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Zusammenfassung

Als einer der vier menschlichen rhetorischen Modi trägt die Argumentation eine
entscheidende Rolle bei der Art und Weise, wie wir mit anderen Menschen intera-
gieren. Argumente können dabei in zwei verschiedenen Beziehungen zu einander
stehen. Auf der einen Seite können sie sich gegenseitig unterstützen. Auf der ande-
ren Seite können Argumente auch dazu eingesetzt werden um andere Argumente
anzugreifen. In der Informatik ist die Forschung daran interessiert, diese grundle-
genden Eigenschaften der menschlichen Argumentation in Computermodellen zu
implementieren. Mit dem Modell der bipolaren Argumentationssysteme können
beide Relationen formuliert werden. Die Art und Weise, wie die Unterstützungs-
relation interpretiert werden soll, hängt stark vom Kontext des Argumentationssys-
tems ab. Dies führte zu mehreren unterschiedlichen Interpretationen der Unterstüt-
zungsrelation wie deduktiv, notwendig und evidentiell. Für die Implementierung
ist das Paradigma der deklarativen Programmierung von Answer Set Programming
ein sehr vielversprechender Ansatz. Während Implementierungen, für eine abstrak-
te Interpretation der Unterstützungrelation in der Literatur zu finden sind, gibt es
diese nicht für eine deduktive, notwendige oder evidentielle Interpretation. Das
Ziel dieser Bachelorarbeit ist die Entwicklung und Evaluierung eines auf Answer
Set Programming basierenden Solvers für bipolare Argumentationssysteme mit der
deduktiven, notwendigen oder evidentiellen Interpretation der Unterstützungsre-
lation.

Abstract

As one of the four human rhetorical modes, argumentation has a major impact on
the way of how we are interacting with others. Arguments can have two different
relations, they can support or they can attack each others. In Computer Science,
research is interested in implementing these fundamental properties of human ar-
gumentation. With the model of bipolar argumentation frameworks both relations
can be formulated. The way the support relation should be interpreted is highly re-
lated to the context of the argumentation problem, resulting to several different in-
terpretations such as deductive, necessary and evidential. For implementation, the
declarative programming paradigm of answer set programming is a very promis-
ing approach. Whereas such implementations, using answer set programming, for
an abstract interpretation of support can be found in literature, none can be found
for the deductive, the necessary as well as for the evidential interpretation of sup-
port. The aim of this bachelor thesis is the implementation and evaluation of an
answer set programming based solver for bipolar argumentation frameworks with
the deductive, necessary or evidential interpretation of support.
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1 Introduction

We are drowning in information but starved for knowledge.
∼ John Naisbitt (1982) ∼

Argumentation is a major and very complex property of human intelligence. It is
hard to find a universal declaration, however the following definition was found in
[28] and illustrates the complexity of human argumentation:

Argumentation is a verbal, social, and rational activity aimed at con-
vincing a reasonable critic of the acceptability of a standpoint by putting
forward a constellation of propositions justifying or refuting the propo-
sition expressed in the standpoint.

This definition concentrates on the intuitive interpretation of argumentation, the
defense of opinion in every day scenarios. When humans are confronted by contrary
opinion they try to falsify this opinion with counterarguments. The arguments of
the contrary opinion will be attacked with own arguments and each of the involved
party tries to prove the correctness of the own opinion.

But human argumentation is not limited to defending and expressing the own
opinion in every day scenarios, it is also used for understanding new problems by
using logical reasoning. When humans are facing new problems they try to find a
solution by using knowledge about similar problems. Humans try to understand
the new problem and begin to weight different solutions, which can be interpreted
as different arguments. The most reliable argument (resp. solution) will be chosen
to overcome the problem.

In our fast changing world we are often confronted by new situations and new
topics. No one of us ever thought that topics like pandemic, war and climate change
will become that present in our daily lives. Almost every day we are forced to
make new decisions with consequences that are unpredictable. Before making these
decisions we try to weight the different options to choose the best or at least harmful
decision for ourselves. This decision is highly influenced by information from news
and opinions from other people.

Because of our almost unlimited access to the internet it is easier than ever to get
information about a certain topic. The source of information, which is the basis of
our opinion making, shifted from newspapers and books more and more to social
media. Social media platforms are often unregulated, which leads to the possibility
of expressing opinion for everyone who has access to the internet. This leads to an
overflow of information and opinions in our daily lives.

Social media platforms are using different algorithms to present us only content
we are interested in. But this also leads to the fact that we get a one sided view
of information on these platforms. It becomes more difficult to proof the reliability
of information on the one hand and easier to influence our opinion by presenting
incomplete or one sided news on the other hand.
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Platforms are trying to overcome this by using Artificial Intelligence (AI) systems
to determine the acceptability of information. Therefore a lot of work has been done
to determine the characteristics of human argumentation and to explore ways of
implementing these characteristics on computers.

This work will present two very important models to formulate human argumen-
tation: Abstract Argumentation Frameworks and Bipolar Argumentation Frame-
works. In section 2 the concept of abstract argumentation frameworks will be pre-
sented and in section 3 bipolar argumentation frameworks will be introduced.

When modeling human argumentation as a framework one is interested in de-
termining the different acceptable sets of arguments computationally. For deter-
mining the acceptable sets the declarative programming paradigm of Answer Set
Programming is a promising approach. This paradigm will be introduced in section
4, followed by presenting an overview of related work in section 5. Especially the
Argumentation Reasoning Tool ASPARTIX will be introduced that builds the basis
the developed solver. The aim of this bachelor thesis is the development of answer
set programming based encodings for computing the acceptable sets of three differ-
ent interpretations of bipolar argumentation frameworks. These encodings will be
presented in Section 6. In Section 7 the developed encodings will be tested for effi-
ciency and performance against an existing Java implementation. In the last section
the most important parts of this work will be summed up.
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2 Abstract Argumentation Frameworks

In this section a brief introduction to the concept of abstract argumentation frame-
works will be presented. After illustrating the basic structure, different definitions
regarding the acceptability of single arguments respectively sets of arguments will
be presented. This section is concluded by an illustration of these definitions.

2.1 Introduction

Fundamental progress to explore ways to implement mechanisms of human argu-
mentation has been done by Dung [8], resulting to the model of abstract argumen-
tation frameworks, which is defined as follows:

Definition 1. An abstract argumentation framework (AF), is a tuple (A, Ratt) that
consists of a finite set of arguments A and a binary relation Ratt ⊆ A×A called the attack
relation.

For illustrating this definition the two arguments x and y ∈ A should be con-
sidered. If xRatty exists, this means that argument x attacks argument y. Besides
attacking other arguments, one argument can also defend another argument. The
notion of defense was defined by Dung on the basis of the notion of attacks as the
follows: a set of arguments E defends the argument x if and only if E attacks all
attackers of x. A set E attacks an argument y if at least one argument z ∈ E attacks
the argument y. An AF can be represented by a directed graph, whose nodes are the
arguments and edges are the attacks. For a better understanding of the concept of
AFs, Example 1, that is extracted from [4], can be considered.

Example 1. Tom, Ben and Dan want to go hiking. They have the following preference
regarding the weather:

1. sunny

2. sunny and cloudy

3. cloudy but not rainy weather

They will cancel the hike only if the weather is rainy. But clouds could be a sign of rain. In
the morning they look at the sky and see that the weather is cloudy. The following exchange
of informal arguments occurs between Tom, Ben and Dan:

t1: Today we have time,lets go hiking.
b: The weather is cloudy, clouds are a sign of rain, we better cancel the hike.
t2: These clouds are early patches of mist, the day will be sunny
(and we can go hiking).
d: These clouds are not early patches of mist, however it will not rain anyways
(and we can go hiking).

3



In this example there are several conflicts between the arguments: argument b attacks argu-
ment t1, argument b is attacked by arguments d and t2, argument d also attacks argument
t2, the resulting AF can be seen in Figure 1.

d

t2

b

t1

Figure 1: Abstract argumentation framework from Example 1.

As mentioned in the introduction of this work, the aim of modelling a framework
is to compute the acceptable sets of arguments of A. Intuitively a set of arguments
is acceptable if it can defend all its elements against all attacks. In the upcoming
subsection the properties and semantics of acceptable sets of arguments for AFs,
will be presented in detail.

2.2 Acceptability

In [8] Dung has defined, that the acceptability of an argument depends on its in-
clusion in some sets, that are called acceptable sets or extensions. These sets are
underlying specific requirements. A very intuitive requirement is that such a set is
free of conflict, that means no argument of the set should attack another argument
of the set. This is described by the property of conflict-free:

Definition 2. Let (A, Ratt) be an AF. A subset S ⊆ A is conflict-free if and only if
∄x, y ∈ S such that xRatty ∈ S.

The next property was mentioned before and describes the fact, that a set of argu-
ments is only acceptable if it defends all its members against all attacks from other
arguments. The respective property is called collective defense:

Definition 3. Let (A, Ratt) be an AF. A subset S ⊆ A defends collectively an argument
x if and only if ∀y /∈ S and yRattx, there exists an argument z ∈ S so that zRatty.

Based on these properties several semantics regarding acceptability were definded
and presented by Dung in [8]. The combination of the properties of conflict-freeness
and collective defense lead the definition of admissible sets:

Definition 4. Let (A, Ratt) be an AF. A subset S ⊆ A is an admissible set if and only if
S is conflict-free and defends collectively all its elements.

An AF can have multiple different admissible sets, in general the admissible sets
with the highest number of included arguments, with respect to set-inclusion, are of
special interest. These sets are defined as the preferred extensions:
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Definition 5. Let (A, Ratt) be an AF. A subset S ⊆ A is a preferred extension of (A, Ratt)
if and only if S is maximal, with respect to set inclusion, among the admissible sets of A.

The exclusion of a single argument from a set is mostly caused by the fact, that it is
attacked by an argument that is included in the set. If it would not be attacked, then
it would be included in the preferred extension. This follows to the fact that sets
that attack all arguments that are not included in the set, are also of special interest.
Such sets are defined as stable extensions:

Definition 6. Let (A, Ratt) be an AF. A subset S ⊆ A is a stable extension of (A, Ratt) if
and only if S is conflict-free and S attacks all elements that does not belong to S.

In contrast to stable extensions, sets that include all arguments, that are defended
by the set are also desirable. Such a set is defined as a complete extension:

Definition 7. Let (A, Ratt) be an AF. A subset S ⊆ A is a complete extension of (A, Ratt)
if and only if S is an admissible set and each argument that is defended by S, belongs to S.

In contrast to preferred extensions, which are characterized by maximality, the
minimal complete extension of an AF is also a desirable set, that is defined as the
grounded extension:

Definition 8. Let (A, Ratt) be an AF. A subset S ⊆ A is the grounded extension of
(A, Ratt) if and only if S is minimal, with respect to set-inclusion, among the complete
extensions of (A, Ratt).

For a better understanding of the properties and the different semantics, the fol-
lowing example with the AF shown in Figure 2, that was extracted from [13] should
be considered.

a b c d e

Figure 2: Abstract argumentation framework.

Example 2. The AF is defined as: A = {a, b, c, d, e} and Ratt = {(a, b), (c, b), (c, d), (d, c),
(d, e), (e, e)}. The AF consists of the following admissible sets: {{∅}, {a}, {c}, {d}, {a, c},
{a, d}}. Regarding to Definition 4, the empty set is always an admissible set. The maximal
admissible sets (w.r.t. set-inclusion) were defined as the preferred extensions. In this exam-
ple the two preferred extensions {{a, c}, {a, d}} can be observed. In contrast to this the set
{a, d} is the only stable extension of the AF. The set {a, c} is conflict-free, but the argument
e, which does not belong to the set is not attacked and cannot be included because of the re-
quirement of conflict-freeness. In addition to that the sets {{a}, {a, c}, {a, d}} represent the
complete extensions and therefore the set {a} is the grounded extension of the AF, because it
is the minimal complete extension (w.r.t. set-inclusion).
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In this section the concept of AFs, was introduced briefly. These frameworks con-
sider only one possible kind of interaction between the arguments, the attack rela-
tion. This can be considered as the weakness of the model. With a detailed look at
Example 1 another connection between the arguments can be found. The arguments
d and t2 both support the hiking project and therefore support the argument t1. Such
a connection between arguments cannot be modeled by an AF. For modeling such a
situation a new kind of interaction is mandatory, the support relation. The addition
of a new relation results to the concept of a new framework, the bipolar argumenta-
tion frameworks, that will be introduced in the upcoming section.
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3 Bipolar Argumentation Frameworks

The model of bipolar argumentation frameworks was introduced by Cayrol and
Lagasquie-Schiex in [6], by adding the support relation to AFs. Subsequently to the
introduction of the basic structure, three different interpretations of the support re-
lation and definitions regarding the acceptability of arguments, will be presented in
this section. In the last subsection the differences in determining the acceptable sets
of arguments, regarding the different interpretations of support, will be introduced.

