assumption that "service level is coupled to stock level"
[PWMA13], so that the per-capita steel stocks represent how much a society uses
the services steel helps to provide (housing, transport, etc., s. also [PFH+21]).

The development of stock predictions is helped by two factors: unlike production,
stocks are independent of trade patterns, and stock levels are strongly correlated to
economic development. This can be observed in Fig. 4 - the correlation coefficient
of the two dataset used in the figure [MLL+13, JGMG12] is roughly 0.87, indicating
a high and positive correlation.

Hence, steel stocks can be predicted by defining some kind of relationship be-
tween steel stocks and economic development from past data and then using pre-
dictions of economic development to obtain future stocks. There have been several
of such investigations [PWMA13, YWM21, PSL23], and they mostly differ in how
economic development is matched to stocks and what predictions of economic de-
velopment are used.

For example, Pauliuk et al. point out that in industrialised countries, it appears
that per capita steel stocks are starting to saturate (see eg. USA data in Fig. 4)
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Figure 4: Steel stock per capita development over gross domestic product (GDP) per
capita in twelve world regions (s. [BBB+21]), 1950-2008. Stock data from
[MLL+13], GDP data from [JGMG12].

and hence proposes that steel stocks saturate over time, at a level of economic de-
velopment roughly similar to that of industrialised nations currently [PWMA13].
This idea has been adopted by various researchers [PSL23] [YWM21] and has been
featured in the United Nations intergovernmental panel on climate change (IPCC)
reports [BNA+22].

2.4. Long short-term memory networks

Long short-term memory (LSTM) networks, are a type of recurrent neural networks
(RNN) proposed by Hochreiter and Schmidhuber [HS97]. They have been shown to
be especially useful for time series prediction [SNTSN18]. LSTM networks consist
of custom LSTM cells, similar to RNN cells with the added functionality of three
gates that are optimised to determine how much of the last cell state to remember
(forget gate), how much of the new information should be incorporated (input gate)
and how much information shall be passed to the next LSTM cell (output gate), s.
Fig. 5.

The key feature of LSTM cells is the cell state - the horizontal line running through
the top of Fig. 5 and is continually updated. It has the ability to capture long-term
dependencies (’remember’ patterns from the past), in contrast to traditional RNNs,
where information from long ago tends to get lost (vanishing/exploding gradient
problem, [BSK19]). Hence they are particularly suited for time series forecasting,
as observed patterns might have already occurred in the past, giving the network
some information on what is likely to happen next.

The effectiveness of LSTM-networks for time series forecasting has been shown
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Figure 5: Structure of a LSTM cell within a LSTM network with input x and output
h, based on [Mun21]. The gates are implemented using sigmoid- (σ) and
tanh activation functions as well as point wise addition + and multiplica-
tion x operators [SK18].

in related fields like oil production [SK18] and weather forecasting [KS20].

2.5. Steel cycle modelling

The Potsdam Institute for Climate Impact Research (PIK) is modelling the global
economy-energy-emissions system in their integrated assessment model (IAM), RE-
MIND (Regional Model of INvestments and Development) [BBB+21]. IAMs consist
of sub-modules representing various aspects of the system. In REMIND’s case, this
includes models on global investments, energy-system costs and carbon-intensive
industries [BBB+21].

Concerning steel, the PIK is aiming to build on past research [PSL23] to create an
MFA-based model of the global steel cycle, that can interact with the economy-based
modules in REMIND to project a realistic development and, ultimately, the carbon
emissions of the industry.

As a potential solution, this investigation presents the model SIMSON (Simulat-
ing In-Use Material Stocks with the ODYM Network). SIMSON covers steel pro-
duction along two routes, via basic oxygen- (BOF) or electric arc furnace (EAF),
uses the four in-use categories ([PWMA13]) and eight steel-scrap categories (based
on [RTLW+22], [Wit21]). It covers the global steel production across the twelve RE-
MIND world regions [BBB+21]. The model is implemented in Python and uses the
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Figure 6: Structure of SIMSON.

ODYM library [PH19].
Whilst the structure of SIMSON (Fig. 6) was developed in collaboration with Dr.

Jakob Dürrwächter (PIK), this investigation contributes the development data input
of the ’upper part’ of the cycle (production - use phase) including the prediction of
the steel stocks, which serves as the basis of the rest of the model.

After methodically describing this model preparation and prediction process, a
first application of the resulting predictions in SIMSON, including individual pre-
dictions for the shared socio-economic path scenarios (SSP, [OKR+14]), forecasting
global steel production until 2100 is presented in Section 5.4. There are five SSP sce-
narios that denote a range from more sustainable development (SSP1) to scenarios
where society does not limit its greenhouse gas emissions (SSP5). Climate impact
researchers often use these scenarios to make it easier to compare their research
[PSL23].

3. Methods

After summarising the techniques and models relevant for this thesis, this chapter
discusses the experiments in detail. Firstly, the setup of the experiments and the
idea behind the thesis’ structure is presented in Section 3.1. In Section 3.2 the choice
of data used is discussed alongside its preparation. Subsequently, the functionality
of SIMSON that this thesis aims to inform is described in detail in Section 3.3.

In Section 3.4 the implementation of the model approaches is described followed
by the prediction techniques in Section 3.5. Lastly, the evaluation of the resulting
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predictions is discussed in Section 3.6.

3.1. Experiment structure

The goal of this investigation is to evaluate different modelling and prediction ap-
proaches to serve as a basis for SIMSON. Specifically, it will examine three DSM
approaches (inflow-, stock-, and change-driven, s. Section 3.4) to inform the SIMSON-
MFA model, and three stock prediction techniques (here called ’Pauliuk ’, ’Dür-
rwächter ’ and ’LSTM ’, s. Section 3.5).

A visualisation of the experiment structure is given in Fig. 7. Firstly, three DSM
modelling approaches will be used to compute the inflows, stocks, outflows and
lifetimes of the in-use steel from 1900-2008 for the twelve REMIND world regions
[BBB+21] and four product categories (’Transport’, ’Construction’, ’Machinery’ and
’Products’).

Subsequently, the 1900-2008 steel stocks will be used to predict the steel stocks
from 2009-2022 with the three prediction techniques. Then, the 2008 lifetimes of
each of the three modelling approaches will be used to derive the 2009-2022 inflows
from the stock predictions via stock-driven dynamic stock modelling. Next, future
trade is predicted assuming that trade will develop proportionally to inflow (s. Sec-
tion 3.3, based on [PSL23]). Finally, the 2009-2022 production predictions can be
calculate from inflow into the use phase and trade and then compare it to the actual
production data from the same time span ([WSA23]).

Figure 7: Visualisation of the experiment design.

The year 2008 is chosen as a base year because it was used by Pauliuk et al.
[PWMA13] for their predictions and hence can ensure an adequate comparison.
Therefore, the 1900-2008 data effectively represents our training data, and the 2009-
2022 production as our test data. Overall, the experiment tests with which model ap-
proach / prediction technique combination the 2009-2022 period would have been
predicted best.

3.2. Data sources & preparation

An overview of the main data sources of the project is given in Table 1. As most of
the original datasets were not yet in the desired format, the processing steps taken
are described below.
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Type Description & Resolution Source
Population Worldwide, 1900-1950 UN [UN99]
Population All countries, 1950-2100 UN [UN22]
Population All countries, 5 SSPs, 1965-2100 [KL17]

GDP Some world regions, 1900-1950 OECD [BTvZ14]
GDP All countries, 1950-2013 IMF [JGMG12]
GDP All countries, 5 SSPs, 1965-2100 [KL23]

Steel stocks All countries, 4 categories, 1900-2008 [PWM13]
Steel stock sector split All countries, 4 categories [PWM13]

Steel production All countries, 1962-2022 WSA [WSA23]
Steel production Worldwide, 1900-1979 WSA [WSA23]

Steel trade All countries, 1962-2022 WSA [WSA23]
MFA parameters Steel lifetime mean & st. dev [PWMA13]
MFA parameters Forming Yield [CAB12]
MFA parameters Fabrication Yield [Wit21]

Table 1: Description of data sources, including United Nations (UN), International
Monetary Fund (IMF), Organisation for Economic Coordination and Devel-
opment (OECD) and World Steel Association (WSA) data.

