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Abstract

In abstract argumentation, self-attacking arguments and the unequal treatment of
arguments in odd- and even-length attack cycles are some of the issues of classic
semantics that are addressed by weak admissibility semantics. Most computational
problems under weak admissibility semantics are PSPACE-complete. Our research
presents a direct implementation to decide credulous acceptability under weak ad-
missibility semantics. On the other hand, statistical analysis and machine learning
have been widely used to solve complex problems with the aid of data. The question
arises whether these tools could also provide insights about the credulous accept-
ability of arguments under weak admissibility semantics. This research answers
this question by gathering data on argumentation frameworks and arguments, de-
termining the credulous acceptability status of each argument, and statistically an-
alyzing the data. Our findings, based on logistic regression, show that simple tech-
niques are able to determine credulous acceptability under weak admissibility se-
mantics better than chance. Furthermore, based on the results of the analysis, we
assess the feasibility of using more complex models (e.g. Support Vector Machines,
Graph Convolutional Networks) to solve the above mentioned problem, showing
moderately better results.
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Chapter 1

Introduction

Two important issues have motivated the use of argumentation in Artificial Intelli-
gence (AI), one related to reasoning with incomplete and uncertain information and
the second is related to explanation under the same circumstances (Bench-Capon
and Dunne, 2007; Simon, 1996; Atkinson et al., 2017). Efforts to advance this field
have led to the development of abstract argumentation frameworks. These frame-
works are based on a premise discussed by Simon (1996). This premise states that it
is the organization of components in an artificial system that matters and not their
individual internal properties. In an abstract argumentation framework only the at-
tack relation among single arguments matter, while ignoring the internal structure
and properties the arguments themselves.

Dung (1995) laid the foundation towards formalization of abstract argumenta-
tion frameworks by establishing an analogy to human argumentation. He pleaded
that, in a debate among rivaling positions, the wining argument would be that
which can offer each counterargument a response, thus remaining undefeated. He
then proceeded to formally define an argumentation framework in terms of a set
of arguments and binary relations among these arguments. Furthermore, he for-
malized the different ways in which undefeated arguments could be singled out
from defeated arguments. Dung called these collections of undefeated arguments
extensions and the rules followed to procure these extensions were called seman-
tics. Dung also recognized some limitations of his semantics. He realized that in
some particular constellations of argumentation frameworks (e.g. frameworks con-
taining an argument indirectly attacking a defender argument or the existence of a
self-defeating argument in the framework), his semantics could affect the existence
and the composition of extensions in an inconsistent manner.

Serious attempts to address and manage the inconsistencies mentioned above
have been presented in the definitions of CF2 and stage2 semantics (Gaggl and
Woltran, 2013; Baroni et al., 2018). More recently, a new semantics called weak ad-
missibility semantics has been proposed by Baumann et al. (2020b) and Baumann
et al. (2020a). Weak admissibility semantics try to distance themselves from naive
semantics as defined by Gaggl and Woltran (2013) and Baroni et al. (2018), while
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2 CHAPTER 1. INTRODUCTION

preserving most of the properties of the classical semantics proposed by Dung and
also addressing the issues of self-defeating arguments, and the equal treatment of
even- and odd-length attack cycles.

The expert reader might wonder, given the existence of so many different seman-
tics (Baroni et al., 2018), why do we need yet another form of semantics. The answer
lies in the fact that some semantics can only be applied to very specific framework
structures, such semantics fail in the presence of so called zombie-arguments, i.e.
arguments that have very little chance of being accepted but still prevent other ar-
guments from being accepted (Baumann et al., 2020b).

Dvořák et al. (2021) studied computational problems involving weak admissibil-
ity semantics, the complexity analysis resulted in the conclusion that decision prob-
lems in arguing with weak-admissibility semantics belong to the class of “problems
that can be solved using polynomial space of memory” also known as PSPACE-
Complete.