3.1 Introduction

In [6] the following definition regarding bipolar argumentation frameworks can be
found:

Definition 9. A bipolar argumentation framework (BAF) (A, Ratt, Rsup) consists of:
a finite set of arguments A , a binary relation Ratt ⊆ A × A called the attack relation and
another binary relation Rsup ⊆ A × A called the support relation. These binary relations
must satisfy the following consistency constraint: Ratt ∩Rsup = ∅.

For illustrating this definition the two arguments x and y ∈ A should be con-
sidered. If xRatty (resp. xRsupy) exists, this means that argument x attacks (resp.
supports) argument y. BAFs can also be represented as directed graphs, for that
two kinds of edges are necessary, the attack relation (→) and the support relation
(⇝). Considering Example 1, the BAF from Figure 3 will be received.

d

t2

b

t1

Figure 3: Bipolar argumentation framework from Example 1.

With the following extensive example, which was extracted from [4], the impor-
tance of the need for a new kind of interaction between arguments, can be under-
lined. Such a complex and real-world related scenario, about an exchange during a
meeting of a newspaper, cannot easily be modelled using AFs alone.

Example 3. The following arguments should be considered:
a: Assuming agreement and no right of censor, information Y concerning X will be pub-
lished.
b1: X is the prime minister who may use the right of censor.
c0: We are in democracy and even a prime minister cannot use the right of censor.
c1: Also X has resigned and is no longer the prime minister.
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d: Channel 1 has officially announced the resignation.
b2: Y is a private information, so X will prevent the publication.
e: Y is an important information.
c2: Any information concerning a prime minister is public information.
c3: Y is of national interest, so Y cannot be considered as private information.
In this example several conflicts can be found: For example the arguments b1 and b2 attack
argument a, the arguments c0 and c1 attack the argument b1. The importance of a support
relation is highlighted by the argument d, because it does not directly attack the argument
b1 and therefore is not defending the argument c1. The argument d confirms the statement
given by argument c1, which leads to a support relation. The resulting BAF can be seen in
Figure 4.

c0 b1 a b2 e

d c1 c2 c3

Figure 4: Bipolar argumentation framework from Example 3.

With the extension of AFs by adding the support relation extended issues occur.
Two major problems will be introduced in detail in the following subsections.

3.2 Interpretation of the Support Relation

One major issue for BAFs is that there is no universal interpretation of the support
relation. The respective interpretation is highly related to the context of the argu-
mentation system. In [5] the detailed characteristics of the support relation were
studied. According to Cayrol and Lagasquie-Schiex, the support relation can be
interpreted in three different ways, with the following defintions:

1. Deductive support: If xRsupy then the acceptance of x implies the acceptance
of y, and in consequence the non-acceptance of y implies the non-acceptance
of x.

2. Necessary support: If xRsupy then the acceptance of x is necessary for the
acceptance of y, or equivalently the acceptance of y implies the acceptance of
x.

3. Evidential support: Enables to distinguish between prima-facie and standard
arguments. Prima-facie arguments are defined as arguments that do not require
support from other arguments to stand, while standard arguments must be
supported by at least one prima-facie argument.
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With the addition of the support relation new kinds of attacks can be observed
that are based on the interaction between the direct attacks and the supports. These
attacks were notated as complex attacks in [5]. With a detailed look on Example 3,
it can be found that d supports a direct attacker of b1. This can be considered as a
negative interaction between d and b1, which is weaker than the negative interaction
between the direct attacker c1 and b1. Such a complex attack is called a supported
attack.

In comparison to that another argument b3 can be assumed that says: "Channel 1
published a rectification that the resignation were fake-news". This argument would
directly attack the argument d and in addition to that there is a negative interaction
between the argument b3 and c1, because c1 is supported by d. Such a complex attack
is called a secondary attack, in literature also notated as indirect attack. Supported
and secondary attacks were defined as follows in [6]:

Definition 10. There is a supported attack from x to y if and only if there is a sequence
x1R1...Rn−1xn, n ≥ 3, with x1 = x, xn = y, ∀i = 1...n − 2, Ri = Rsup and Rn−1 =
Ratt.

Definition 11. There is a secondary attack from x to y if and only if there is a sequence
x1R1...Rn−1xn, n ≥ 3, with x1 = x, xn = y, R1 = Ratt and ∀i = 2...n−1, Ri = Rsup.

These complex attacks were defined in 2005 for BAFs. Eight years later Cayrol
and Lagasquie-Schiex introduced the three different interpretations of support. In
[5] the authors analysed the impact of the introduced interpretations of support on
the definition of supported and secondary attacks. This leads to specific complex
attacks for each type of interpretation of support.

To illustrate the differences between the three possible interpretations of support
and their complex attacks, the following examples should be considered:

Deductive Interpretation of support:

Example 4. (Deductive support): This example was extracted from [5].
At the last day of the season Liverpool leads the championship, followed by Chelsea. The
following statements regarding to the title can be formulated:

• if Liverpool wins the last match (lw), then Liverpool wins the Premier League (lc).

• if Liverpool loses with more than 4 goals in difference (ll), Chelsea wins the Premier
League (cc).

• if the best defender of Liverpool is injured (bpi), Liverpool loses with more than 4 goals.

Regarding to this example the argument lw supports the argument lc, so the ac-
ceptance of lw implies the acceptance of lc, and as a consequence the non-acceptance

9



lw lc cc

llbpi

Figure 5: Bipolar argumentation framework from Example 4.

of lc implies the non-acceptance of lw. In addition to that the arguments ll is attack-
ing the argument lc. Following that, the acceptance of ll implies the non-acceptance
of lc and the non-acceptance of lw. This leads to the definition of a new type of
complex attack, the mediated attack.

Definition 12. There is a mediated attack from x to y if and only if there is a sequence
x1Rsup ... Rsupxn−1, and xnRattxn−1, n ≥ 3, with x1 = y, xn = x.

In addition to mediated attacks, the deductive interpretation of support justifies
the introduction of supported attacks from Definition 10. This can be observed in
Example 4 in the following sense: The acceptance of lw implies the acceptance of
lc and the acceptance of lc implies the non-acceptance of cc. This results in a sup-
ported attack from lw to cc. With a detailed look to Example 4, it can be seen that
argument bpi supports the argument ll, so the acceptance of bpi implies the accep-
tance of ll. The acceptance of ll implies the non-acceptance of lc and the acceptance
of lw implies the acceptance of lc. It follows, that the acceptance of bpi must imply
the non-acceptance of lw. This condition is not included in the definition of sup-
ported or mediated attacks. For solving this problem Carol and Lagasquie-Schiex
included supported attacks in addition to direct attacks, to the definition of a medi-
ated attack. Following that, Definition 12 will be replaced by the definition of a new
type of “mediated” attack, called the super-mediated attack.

Definition 13. There is a super-mediated attack from x to y if and only if there is a direct
attack or a supported attack from x to z, and a support from y to z.

Necessary Interpretation of support:

Example 5. (Necessary support): This example was extracted from [5].
The following dialogue between three agents can be observed:

• Agent 1: The room is dark (rd), so I will light up the lamp (ll).

• Agent 2: The electric meter does work (ew).

• Agent 3: The electrician has detected a failure (fail).

• Agent 4: The electric meter does not work (enw).

10



rd ll ew fail enw

Figure 6: Bipolar argumentation framework from Example 5.

Regarding to this example the argument ew supports the argument ll, so for the
acceptance of ll the acceptance of ew is necessary, following that the acceptance of ll
implies the acceptance of ew. In Example 5, this relationship is obvious, because a
working electric meter is necessary to light up a lamp. In the other way, if lighting
up a lamp is successful it can be concluded, that the electric meter works. In the
example fail attacks ew, so the acceptance of fail implies the non-acceptance of ew.
Also fail supports enw, so the acceptance of enw implies the acceptance of fail and
therefore the non-acceptance of ew. This situation leads to a new kind of complex
attack, the extended attack.

Definition 14. There is an extended attack from x to y if and only if there is a sequence
x1Rattx2Rsup ... Rsupxn, n ≥ 3, with x1 = x, xn = y.

As mentioned above, the acceptance of ew is necessary for the acceptance of ll.
The acceptance of fail implies the non-acceptance of ew and therefore the non-
acceptance of ll. This constraint is equal to the secondary attack that was defined in
Definition 11.

Evidential Interpretation of support: In [5], Cayrol and Lagasquie-Schiex pre-
sented a detailed analysis of complex attacks for the deductive and necessary in-
terpretation of support. In contrast to that, a detailed introduction to the complex
attacks for the evidential interpretation of support can be found in [1]. In BAFs with
an evidential interpretation of support, it can be distinguished between standard
arguments and prima-facie arguments. Only the attacks from prima-facie arguments
or standard arguments that are supported by at least one prima-facie argument can
be taken into account.

Example 6. (Evidential support): The BAF from Figure 7 with the only prima-facie argu-
ment n, was found in [1].

n a b

c d

Figure 7: Bipolar argumentation framework with prima-facie argument n.
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In this BAF the prima-facie argument n, supports the argument a and a supports
argument b, so both arguments a and b are supported by evidence. The direct attack
from c to a cannot be taken into account, which is illustrated by a gray dotted arrow,
because c is not supported by evidence. The acceptance of a implies the acceptance
of b, which implies the non-acceptance of d. This constraint is equal to a supported
attack from a to d. When n would support c and not a, then the arguments c and
d would be supported by evidence, and the attack from b to d could not be taken
into account. In this case the acceptance of c implies the non-acceptance of a, which
implies the non-acceptance of b and this constraint is equal to a secondary attack
from c to b.

Conclusively, Table 1 that was extracted from [5], shows the specific complex at-
tacks of each of the three different interpretations of support.

Deductive Necessary Evidential
Supported attack Extended attack Supported attack
Mediated attack Secondary attack Secondary attack

Table 1: Complex attacks for the deductive, necessary and evidential interpretation
of support.

3.3 Acceptability

Another major issue with problems in BAFs is that the definitions for acceptability,
presented by Dung in [8], has to be adapted. This work was done by Cayrol and
Lagasquie-Schiex in [6] and the adapted definitions will be presented in the follow-
ing. In the previous examples only single arguments that attack or support each
others, were considered. In contrast to that the following definitions of set-attacks
and set-supports consider sequences of supports and attacks.

Definition 15. Let (A, Ratt, Rsup) be a BAF, let A ∈ A. A subset S ⊆ A set-attacks x if
and only if there exists a complex attack for x from at least one element of S.

Definition 16. Let (A, Ratt, Rsup) be a BAF, let A ∈ A. A subset S ⊆ A set-supports
x if and only if there exists a sequence of the form x1R1...Rn−1xn, n ≥ 2, such that ∀i =
1...n− 1, Ri = Rsup with xn = x and x1 ∈ S.

The properties of conflict-freeness and collective defense are also important for
acceptable sets of arguments in BAFs but were redefined by Cayrol and Lagasquie-
Schiex:

Definition 17. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is conflict-free if and only
if ∄x, y ∈ S such that {x} set-attacks y.

Definition 18. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A defends collectively x if
∀y ∈ A, if and only if {y} set-attacks x then ∃z ∈ S such that {z} set-attacks y.

12



With these properties several semantics for acceptable sets were defined in [6].
For the model of AFs the property of conflict-freeness is a very important require-
ment for to the acceptability of sets of arguments. For BAFs this requirement is also
very important but in contrast to AFs it is not strong enough for defining acceptable
sets of arguments. A second requirement is necessary due to the addition of the
support relation, that ensures that only sets are accepted that do not set-attack and
set-support the same argument. This requirement results in the definition of safe
sets:

Definition 19. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is safe if and only if ∄x ∈ A
such that S set-attacks x and either S set-supports x, or x ∈ S.

For AFs the definition of stable extensions was presented in the previous section.
For BAFs stable extensions also represent desirable sets, but the definition was ad-
justed in the following way:

Definition 20. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is a stable extension if and
only if S is conflict-free and ∀x ∈ A \ S, S set-attacks x.

The next definition regards the closure of a set. Arguments that attack each others
cannot be included in the same acceptable set of arguments, therefore acceptable
sets cannot be closed for Ratt. In contrast to that sets can be closed for Rsup with the
following definition:

Definition 21. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is closed for Rsup if and
only if ∀x, y ∈ A such that xRsupy and x ∈ S then also y ∈ S.

For AFs one definition was presented for admissible sets, by Dung in [8]. In con-
trast to that Cayrol and Lagasquie-Schiex presented three different definitions for
admissibility in [6]. These three definitions differ regarding to their specificity. The
most general type of admissibility is equal to Dung’s definition and is therefore no-
tated as d-admissible, where "d" stands for in the sense of Dung.

Definition 22. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is d-admissible if and only
if S is conflict-free and defends all its elements.

This direct translation of Dung’s definition does not include the requirement of
safeness. By respecting this constraint the following definition of s-admissible,
where "s" stands for safe, was formulated.

Definition 23. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is s-admissible if and only
if S is safe and defends all its elements.

For the most specific type of admissibility, the property of closeness for Rsup can
be required. This leads to the definition of c-admissible, where "c" stands for closed.