As country-specific population data and predictions were given only for the years
1950-2100 in the primary UN dataset [UN22] and other openly accessible data source
for the years 1900-1949 with country specific resolution could not be found (as many
country borders changed), the dataset was extrapolated into the past assuming pro-
portional development to world population [UN99].

The same was done for the gross domestic product (GDP) data (given in purchas-
ing power parity (PPP)) with a dataset by the OECD [BTvZ14]. The 1950-1965 pe-
riod could be extrapolated assuming proportional development to a country specific
GDP dataset by the IMF (s. [JGMG12]). The GDP datasets were already adjusted to
inflation and are based on the 2005 US-Dollar.

The population data that had scenario specific resolution ([KL17]) was only used
for the scenario predictions in Section 5.4. Apart from that section, for the future
GDP data, the baseline SSP 2 scenario was assumed.

The population predictions were published in 2017 [KL17] and 2022 [UN22], whilst
the GDP predictions were published in 2023[KL23]. For a fair comparison of the
prediction techniques, predictions from the year 2008 or before would have been
necessary. As such data could not be found, the available data needs to be used.
This is taken into account in the discussion (Section 5).

Part of the data, like the steel stock estimates [PWM13] was given per capita, and
hence the UN population datasets were used to retrieve the total amounts. Some
data given in five- or ten year steps (GDP predictions, 1900-1950 data) was interpo-
lated linearly to get a yearly resolution.

Steel stock information was provided for the four in-use categories transportation,
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construction, machinery and products. Estimates for the share of the four product
categories in steel stocks [PWM13] were incorporated to estimate sector splits in
fabrication (s. Section 3.4.1).

Steel production and steel trade data (both direct and indirect) was taken from the
World Steel Association (WSA) [WSA23]. Here direct trade (the trade of crude steel
before fabrication) was estimated through the difference of production and apparent
use (an estimate of steel demand by the WSA). Similar to population and GDP data,
steel production pre-1962 was derived from world production data. Indirect trade
(the trade finished steel products) was split into the four in-use categories using
2013 estimates [WSA15].

Extrapolating trade data pre-1962 has the added difficulty that total global im-
ports and exports should be balanced. Pehl et al. addressed this problem when
forecasting future trade [PSL23]. Firstly, the trade was kept at the same share in
regional use from the last available data point. Subsequently, imports and exports
were balanced using Eq. 5 (taken from [PSL23]):

Tr′ = Tr(1− sign(Tr)

∑
r Tr∑
r |Tr|

) (5)

Here, Tr denotes the regional net trade (imports positive, exports negative), and
Tr′ the balanced regional trade. Hence, imports and exports are scaled inversely
by the share of global net trade (

∑
r Tr) in global absolute trade(

∑
r |Tr|). So if for

example total global imports exceed exports, imports are scaled down and exports
up by the same percentage so that they equal each other.

This technique was adapted here for the past interpolation of trade: the past trade
share in production (net trade / production) was kept constant instead of the past
trade share in use, as primary data sources were available for production data. How-
ever, for the future prediction of trade (s. Fig. 7), the use/inflow was taken again
instead, as no future predictions of the production was available (as this is the quan-
tity this thesis aims to estimate).

In SIMSON, the parameters necessary to implement the MFA were taken from a
variety of sources and are discussed in more detail in Section 3.3 (also s. Appendix
A). The forming yield was estimated to be 93.7246 % based on data from [CAB12].
The fabrication yield for all four categories were based on [Wit21]. The steel lifetime
and SD for all four categories were taken from [PWMA13].

When steel data was provided for countries that do not exist anymore, like the for-
mer Soviet Union, the amounts where divided into the currently existing countries
by the share of GDP in the first year where split data was available. The same logic
was applied to GDP data, here share in total population was taken as the dividing
factor.

For example, if the steel production in the Soviet Union in 1992 was 100 kT, and
the share of the Russian GDP in the summed up GDP of all ex-Soviet Union coun-
tries was 80 %, the Russian steel production in that year was estimated to be 80
kT.
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3.3. SIMSON upper cycle

While SIMSON and its MFA structure is explained in detail in Appendix A, the only
part relevant to this investigation is the ’upper cycle’, from production to use-phase.
The details of its mechanism necessary for the understanding of the experiments
will be outlined in this section. In Fig 8 a simplified version of this part of the steel
cycle is portrayed.

Figure 8: Upper cycle of SIMSON (simplified).

Crude steel is produced in the ’Production’ process and then traded (across world
regions). Hence the quantity of steel flowing into the forming process is production
P and net crude trade TCrude (s. Eq. 6). Here, our data always has two dimensions,
time t and region r. Production for the year 2005 in the United States might for
example have been one million tonnes of steel.

QAvailable(t, r) = P (t, r) + TCrude(t, r) (6)

In SIMSON, the forming process represents all processes where steel is formed
into intermediate products, like hot rolled bars. During such forming, losses occur.
The quantity of these losses is defined by the forming yield YForm, and was esti-
mated to be around 93 % (based on data by Cullen et al. [CAB12]). From here, the
quantity of steel flowing into the fabrication process QForm and the forming losses
LForm can be calculated with Eq. 7 and 8.

QForm(t, r) = QAvailable(t, r)YForm (7)

LForm(t, r) = QAvailable(t, r)(1− YForm) (8)

The quantity of steel coming out of fabrication, so the steel in the newly produced
cars, building, etc. is calculated using the fabrication yield, taken from [Wit21].
However, first the sector split S(t, r, g) needs to be estimated, defining how much of
the formed steel will be used for each category g. This will be calculated differently
for each model approach, see sections 3.4.1-3.4.3.
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Each of the four in-use categories g also has a fabrication yield YFabr(g) used to
calculate how much ’fabricated’ steel flows to the use phase (QFabr(t, r, g), s. Eq. 9),
and how much is lost in fabrication (LFabr(t, r, g), s. Eq. 10).

QFabr(t, r, g) = QForm(t, r)S(t, r, g)YFabr(g) (9)

LFabr(t, r, g) = QForm(t, r)S(t, r, g)(1− YFabr(g)) (10)

Finally, the inflow into the use phase is defined as the fabrication plus the indirect
trade (s. Eq. 11).

I(t, r, g) = QFabr(t, r, g) + Tindirect(t, r, g) (11)

The in-use process itself is then realised as a dynamic stock model (or actually
several dynamic stock models for each region and in-use good category). It consists
of the inflow, stocks, outflow and lifetime data.

3.4. Model approaches

As the different DSM-based modelling approaches were only referenced briefly thus
far, this section will go into more detail about their realisation in this investigation.

As described above, production, trade, stock and lifetime data is prepared. With
the process described in the previous paragraph (Section 3.3), inflow (also called
demand or use) into the use phase can be derived from production and trade data,
given that some factor S(t, r, g) to split the fabrication into sectors can be produced.
Inflow estimates can also be derived from stocks and lifetimes using stock-driven
dynamic stock modelling (s. Section 2.1).

Note that the stock data is a secondary data source based on Pauliuk et al.’s work
[PWM13] and therefore relies on further assumptions. However, it is still valuable
as the MFA that it was derived from has a degree of detail that is beyond the scope
of this investigation.

The model approaches tested for the purposes of this thesis are the more com-
monly used inflow-driven and stock-driven methods as well as a newly proposed
change-driven approach. A visualisation of all three is shown in Fig. 9.

In the inflow-driven model, inflow data and lifetime assumptions are used to estab-
lish a new estimate of steel stocks which is described in Section 3.4.1. The stock-driven
model uses stocks and lifetimes to estimate inflow and subsequently production (s.
Section 3.4.2). Lastly, in the change-driven model, Pauliuk et al.’s stock data [PWM13]
is used in combination with inflow estimates (from production and trade data) to es-
timate lifetimes (s. Section 3.4.3). All three models also calculate the outflow to be
used further in the MFA cycle calculations (see Appendix A).

As mentioned in Section 3.1, the three modelling approaches are used to estimate
the 1900-2008 steel cycle. From there, the 2009-2022 inflow and production is esti-
mated using the stock-driven model.
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Figure 9: The three model approaches used to set up the MFA. The ’+’ and ’-’ here is
an abstraction of the process described in Section 3.3.