Given the complexity of some the decision problems posed by weak admissibil-
ity semantics (Dvořák et al., 2021), in particular the problem of acceptability (either
credulous or skeptical) with respect to a given semantics, we argue that following an
empirical approach based on exploiting implicitly and explicitly available informa-
tion in an AF, might help us identify beforehand certain features of the arguments
of the AF that make them more prone to be part of an extension and also in deciding
acceptability of an argument. This information might be useful in the implemen-
tation of solution search algorithms that use this information as heuristics to help
guide the search as proposed by Craandijk and Bex (2020).

In another vein, during the past two decades, increasing availability of data and
computing power has fostered major breakthroughs in the field of ML. The philos-
ophy behind ML techniques moves away from hard-wiring rules in computational
agents or computer programs. The aim of ML is to learn from experience. We teach
our agent or computer program by exposing it to examples of correct behavior. The
agent learns to make predictions based on the seen examples and tries to improve
with each new instance seen, we say our agent is “learning”. Basically, we expose
our computer program to a very large amount of data for the purpose of modeling,
prediction or control (Russell and Norvig, 2021). This approach has proven to be a
success in solving some challenging problems.

To the best of our knowledge and at the time of this writing only a few teams
(Kuhlmann and Thimm, 2019; Craandijk and Bex, 2020; Malmqvist et al., 2020) have
attempted the use of ML to approach the problem of argument acceptability (either
credulous or skeptical) under classic semantics showing promising results. Further-
more, we have no antecedents about the application of ML techniques to weak-
admissibility semantics. In this master thesis, we will explore the use of statistical
analysis and ML techniques to determine credulous acceptability of arguments in
an AF under weak admissibility semantics. But first, we will design and implement
a solver that can provide the exact acceptability status of arguments in an AF in a
moderate amount of time.
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The goals of the present study are three-fold:

1. To develop an exact solver for credulous acceptability under weak admissibil-
ity.

2. To explore the feasibility of using statistical analysis to identify patterns of
credulous acceptability under weak admissibility semantics.

3. To apply ML techniques to determine credulous acceptability under weak ad-
missibility semantics. More specifically, we will train a Support Vector Ma-
chine (SVM) and a Graph Convolutional Neural Network (GCN), compare
and evaluate its performance in the face of the problem mentioned above.

In the following chapter, we review fundamental definitions of classic seman-
tics followed by a description of weak admissibility semantics and we highlight the
differences among the two. We explore typical computational problems of this rela-
tively new semantics and discuss their complexity; we introduce some algorithmic
solutions to the problem of interest. We also present a review of studies applying
ML techniques in classical semantics.

Chapter 3 offers a description of the design and implementation of the software
developed to solved the problem of credulous acceptability under weak admissibil-
ity semantics. We implement an algorithm based on the ideas proposed by Dvořák
et al. (2022) based on SCC-recursiveness. In Chapter 4 we provide an overview of
the data set collected for this study. We analyze a set of AFs from the point of view of
descriptive statistics and try to find argument features that influence credulous ac-
ceptability under weak admissibility semantics. We design a model based on classic
statistical tools that allow us to identify credulously accepted arguments in an AF.

More advanced techniques are explored and summarized in Chapter 5. Two
models of classification are explored and compared: Support Vector Machine (SVM)
and Graph Convolutional Neural Network (GCN). Finally, in Chapter 6 we dis-
cuss the limitations of our study as well as the implications for future research. We
discuss major advantages and disadvantages of each prediction model and offer a
comparison in terms of binary classification metrics.
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Chapter 2

Background Literature

2.1 Fundamentals of Abstract Argumentation

We start our review of literature by recalling some basic definitions widely used in
abstract argumentation frameworks (Dung, 1995).

One of many Dung’s contributions was the idea that arguments could be treated
as abstract atomic entities whose interaction could be described in terms of attack
relationships among arguments. This simplified approach had a massive impact in
the field, making it the de-facto standard.

An Argumentation Framework (AF) is formally represented as a directed graph
F = (A, R). The set A is the set containing arguments in F and represents the
nodes in the directed graph. The set R ⊆ A× A defines the binary relation between
any two arguments a, b ∈ A such that an attack exists among these arguments. In
the directed graph, attacks between arguments are represented by arrowed edges
depicting the direction of the attack.