Definition 24. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is c-admissible if and only
if S is conflict-free, closed for Rsup and defends all its elements.
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With the following property Cayrol and Lagasquie-Schiex described the relation
between the three different definitions of admissible sets:

Property 1. Each c-admissible set is s-admissible, and each s-admissible set is d-admissible.

With these three different types of admissibility the following definition of the
preferred extensions, was presented in [6]:

Definition 25. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is a d-preferred (resp. s-
preferred, c-preferred) extension if and only if S is maximal (w.r.t. set-inclusion) among
the d-admissible (resp. s-admissible, c-admissible) subsets of A.

When considering Definition 7 regarding to complete extensions it can be found,
that the property of admissibility is included. This leads to the fact, that regarding to
the three different definitions of admissibility for BAFs, three different types of com-
plete extensions can be differed. The most general type, the d-complete extensions,
is using the direct translation of Dung’s definition of admissibility.

Definition 26. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is a d-complete extension
if and only if S is d-admissible and each argument that is defended by S, belongs to S.

Taking into account the property of safeness for admissibility leads to the defini-
tion of s-complete extensions.

Definition 27. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is a s-complete extension if
and only if S is s-admissible and each argument that is defended by S, belongs to S.

The most specific definition, that belongs to c-complete extensions, is using the
property of closeness for Rsup.

Definition 28. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is a c-complete extension if
and only if S is c-admissible and each argument that is defended by S, belongs to S.

Regarding to Definition 8 the minimal subset, with respect to set-inclusion, among
all complete extensions, is the grounded extension. This results to the following
definition of the grounded extension for BAFs.

Definition 29. Let (A, Ratt, Rsup) be a BAF. A subset S ⊆ A is the d-grounded (resp. s-
grounded, c-grounded) extension if and only if S is minimal (w.r.t. set-inclusion) among
the d-complete (resp. s-complete, c-complete) extensions of (A, Ratt, Rsup).

3.3.1 Illustration of Acceptability

After the introducing of the semantics regarding the acceptability of BAFs, this sub-
section will illustrate the computation of these semantics and present the differences
in determining the acceptable sets of arguments regarding the different interpreta-
tions of support.
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Deductive Interpretation of support: For illustrating the computation of the se-
mantics for BAFs, with an deductive interpretation of support, Figure 8 can be con-
sidered, that is based on a BAF shown in [6].

A B C D J

H E

I

F K

Figure 8: Bipolar argumentation framework.

The path I − E − C corresponds to a supported attack from I to C. In contrast to
this the path I − E − C −B corresponds to a mediated attack from I to B.

Instead of listing all extensions of specific semantics, a more detailed look on a
few examples will be presented. The sets {A,H} and {A,D} are not conflict-free,
because A suffers under a mediated attack from H and D suffers under a supported
attack from A. In contrast to that the sets {C,H} and {D,E,H, I,K} are conflict-free
sets.

The notion of safe sets prevents the conflict, that an argument is set-supported
and set-attacked at the same time by a subset of arguments. Following this property
the set {A,E} is not safe, because A supports B and B suffers under a mediated
attack from E. In proceeding the set {B,F} is also not safe, because D suffers a sup-
ported attack from B and is supported by F . On the contrary the sets {D,E, F,H, I}
and {D,F,H, I} are safe sets. The set {D,F,H, I} is not closed for Rsup, because I
supports the argument E, which is not part of the set, in contrast to that the set
{D,E, F,H, I} is closed. But this set is not a stable extension, because it does not
attack every argument, that is not part of the set, e.g. the argument J is not at-
tacked. To make the set {D,E, F,H, I} a stable extension the argument J have to be
included. This results to the set {D,E, F,H, I, J}, which is the unique c-preferred
extension and also the unique s-preferred and d-preferred extension. In addition
to that the set {D,E, F,H, I, J} is also the unique d-complete, s-complete and c-
complete extensions and therefore the d-grounded, s-grounded and c-grounded ex-
tension.

Necessary Interpretation of support: After this detailed introduction of com-
puting the semantics of BAFs with an deductive interpretation of support, this para-
graph considers the necessary interpretation of support. The same BAF from Figure
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8 will be considered with the difference that the support relation is interpreted nec-
essarily.

The path D − F −K corresponds to an extended attack from D to K. In contrast
to that the path H − B − C corresponds to a secondary attack from H to C. This
leads to the fact, that the set {H,C}, which was conflict-free for the BAF with the
deductive interpretation of support is not conflict-free in the sense of the necessary
interpretation of support. In contrast to that the set {A,H}, that was not conflict-free
with the deductive interpretation of support, is a conflict-free set with the necessary
one.

The set of {A,D,E, F,H, I, J} represents the unique stable extension of the BAF,
this set is also the unique d-preferred extension, unique d-complete and d-grounded
extension. In contrast to the presented unique stable extension for the BAF with
the deductive interpretation of support, the unique stable extension for the nec-
essary interpretation of support is not safe. This is due to the fact, that A sup-
ports the argument B, which is attacked by the arguments H , E and I . With S =
{A,D,E, F,H, I, J} as the unique stable extension, which is not safe, the s-preferred
extensions are received by the subsets of S that are the maximal (w.r.t set-inclusion)
s-admissible sets. This results to the sets {A,F, I, J} and {D,E, F,H, I, J} as the
s-preferred extensions. The set {D,E, F,H, I, J} is also the unique c-preferred ex-
tension. As mentioned above the set {A,D,E, F,H, I, J} is the unique d-complete
extension. This set is not safe and not close. This leads to the fact that the BAF from
Figure 8 has no s-complete and no c-complete extension. This is due to the fact, that
for a complete extension S, each argument that is defended by the S, has to be in-
cluded in S and S has to be admissible. Such a set cannot be generated regarding
to the properties of safeness and closure. Therefore no s-grounded and c-grounded
extension can be received from the BAF from Figure 8 with the necessary interpre-
tation of support.

Evidential Interpretation of support: For BAFs with the evidential interpretation
of support, the computation of the semantics depends highly on the designation of
the prima-facie arguments. The BAF from Figure 8 will be considered with the prima-
facie arguments A,F, I . Following to the fact that the arguments H , K and J are not
supported by evidence which leads to the consequence of not taking into account
their attacks. This results to the BAF from Figure 9.

In this case the {A,B,C,H} is a conflict-free set, which is neither a conflict-free
set for the BAF in Figure 8 with the deductive, resp. necessary interpretation of sup-
port. The set {A,B,E, F,H, I, J} is the unique stable extension, which is also the
unique d-preferred, unique d-complete extension and therefore the d-grounded ex-
tension. Similar to the computation of the BAF with the necessary interpretation of
support, no s- or c-complete extension and therefore no s- or c-grounded extension
can be build. In contrast to that the sets {A,B,H, J} and {E,F,H, I, J} represent
the s-preferred extensions. And conclusively the set {E,H, I, J} is the unique c-
preferred extension of the BAF from Figure 9.
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Figure 9: Bipolar argumentation framework with evidential interpretation of sup-
port and prima-facie arguments A,F, I .

In this section, the concept of BAFs was briefly introduced. This framework was
received by adding a second possible kind of interaction between the arguments, the
support relation, to the model of AFs. By adding the support relation, the strongest
weakness of AFs could be overcome. In contrast to this, the addition is associated to
the occurrence of new issues, regarding to the interpretation of the support relation
and the acceptability. These issues were negotiated by presenting three different in-
terpretation of support and by adjusting the definitions for acceptability, presented
for AFs, by Cayrol and Lagasquie-Schiex in [5] respectively [6]. The adjusted def-
initions were illustrated by computing the semantics for the same argumentation
problem with three different interpretations of support. The computation "by hand"
is very complex and error-prone, this leads to the fact that determining the seman-
tics computationally is of special interest. A very promising approach to do so, is
the usage of the declarative programming paradigm of answer set programming,
that will be introduced in the upcoming section.
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4 Answer Set Programming

Argumentation systems can become very complex, with a high amount of argu-
ments and an even higher number of connections between them. The preferred
approach to compute the extensions of semantics for an AF or BAF is the usage of
Boolean satisfiability problem [7] based solvers. Recent studies ([9, 13]) show that
the usage of the declarative programming paradigm of Answer Set Programming
(ASP), is a very promising approach. In this section the basic elements of the syntax
and the semantics of ASP will be presented. In the last subsection the functionality
of ASP is illustrated, by presenting an ASP encoding that can be used for solving
the Traveling Salesperson Problem.

4.1 Syntax

The declarative programming paradigm of ASP is a special kind of logic program-
ming and was first introduced, by Gelfond and Lifschitz, in [18]. Programs that are
written in a logical programming language consists of the knowledge about a spe-
cific problem, formulated by using elements of formal logic. This knowledge will
be used for solving the problem.

In formal logic two kinds of reasoning, monotonic and non-monotonic reasoning,
can be differed. ASP is based on default logic that was introduced, by Reiter, in
[24]. Default logic belongs to non-monotonic reasoning, that allows defeasible rea-
soning. In contrast to non-monotonic reasoning, monotonic reasoning does not al-
low defeasible reasoning. In monotonic reasoning once proven information cannot
be disproved by new information. In contrast to that in non-monotonic reasoning,
new information can lead to a refutation of previous proven information. For non-
monotonic reasoning, the knowledge about the problem is formulated by using de-
fault assumptions. For ASP this default assumptions mean that initially something
is false, until it is explicitly proven. This characteristic is very similar to human rea-
soning, because when humans don’t have any information for the evidence of an
argument, it is reasonable to assume that this argument is false.

In [13] the basic elements of the syntax of ASP were defined in the following way:

A term is a constant, a variable or a function. An atom is an expression A(t1, ..., tn),
where A is a predicate symbol of arity n and t1, ..., tn are terms. A literal is an atom
A(t1, ..., tn) or a negated atom ¬A(t1, ..., tn) where ¬ stands for the classic logical
not. A disjunctive logic program, denoted as π, is a set of rules r of the form:

L1 | ... | Lk : − Lk+1, ..., Lm, not Lm+1, ..., not Ln. (1)

where n ≥ m ≥ k ≥ 0 and Li(i = 1, ..., n) is a literal. The head of the rule r is the set
H(r) = {L1, ..., Lk}, and the body of r is the set B(r) = {Lk+1, ..., Lm, not Lm+1, ...,
not Ln}. The positive body of r is defined as B+(r) = {Lk+1, ..., Lm} and the nega-
tive body is defined as B−(r) = {Lm+1, ..., Ln}. The symbol :- stands for "if" and is
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dropped whenever B(r) = ∅, such a rule is called fact. The symbol | stands for the
logical or. A term, atom, rule or program is called ground if it does not contain any
variables.

4.2 Semantics

Gelfond and Lifschitz has presented the stable model semantics in [22], which is the
basis of the semantics for logic programs. The semantics can be used to determine,
if a set S of ground atoms is a stable model, also notated as an answer set, of a given
logic program.

For defining answer sets for grounded logic programs, the authors first considers
programs that do not contain not and present the following definition:

Definition 30. Let π be a grounded logic program that does not contain not and let Lit be
the set of ground literals in the language of π. The answer set of π is the smallest subset S
of Lit such that,

1. for any rule L0 ←− L1, ..., Lm from π, if L1, ..., Lm ∈ S, then L0 ∈ S.

2. if S contains a pair of complementary literals, then S = Lit.

If the logic program π does not contain not, the second property is obvious, be-
cause without using not no complementary literals can be derived. The following
examples illustrate the definition of answer sets by using a classical problem of for-
mal logic.

Example 7. The following programs should be considered:

Program 1
1: bird(Tweety).
2: fly(X) :- bird(X).

Program 2
1: bird(Tweety).
2: fly(X) :- bird(X), healthy(X).

Program π1 consists of the rules displayed in Program 1. The fact in line 1 expresses that
Tweety is a bird. The rule in line 2 describes the intuitive assumption, that a bird is able to fly.
Regarding to Definition 30 the program π1 has the answer set {bird(Tweety), f ly(Tweety)}.
In contrast to π1, the program π2 consists of the rules shown in Program 2. The rule in line
2 expresses, that a healthy bird is able to fly. The program includes the fact, that Tweety is a
bird, but no information about the healthiness of Tweety is provided. Therefore it cannot be
derived that Tweety is able to fly, resulting to the answer set of {bird(Tweety)} for π2.
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After presenting the definition of an answer set for a program without not, Gel-
fond and Lifschitz presented the following definition:

Definition 31. Let π be a grounded logic program and let Lit be the set of ground literals
in the language of π. For any set S ⊂ Lit, let πS be the grounded logic program obtained
from π by deleting

1. each rule that has a formula not L in its body with L ∈ S, and

2. all formulas of the form not L in the bodies of the remaining rules.

The so derived program πS is also notated as the Gelfond-Lifschitz reduct of π.
This program does not contain not anymore so Definition 30 can be applied. For
illustrating the construction of πS , the following example should be considered.

Example 8. By modifying Program 2 from the Example 7 the following program is received:

Program 3
1: penguin(Tweety).
2: bird(X) :- penguin(X).
3: fly(X) :- bird(X), not penguin(X).