Whilst both the stock-driven and the change-driven model use the same stock data
initially, their predictions will still be different as they will be based on different
lifetime assumptions. Additionally, in the change-driven model, the stock data is
slightly manipulated, leading to further differences, as outlined in Section 3.4.3.

3.4.1. Inflow-driven model

The inflow-driven approach can be implemented mainly using the production to use
flow described in Section 3.3. The only unknown value is the sector split S(t, r, g) to
split fabrication estimates into the four in-use categories.

Whilst no primary data sources for this fabrication sector split were found, Pauliuk
et al. systematically estimated stock sector splits for all countries [PWM13]. Hence,
a fabrication sector split that causes the stock change sector split to approach their
estimates was calculated:

From the SIMSON ’upper cycle’ equations in Section 3.3 we know how to relate
the quantity of steel going into the fabrication process QForm(t, r) to the inflows (Eq.
12).

I(t, r, g) = QForm(t, r)S(t, r, g)YFabr(g) + Tindirect(t, r, g) (12)

Let us simplify this by removing the region (r) dimension, as the same method can
be applied across regions. Further, we relabel QForm(t, r) = F (t, r), Tindirect(t, r, g) =
T (t, r, g) and S(t, r, g) = x(t, r, g) as this is the variable we are searching for. The re-
sult is Eq. 13:

I(t, g) = F (t)x(t, g)y(g) + T (t, g) (13)

If in every year, the stock change sector split will approach Pauliuk et al.’s esti-
mates ([PWM13]), this will also be true for the total stock change (s. Eq. 2). From dy-
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namic stock modelling (Section 2.1), we know how to relate inflows to stock change.
Equation 14 shows an expansion of the DSM equations:

Sc(t, g) = I(t, g)−O(t, g)

= I(t, g)−
∑
t′≤t

I(t′, g)λ(t, t′, τ, σ)

= I(t, g)− I(t, g)λ(t, t, τ(g), σ(g))−
∑
t′<t

I(t′, g)λ(t, t′, τ(g), σ(g))

= I(t, g)(1− λ(t, t, τ(g), σ(g)))−
∑
t′<t

I(t′, g)λ(t, t′, τ(g), σ(g))

(14)

Here, the subtrahend
∑

t′<t I(t
′, g)λ(t, t′, τ(g), σ(g)) denotes the outflow of the

past cohorts. We will relabel this Op(t, g). In the first year, this quantity is zero
(Op(t = 0, g) = 0, ∀g).

We also know stock change sector split c(g) and can define it by relating it to the
stock change Sc(t, g) (s. Eq. 15).

c(g) =
Sc(t, g)∑
g Sc(t, g)

,∀t (15)

Let G be the set of in use good, so that g ∈ G. Let us further assume there are
goods a, b ∈ G. We can now combine Eq. 14 and Eq. 15 to relate the sector split
and the inflow in Eq. 16 as we do not know the stock change itself yet (as this is the
quantity we want to find out in the inflow-driven model).

Sc(t, a)

Sc(t, b)
=

c(a)
∑

g Sc(t, g)

c(b)
∑

g Sc(t, g)

=
c(a)

c(b)

=
I(t, a)(1− λ(t, t, τ(a), σ(a)))−Op(t, a)

I(t, b)(1− λ(t, t, τ(b), σ(b)))−Op(t, b)

(16)

Let us further simplify this using variables l(t, a, b) = c(b)(1 − λ(t, t, τ(a), σ(a))),
s(t, a, b) = c(b)Op(t, a) and l(t, b, a) and s(t, b, a) vice versa. We also expand the
inflows using Eq. 13 in Eq. 17.

I(t, a)l(t, a, b)− s(t, a, b) = I(t, b)l(t, b, a)− s(t, b, a)

(F (t)x(t, a)y(a) + T (t, a))l(t, a, b)− s(t, a, b)

(F (t)x(t, b)y(b) + T (t, b))l(t, b, a)− s(t, b, a)
= 1

(17)

Now we can express x(t, b) in terms of x(t, a) in Eq. 18.
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x(t, a)
y(a)l(t, a, b)

y(b)l(t, b, a)
+

T (t, a)l(t, a, b)− T (t, b)l(t, b, a)− s(t, a, b) + s(t, b, a)

F (t)y(b)l(t, b, a)
= x(t, b)

(18)
We also know that

∑
g x(t, g) = 1. Now if we see Eq. 18 as a linear function with

y-intercept n(t, a, b) = T (t,a)l(t,a,b)−T (t,b)l(t,b,a)−s(t,a,b)+s(t,b,a)
F (t)y(b)l(t,b,a) and gradient m(t, a, b) =

y(a)l(t,a,b)
y(b)l(t,b,a) , we can solve for x in Eq. 19:

x(t, a)m(t, a, b) + n(t, a, b) = x(t, b)∑
b∈g

x(t, a)m(t, a, b) + n(t, a, b) = 1

1−
∑

b∈g n(t, a, b)∑
b∈g m(t, a, b)

x(t, a) = x(t, a)

(19)

This can be done for all a ∈ g. As a last consideration, the inflows need to be
positive. This might not always happen as the outflows and indirect exports in a
specific year and category might be so high that the inflows can not ’make up’ for it.

In these cases, we use Eq. 20 to define the minimum of the sector split x(t, g):

I(t, g) = F (t)x(t, g)y(g) + T (t, g) ≥ 0

x(t, g) ≥ −T (t, g)

F (t)y(g)

x(t, g)min =
−T (t, g)

F (t)y(g)

(20)

To comply with this minimum, we therefore in those cases adjust x slightly using
Eq. 21.

x(t, g)final = max(x(t, g)min, x(t, g)−
x(t, g)− x(t, g)min

|
∑

g max(0,x(t,g)−xmin(t,g))∑
g min(0,x(t,g)−xmin(t,g))

|
) (21)

We can calculate the final inflow with Eq. 13 and then obtain the stocks with the
lifetime data and inflow-driven dynamic stock modelling. Note that x needs to be
calculated iteratively for every time step as Op(t, g) is based on all inflows of the last
years and therefore x will have to have been calculated for all those years.

3.4.2. Stock-driven model

For the implementation of the stock-driven model, no adjustments needed to be
made. The stock and lifetime data could be used directly to infer inflows via dy-
namic stock modelling and calculate production from there.
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Specifically, we can transform Eq. 14 to solve for inflow as shown in Eq. 22.

Sc(t, g) = I(t, g)(1− λ(t, t, τ(g), σ(g)))−Op(t, g)

I(t, g) =
Sc(t, g) +Op(t, g)

(1− λ(t, t, τ(g), σ(g)))

(22)

We know the stock change from the stock data, λ from the lifetime data, and Op

(the outflow from the past cohorts) is zero in the first year and can be calculated it-
eratively using the past inflows. This is automatically done using the ODYM library
[PH19]. Finally outflows can be calculated subtracting stock change from inflows (s.
Eq. 1).

3.4.3. Change-driven model

One of the main concerns with the stock-driven model is that even if the lifetime es-
timates are plausible, there might be a big gap between inflows derived from the
model and real-world inflows as this investigation does not use the exact same
model Pauliuk et al. used to create the dataset [PWM13]. Additionally, the life-
times given are used across all years (the t/time dimension), and the lifetime of
steel products might have significantly changed over the last decades.

Idea To solve this, the novel method of the change-driven model is introduced here:
using production and trade data to calculate inflows (like in the inflow-driven model,
s. Section 3.4.1) and estimate lifetimes on a year by year basis from inflow and stock
change. Subsequently, outflow can be derived from the difference in inflow and stock
change (derived from the stock data). The lifetime calculation is presented in detail
below and is necessary for the stock-driven prediction later on.

The main idea of the change-driven model is to use Eq. 14 similarly to how it is
used in the stock-driven model, but to derive lifetimes from inflow and stock change
as shown in Eq. 23.