From now on we will assume finite argumentation frameworks, that is A is finite
and R is also finite.

An attack between two arguments in an AF F is defined as follows: an argument
a ∈ A is said to attack an argument b ∈ A if ( a, b) ∈ R. In other words, there is
a directed edge from a to b in F. Conversely, if b attacks a then we say that a is
attacked by b. Arguments can also attack sets of arguments in F and vice versa. We
can formally express these types of attack in the following manner: assume B ⊆ A,
let a ∈ A and b ∈ B, if a attacks b then we say that a also attacks B. If b attacks a, we
say that A is attacked by b. Let B ⊆ A and C ⊆ A, if b ∈ B attacks c ∈ C, we say that
B attacks C in AF.

Given an argumentation framework, the goal is to find sets of arguments which
are compliant with the following conditions:

1. They internally coherent, i.e. conflict-free. A set B ⊆ A is said to be conflict-
free if and only if for any two arguments a, b ∈ B an attack between a and
b does not exist in AF, i.e. (a, b) /∈ R and (b, a) /∈ R. Given an AF AF =<
A, R >, we denote the set of conflict-free sets in AF as c f (AF).

5
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2. They also present a coherent world-view with respect to the given argumen-
tation framework, that is, the members of set is collectively acceptable.

To comply with the conditions stated above, we use a series of rules called seman-
tics. Dung (1995) based his development of semantics and extensions on the concept
of acceptability and the concept of admissibility which we briefly review in the fol-
lowing sections.

2.1.1 Classic Admissibility

Dung began his treaty of admissibility by first establishing the concept of accept-
ability, he stated that given an argumentation framework F = (A, R) and a set of
arguments C ⊆ A, an argument a ∈ A is acceptable with respect to C if and only if
for any argument b ∈ A that attacks a, then b is attacked by C.

Expanding on this definition of acceptability, given an argumentation frame-
work F = (A, R) and a set of arguments C ⊆ A, Dung proposed two fundamental
conditions to identify a set of arguments as admissible:

1. the set of arguments C is conflict-free, and

2. every argument a ∈ C is acceptable with respect to C.

These two conditions have profound implications in the search of arguments
that can be part of an admissible set in the classical sense of admissibility. For a set
of arguments to be admissible we first require the set to be internally unimpeach-
able, meaning the arguments in the set cannot attack one another. Second, the set
needs to defend its arguments against every attack coming from the arguments not
included in the set, reflecting approximately a law of retaliation “an eye for an eye”.
In other words, any attack from any argument not included in the set to an argu-
ment in the set must be met with a counter-attack coming from any argument in the
admissible set.

Four types of extensions can be derived from the conditions above:

• Preferred extension: an admissible set C ⊆ A is a preferred extension if C is
maximal with respect to set inclusion.

• Stable extension: let C ⊆ A be conflict-free, C is a stable extension if and only
if C attacks each argument which is not included in C.

• Complete extension: an admissible set C ⊆ A is a complete extension if an
only if each argument which is acceptable with respect to C is a member of C.

• Grounded extension: a set C ⊆ A is a grounded extension if and only if C is a
minimal with respect to set inclusion complete extension of AF.
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Baumann et al. (2020b), Baumann et al. (2020a) and Dvořák et al. (2021) argue
that classic admissibility is problematic in the presence of self-defeating arguments
as well as arguments involved in an odd-length attack cycles. Such so-called zombie
arguments can prevent “reasonable” arguments from being accepted even if they
do not stand a chance of being accepted themselves. To address these issues they
propose weak admissibility semantics and we explain it in the following section.

2.1.2 Weak Admissibility

Weak-admissibility intends to address the issues mentioned previously by relaxing
the second condition of classic admissibility. Weak admissibility semantics propose
that a conflict-free set only has to respond to attacks from “serious” arguments. Ba-
sically, we are allowed to ignore attacks from zombie arguments.