In this program the fact in line 1 specifies that Tweety is a penguin. Regarding to the rule
in line 2, Tweety is also a bird. The rule in line 3 specifies the intuitive assumption, from
Programs 1 and 2, by the requirement, that a bird can fly when it is not a penguin. Regarding
to Definitions 30 and 31 π has the answer set {penguin(Tweety), bird(Tweety)}. This
answer set can be derived when considering the following program that shows the Gelfond-
Lifschitz reduct of Program 3:

Program 4
1: penguin(Tweety).
2: bird(X) :- penguin(X).

The rule from line 3 had to be removed regarding to the Definition 31 and this leads to the
fact that fly(Tweety) cannot be included in an answer set of π.

4.3 Functionality

After defining the basic elements of the syntax and the semantics of ASP, this sub-
section presents an overview of the functionality of programs in ASP. Figure 10, that
was extracted from [19], visualizes the general workflow of solving a problem by
using ASP.
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Figure 10: The workflow of ASP.

The first step of solving a problem in ASP is to express the knowledge about the
problem and the problem setting as a logic program, this is notated as the model-
ing step. In Definition 30 an important requirement was that the logic program is
grounded, following that it should not contain any variables. For the generation
of a grounded program, a so-called grounder can be used, which is a program that
replaces all variables in the logic program by variable-free terms. An example for
a grounder is the system gringo, that was described in [15]. In a next step a solver,
like clasp [17], computes the stable models (answer sets), by using the stable model
semantics, of the grounded logic program. One popular system for grounding and
solving logic programs in ASP is clingo, that was introduced in [16]. In clingo the
grounder gringo and the solver clasp are included.

For a better understanding of each step from the ASP workflow, displayed in
Figure 10, an example will be provided. This example was extracted from [14],
where the authors present a method to solve the Traveling Salesperson Problem [2]
(TSP) using ASP. The basis of the TSP is a list of cities with costs between them. In
detail the TSP is an optimization problem, because the solution is the minimal tour
(w.r.t. total costs), in which every city is exactly visited once. In other words the
TSP is the problem of determining the shortest round-trip that starts and ends in the
same city.

Gebser and Schaub presented the TSP instance that is shown in Figure 11.
In this figure each node belongs to one of the six german cities Berlin (B), Dresden

(D), Hamburg (H), Leipzig (L), Potsdam (P) and Wolfsburg (W). City X is connected
to city Y through a directed edge if there exists a direct train connection from X
to Y . These edges are weighted by the duration in hours of the respective train
trip. Considering Figure 10, the first step for computing the shortest round-trip
using ASP, is to model the problem as a logic program. For this step a suitable
encoding of the problem instance from Figure 11 has to be determined. The authors
are presenting the encoding shown in Program 5.

They decided to use the two predicates place and link to model the cities, respec-
tively the train connections between them. Whereas the place predicate contains a
single argument that specifies the city, the link predicate contains three arguments.
The first argument belongs to the city that is the source of the directed edge, the
second argument represents the destination and the third argument is the duration
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Figure 11: TSP of six German cities with distances between them.

Program 5
1: place(b).
2: place(d).
3: place(h).
4: place(l).
5: place(p).
6: place(w).
7: link(b,h,2). link(b,l,2). link(b,p,1).
8: link(d,b,2). link(d,l,2). link(d,p,4).
9: link(h,b,2). link(h,l,2). link(h,w,3).

10: link(l,d,2). link(l,w,1).
11: link(p,b,1). link(p,d,4). link(p,h,3).
12: link(w,d,2). link(w,h,3). link(w,l,1).

in hours of that train trip.
The more complex part of the modeling step is to express the knowledge about the

problem in a logic program. By using the rules of the resulting encoding the shortest
round-trip should be received. Gebser and Schaub decided to use an approach that
is based on conceptual Generate-and-Test pattern ([11], [21], [23]). Regarding to this
pattern the encoding should be divided into several parts. In [14] the authors have
presented the encoding shown in Program 6 as the modeled problem knowledge.

This encoding is divided in six different sections, where the first section is denoted
as DOMAIN. This section includes a single rule that assigns the starting point X ,
for the round-trip, in the predicate start(X). Following to this rule the alphabetic
smallest city is chosen, which is Berlin. The DOMAIN section is followed by the
GENERATE section. When considering Program 5 it can be seen that every city is
linked to at least two other cities by a train connection. The requirement that a city
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Program 6
1: %DOMAIN
2: start(X) :- X = #min{Y : place(Y)}.
3: %GENERATE
4: {travel(X,Y) : link(X,Y,C)} = 1 :- place(X).
5: %DEFINE
6: visit(X) :- start(X).
7: visit(Y) :- visit(X), travel(X,Y).
8: %TEST
9: :- place(Y), not visit(Y).

10: :- start(Y), #count{X : travel(X,Y)} < 1.
11: :- place(Y), #count{X : travel(X,Y)} > 1.
12: %OPTIMIZE
13: :∼ travel(X, Y), link(X,Y,C). [C,X]
14: %DISPLAY
15: #show travel/2.

should be visited exactly once leads to the fact, that for each city X only one link,
where the first argument is X , can be included in the round-trip. This constraint is
expressed by the rule in line 4. This type of rule is also called a choice rule, regarding
to [25]. This rule contains the new predicate travel(X,Y), that stands for a trip from
city X to city Y . To assign this predicate the respective link(X,Y,C) is used to ensure,
that only trips can be received that are based on an existing train connection. The
third section is notated as the DEFINE section, that contains two rules. Both rules
include the predicate visit(X) that is derived when city X was visited in the round-
trip. These two rules provide the opportunity to check whether all cities are visited
exactly ones. The rule in line 6 ensures that the starting point Berlin is visited. By
using the predicate travel(X,Y), where X is the last visited city and Y the destination
of the next travel, all visited cities are collected during the trip by the rule in line 7.

By using the first three sections possible round-trips will be build. These possible
solutions will be checked in the TEST section for validity. This section includes three
special rules, where the respective head is empty, that are also called integrity con-
straints. Leaving the head of a rule empty leads to a deletion of possible answer sets
that do fulfill the constraint of the body. For example the integrity constraint in line
9 deletes all round-trips that did not visit all cities. One requirement for a round-trip
is that it starts and ends in the same city. This requirement is covered by the integrity
constraint in line 10. Therefore the round-trip should include a travel(X,Y) predicate,
where the destination Y is the starting point Berlin. The number of cities that pro-
vides a returning to Berlin is collected by the #count aggregate. If this number is less
than one, for a possible answer set, this set is deleted. The #count aggregate is also
used for the integrity constraint in line 11, where it provides the number of visits for
a single city. If this number is greater than one, this city has been visited multiple
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times and therefore this candidate has to be deleted.
After applying the integrity constraints from the TEST section only valid round-

trips are remaining. The solution of the TSP is the round-trip with the minimal
total duration among all valid candidates. This determination is located in the OP-
TIMIZE section. This section contains a so-called weak constraint that includes an
empty head similar to integrity constraints. In contrast to integrity constraints, weak
constraints are not eliminating candidates that fulfill the body of the rule. Weak
constraints are assigning a weight, which is defined in square brackets, as a penalty
to those candidates that fulfill the body. Because these weights are considered as
penalties, one is interested in determining the candidate with the less weight. For
receiving the round-trip with the total minimal duration, the duration C for each
trip is used as the weight. The last section is notated as the DISPLAY section which
includes the line #show travel/2. This line specifies that the travel predicate, with its
two atoms, should be used as the output of the program.

The system clingo can be used to solve the respective TSP by using the Programs
5 and 6, that were developed by Gebser and Schauber in [14]. In Program 7 the
resulting output can be found with the shortest round-trip of Berlin→ Potsdam→
Hamburg→ Leipzip→Wolfsburg→ Dresden→ Berlin with a minimal duration of
11 hours.

Program 7
1: Answer: 1
2: travel(b,l) travel(l,w) travel(w,d)
3: travel(d,p) travel(p,h) travel(h,b)
4: Optimization: 14
5: Answer: 2
6: travel(b,p) travel(p,h) travel(h,w)
7: travel(w,l) travel(l,d) travel(d,b)
8: Optimization: 12
9: Answer: 3

10: travel(b,p) travel(p,h) travel(h,l)
11: travel(l,w) travel(w,d) travel(d,b)
12: Optimization: 11
13: OPTIMUM FOUND

This section provided a brief introduction to the concept and functionality of ASP.
In literature different examples of systems for computing semantics of AFs and ex-
pansions of it (e.g. BAFs) can be found. In the upcoming section such an ASP based
system and a Java based system will be presented.
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5 Related Work

The development of implementations for computational models of argumentation is
a wide research field. A platform for testing different implementations against each
others is the International Competition on Computational Models of Argumenta-
tion (ICCMA), that was started in 2015 [27]. The competition focuses on computing
different semantics for AFs. One participating system is the ASP based system AS-
PARTIX. This system will be introduced briefly in the upcoming subsection. In
addition to that the TweetyProject will be presented in the second subsection. This
project is a collection of Java libraries, that provide an interface for working with
different knowledge representations, such as argumentation.

5.1 ASPARTIX

In [10] the system ASPARTIX was introduced. The name ASPARTIX stands for An-
swer Set Programming Argumentation Reasoning Tool and was developed by the
team of Uwe Egly from the technical University of Vienna. It is a tool for computing
semantics of AFs and extensions of it (e.g. BAFs). A detailed introduction to the
system and the development of the ASP based encodings can be found in [13]. The
author Sarah Gaggl presented, in addition to ASP based encodings for AFs, encod-
ings for computing the following semantics of BAFs:

• d-admissible • s-admissible • c-admissible

• d-preferred • s-preferred • c-preferred

For the development of these encodings the definitions regarding BAFs, presented
by Cayrol and Lagasquie-Schiex in [6], served as the basis. Gaggl has published her
work in 2009 and four years later Cayrol and Lagasquie-Schiex presented the defi-
nition of the three different interpretations of support for BAFs in [5]. In addition to
the definition of the possible interpretations they have analysed the specific complex
attacks. This leads to the fact that Gaggl has used a so-called abstract interpretation
of support, with supported and secondary attacks as complex attacks. This leads to
the fact, that semantics of BAFs with an deductive, necessary or evidential interpre-
tation of support cannot be determined using the presented encodings.

In addition to that Gaggl has used a different definition of closed sets than Cayrol
and Lagasquie-Schiex in [6]. In detail the following definition of closed sets can be
found in [13]: "A set is closed under an operator if that operator returns a member
of the set when evaluated on members of the set." In contrast to this, Definition 21 is
equal to the presented one by Cayrol and Lagasquie-Schiex. To illustrate the differ-
ences between these two definitions the BAF from Figure 12 should be considered.

In this BAF the argument a supports the argument b, which supports the argu-
ment c. Regarding to the definition presented by Gaggl the sets {a, b, c} and {∅}
are the closed sets for Rsup. In contrast to that the sets {b, c} and {c} are no closed
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a b c

Figure 12: Bipolar argumentation framework.

sets for Rsup. From the definition that was used by Gaggl, it follows that whenever
there is a support relation between two arguments, none of these arguments can be
included without the other argument in a closed set.

In contrast to this, Definition 21 has the only requirement that whenever the sup-
porter argument is included the supported argument has to be also included in a
closed set, but not vice versa. This results to the closed sets {a, b, c}, {b, c}, {c} and
{∅} for the BAF from Figure 12, following the definition of Cayrol and Lagasquie-
Schiex. The different definitions of closed sets can lead to different extensions of the
c-admissible, c-preferred, c-complete and c-grounded semantics for the same BAFs.

In this subsection the system ASPARTIX was introduced, which can be used for
computing semantics for BAFs, as defined in [6], with the only difference regarding
the definition of closure. In addition to that the system is not able to compute desir-
able semantics for BAFs with an deductive, necessary or evidential interpretation of
support. In contrast to that the TweetyProject, that will be presented in the next sub-
section, includes Java based implementations that can be used for BAFs with these
properties.

5.2 TweetyProject

As mentioned in the begin the TweetyProject [26] is a project that contains a collec-
tion of Java libraries for implementing approaches to different areas of AI, such as
computational models of argumentation. In detail the collection contains reasoners
for problems in BAFs with an deductive, necessary or evidential interpretation of
support. Therefore these reasoners can be used for testing the efficiency of devel-
oped ASP based encodings for the same tasks. The usage of ASP for computing
semantics of BAFs should lead to a reduction of running time compared to a Java
based system. This is due to the fact, that in ASP elements of formal logic can be
used directly.