λ(t, t, τ(g), σ(g)) = 1− Sc(t, g) +Op(t, g)

I(t, g)
(23)

We can then do an iterative calculation of λ starting in the base year (and, like
in Section 3.4.2, calculate Op(t, g) iteratively as well). From there, we can calculate
the mean and SD of the lifetimes of the products in each year. Before that, we fur-
ther assume that the lifetime SD is 30 % of the mean as proposed by Pauliuk et al.
[PWMA13], so σ = 0.3τ . Eq. 23 can be solved then for the mean, because when
t′ = t, λ (Eq. 3) can be simplified as outlined in Eq. 24.
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λ(t, t, τ, σ) =
1√
2πσ

e
−(t−t−τ)2

2σ2

=
1√

2π0.3τ
e

−(0−0−τ)2

2(0.3τ)2

=
1

τ
√
2π0.3e

1
2∗0.32

= λ(τ)

(24)

And hence, when t = t′, Eq. 25 shows how to compute lifetime mean τ from λ.

τ =
1

λ(τ)
√
2π0.3e

1
2∗0.32

(25)

There are a couple of technicalities to consider when implementing the change
based model. Firstly, according to the stock estimates from Pauliuk et al. [PWM13],
there was some stock of steel already prevalent in the base year (1900). Therefore,
the stock change in that year is a lot higher than in the next years. As the production
data is not as high in the first year, this might create negative outflows, which are
unrealistic.

Consequently, in the change-driven model inflows are set equal to the stock change
only for the first year. As this inflow of steel should also reach an end of life and
hence leave the use-phase at some realistic point, this cohort is assumed to have half
of the normal lifetime (hence assuming it to an average have ’lived’ half its life thus
far), using Pauliuk’s lifetime assumptions only this once (τ(0, g) = τPauliuk(g)/2,
σ(0, g) = σPauliuk(g)/2). Subsequently, Eq. 22 can be used to find the inflows in the
base year via Eq. 26:

I(0, g) =
Sc(o, g)

1− λ(0, 0, τ(0, g), σ(0, g))
(26)

Production in the base year can be calculated from there using Eqs. 6 - 11.

Sector split for change driven model Apart from the first year where a given
lifetime is assumed, the sector split x(t, g) in the change-driven model is not given
and hence inflows can not be calculated simply from production. The same method
as in the inflow-driven model (s. Section 3.4.1) can not be used because here lifetime
estimates are not used (as this is the quantity being calculated by the change-driven
model). However, an estimation of the sector split can be made:

As before, the fabrication sector split is going to be derived from the stock change
sector split. Revisiting Eq. 22, we notice that the only variable we do not know is
λ. However, we also know that λ defines the outflow of the current cohort in the
current year. This is the steel products reaching their end of life in the year that they
are produced.
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This quantity should be quite small and therefore not greatly affect the fabrica-
tion sector split. Conclusively, the best approach is to assume it to be zero for the
purposes of estimating the fabrication sector split as shown in Eq. 27.

I(t, g) = F ′(t)x(t, g)Y (g) + T (t, g) = Sc(t, g) +Op(t, g)

F ′(t)x(t, g) =
Sc(t, g) +Op(t, g)− T (t, g)

Y (g)

(27)

Note that F ′(t) here will not be equal to the F (t) calculated from production data
as we ignored λ for the purposes of finding the sector split. As we know that the
sum of the sector splits needs to be 1 (100 %,

∑
g x(t, g) = 1), we can find F ′(t) from

the other parameters and then solve for x(t, g) as Eq. 28 shows.

F ′(t) =
∑
g

Sc(t, g) +Op(t, g)− T (t, g)

Y (g)

x(t, g) =

Sc(t,g)+Op(t,g)−T (t,g)
Y (g)∑

g
Sc(t,g)+Op(t,g)−T (t,g)

Y (g)

(28)

Plausible Lifetimes As a last consideration, in the way described above, the change-
based model is very sensitive to tiny changes in λ and as it is found iteratively, small
mistakes in some years might lead to problems in others (e.g. this method does not
rule out negative or otherwise implausible lifetimes).

Hence, after finding λ and the lifetimes, the final found lifetime mean τfinal is
limited to be within a factor of 5 of the lifetime mean proposed by Pauliuk.

τfinal = max(
τPauliuk

5
,min(5τPauliuk, τ)) (29)

In the case where τfinal ̸= τ , we then again derive the final lifetime SD using the
factor 0.3 (σfinal = 0.3τfinal) and then adapt the final stock change using Eq. 14. This
is what causes the different stock data in the stock-driven and change-driven model.

3.5. Prediction techniques

Using the three described model approaches, three sets of 1900-2008 stock data and
2008 lifetime data can be computed to serve as a basis for the stock predictions. In
this section, Pauliuk, Dürrwächter and LSTM predictions that use these outputs will
be described in more detail. In Table 2 the main differences between the techniques
are summarised.

Whilst a couple of other prediction techniques exist (s. [PSL23, YWM21]), these
have been chosen as they portray a variety of methods and shapes. Pauliuk and Dür-
rwächter both use the idea of a saturation level (sat-level), but divert in how it is im-
plemented. While the Dürrwächter technique is novel, it uses many ideas from Pehl

19



Name Method Shape Sat-level Use of GDP data
Pauliuk Formula S-shaped pre-defined indirect (sat-level)

Dürrwächter Formula concave fitted to data direct (fitting)
LSTM Machine Learning various no direct (training)

Table 2: Overview of the investigated prediction techniques.

et al. [PSL23] such as finding the formula parameters through optimisation. LSTM
has not yet been used in this field but has proven its use in other areas ([SNTSN18],
[SK18]).

The adaptation of Pauliuk et al.’s prediction approach [PWMA13] is outlined in
Section 3.5.1. In Section 3.5.2 the formula and implementation of the prediction
technique based on ideas by Dr. Dürrwächter is presented. Lastly, how the LSTM
model was set up and trained is described in Section 3.5.3.

3.5.1. Pauliuk prediction

Pauliuk et al.’s idea is rooted in the assumption that steel stocks saturate with in-
creasing economic development. They calculate steel stocks per capita with a for-
mula similar to the sigmoid function (Eq. 30). However, the independent variable
of their formula is not a term expressing economic development (like GDP) but
time. They still incorporate assumptions on economic development by pre-defining
a saturation level Ŝ and a saturation time ts by which that saturation is fulfilled.
The authors that using GDP estimates would "merely shift the uncertainty from our
own estimate to an exogenous forecast" [PWMA13].

S(t) =
Ŝ

1 + ( Ŝ
S0

− 1)ec(1−ed(t−t0))
(30)

Here, S0 is the level of stocks per capita in the base year, t0 the last year where
data is available (here 2008), t the year for which the stock level is supposed to
be determined and c and d are constants. These constants are needed to skew the
curvature of the predicted stock levels to fulfil two conditions:

1. The stock curve is tangent to the latest historic stock (t0 = 2008).

2. The per capita stocks reach 99% of the saturation level at the saturation time
ts.

To calculate c and d, we can derive new equations from these conditions. For
condition 1, we firstly need the derivative of the stock curve, shown in Eq. 31.

S′(t) =
Ŝcd( Ŝ

S0
− 1)ec(1−ed(t−t0))+d(t−t0)

(( Ŝ
S0

− 1)ec(1−ed(t−t0)) + 1)2
(31)
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Now we can set this equal to the gradient g that we know from the stock per capita
data in year t0 = 2008. The gradient here is simply the difference in stock per
capita to last years data, but at least 0.001 (g = max(S(t)− S(t− 1), 0.001)). This is
because, dependent on the model approach (s. Section 3.4), the gradient in our stock
data could sometimes be negative which does not work with this technique as the
gradient of a sigmoid-shaped curve is never negative. As t = t0 and t0 − t0 = 0 a lot
of the derivative equation is simplified as shown by Eq. 32.

S′(t0) = g =
Ŝcd( Ŝ

S0
− 1))

( Ŝ
S0
)2

(32)

We further simplify this in Eq. 33 by introducing the constant h:

g( Ŝ
S0
)2

Ŝ( Ŝ
S0

− 1)
= h = cd (33)

Note that in Pauliuk et al.’s approach Ŝ
S0

−1 > 0 holds as the saturation level is as-
sumed to be over the current stock levels and hence, h > 0, c ̸= 0, d ̸= 0. Again, this
will not necessarily be true for all model approaches in this investigation, and there-
fore the saturation level is slightly altered in such cases: Ŝ = max(S0∗1.02, ŜPauliuk).