In this section two important reasoning tools, for this work, were presented. The
system ASPARTIX shows the potential of using ASP for computing the semantics
of BAFs. Unfortunately this system cannot be used for BAFs that are based on lat-
est research. In contrast to that the reasoners that are included in the TweetyProject
are able to do so. These reasoners are based on the object-orientated programming
language of Java, which leads to a high running time for complex BAFs. The aim of
this work is to link the advantages of both systems. On the one hand the advantages
of using ASP, instead of Java, for computing semantics of BAFs. On the other hand
the developed system should be able to compute the semantics for BAFs with an
deductive, necessary or evidential interpretation of support. The developed system
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will be tested against the reasoners from the TweetyProject for efficiency and per-
formance. In the next section the developed ASP based encodings will be presented
and introduced in detail.
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6 ASP-Encodings for Bipolar Argumentation Frameworks

This section is the main contribution of this work, in which the ASP based encodings
will be introduced. The developed encodings should be able to compute the follow-
ing semantics of BAFs with the deductive, necessary or evidential interpretation of
support:

• d-admissible • s-admissible • c-admissible

• d-preferred • s-preferred • c-preferred

• d-complete • s-complete • c-complete

• d-grounded • s-grounded • c-grounded

• stable

The encodings presented by Gaggl in [13], are able to compute the semantics of
BAFs that where defined in [6]. In addition to that, Gaggl also presented ASP based
encodings for computing the grounded extension, complete and stable extensions
for AFs. All presented encodings in this section are based on the encodings that were
presented by Gaggl in [13]. Those encodings were adapted to obtain the possibil-
ity of computing the semantics of BAFs with an deductive, necessary or evidential
interpretation of support.

6.1 Modelling Bipolar Argumentation Frameworks

Before the semantics of a BAF can be computed, the respective BAF has to be mod-
eled as a logic program. BAFs with an deductive or necessary interpretation of
support can be modeled in the same way. To be able to use existing test cases the
developed system uses the same way of modeling than ASPARTIX, which is defined
as follows:

Definition 32. Let (A, Ratt, Rsup) be a BAF with the deductive or necessary interpretation
of support and let πBAF be the modeled BAF. πBAF consists of the following facts: πBAF =
{arg(a)|a ∈ A} ∪ {att(a, b) ∈ Ratt} ∪ {sup(a, b) ∈ Rsup}.

For BAFs with the evidential interpretation of support, a slightly different way of
modeling is necessary, because two possible types of arguments can occur. Prima-
facie arguments will be notated as p_arg and for standard arguments the syntax from
Definition 32 can be reused.

Definition 33. Let (A, Ratt, Rsup) be a BAF with the evidential interpretation of sup-
port and let πBAF be the modeled BAF. πBAF consists of the following facts: πBAF =
{p_arg(a)|a ∈ A} ∪ {arg(a)|a ∈ A} ∪ {att(a, b) ∈ Ratt} ∪ {sup(a, b) ∈ Rsup}.
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Figure 13: Bipolar argumentation framework.

To illustrate the way of modeling, the BAF in Figure 13 should be considered.
Regarding to Definition 32 Program 8 shows the modeled BAF with an deductive or
necessary interpretation of support.

Program 8
1: arg(a).
2: arg(b).
3: arg(c).
4: arg(d).
5: arg(e).
6: att(b, c).
7: att(e, b).
8: sup(a, b).
9: sup(c, d).

When the BAF from Figure 13 is considered with an evidential interpretation of
support, using a and c as the prima-facie arguments, Program 9 shows the respective
logic program.

Program 9
1: p_arg(a).
2: arg(b).
3: p_arg(c).
4: arg(d).
5: arg(e).
6: att(b, c).
7: att(e, b).
8: sup(a, b).
9: sup(c, d).

After defining the method of modeling BAFs as a logic program the following
subsection will present some basic encodings that are used for computing different
semantics.
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6.2 Basic Concepts

The following steps and encodings are used for mainly all semantics:

• Generate all subsets of A,

• Specify the output,

• Support and attack relation,

• Property of defense.

Generate all subsets of A: For computing the extensions of specific semantics,
the following method will be used: In a first step, all possible subsets of A will be
build and serve as a possible candidate. In a second step all candidates are checked
regarding to the specific requirements of the desired semantics. With the following
encoding all possible subsets of arguments will be received. Program 10 shows the
respective encoding, please note, that lines 4 and 5 are missing in the encoding for
BAFs with an deductive or necessary interpretation of support.

Program 10
1: %Generate all subsets S of A
2: in(X) :- arg(X), not out(X).
3: out(X) :- arg(X), not in(X).
4: in(X) :- p_arg(X), not out(X). %evidential
5: out(X) :- p_arg(X), not in(X). %evidential

Output: Following the method for computing a specific semantic, that was intro-
duced in the previous paragraph, one is interested in the subsets that remain after
the deletion step. With the encoding from Program 11 all subsets that fulfill the
requirement for the desired semantic will be displayed.

Program 11
1: %Output
2: #show in/1.

Support Relation: One possible interaction between the arguments in a BAF is the
support relation. This relation was defined as a binary relation between two argu-
ments. In a BAF these binary relations often form a sequence of supports. The aim of
the support encoding is that each sequence with n arguments xRsupyRsupz...Rsupn,
is transformed to all binary support relations sup(x, y), sup(x, z), ..., sup(x, n), sup(y, z),
..., sup(n− 1, n). In addition to that the Definition 16 of set-support has to be imple-
mented. The complete encoding for the support relation can be found in Program
12, that can be used for all interpretations of support.
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Program 12
1: %Support
2: sup(X,Z) :- sup(X,Y), sup(Y,Z).
3: support(X,Y) :- sup(X,Y).
4: supported(X) :- support(Y,X), in(Y). %set-support

Attack Relation for Deductive Support: The second possible interaction between
arguments in a BAF is the attack relation. By the interaction of supports and attacks
complex attacks can occur in BAFs, that are specific for the interpretation of support.
The following encoding computes all binary attacks in a BAF with the deductive
interpretation of support. Recalling Table 1, the complex attacks for the deductive
interpretation of support consist of supported attacks (Definition 10) and mediated
attacks (Definition 13).

Program 13
1: %Attacks for deductive
2: attack(X,Y) :- att(X,Y). %direct attack
3: attack(X,Y) :- att(Z,Y), support(X,Z). %supported attack
4: attack(X,Y) :- att(X,Z), support(Y,Z). %mediated attack
5: attack(X,Y) :- support(X,Z), attack(Z,Y). %super-mediated attack
6: attacked(X) :- attack(Y,X), in(Y). %set-attack

Attack Relation for Necessary Support: In contrast to the complex attacks in a
BAF with an deductive interpretation of support, the complex attacks for the nec-
essary interpretation of support consist of extended attacks (Definition 14) and sec-
ondary attacks (Definition 11). The appropriate encoding can be found in Program
14.

Program 14
1: %Attacks for necessary
2: attack(X,Y) :- att(X,Y). %direct attack
3: attack(X,Y) :- att(Z,Y), support(Z,X). %extended attack
4: attack(X,Y) :- att(X,Z), support(Z,Y). %secondary attack
5: attacked(X) :- attack(Y,X), in(Y). %set-attack

Attack Relation for Evidential Support: Regarding to Table 1 the complex at-
tacks of BAFs with the evidential interpretation of support consist of supported and
secondary attacks. The encoding of these attacks can be found in Program 15.

In contrast to the attacks in BAFs with an deductive or necessary interpretation of
support, not all attacks in a BAF with the evidential interpretation of support can be
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Program 15
1: %Attacks for evidential
2: attack(X,Y) :- att(X,Y), e_supported(X). %direct attack
3: attack(X,Y) :- att(Z,Y), support(X,Z), e_supported(X). %supported attack
4: attack(X,Y) :- att(X,Z), support(Z,Y), e_supported(X). %secondary attack
5: attacked(X) :- attack(Y,X), in(Y). %set-attack
6:
7: %E-supported arguments
8: e_supported(X) :- p_arg(X).
9: e_supported(X) :- arg(X), p_arg(Y), support(Y,X).

taken into account. Only attacks from arguments that are supported by evidence can
be considered. The property of evidential support for a single argument is encoded
by the rules in line 8 and 9 of Program 15. Line 8 contains the rule, that prima-
facie arguments are supported by evidence straightaway. The rule in line 9 ensures
that standard arguments which are supported by a prima-facie argument, directly
or transitively, also fulfill the property of supported by evidence. The requirement
that only attacks from arguments can be taken into account, that are supported by
evidence, is implemented by the rules in lines 2, 3 and 4. By adding the predicate
e_supported(X) to these rules it is ensured that only attacks from x to y are taken
into account, when x is an argument that is supported by evidence.

Collective Defense: The property of collective defense is very important for dif-
ferent semantics. Considering the definition of collective defense presented by Dung
in [8] and from Definition 18, a set of arguments S defends an argument if and only
if S attacks all attackers of this argument. Instead of implementing the property of
defense in a direct way, the following encoding can be used to check if an argument
is not defended. This leads to the advantage of using the predicate not_defended(X)
directly for deleting answer sets with undefended arguments. The encoding can be
found in Program 16 and can be used for all types of interpretation of support.

Program 16
1: %Not defended Arguments
2: not_defended(X) :- attack(Y,X), not attacked(Y).

Regarding to this encoding the predicate not_defended(X) is derived if x is at-
tacked by the argument y and y is not set-attacked by the current assignment S.

In this subsection basic encodings were presented. These basic encodings are part
of the specific encodings for mainly all desired semantics that will be introduced
in the next subsection. Please note that these encodings will not be showing com-
pletely. The included basic encodings will just be mentioned and not shown again.
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6.3 Admissible Sets

Regarding to Definitions 22 - 24, all three types of admissible sets have in common,
that they have to defend all their elements collectively (Definition 18). In addition
to that d-admissible and c-admissible sets need to be conflict-free in the sense of
Definition 17. All encodings for computing admissible sets include the Programs 10
- 12, 16 and one of Programs 13 - 15 for the specific complex attack. The encoding for
computing d-admissible sets, that is based on the most general type of admissibility,
can be found in Program 17.

Program 17 d_adm.lp
1: %d-admissible
2: :- in(X), in(Y), attack(X,Y). %conflict-free
3: :- in(X), not_defended(X). %collectively defense

With the integrity constraint in line 2, all subset are deleted, that violate the re-
quirement of conflict-freeness. In other words, all subsets are deleted, that contain
two arguments x and y, where x attacks y. The integrity constraint in line 3, under-
lines the advantage of defining the predicate not_defended(X) from Program 16.
This property can be used directly to delete of subsets that contain an argument x,
that is not defended by this subset.

Regarding to Defintion 23 s-admissible sets do not have to fulfill the requirement
of conflict-freeness. In contrast to that s-admissible sets have to fulfill the require-
ment of safe in the sense of Definition 19. A subset S is safe, if and only if there is no
argument x in the BAF, that is set-supported and set-attacked at the same time from
S or that is set-attacked from S and belongs to S. Obviously the second constraint
also leads to the requirement of conflict-freeness. In Program 18 the encoding for
computing the s-admissible sets of a given BAF can be found.

Program 18 s_adm.lp
1: %s-admissible
2: :- in(X), not_defended(X). %collectively defense
3: :- attacked(X), supported(X). %safe
4: :- attacked(X), in(X). %safe

The integrity constraint in line 2, corresponds to the requirement of collective
defense and was also used for the encoding of d-admissible sets. The integrity con-
straint in line 3 regards the constraint, that a subset S should not set-attack and set-
support the same argument, when considering safe sets. The integrity constraint in
line 4 deletes all subsets that set-attack an argument x and includes it at the same
time.

The most specific type of admissibility corresponds to c-admissibility, where "c"
stands for close. Regarding to Definition 21, a subset S is a closed set, if and only
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if S contains an argument x, that supports argument y, then y has to be also in-
cluded. As mentioned in the previous section, the encodings presented by Gaggl in
[13], are based on a different definition of closure. Regarding to the definition, used
by Gaggl, a closed set has to include the supported argument, when the supporter
argument is included and also vice versa. If the supported argument is included
than also the supporter argument has to be included. The developed encodings of
this work should be based on the work of Cayrol and Lagasquie-Schiex from [5].
Therefore the property of closure will be implemented regarding to Definition 21.
The fact that a different, less specific, definition of closed sets is used, can lead to
different c-admissible sets in comparison to ASPARTIX. In detail, with the encod-
ing from Program 19 more c-admissible sets are received compared to the original
encoding provided by Gaggl in [13].

Program 19 c_adm.lp
1: %c-admissible
2: :- in(X), in(Y), attack(X,Y). %conflict-free
3: :- in(X), not_defended(X). %collectively defense
4: :- in(X), out(Y), support(X,Y). %closed

It is obvious that lines 2 and 3 are equal to the same lines of the encoding for
d-admissible sets from Program 17. The integrity constraint in line 4, deletes all
subsets that violate the constraint for closure. In detail all subsets S are deleted, that
contain the argument x and do not contain the argument y, when there is a binary
support relation support(x, y), that means x supports y.

6.4 Preferred Extensions

As mentioned before one is not only interested in receiving all admissible sets of a
given BAF but especially in computing the maximal (w.r.t. set-inclusion) sets among
all admissible sets. Regarding to Definition 25 these sets where notated as the pre-
ferred extensions. In this subsection the encoding for computing the d-, s- or c-
preferred extensions of a given BAF will be presented and introduced. Please note
that the respective encodings include the encodings from Programs 10 - 12, 16 and
one of Programs 13 - 15 for the specific complex attack.

For computing the preferred extensions, Gaggl has used the so-called saturation
method, that was briefly described in [12]. The saturation method can be used to
check if all solution candidates fulfill a certain requirement. This technique can
be used to determine valid or non-valid candidates regarding a specific property.
The determination of the preferred extensions of a given BAF can be formulated
as follows: Given all admissible sets of a BAF, find the sets that are maximal with
respect to set-inclusion.

The saturation method can be used in the following sense to do so: Let S be the
set that contains all admissible sets of a given BAF. Each admissible set s ∈ S is
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a possible solution candidate for a preferred extension of the BAF. The set s is a
preferred extension, if no set t ⊆ A can be formed, so that s ⊂ t and t is admissible.
This leads to the following procedure: For each candidate s a proper superset t ⊆ A,
so that t contains at least one element that is not in s, will be searched and tested
regarding the requirements of admissibility. If such a set can be found, s is not a
preferred extension and therefore no answer set of the encoding. This procedure
will be repeated for all s ∈ S, so that the remaining answer sets are the preferred
extensions of the BAF.

The encoding to compute the d-preferred extensions is displayed in Program 20.
Please note that lines 15 and 17 are only present in the encoding file for a BAF with
an evidential interpretation of support.

Program 20 d_pref.lp
1: %d-admissible
2: :- in(X), in(Y), attack(X,Y). %conflict-free
3: :- in(X), not_defended(X). %collectively defense
4: %Guess all subsets T .
5: inN(X) | outN(X) :- out(X).
6: inN(X) :- in(X).
7: %Spoil if t = s.
8: spoil :- eq.
9: %Spoil if t is not conflict-free.

10: spoil :- inN(X), inN(Y), attack(X,Y). %conflict-free
11: %Spoil if t does not defend all its elements
12: spoil :- inN(X), outN(Y), attack(Y,X), unattacked(Y). %collective defense
13: %Ensure that spoil is an answer set of T .
14: inN(X) :- spoil, arg(X).
15: inN(X) :- spoil, p_arg(X). %evidential
16: outN(X) :- spoil, arg(X).
17: outN(X) :- spoil, p_arg(X). %evidential
18: %If at least one t ∈ T not derived spoil, s is not a preferred extension
19: :- not spoil.

This encoding will be introduced briefly in the following. For a better understand-
ing of the encoding, the BAF from Figure 14 will be serving as an example, that has
the only d-preferred extension {a, c}. This BAF does only contain direct attacks, so
it can also be interpreted as an AF.

a b c

Figure 14: Bipolar argumentation framework.

For the introduction of the encoding the two predicates eq (line 8) and unattacked(X)
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(line 12) remain undefined until the respective lines will be reached.
The integrity constraints in lines 2 and 3 belong to Program 17 and ensure that S,

as the first generation of all subsets of A, only include d-admissible sets. Consider-
ing the BAF from Figure 14, S does consists of the d-admissible sets {∅}, {a}, {a, c}.
Each of these sets is a potential candidate for a preferred extension of the BAF. For
each candidate s ∈ S the rules in line 5 and 6 are building new sets t, that will be
added to T , so that the relation s ⊆ T holds. By rule in line 6 a new set t that is equal
to s will be formed. By using the rule in line 5 all possible sets t out of the respective
in(X) and out(X) predicates from s will be created. Therefore the rules in lines 5 and
6 would lead to the set T = {{a}, {a, b}, {a, c}, {a, b, c}} when s = {a}. The rule in
line 8 contains the undefined predicate eq. The respective encoding, presented by
Gaggl in [13], of this predicate can be found in Program 21.

Program 21
1: eq_upto(Y) :- inf(Y), in(Y), inN(Y).
2: eq_upto(Y) :- inf(Y), out(Y), outN(Y).
3: eq_upto(Y) :- succ(Z,Y), in(Y), inN(Y), eq_upto(Z).
4: eq_upto(Y) :- succ(Z,Y), out(Y), outN(Y), eq_upto(Z).
5: eq :- supremum(Y), eq_upto(Y).

This predicate should be used to compare two sets regarding equality. To test
the elements of two sets regarding equality, they have to be ordered in the same
way. For this reason an order on the arguments of a BAF has to be defined. Gaggl
presented the encoding from Program 22 that is able to order the arguments by the
"<"-relationship. Please note that the lines with an %evidential comment are only
present in the encoding file for a BAF with the evidential interpretation of support
and are missing in the encoding file for a BAF with the deductive or necessary in-
terpretation of support.

Program 22
1: lt(X,Y) :- arg(X),arg(Y), X<Y.
2: lt(X,Y) :- p_arg(X),arg(Y), X<Y. %evidential
3: lt(X,Y) :- arg(X),p_arg(Y), X<Y. %evidential
4: lt(X,Y) :- p_arg(X),p_arg(Y), X<Y. %evidential
5: nsucc(X,Z) :- lt(X,Y), lt(Y,Z).
6: succ(X,Y) :- lt(X,Y), not nsucc(X,Y).
7: ninf(X) :- lt(Y,X).
8: nsup(X) :- lt(X,Y).
9: inf(X) :- not ninf(X), arg(X).

10: inf(X) :- not ninf(X), p_arg(X). %evidential
11: supremum(X) :- not nsup(X), arg(X).
12: supremum(X) :- not nsup(X), p_arg(X). %evidential
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Regarding to the BAF from Figure 14 the arguments are ordered alphabetical as
follows: a < b < c. For this BAF the single answer set {inf(a), succ(a, b), succ(b, c),
supremum(c)}will be received, without the other atoms regarding to the predicates
nsucc, ninf and nsup. This order will be used to determine if two sets are equal. By
the predicate eq_upto(Y) the elements, starting from the respective infimum of the
set to its supremum, will be compared element-wise. If two sets are equal the eq
predicate will be derived. By the rule in line 8 of Program 20 the candidate s will be
checked against all sets t ∈ T regarding equality. When a set t ∈ T is equal to the set
s, the predicate spoil will be derived. This predicate will also be derived, when a set
t ∈ T is not conflict-free, by the rule in line 10.

The rule in line 12 consists of the undefined predicate unattacked(X). The respec-
tive encoding, presented by Gaggl in [13], of this predicate can be found in Program
23.

Program 23
1: unattacked_upto(X,Y) :- inf(Y), outN(X), outN(Y).
2: unattacked_upto(X,Y) :- inf(Y), outN(X), not attack(Y,X).
3: unattacked_upto(X,Y) :- succ(Z,Y), unattacked_upto(X,Z), outN(Y).
4: unattacked_upto(X,Y) :- succ(Z,Y), unattacked_upto(X,Z), not attack(Y,X).
5: unattacked(X) :- supremum(Y), unattacked_upto(X,Y).

The predicate checks if the not included arguments of a given set are unattacked
by the set. Therefore each argument starting from the infimum to the supremum of
the not included arguments, will be checked by using the order of the arguments
and the predicate unattacked_upto(X,Y). If the argument x is not attacked by any
argument of a given set, than the predicate unattacked(X) will be derived. This pred-
icate is used in the rule in line 12 of Program 20, to tests if a given set defends
collectively all its elements.

This leads to the fact that the rules in lines 8, 10 and 12 will derive the predi-
cate spoil, if a given set t ∈ T is equal to s or violates at least one of the require-
ments regarding d-admissibility. Regarding to the set s = {a} the respective set
T = {{a}, {a, b}, {a, c}, {a, b, c}}, the set t1 = {a} will be derive the predicate spoil,
because it is equal to s. In addition to that the sets t2 = {a, b} and t4 = {a, b, c}
will derive spoil, because they violate the requirements regarding d-admissibility.
Only the set t3 = {a, c} will not derive the predicate spoil. The rules in lines 14 to
16 ensure that each t ∈ T , that has derived the predicate spoil is an answer set of T .
If not all t ∈ T derived the predicate spoil, this means, that there exists at least one
t ∈ T , so that s ⊂ t and t is d-admissible. In other words, s is not the d-preferred
extension, because another set exists, that is greater (w.r.t. set-inlcusion) and fulfill
the requirements regarding d-admissibility. For the sets s = {a} the respective set
T = {{a}, {a, b}, {a, c}, {a, b, c}}, the set t3 = {a, c} would not derive the predicate
spoil, which leads to the fact that the set s is not an d-preferred extension of the BAF
from Figure 14.
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When considering the set s = {a, c} of this BAF, the set T = {{a, c}, {a, b, c}}
will be constructed by the rules in line 5 and 6 of Program 20. The set t1 = {a, c}
will derive spoil because of the rule in line 8. The set t2 = {a, b, c} will derive the
predicate spoil regarding to the rule in line 10. This leads to the fact, that all sets
t ∈ T derived spoil and s is a d-preferred extension of the BAF.

For computing s-preferred extensions (resp. c-preferred extensions) the encodings
from Programs 21, 22 and 23 can be reused. Only Program 20 has to be adapted to
the specific requirement regarding safeness (resp. closure). Program 24 shows the
encoding for computing s-preferred extensions.

Program 24 s_pref.lp
1: %s-admissible
2: :- in(X), not_defended(X). %collectively defense
3: :- attacked(X), supported(X). %safe
4: :- attacked(X), in(X). %safe
5: %Guess all subsets T .
6: inN(X) | outN(X) :- out(X).
7: inN(X) :- in(X).
8: %Spoil if T = S.
9: spoil :- eq.

10: %Set-support.
11: supportedN(X) :- support(Y,X), inN(Y). %set-support
12: %Set-attack.
13: attackedN(X) :- attack(Y,X), inN(Y). %set-attack
14: %Spoil if t is not safe.
15: spoil :- supportedN(X), attackedN(X). %safe
16: spoil :- attackedN(X), inN(X). %safe
17: %Spoil if t does not defend all its elements
18: spoil :- inN(X), outN(Y), attack(Y,X), unattacked(Y). %collective defense
19: %Ensure that spoil is an answer set of T .
20: inN(X) :- spoil, arg(X).
21: inN(X) :- spoil, p_arg(X). %evidential
22: outN(X) :- spoil, arg(X).
23: outN(X) :- spoil, p_arg(X). %evidential
24: %If at least one t ∈ T not derived spoil, s is not a preferred extension
25: :- not spoil.

Please note that lines 21 and 23 are only present in the encoding file for BAFs with
the evidential interpretation of support. Commonly to the encoding for computing
d-preferred extensions from Program 20, all s-admissible sets will be determined in
a first step. For spoiling the subsets t ∈ T that are not safe, it has to be checked if
a given t supports and attacks the same argument. The predicates supported(X) and
attacked(X) that were implemented in the encodings for the specific attacks and in
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the encoding of the support relation in Program 12, cannot be reused. This is due
to the fact, that they are based on S (via in(X) and out(X)). So in lines 11 and 13
the respective predicates supportedN(X) and attackedN(X) will be defined for T (via
inN(X) and outN(X)). These predicates will be used to derive spoil for the subsets
t ∈ T , that do not fulfill the requirement of safe, by the rules in lines 15 and 16.

Instead of showing the encoding for computing c-preferred extensions, this en-
coding will be describe formally. The encoding is very similar to the encoding for
the d-preferred extensions shown in Program 20. In contrast to that after the two
integrity constraints in lines 2 and 3, a third integrity constraint with

: −in(X), out(Y ), support(X,Y ).%closed (2)

is added, to delete all subsets from S, that violate the requirement of closure. In
addition to that the rule

spoil : −support(X,Y ), outN(Y ), inN(X).%closed (3)

has to be added, for spoiling all subsets t ∈ T that do not fulfill the requirement of
closure.

In this subsection the encodings, that were developed by Gaggl in [13], for com-
puting the preferred extensions, were introduced. In the upcoming subsection the
encoding for the complete extensions will be presented.

6.5 Complete Extensions

All encodings for computing the respective complete extensions include the encod-
ings from Programs 10 - 12, 16 and one of Programs 13 - 15 for the specific complex
attack. Regarding to Definitions 26, 27 and 28 a subset S is a complete extension,
if it fulfill the requirements regarding the specific type of admissibility and if each
argument that is defended by S belongs to S. Gaggl has presented an encoding for
computing d-complete extensions in [13]. For this encodings she has used the pred-
icate not_defended(X) from Program 16. By using the concept of double negation, the
defended arguments under a current assignment can be received. The presented
encoding for computing the d-complete extensions by Gaggl, was extended by en-
codings regarding s- respectively c-complete extensions. Program 25 shows all three
encodings for the desired complete extensions.

The respective complete extensions will be computed in the following way: In
a first step all subsets s ∈ S will be deleted that violate the requirements for the
respective type of admissibility. By the integrity constraint in the last line of each
encoding all subsets that do defend argument x but do not contain it will be deleted.