Next, we can demonstrate the second condition in mathematical terms in Eq. 34:

S(ts) = 0.99Ŝ =
Ŝ

1 + ( Ŝ
S0

− 1)ec(1−ed(ts−t0))
(34)

This can be transformed to:

1
0.99 − 1

Ŝ
S0

− 1
= ec(1−ed(ts−t0)) (35)

This can be further simplified in Eq. 32 by introducing two constants, l and v:

ln(
1

0.99 − 1

Ŝ
S0

− 1
) = l = c ∗ (1− vd) (36)

Here v = ets−t0 . Hence, v > 0. Additionally, we can assume that S0 < Ŝ ∗ 0.99 due

to condition 2. Therefore, 1
0.99 < Ŝ

S0
and further

1
0.99

−1

Ŝ
S0

−1
< 1. We can conclude that

l < 0.
It is now established that l = c∗ (1−vd) and h = cd. By inserting c = h

d , we derive
Eqs. 37 and 38:

l =
h

d
(1− vd) (37)
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and (substituting l/h = m)

vd +
l

h
d− 1 = vd +md− 1 = 0. (38)

This formula can be solved for d by taken it as a function f(d), and finding it’s
first and second derivative (Eqs. 39-41).

f(d) = vd +md− 1 (39)

f ′(d) = vdln(v) +m (40)

f ′′(d) = vdln(v)ln(v) (41)

One of the roots of the function will be zero as f(0) = v0+m∗0−1 = 1+0−1 = 0.
Given that d ̸= 0, there has to be another root apart from zero (as Pauliuk et al. chose
saturation levels and times so that they found solutions for c and d).

To find its other root, the Newton-Raphson method from SciPy [VGO+20] was
used. The Newton-Raphson method is a technique to approximate a root of a func-
tion [Che13]. It will converge if the function is convex [Che13]. This is the case here,
as all of the factors of f ′′(d) are positive, and therefore the function is convex. After
finding d this way, c can be obtained from d and h using the formula c = h

d .
Having found c and d, we can use Eq. 30 to predict future steel stocks per capita.

Using the population predictions, future steel stocks can be derived which then can
used to predict the rest of the steel cycle as described in Section 3.1.

3.5.2. Dürrwächter prediction

Analysing past stocks and GDP data, Dr. Jakob Dürrwächter suggested that the cor-
relation between per capita stocks and GDP might not follow an s-shaped sigmoid-
like formula (as proposed in [PSL23][YWM21]) but rather a normal concave curve
(s. Fig. 4). Adapting the assumption that per capita steel stocks will saturate with
increasing economic development, he proposed the following formula to relate the
two quantities as shown in Eq. 42.

S(g) = A(1− e−bg) (42)

Here, S is the steel stocks, g the GDP data (both per capita), and A is the saturation
level and b influences the gradient of the curve. Both A and b are unknown.

Whilst the idea and formula for this prediction technique was proposed by Dr.
Dürrwächter, the implementation of it is a novel aspect contributed by this investi-
gation.

To find these parameters, the least-squares optimisation method from SciPy was
used [VGO+20]. Assuming that the steel stocks of all regions will saturate at a simi-
lar level, the optimisations was first done for the whole dateset across world regions
to find a global saturation level A.
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This found global saturation level Aglobal was highly sensitive to the different
combinations of model type, regional resolution (REMIND [BBB+21] vs. ’Pauliuk’
([PWMA13] based on [Lut96]) regions), steel stocks and GDP data source. It ranges
from 0.57 to 4652 tonnes/capita. Out of these combinations, 17.4 tonnes/capita
was chosen as the resulting value that was most similar to Pauliuk et al.’s estimates
[PWMA13].

After a global estimate of the two parameters was found using the least-squares
optimisation, then b was regionally adapted using Eq. 43 so that the resulting curve
will match the base year (2008) stock level (S0) at the base year GDP level (g0).

b(r) = −
ln (1− S0(r)

Aglobal
)

g0(r)
(43)

After obtaining all necessary parameters, the future steel stocks per capita can be
predicted by using the GDP predictions and plotting them on the proposed Dür-
rwächter curve. The resulting prediction of steel stocks for the twelve REMIND re-
gions is shown in Fig. 10. Lastly, per capita predictions are transformed to total
predictions using the population predictions.

Figure 10: Per capita stocks over GDP per capita and fitted Dürrwächter curve for all
regions (dashed line) with a saturation level of 17.4 tonnes/capita.

3.5.3. LSTM prediction

There is a multitude of machine learning method types for time series forecasting
(TSF) e.g. classical ones (like ARIMA, Exponential Smoothing), Random Forests,
and Neural Network based ones like Convolutional Neural Networks and LSTM
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Networks [Ger23] and then a variety of options of how to implement a specific
method.

Whilst implementing and comparing all options would give the only holistic anal-
ysis of to the effectiveness of ML-based solutions in steel cycle prediction, this would
be beyond the scope of this investigation.

LSTM-networks were chosen for this project as they have been shown to per-
form well in comparison with other approaches [SNTSN18] and have been success-
fully used in similar fields [SK18, KS20]. This section describes how specifically the
LSTM-network was implemented.

In simple forecasting methods, a series of past data points is analysed and then
the future is predicted from that analysis. However, this approach would not use all
available information: it can be assumed that the progression of per capita stocks in
one region might develop similarly in another region.

Additionally, as described in Section 2.3, there is a high correlation between per
capita steel stocks and GDP. Hence, it would be useful if the resulting model could
utilise past and future GDP data to inform its predictions.

The DARTS [HLP+22] Python library was chosen to implement the LSTM-network
for this thesis as it fulfils these requirements. The model can be trained iterating
through the region data, and GDP (per capita) data can be incorporated using so-
called ’future-covariates’. These covariates are passed into the respective LSTM cells
as part of the input x (s. Fig. 5).

After choosing the DARTS framework, the last aspect that needs to be defined are
the hyperparameters. Optimising all of them again would be beyond the scope of
this investigation. Hence, two major parameters, n-rnn-layers (the number of RNN
layers) and n-epochs (the number of epochs trained), were focused on.

Both drastically affect the resulting prediction accuracy but also the degree of
overfitting to the past data. For example, technically, the greater the number of
epochs, the better the prediction accuracy. However in this case it was observed
that sometimes with increasing epochs the models predicted negative stocks due to
overfitting.

Therefore, an experiment was conducted pre-evaluating LSTM models with dif-
ferent combinations of values for n-rnn-layers (3, 6, 9, 12) and n-epochs (300, 600,
900, 1200) for all three model approaches (s. Section 3.4). The results are discussed
in Section 4.1.

The output chunk length (number of time steps predicted at once) was chosen
to be 14 as ultimately, the years 2009-2022 are supposed to be predicted. Hence,
the input chunk length (number of past time steps used at prediction point) used
was 95 years, so that the 1900-1994 data could be used to predict the next 14 years
until our base year 2008 when evaluating the model (for the pre-evaluation during
training the 2009-2022 testing data was not used to have a fair comparison to the
other prediction techniques).

For the other parameters liken hidden dimension and batch size, the default DARTS
parameters were adopted. An overview of the hyperparameters is given in Table 3.
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Parameter Value Default
Input chunk length 95 x

Output chunk length 14 x
Number of RNN layers 3-12 x

Number of epochs 300-1200 x
Hidden dimension size 25 ✓

Dropout rate 0 ✓
Batch size 32 ✓

Table 3: Overview of main used hyperparameters for the LSTM network in DARTS
[HLP+22].

Lastly, data from the reforming countries (former Soviet Union, ’REF’ in Fig. 10)
was ignored as an outlier for the inflow-driven approach as the irregular decline of
the regions steel production greatly affected stock numbers.

3.6. Evaluation

After stocks are predicted, the 2009-2022 production can be derived as described
in Section 3.1. Hence, the production predictions of all combinations of the three
modelling approaches and the three prediction techniques can be compared.

To evaluate which combination provided the best prediction, there are a variety of
available metrics. Whilst all measure slightly different aspects, it has been assessed
through quantitative research that the differences in the results are often only subtle
[DKA22]. This investigation focused on the mean absolute percentage error (MAPE)
as it offers an intuitive interpretation, is a popular tool [KK16] and has been used in
comparable research [SLWF10].