To sum up this subsection, all three types of complete extensions can be com-
puted by using the encodings shown in Program 25. In the upcoming subsection
the encodings for computing the respective grounded extension will be introduced.
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Program 25 d_com.lp & s_com.lp & c_com.lp
1: %d-complete
2: :- in(X), in(Y), attack(X,Y). %conflict-free
3: :- in(X), not_defended(X). %collectively defense
4: :- out(X), not not_defended(X). %complete
5:
6: %s-complete
7: :- in(X), not_defended(X). %collectively defense
8: :- attacked(X), supported(X). %safe
9: :- attacked(X), in(X). %safe

10: :- out(X), not not_defended(X). %complete
11:
12: %c-complete
13: :- in(X), in(Y), attack(X,Y). %conflict-free
14: :- in(X), not_defended(X). %collectively defense
15: :- in(X), out(Y), support(X,Y). %closed
16: :- out(X), not not_defended(X). %complete

6.6 Grounded Extension

Regarding to the Definition 29 the d-grounded (resp. s- or c-grounded) extension
of a BAF is the minimal subset (w.r.t set-inclusion) among the d-complete (resp. s-
or c-complete) extensions. For computing the respective grounded extension, the
saturation method could be used. But instead of using this method, Gaggl has used
a more intuitive method to compute the d-grounded extension. Similar to the last
subsection, the encoding for computing the d-grounded extension was extended by
encodings regarding the s- respectively c-grounded extension. For the illustration
of this method the BAF in Figure 15 can be considered, with an deductive interpre-
tation of support.

a b c

d

e

Figure 15: Bipolar argumentation framework.

To generate the complete extensions of this BAF, all attacks should be determined.
The following attack relations will be received: attack(a, b), attack(c, e) and attack(a,
c). This shows, that the BAF from Figure 15 does contain the two arguments a and
d that are not attacked by any argument of the BAF. Therefore these arguments has
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to be included in every complete extension of the BAF. This constraint leads to the
fact, that these two arguments also have to be included in the grounded extension.
In a next step it can be checked if one of these arguments defend another argument.
Following that it can be found that a defends e from the attack of c. Therefore, argu-
ment e has to be also included in every complete extension and also in the grounded
extension. The arguments e and d are not defending any other argument, so no ar-
gument has to be included further. By using this strategy the grounded extension
will be received automatically, because no other complete extension that is less, w.r.t.
set-inclusion, can be build. The resulting set is indeed conflict-free and defends all
its elements collectively.

For computing the grounded extension, Gaggl decided to proceed loops over the
arguments of the BAF. In a first loop all arguments that are not attacked by any
other argument of the BAF will be determined and added to the answer set. In
a next loop it will be checked if these arguments are defending other arguments.
If one argument is defending another argument this defended argument has to be
added to the answer set. This will be proceed until no more defended arguments
can be found. For proceeding this loops the order encoding from Program 22 can
be reused. In addition to that all respective encodings for the grounded extension
include the encodings from Programs 11, 12 and one of Programs 13 - 15 for the
specific complex attack. In Program 26 the encoding for computing the d-grounded
extension can be found, please note that the rule in line 3 is only present in the
encoding file for BAFs with an evidential interpretation of support.

Program 26 d_ground.lp
1: %Proceeding loops to get all defended arguments.
2: defended_upto(X,Y) :- inf(Y), arg(X), not attack(Y,X).
3: defended_upto(X,Y) :- inf(Y), p_arg(X), not attack(Y,X). %evidential
4: defended_upto(X,Y) :- inf(Y), in(Z), attack(Z,Y), attack(Y,X).
5: defended_upto(X,Y) :- succ(Z,Y), defended_upto(X,Z), not attack(Y,X).
6: defended_upto(X,Y) :- succ(Z,Y), defended_upto(X,Z), in(V), attack(V,Y), at-

tack(Y,X).
7: defended(X) :- supremum(Y), defended_upto(X,Y).
8: %Writing the defended arguments to the output file.
9: in(X) :- defended(X).

For computing the s-grounded (resp. c-grounded) extension the derived subset
has to be checked regarding the requirement of safeness (resp. closure). If the
received set does not fulfill the respective requirement, no s-grounded (resp. c-
grounded) extension can be generated. In this case it is also impossible to generate
a s-complete (resp. c-complete) extension of the given BAF.

To illustrate this, the BAF from Figure 15 should be considered using a neces-
sary interpretation of support. The following attacks can be received: attack(a, b),
attack(c, e), attack(b, e), attack(d, e), attack(a, d). The argument a and c are not at-
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tacked by any other argument, so they have to be added to answer set. None of these
arguments defend another argument. The argument a attacks argument b, which at-
tacks e. But e is also attacked by c and d, and these attacks cannot be defended by
a. Therefore the unique d-complete extension {a, c}, which is also the d-grounded
extension, can be received. But this set is not safe, because a attacks b and c supports
b, so this set set-supports and set-attacks b at the same time, which violates the re-
quirement of safeness. The set {a, c} is also not closed, because c is supporting b and
d following that they have to be included regarding the requirement of closure, but
neither b nor d are defended. So no s- or c-grounded extension can be found.

In this subsection the encoding for computing the d-grounded (resp. s- or c-
grounded) extension of a given BAF were presented. In the next subsection the
remaining encoding for computing stable extensions will be introduced.

6.7 Stable Extensions

Regarding to Definition 20 a subset S is a stable extension, if and only if S is conflict-
free and S set-attacks all arguments that are not in S. The respective encoding can
be found in Program 27. Please note that the complete encoding also includes the
Programs 10 - 12 and one of the Programs 13 - 15 for the specific complex attack.

Program 27 stable.lp
1: %stable
2: :- in(X), in(Y), attack(X,Y).%conflict-free
3: :- out(Y), not attacked(Y). %stable

In this encoding the subsets s ∈ S will be deleted, that do violate the requirements
regarding conflict-free and stable sets.

In this section the necessary adaptions of the encodings that were presented by
Gaggl in [13], were presented. In detail, the specific complex attacks, that were in-
troduced in [5], for the deductive, necessary and evidential interpretation of support
were implemented with ASP. Also the definition regarding closed sets presented by
Cayrol and Lagasquie-Schiex in [6] was implemented. All other encodings that were
developed by Gaggl, were adapted to BAFs with an deductive, necessary or eviden-
tial interpretation of support. By this adaptions the encodings are able to compute
desirable semantics for BAF with the three different interpretation of support. To the
best of my knowledge these encodings represent the first published ASP based en-
codings with these characteristics. By using the declarative programming paradigm
of ASP a significant reduction regarding running time, compared to the Java-based
encodings from the TweetyProject, will be expected. This assumption and a detailed
analysis of the developed encodings will be presented in the upcoming section.
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7 Evaluation of ASP-Encodings

After the introduction of ASP based encodings for computing desirable semantics of
BAFs with deductive, necessary or evidential interpretation of support, this section
includes the evaluating by using tasks from the ICCMA 2019 [3]. These tasks were
also computed by the Java-based encodings from the TweetyProject, to investigate
the differences regarding running time. In the upcoming subsection the method
that was used for generating test cases will be introduced. After this subsection the
design of the experiments will be presented and the section will be concluded by
presenting the results.

7.1 Generation of Test cases

As mentioned before the instances from ICCMA 2019 [3], served as the basis to
evaluate the encodings. Due to the fact, that this competition focuses on reasoning
tasks in AFs, the instances had to be transformed to BAFs. The file that contains all
instances is available on the homepage of the competition and contains 326 different
AFs.

The instances are available in different encoding files, regarding to their modeling.
The solver ASPARTIX participated in the ICCMA 2019, so apx-files are available.
This file format corresponds to Definition 32, therefore these files were chosen for
testing.

The different AFs can be ranked by the amount of arguments per instance, start-
ing from small instances with 5 arguments in total, up to instances with 10000 ar-
guments in total. To transform these AFs to BAFs, support relations between the
arguments had to be added. This led to the question of how many support rela-
tions should be added per instance. The addition of support relations does make
an instance more complex and may have an impact on the running time. There-
fore the impact of different ratios of support relations, with respect to the amount
of arguments of an instance, on the running time should be determined. For this
investigation the three different ratios of 0.25, 0.5 and 0.75 (w.r.t. amount of total ar-
guments) were used. The support relations were randomly added to each instance
with the requirement of non adding self-supports.

For the evaluation of the encodings for BAFs with an evidential interpretation
of support, prima-facie arguments had to be added. In a ratio of 0.25 (w.r.t. the
amount of arguments per instance) standard arguments were randomly chosen and
transformed to prima-facie arguments.

7.2 Experimental Design

After the introduction of the method for generating the test cases, the different tasks
that were used to investigate the differences regarding running time, will be pre-
sented in this subsection. In the ICCMA 2019 [3], four different problems for each
semantic were considered, that are defined as follows:
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Definition 34. Let (A, Ratt, Rsup) be a BAF, let x ∈ A and let σ be a desirable semantics.
The problem of deciding whether x is contained in some extension of σ, is called credulous
acceptability (DC).

For the problem of credulous acceptability of semantics, one is interested in de-
ciding if a certain argument is contained in at least one of the extensions of the
semantics. In contrast to this the definition of skeptical acceptability will be presented.

Definition 35. Let (A, Ratt, Rsup) be a BAF, let x ∈ A and let σ be a desirable semantics.
The problem of deciding whether x is contained in all extensions of σ, is called skeptical
acceptability (DS).

Instead of reviewing if a certain argument is contained in at least one extension
of the semantics, one is interested in deciding if a certain argument is contained in
all extensions of the semantics. Regarding to these two definitions, the output of
the problems DC and DS is not a sequence of extensions, it is a Boolean value. This
Boolean value can be "YES" or "NO", regarding to the result of the decision.

With the presented encodings from the previous section, all extensions of a de-
sired semantics will be returned, this corresponds to the problem of enumerate all
extensions (EE). A related problem is the problem of determine some extension (SE)
of specific semantics.

For the evaluation of the ASP-encodings the problems DC, DS and EE were used.
With the experiments the development of running time of the encodings when deal-
ing with different instances should be investigated. For that the problem of SE was
not used, because a more detailed analysis of the behavior of running time was ex-
pected by using the problem of EE. In addition to that the following semantics were
used:

• d-preferred • s-preferred • c-preferred

• d-complete • d-grounded • stable

This list does not include all presented semantics from the last section. The se-
mantics for computing admissible sets were not evaluated. This is due to the fact,
that the encoding for computing the preferred extensions includes a determination
of the respective admissible sets. The preferred extensions were evaluated com-
pletely, to compare the differences between the different types of admissibility (d,
s and c). In addition to that the stable semantic were also evaluated completely.
In addition to that the most general type of the complete and grounded semantic
were evaluated completely. This is due to the fact, that the definitions of s-complete
(resp. c-complete) extensions and the s-grounded (resp. c-grounded) extension is
not proper defined and investigated in literature. In addition to that, the encoding
of the s-grounded (resp. c-grounded) extension computes the d-grounded extension
and than reviews if this extension is safe (resp. close), so no significant difference
regarding running time was expected.
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Because of time restrictions only instances with a maximal amount of 1000 argu-
ments, which corresponds to a total number of 276 instances, with each three differ-
ent ratios of supports, were used. This leads to a total number of 828 different BAFs,
for that the support relation can be interpreted as deductive, necessary or eviden-
tial. For each of the three possible interpretations of support six different semantics,
with each three different problems, could be computed. Which would lead to 14904
single runs for each interpretation of support, where a single run corresponds to
test one of three problems for one of six semantics for a specific instance. Due to
the limitation of time this full cycle of single runs was only done for the deductive
and evidential interpretation of support. When the run consists the problem of DC
(resp. DS), the argument that should be included in some (resp. all) extensions was
chosen randomly from all arguments of the instance.

The main aim of this evaluation is to investigate the assumption of a reduced
running time for the ASP based encodings compared to the Java-based encodings
from the TweetyProject. To do so the solver of the TweetyProject only computed the
problem of EE for all six semantics. Because the most impact on the running time
was expected from this problem.

The ICCMA 2019 used a timeout of 600 seconds for each single run, this timeout
was also used for the evaluation. When a single run passed the running time of
600 seconds, these runs were automatically cancelled. For testing the python tool
Probo2 [20] was used, that bundles functionalities for benchmarking argumentation
solvers. The tests were proceeded on a server of the FernUniversität in Hagen, with
the operating system of Ubuntu. The server includes an octacore Intel Xeon E5
processor with 3.4 GHz and a 64GB DDR4 RAM.

After the introduction of the design of the experiments the results will be pre-
sented in the upcoming subsection.

7.3 Results

In this subsection the results from the previously described experiments will be pre-
sented. In the following list all proceeded experiments are presented together with
an assumption of the expected results:

1. Impact of the ratio of support relations to the running times: An intuitive
assumption is, that when the amount of support relations in an instance rises,
than the complexity will also rise. This would lead to higher running times for
instances with a higher ratio of supports, compared to instances with lower
ratios of support.

2. Impact of the amount of arguments per instance: Closely related to the pre-
vious assumption is the prediction of higher running times for instances with
a higher amount of arguments, compared to instances with a lower amount of
arguments.
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3. Impact of the semantics: The developed encodings do have different extents,
this is due to the fact that the semantics differ in their complexity. Some se-
mantics are easier to compute than others and this reflects in the amount of
lines for each encoding. Encodings with a minor amount of lines should cor-
respond to lower running times compared to those of encodings with a higher
amount of lines.