The formula to calculate the MAPE is shown in Eq. 44 (taken from [KK16]). Here,
Ft are the predicted values (forecast) whereas At are the values actually observed.
The MAPE is undefined if the actually observed values are zero, which in this case
is never the case as steel is produced in all world regions.

MAPE =
1

n

n∑
t

|At − Ft

At
| (44)

Apart from MAPE, the runtime of each combination was measured as well as the
model might be coupled with other models in REMIND and hence be able to react
quickly.

4. Results

Having described the experiment setup in detail, the results are presented below.
Before comparing the performance of the model approach and prediction technique
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combinations, the results of the pre-evaluation of the LSTM Models are presented
in Section 4.1. Following this, the final results of the combinations and the 2009-
2022 production predictions are shown in Section 4.2. Lastly, the runtime of the
combinations is compared in Section 4.3.

4.1. Pre-Evaluation of LSTM Models

The results of the test for LSTM performance for different numbers of epochs and
RNN-layers are shown in Table 4. They were conducted using the 1900-1994 period
as test data and the 1995-2008 period as training data.

inflow 300 600 900 1200
3 1.09 0.97 0.7 1.19
6 1.19 2.9 1.03 1.14
9 4.76 3.83 2.75 0.49
12 18.63 2.4 1.73 2.9

stock 300 600 900 1200
3 1.02 1.7 0.94 1.57
6 2.61 1.51 0.71 0.58
9 4.26 22.96 3.49 1.41
12 2.34 1.34 0.93 6.67

change 300 600 900 1200
3 3.34 0.55 2.46 0.78
6 0.97 1.33 0.6 2.48
9 4.47 1.55 1.25 4.83
12 2.52 0.71 3.52 1.98

Table 4: Evaluation LSTM-network with different combinations of numbers of
RNN-layers (rows) and epochs (columns). Results are given for all three
modelling approaches using MAPE (in %).

In general, the results got slightly better with increasing number of epochs, but
less RNN-layers yielded better results. However, the correlation is small in both
cases. For all three model approaches, a network with a MAPE of less than 1 % for
the test data set could be found.

The best performing network was chosen and is emphasised in Table 4. In none
of these cases the network predicts negative stocks.

4.2. Predictions

The results of the predictions of worldwide steel production of the combinations of
model approaches and prediction techniques are shown in Fig. 11 and compared to
real world data (orange line).
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Overall, especially the change-driven model in combination with LSTM and Dür-
rwächter prediction seem to predict worldwide production reasonably well (MAPE
below 5 %).

Figure 11: Final results of production predictions for all combinations with MAPE
given in %. The orange line shows the actually observed production data
from the World Steel Association [WSA23] as a comparison.

A summary of the MAPE of the different combinations is given in Table 5. Here,
an evaluation is made both for total global production and as an average across
regional errors. Noticeably, the regional predictions have a lot higher error rates
than the summed global production predictions with on average a roughly four
times higher MAPE.

For the global error results, the change-driven model combined with the LSTM
prediction performs best, whereas for regional predictions, the inflow-driven model
combined with the Dürrwächter prediction yields the best results.

On average, the inflow-driven model and the LSTM prediction perform best in both
global and regional error assessments.

4.3. Runtime

To determine the runtime of the model approach/prediction technique combina-
tions, each combination was run 100 times and an average was calculated. The tests
were conducted on a 2.7 GHz Dual Core processor with 8 GB RAM. The results are
given in Table 6.

Overall, the change-driven models ran quicker than the others, and the combina-
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Global Pauliuk Dürrwächter LSTM average
Inflow 19.77 14.89 7.31 13.99
Stock 22.38 8.64 15.96 15.66

Change 34.2 4.8 4.45 14.48
average 25.45 9.44 9.24 14.71

Region Pauliuk Dürrwächter LSTM average
Inflow 55.65 40.21 48.71 48.19
Stock 59.27 56.67 45.12 53.69

Change 85.95 69.46 63.13 72.85
average 66.96 55.45 52.32 58.24

Table 5: Final evaluation combinations of model approaches (rows) and prediction
techniques (columns) using MAPE (in %). Results are given both for the
error in total global production and as an average across regional produc-
tion forecasts. Averages are presented for model approaches and prediction
techniques

Runtime Pauliuk Dürrwächter LSTM average
inflow 13.06 12.25 12.48 12.69
stock 11.96 12.05 12.16 12.06

change 11.81 11.63 12.48 11.97
average 12.28 11.98 12.47 12.24

Table 6: Runtime (in seconds) to produce complete model of all model approach &
prediction technique combinations, with averages.

tions using Dürrwächter predictions outperformed the others, both with an average
below twelve seconds. However in both cases the performance was less than 3%
better than the overall average.

For both the Dürrwächter and the LSTM prediction techniques the fitting/training
of the model was excluded from the runtime tests.

5. Discussion

After presenting the results of the experiments, the performance of the different
models is discussed in detail in this section. Additionally some details of the result-
ing predictions are portrayed.

Whilst accurate regional forecasts would increase the reliability of the model,
models that do this better but are worse in estimating global trends will result in
worse greenhouse gas emission predictions that matter globally, not regionally (and
in turn might affect production). Therefore, the focus is on the result of the global
predictions, but the regional forecasts are discussed as well.
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In Section 5.1 the performance of the three model approaches is compared and
contrasted. The same follows in Section 5.2 for the three prediction techniques.
Lastly, the prediction results of the best performing model are analysed in Section
5.3 alongside predictions for the SSP scenarios in Section 5.4.

5.1. Model approaches

In terms of model approaches, the change-driven approach appears to predict higher
production than the stock-driven approach, with the inflow-driven approach predict-
ing even less. This is not true for combinations using LSTM predictions. This is
caused by higher stock estimates in the inflow-driven approach (and smaller ones
in the change driven one), leading to smaller increases in stock levels for the predic-
tion techniques using saturation levels (Pauliuk and Dürrwächter ).

The inflow-driven approach performed best on average. However, the resulting
stock predictions are, as expected, very sensitive to changes in production. For ex-
ample, the massive decline of the Soviet steel production due to its dissolution at
the beginning of the 1990’s resulted in a sudden decline of stocks in the model.

This should be addressed when using the model in the future by for example
treating such occurrences as outliers as described in Section 3.5.3. Nevertheless the
estimates of the stocks seem altogether quite plausible and are roughly in the same
range as the data from Pauliuk et al. [PWM13](s. Fig. 14).

Whilst the best performing model in terms of predicting global production used
the change-driven approach (s. Table 5), the lifetime calculation of the model failed
to produce realistic estimates, s. Fig 12.

Figure 12: The resulting lifetime estimates for Latin America (’LAM’) for the four
in-use categories in the change-driven model.
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The values switch repeatedly between the given maximum and minimum values.
For example, the Latin American lifetime estimates for construction switch a lot
between the minimum value 75/5 = 15 years and the maximum value 75 ∗ 5 = 375
(s. Section change-driven for calculation of minimum and maximum lifetime). This
was expected for some years where production or stock data suddenly changed, but
a constantly occurring tremendous change of lifetime is unrealistic.

This is probably due to the lifetime calculation being so dependent on the outflow
of products in the year that they are produced (s. Section 3.4.3). These are usually
minimal and hence small errors here cause large problems overall.

The main issue is that the resulting lifetimes for the year 2008 are used to pre-
dict future production based on stock-driven dynamic stock modelling. Whilst this
might not greatly affect short term predictions like the ones conducted here, con-
stantly too low or too high lifetimes as a basis of predictions will be implausible in
the long run.

5.2. Prediction techniques

Overall, the Pauliuk and the LSTM prediction tend to over-predict production (es-
pecially the former) whereas the Dürrwächter prediction appears to under-predict.
Whilst for the saturation based approaches Pauliuk and Dürrwächter this could be
simply solved by increasing/decreasing the saturation level (or changing the satu-
ration time), this showcases the difficulty of estimating these parameters.

Here it needs to be pointed out that whilst the estimates of saturation levels and
times by Pauliuk et al. where published in 2013, the other two prediction techniques
could use up-to-date population and GDP data as input for their stock predictions of
the years 2009-2022. Additionally, the authors might have adapted their estimations
to the REMIND regions differently than done here (s. Section B).