4. Impact of the type of admissibility: In Definitions 22, 23 and 24 three different
types of admissibility for BAFs were presented. Considering the encodings of
the preferred semantics, it is obvious that the requirements for the d-preferred
and c-preferred semantics are very similar. The only difference is the addi-
tional requirement of closure for the c-preferred semantics. The semantics for
s-preferred includes the additional predicate of supportedN(X). This could lead
to a slightly higher running time in comparison to the running time of the
semantics for d- respectively c-preferred.

5. Impact of the problem type: Three different problem types were used for the
evaluation. The output of the problems DC or DS is a single Boolean value of
"YES" or "NO", depending on the inclusion of a given argument. One would
assume that the running times of the problems DC and DS are very similar.
The problem of DC is decided as "YES", when a first extension was found, that
includes the given argument. In contrast to that, the problem of DS is decided
as "NO", when a first extension was found, that do not include the given argu-
ment. Only in the case that the problem of DC returns "NO" and the problem
of DS returns "YES", all extensions had to be reviewed. Only the running time
of the problem EE, should be higher, compared to the running times of DC
and DS, because for each instance all extensions have to be computed.

6. Impact of the support interpretation: The evidential interpretation of sup-
port differs by distinguishing between standard arguments and prima-facie ar-
guments from the deductive and necessary interpretation of support. This
distinction can lead to a reduction of the amount of attacks that are taken into
account for an instance. Such a reduction can reduce the complexity of an
instance and reduce the running time for computing the semantics.

7. Impact of the implementation: The usage of the declarative programming
paradigm of ASP for computing acceptable sets of arguments of BAFs is a
very promising approach, because it is based on non-monotonic logic, which
represents a major property of human reasoning. The solver of the TweetyPro-
ject is also able to compute the desired semantics for BAFs with the deductive,
necessary or evidential interpretation of support. The usage of formal logic
elements for the implementation should lead to a precise reduction of running
time for the presented ASP-based encodings, compared to the running time of
the Java-based encodings from the TweetyProject.
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The results can be found in the following, starting with the investigation of the
impact of the ratio of supports in an instance on the running time.

7.3.1 Impact of the ratio of support relations:

To investigate the previous assumption of higher running times for higher ratios of
supports, Figure 16 can be considered. This figure shows the running time of the
problem EE for the d-grounded semantics, using three different ratios of supports.

Figure 16: Running time for problem EE of the d-grounded semantics using three
different ratios of supports.

This result is presented as a so-called Cactus-Plot. For such a plot the instances
of each data set are sorted ascending by their running times, resulting to a ranking
of the single data points. Each data point is plotted by using the rank as the re-
spective x-value and the running time in seconds as the y-value. Please note that a
logarithmic scale was used for the y-axis.

The graphic in Figure 16 shows a cascading increase of running time for the 150
fastest solved instances that transforms to a almost constant rise. However the re-
sults do not support the assumption, because the running times do not to differ
significantly by their ratio of supports. In comparison to that, Figure 17 shows the
running time of the problem EE for the d-preferred semantics, using three different
ratios of support.

This graphic shows also a cascading increase of running time for the 140 fastest
solved instances. In contrast to the previous graphic this area consists of more steps,
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Figure 17: Running time for problem EE of the d-preferred semantics using three
different ratios of supports.

resulting to a faster increase of running time. Surprisingly a wide area where the
running time is lowest for the highest ratio of supports can be observed. Whereas
the running time for the rest of the graph do not differ significantly between the
different ratios of support. In comparison to that Figure 18 shows the running time
for the problem of EE for the stable semantics.

In this graph the cascading increase of running time can be observed for the 200
fastest solved instances, where the highest ratio of support seems to enter the new
levels slightly before the other ratios. However also an area can be observed where
the lowest ratio of support result the highest values of running time for all three
ratios.

Conclusively these results do not confirm the assumption that higher ratios of
support lead to higher running times. Contrary to the expectations areas were found
with the highest running times for the lowest ratio of support. However the impact
of the amount of support relations could not be investigated in detail, because each
addition of a support relation corresponds to a new BAF, leading to a restriction
of comparability between the different data sets. For the following investigations a
constant ratio of support of 0.25 (w.r.t. the amount of arguments per instance) will
be used.
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Figure 18: Running time for problem EE of the stable semantics using three different
ratios of supports.

7.3.2 Impact of the amount of arguments:

To investigate the assumption that a higher amount of arguments in an instance
lead to higher running times, Figure 19 can be considered. This figure shows the
running time of the problem EE for the d-grounded semantics, using a ratio of 0.25
of supports.

In this graph the running time in seconds is plotted on the y-axis dependent to
the number of arguments of an instance on the x-axis. Please note, that there are dif-
ferent instances with the same amount of total arguments, which leads to multiple
marks for the same x-value in the graph. This graphic seems to confirm the intuitive
assumption, in general. Except for a few single data points, a positive correlation
between the amount of arguments per instance and the resulting running times can
be observed.

In contrast to that, Figure 20 can be considerd, that shows the running time for
the problem of EE for the d-preferred semantics.

In this graphic an increasing trend of the running times dependently on the amount
of arguments per instance can be observed generally. However this correlation is
not that strong compared to the correlation that was found in Figure 19. In com-
parison to the clear trend in this graph, the graph for the d-preferred semantics is
interrupted by a lot of single peaks.

In addition to that Figure 21 shows the running time for the problem of EE for the
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Figure 19: Running time for problem EE of the d-grounded semantics.

Figure 20: Running time for problem EE of the d-preferred semantics.
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stable semantics.

Figure 21: Running time for problem EE of the stable semantics.

Compared to the previous graphs, in this graph no trend can be observed. The
running times are irregularly distributed over the whole graph.

These results lead to the conclusion that the total number of arguments in an
instance does have an influence on the running time. However this correlation is
not linear for all cases, instances with less arguments can also be more complex than
instances with a higher amount of arguments.

7.3.3 Impact of the semantics:

Figure 22 shows the running times for the problem of EE for the semantics of d-
preferred (D_PR), d-grounded (D_GR), d-complete (D_CO) and stable (ST).

This graph confirms the assumption of a positive correlation between the extent
of an encoding and the running time. The encodings of the stable and d-complete
semantics do have the lowest amounts of lines and show the lowest values regard-
ing running time. There is only one exception for the d-complete semantics, where
one instance passed the timeout of 600 seconds. The second highest amount of lines
corresponds to the d-grounded semantics, that achieve the second highest values
regarding running time. The most extensive encoding belongs to the d-preferred
semantics, that shows the highest running times in the graph.

7.3.4 Impact of the type of admissibility:

Figure 23 shows the running times for the problem of EE for the preferred semantics.
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Figure 22: Running time for problem EE of different semantics.

Figure 23: Running time for problem EE of d-, s- and c-preferred semantics.
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This graph confirms the assumption of a very similar running time for all three
different types of admissibility. These results support the conclusion, that the type
of admissibility does have an inferior impact on the running time.

7.3.5 Impact of the problem type:

To investigate the assumption of a higher running time for the problem of EE, com-
pared to the running times of the problems DS and DC Figure 24 can be consid-
ered. This figure shows the running time of the three different problems for the
d-grounded semantics.

Figure 24: Running time for different problems of the d-grounded semantics.

This graph confirms the assumption of a similar running time for the problems of
DS and DC, but it does not support the assumption of a higher running time for the
problem of EE. In contrast to that, all three problem types show a similar running
time. In comparison to that Figure 25 shows the running time of the three different
problems for the d-preferred semantics.

This graph supports the assumption of a higher running time for the problem of
EE, in addition to that an area can be found where the problem of DS shows a higher
running compared to the problem of DC.

Conclusively Figure 26 shows the running time of the three different problems for
the stable semantics.

This graph is very similar to Figure 24, in which a very similar running time for
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Figure 25: Running time for different problems of the d-preferred semantics.

Figure 26: Running time for different problems of the stable semantics.
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the three different problems could be observed. In contrast to that an area with the
same ranking, that was found in Figure 25, can be found.

Conclusively a very similar running time for all three problems could be shown in
general. Only for the d-preferred semantics differences regarding the running time
could be shown for the three different problem types.

7.3.6 Impact of the support interpretation:

To investigate the assumption that the usage of the evidential interpretation of sup-
port can lead to a reduction of running time compared to the deductive interpreta-
tion of support, Figure 27 can be considered. This figure shows the running time for
the problem of EE for the d-grounded semantics.

Figure 27: Running time for problem EE of the d-grounded semantics.

The results are presented as an x-y-Plot. In comparison to the previously used
Cactus-Plots the instances are not sorted by their running times. Each data point
in the graph corresponds to the same instance and is plotted by using the running
time for the deductive interpretation of support as the y-value and the running time
for the evidential interpretation of support as the x-value. Both axis are using a
logarithmic scale and in addition to the data points a dotted line that represents the
diagonal is plotted. When a data point is located on this dotted line this means, that
both interpretations of support achieved the same running time for this instance.
When a data point is located under the dotted line this means, that the running time
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of the deductive interpretation of support was lower for this instance, compared to
the evidential one.

The results for the d-grounded semantics do not support the assumption, both in-
terpretations of support show a similar running time for all instances. In comparison
to that Figure 28 shows the running time for the problem of EE for the d-preferred
semantics.

Figure 28: Running time for problem EE of the d-preferred semantics.

In contrast to the results for the d-grounded semantics, these results show a pre-
cise reduction of running time for the evidential interpretation of support. All data
points, except a few single data points, are located over the dotted line. In addi-
tion to that Figure 29 shows the running time for the problem of EE for the stable
semantics.

In this graph all data points, except a few single data points, are located over the
diagonal.

Conclusively the results support the assumption of a reduced running time for
the evidential interpretation of support compared to the deductive one. The distin-
guish between standard and prima-facie arguments for the evidential interpretation
of support can lead to a reduction of the cardinality of Ratt and this reduction is
associated with a lower running time. However this correlation is impacted by the
type of the semantics. For the d-grounded semantics this correlation could not be
shown.
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Figure 29: Running time for problem EE of the stable semantics.

7.3.7 Impact of the implementation:

To investigate the assumption of a precise reduction of running time for the ASP-
based encodings compared to the Java based encodings from the TweetyProject,
Figure 30 can be considered. This figure shows the running time for the problem of
EE for the d-preferred semantics.

Unfortunately only the d-preferred semantics could be computed without errors
by the solver of the TweetyProject. The solver was able to determine the extensions
for instances with a maximal amount of 23 arguments. For instances with an amount
of 24 or more arguments a memory overflow occurred, that lead to a completely
empty output for these instances. The respective running times where manually
changed to 600 seconds. In contrast to that the extensions of all instances, except of
a single one, could be computed completely by using the ASP-based encodings. The
graph from Figure 30 confirms the assumption of a precise reduction of running time
for the ASP-based encodings. For all instances the ASP-based encodings were faster
or equal, regarding running time, to the Java-based encodings of the TweetyProject.
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Figure 30: Running time of problem EE for the d-preferred semantics.

8 Conclusion

In this work the concepts of two very important models for formulating human
argumentation: the abstract argumentation frameworks and the bipolar argumen-
tation frameworks were introduced. By using BAFs, realistic frameworks of human
argumentation can be build. This is due to the fact, that in addition to the possibility
of attack relations, support relations between arguments can be used.

The interpretation of the support relation is not uniformly. Three different in-
terpretation of support: deductive, necessary and evidential were presented. The
interpretation of support is highly related to the context of the argumentation frame-
work. In addition to that each type of support interpretation has its own complex
attacks. This results to different acceptable sets of arguments for the same frame-
work, when the support relation is interpreted in different ways.

The existing argumentation reasoning tool ASPARTIX, that proofs the possibil-
ity of using the declarative programming paradigm of answer set programming,
for computing the acceptable sets for AFs and BAFs, was extended. The presented
encodings are able to compute the extensions of all common desired semantics of
BAFs with the deductive, necessary or evidential interpretation of support. To the
best of my knowledge these encodings are the first published ASP-based encodings
with these properties.
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The presented encodings were compared to the Java-based solver of the Tweety-
Project, which is also able to compute the extensions of the desired semantics of
BAFs with the deductive, necessary or evidential interpretation of support. The
developed ASP-based encodings showed a precise reduction of running time com-
pared to the Java-based solver, which underlies the potential of using ASP for rea-
soning tasks.

In addition to that analysis of the factors that influence the running time of the
developed ASP-based encodings was performed. The results showed that the influ-
ence of the type of the semantic do have an impact on the running time. Whereas
no impact or no linear correlation could be shown for the amount of arguments per
instance, the type of admissibility, the ratio of support relations (w.r.t. the amount
of arguments) and the type of problem that is considered for the semantic.

Future work has to be done, to investigate the impact of the different factors to the
complexity of a BAF. With a better understanding of how these factors influence the
complexity of a BAF, the differences in running time can be estimated and explained
in a more detailed way.
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