However, for the training/fitting of the models, the Dürrwächter and LSTM pre-
diction techniques had the same data available. Due to the significantly better av-
erage global performance of these two compare to the Pauliuk prediction (about 16
% better MAPE), the results suggest that they are more accurate at least in their
production predictions, which was the goal for this investigation.

Notably, the LSTM prediction yielded the best results (s. Table 5) even though
the network was only optimised in terms of number of RNN-layers and epochs.
However, predictions were highly sensitive to the random initialisation of weights
and biases in the network. This is not surprising given that the training dataset
consisted of only 12 x 95 x 2 = 2280 data points (number of regions and years for
both stock and GDP data).

Therefore theoretically LSTM-networks with a better performance on the training
dataset might be found that predict negative or otherwise implausible (like highly
fluctuating) stock values. For example, the resulting prediction second best LSTM
prediction for the change-driven model approach in the LSTM pre-evaluation (with a
MAPE of 0.6 instead of 0.55 %, s. Table 4) is shown in Fig. 13. In the non-EU (’NEU’)
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Figure 13: Per capita stock prediction of the second best model combination: change-
driven / LSTM .

region, there is a sudden drop in the per capita stock prediction around 1940 which
seems highly unrealistic.

This could potentially be addressed with some form of supervised learning where
experts discourage certain undesired outputs like suddenly changing stock levels.

5.3. Analysis of predictions

Lastly, the steel cycle predictions for the best models according to this investigation
can be assessed. Due to the problems in the change-driven model approach described
in Section 5.1, the model approach/prediction technique combination with the best
global MAPE that does not use the change-driven model was chosen. This is the
inflow-driven / LSTM combination with a global MAPE of 7.31 %.

The resulting per capita stock prediction for the twelve REMIND regions [BBB+21]
is shown in Figure 14. Interestingly, an S-shaped sigmoid-like form similar to the
Pauliuk predictions can also be observed with the LSTM forecasts (s. Section 3.5.1,
[PWMA13]). However, not a complete saturation seems to occur, indicating that
also in developed regions per capita stocks will continue to increase.

Additionally, Pauliuk et al. assume the saturation times for developing countries
in e.g. Asia and Africa to be around 2150 [PWMA13] whereas they appear to occur
a lot earlier here. This might be due to the GDP predictions used here opposed to
the information used by Pauliuk et al. to determine their saturation times.

This however shows how significant good economic forecasts are as they mas-
sively affect the production and ultimately greenhouse gas emission forecasts as
will be shown in the following paragraphs.

The resulting projected production is shown in Figure 15. It predicts a peak of
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Figure 14: Per capita stock prediction of the inflow-driven / LSTM model.

Chinese (CHA) steel production around 2030 (which is in accordance with the Chi-
nese’ governments pledge to reach the peak of carbon emissions by 2030 [CXGL22]).

India (IND), Other Asia (OAS), Latin America (LAM) and the Middle East (MEA)
are projected to have their peak in steel production around 2065 whilst Sub-Saharan
Africa (SSA) is set to have a massive increase in production peaking around 2080.

When comparing the total global production predictions of the inflow-driven /
LSTM model with the approach taken by Pauliuk et al. in their predictions [PWMA13]
(here adapted as stock-driven / Pauliuk ) it becomes apparent that in fact, the former
predictions are a lot higher in the second half of the century whilst being roughly
comparable in the first, s. Fig. 16.

Specifically, the cumulative production predictions of the inflow-driven / LSTM
model are 10 % higher than the stock-driven / Pauliuk model by 2066 and 25 % higher
by the end of the century.

Lastly, the results of the regional forecasts were a lot worse than the total global
forcasts, with a roughly seven times higher MAPE for the inflow-driven / LSTM
model. As an example, Fig. 17 depicts the predictions for Latin America. This
could be partly due to faulty trade predictions (s. Section 3.2), especially as the net
global production is so much better.

However, it might also be cause by the structure of the prediction process: pre-
dicting per-capita stocks first and ultimately deriving inflow and production from
there. This might work well to establish long term trends, but fail to capture short
term changes in production.

Hence, it might be fruitful to combine predictions solely based on production
trends with this long-term stock-based prediction approach.
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Figure 15: Production prediction of the inflow-driven / LSTM model.

Figure 16: Total global production prediction of the inflow-driven / LSTM model vs
the stock-driven / Pauliuk model.
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Figure 17: Steel cycle predictions of flows and stocks for Latin America (LAM) in
the inflow-driven / LSTM model. Production predictions are compared to
actually recorded production.

5.4. SSP scenario predictions

The GDP per capita and population projections for the five SSP scenarios can be
used as an input to the LSTM network to subsequently obtain production predic-
tions for the scenarios. In Fig. 18, such predictions of the inflow-driven / LSTM
combination model are compared with the GDP per capita predictions for the sce-
narios.

Due to the observed correlation of GDP and stocks per capita, it was expected that
scenarios with high GDP per capita projections like SSP1 and SSP5 would also have
the highest steel production. However, this was not observed with the LSTM -based
models.

Potentially, this might be caused by the predicted GDP per capita of SSP3 and
SSP4 following a concave and not convex trajectory which has not been observed
in the training data. However, this highlights a weakness of the machine learning
based approach as different from the Pauliuk and Dürrwächter prediction, the net-
work cannot explain its reasoning.

Hence, for comparison of different trajectories of SSP scenarios, it may be better to
take a model that does not use LSTM prediction. In Fig. 19, the production forecasts
for the scenarios for the inflow-driven / Dürrwächter model is shown.

Here, the hypothesis of high GDP projections causing high production forecasts
is fulfilled due to the nature of the Dürrwächter prediction technique.

However, according to O’Neil et al. (2014), SSP1 is supposed to be the most sus-
tainable scenario. This needs to be taken into account when using these prediction
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Figure 18: Steel production projection for the five SSP scenarios in the inflow-driven
/ LSTM model (left) vs. GDP per capita development (right).

Figure 19: Steel production projection for the five SSP scenarios in the inflow-driven
/ Dürrwächter model.
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models, e.g. by introducing higher recycling rates for SSP1 in SIMSON or manually
adapting production according to SSP (as for example suggested in [PSL23]).

6. Conclusion

In this investigation, three steel cycle modelling approaches (inflow-driven, stock-
driven and change-driven) and three steel stock prediction techniques (Pauliuk, Dür-
rwächter and LSTM) were compared in their accuracy to predict global steel produc-
tion.

Data available in 2008 was used to predict the next fifteen years, making the time
span 1900-2008 the training period and 2009-2022 the testing period of the models.

Overall, the inflow-driven model approach and the machine learning based LSTM
prediction performed best. However, the limitations of the ML approach of being
very sensitive to hyperparameters and initialisation were discussed.

Whilst the change-driven approach resulted in well-performing predictions for the
2009-2022 period, the found lifetimes are implausible. As an alternative to the LSTM
prediction, the Dürrwächter technique performed second-best and was also the tech-
nique with the fastest runtime.

Taking this into account, there are various possibilities to improve the described
methods. As an outlook on possible future work, a couple of considerations are
discussed below.

Firstly, the change-driven approach produced the two best performing models but
produced implausible lifetimes. It might be worth exploring other ways of deriv-
ing lifetime estimates from stocks and inflows that do not depend so much on the
outflow of products in the year that they are produced.

One option might be to assume constant lifetimes over past years for all product
categories. The optimum lifetime could be found assuming it to be zero at first and
slowly increasing it until production data derived from stock-driven dynamic stock
modelling roughly equals actual production data.

Using the 2009-2022 production data and some lifetime estimates, stock data up
to 2022 could be expanded using inflow-driven dynamic stock modelling. This data
could subsequently be used to make new predictions based on current data.

Here, all prediction techniques could be amended using the updated stock data,
the Dürrwächter technique by fitting, the LSTM net by training the net and the
Pauliuk approach by potentially changing the saturation levels and times.

For now, most of the predictions are based on projections of GDP. Other data, like
potential steel price development might further improve these predictions. This is
already currently being investigated via an economic-model extension for SIMSON.
Additionally, steel (or steel scrap prices) could be implemented as another covariate
in the LSTM net.

Further, geographical parameters like population density might help inform pre-
dictions - scarcely populated areas might need more per capita steel stocks for bridges
and tunnels.
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In addition, all described prediction approaches derive production predictions
from stock predictions. The concept behind this, to compute demand from the ser-
vices steel products provide (s. [PFH+21]), seems sensible in the long term. How-
ever, as discussed in Section 5.2, it might be fruitful to combine long-term stock
predictions with short-term production predictions.

This investigation only implemented a basic LSTM network. Future research
could expand upon this work by further optimising the parameters, working on
overfitting and the network architecture in general.

Additionally, other ML-based prediction approaches like Random Forests could
be tested in their ability to predict steel cycle processes. This could be especially
effective as the strength of LSTMs is their ability to ’remember’ long-term depen-
dencies which is potentially undesirable in some cases. A comparison of different
ML-based techniques via an experiment setup similar to this thesis might be infor-
mative here.
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A. Specifics of SIMSON

After introducing the steel cycle model SIMSON (Simulating In-use Material Stocks
with the ODYM Network) in Section 2.5 and describing parts of its functionality in
Section 3.3, a more detailed description of the model is given here.

An overview of the calculation of the flows is presented in Appendix A.1. A more
detailed description of the calculation of the two steel production routes is given in
Appendix A.2. Lastly, the aspects of the model that are not used in this thesis but
part of the code (Appendix A.4) are outlined in Appendix A.3.

A.1. Flows

Variables are black, constants are grey.
I(g) and O(g) are the inflows and outflows as calculated in the dynamic stock

modelling. T refers to net trade data (crude, indirect, scrap) and could be specified
to imports (T I ) and exports (TE). Y are production yields (forming, fabrication), D
distributions (taken from [Wit21]), V other values/parameters. P refers to the total
production of crude steel, S to the total amount of scrap.

For all flows, losses are not considered yet. FA−B denotes the flow between pro-
cess A and B as labelled in Fig. 6. All process outside of the system boundary
are considered to be part of the ’Environment’/Env process (all trade and the iron
production).

FEnv−Use = T I
indirect(g) (45)

FUse−Env = TE
indirect(g) (46)

FFbr−Use(g) = I(g)− T I
indirect(g) + TE

indirect(g) (47)

FFbr−Scr(g) = FFbr−Use(g)(
1

YFbr(g)
− 1) (48)

FFrm−Fbr =
∑
g

(FFbr−Use(g) + FFbr−Scr(g)) (49)

FFrm−Scr =
FFrm−Fbr

YFrm
− FFrm−Fbr (50)

FEnv−Frm = T I
crude (51)

FFrm−Env = TE
crude (52)

P = FFrm−Fbr + FFrm−Scr + TE
crude − T I

crude (53)

FUse−Scr(g, w) = (O(g)− TE
indirect(g))DUse−Scr(g, w) (54)

FEnv−Scr(w) = T I
scrap(w) (55)

FScr−Env(w) = TE
scrap(w) (56)

42



Savailable(w) =
∑
g

FUse−Scr(g, w) + Tscrap(w) + FFbr−Scr + FFrm−Scr (57)

Srecyclable =
∑
w

Savailable(w)DScr−Rcy (58)

Sprod−usable = min(Srecyclable, PVmaxScrapShareProduction) (59)

FEAF−Frm = min(0,

Sprod−usable

P − VscrapShareBOF

1− VscrapShareBOF
)P (60)

FRcy−EAF = FEAF−Frm (61)

FBOF−Frm = P − FEAF−Frm (62)

FRcy−BOF = FBOF−FrmVscrapShareBOF (63)

FEnv−BOF = FBOF−Frm − FRcy−BOF (64)

FScr−Rcy = FRcy−EAF + FRcy−BOF (65)

FScr−Wst =
∑
w

Savailable − FScr−Rcy (66)

A.2. Calculation of EAF/BOF Route

Once we know how much steel is produced in a country (P ), and how much scrap
goes into that production (S), we need to know how much of the scrap goes into the
basic oxygen furnace (BOF) production route, and how much into the electric arc
furnace (EAF) production route. For this, we use two assumptions:

1. We assume the scrap share in the BOF to be the constant rate b = SBOF /PBOF ,
which is usually around 22 %.

2. We assume that 100 % of the steel in the EAF route is from steel scrap.

Now let us build some equations to get x, which we define as the share of steel
produced in the EAF route out of the total production.

x =
PEAF

P
(67)

b = SBOF /PBOF (68)

SEAF = PEAF (69)

PBOF + PEAF = P (70)

SBOF + SEAF = S (71)

PBOF + Px = P (72)

PBOF = P − Px (73)
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bPBOF + SEAF = S (74)

bPBOF + PEAF = S (75)

bPBOF + Px = S (76)

b(P − Px) + Px = S (77)

P (b(1− x) + x) = S (78)

S

P
− b = −bx+ x = x(1− b) (79)

S
P − b

1− b
= x =

PEAF

P
(80)

This is all assuming that S > SBOF = bPBOF , so that the available scrap can
supply enough scrap to make a scrap in BOF rate of around 22% ’happen’. If this is
not the case, x = PEAF

P is assumed to be zero (as it should not be negative) and all of
the remaining scrap is used in the BOF.

This is all a very rough estimation of the BOF/EAF flows and only based on the
scrap in BOF rate. Further research can use BOF/EAF data directly or find out the
shares of the routes for each region.

A.3. Other functionalities

The functionalities of SIMSON that are not used in the thesis but are part of the code
are the simulation module, the economic module and further SSP modelling options.

The simulation module allows users of the model to iteratively run the model with
various choices of parameters to compare how these parameter choices affect the
predictions. For example, this would allow comparing the accumulation of scrap for
different estimations of the forming yield. The simulation module uses an intuitive
Microsoft Excel sheet as an interface so that researchers that do not know Python
can access the model easily.

The economic module uses price elasticities to determine steel demand. Hence,
when inputting potential trajectories of the steel and scrap price, the flows of SIM-
SON are adapted so that e.g. when the steel price decreases, demand increases. The
economic module was designed by Dr. Dürrwächter and implemented by Merlin
Hosak.

Lastly, the SSP modelling options denote a set of functionalities to manually adapt
flows according to SSP. For example, the recycling rates for the various steel scrap
categories might be adapted. It could be assumed that in the more sustainable
SSP1 scenario, the steel recycling rates increase by 5 % until the end of the cen-
tury. Other parameters that can be adapted using these modelling options are the
inflow/demand, the steel reuse rate and the steel price trajectory for the economic
model.
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A.4. Code

The code for SIMSON including the experiments used in this investigation can
be accessed on GitHub via this link: https://github.com/Merjo/bsc_2024_
merlin. All code was written by Merlin Jo Hosak, except the ’customize’ and ’gen-
erate_yml’ functions in the file
’src/tools/config.py’, a total of 29 lines written by Dr. Dürrwächter and ammended
by Merlin Hosak that are marked accordingly.

B. Mapping of regions

For the implementation of the Pauliuk prediction (s. Section 3.5.1), saturation levels
and saturation times for the ten regions used by Pauliuk et al. ([PWMA13], based
on [Lut96]) were mapped to the twelve REMIND regions [BBB+21].

The region mapping applied is shown in Table 7. Some ’Pauliuk’ regions got
mapped to two REMIND regions (like Western Europe to EU and non-EU), mean-
ing that both of those regions were allocated the saturation times and levels of the
’Pauliuk’ region ’Western Europe’ (WEU).

’Pauliuk’ region REMIND Region
Latin America (LAM) Latin America (LAM)

Developing Asia (DVA) Other Asia (OAS)
Africa (AFR) Sub-Saharan Africa (SSA)

Western Europe (WEU) European Union (EUR),
Non EU (NEU)

Middlea East (MES) Middle East and Africa (MEA)
Commonwealth of Independent States (CIS) Reforming economies (REF)

Developed Asia and Oceania (DAO) Japan (JPN)
China (CHA) China (CHA)
India (IND) India (IND)

North America (NAM) Canada, Australia and
New Zealand (CAZ),

USA (USA)

Table 7: Mapping of regions used by Pauliuk et al. [PWMA13] (based on [Lut96]) to
REMIND regions [BBB+21].
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