Dvořák et al. (2021) and Baumann et al. (2020b) use a recursive procedure based
on what they call the reduct with respect to a set of arguments which is defined as
follows:

Let F = (A, R) be an argumentation framework, given C ⊆ A, let C+ be the
set of arguments that receive an attack from any of the arguments contained in C.
Formally, let C+ = {a ∈ A|b ∈ C ∧ (b, a) ∈ R}.

Furthermore, let C⋄ be the range of C defined by C⋄ = C ∪ C+. Then, the reduct
of F with respect to C is the argumentation framework FC =< C∗, R ∩ (C∗ × C∗) >,
where C∗ = A \ (C ∪ C+) = A \ C⋄ (Baumann et al., 2020b; Dvořák et al., 2021).

The set C is said to be weakly admissible, or w-admissible, if and only if the
following conditions are both met:

1. C is conflict-free, and

2. an attacker of C does not belong to any of the weakly admissible sets of the
reduct of AF with respect to C.

However, weakening the concept of admissibility has consequences in the way
we now account for the defense of the arguments, particularly because only serious
attacks must receive a counter-attack, that is, if C receives an attack from an argu-
ment in the reduct, either the set C contains an argument that offers a counter-attack
(in which case the attacker would not appear in the reduct, because it would be part
of the range) or we have to make sure that the attacker is not weakly admissible in
the reduct. Formally, given an argumentation framework F =< A, R > and two sets
of arguments C, X ⊆ A, we say C weakly defends X if and only if for any attacker
a of X we have:

1. C attacks a, or

2. a does not belong to any w-admissible set of the reduct with respect to C,
a /∈ C, and X ⊆ X′, such that X′ belong to an w-admissible set of F.
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Besides weak-admissible extensions, denoted by admw(F), weak-admissibility
semantics recognize the existence of three types of extensions given an argumenta-
tion framework F = (A, R):

1. Weakly preferred extension: a weakly admissible set C ⊆ A is called w-
preferred if C is maximal with respect to set inclusion, we say C ∈ prw(F).

2. Weakly complete extension: a w-admissible set C ⊆ A is called w-complete
if and only if for any X, such that C ⊆ X and X is w-defended by C, we also
have X ⊆ C, we say C ∈ cow(F).

3. Weakly grounded extension: a w-complete set C ⊆ A is called w-grounded if
and only if C is minimal with respect to set inclusion, we say C ∈ grw(F).

2.2 Computational Problems in Abstract Argumentation

Given an abstract argumentation framework F = (A, R) and a semantics σ, the
type of computational problems most commonly addressed in the abstract argu-
mentation literature belongs to one of the following categories (Charwat et al., 2015;
Lagniez et al., 2020):

• Decision problems: decide whether an argument a ∈ A can be either credu-
lously or skeptically accepted with respect to a given semantics.

– Credulous Acceptability (CD-σ): returns True if the argument a belongs
to any of the extensions of F under σ, returns False otherwise. Formally,
a ∈ ∪

σ(F).

– Skeptical Acceptability (SD-σ): returns True if the argument a belongs
to all of the extensions of F under σ, returns False otherwise. Formally,
a ∈ ∩

σ(F).

• Counting problems: compute the number of extensions in F given a semantics
σ.

• Search problems: find extensions of F given a semantics σ.

Given an AF F = (A, R) and a weak admissible semantics σ ∈
{admw, prw, cow, grw}, the complexity analysis showed (Dvořák et al., 2021; Dvořák
et al., 2022) that decision problems of credulously acceptability belong to the class
of PSPACE-Complete problems. While skeptical acceptability under a semantics
σ ∈ {prw, cow, grw} is also considered to belong the class of PSPACE-Complete prob-
lems, skeptical acceptability under weak admissibility is trivial, due to the fact that
the empty set is always w-admissible.
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In the course of this work we dedicate our efforts to the problem of credulous
acceptance under weak admissibility semantics. Below, we survey algorithms sug-
gested by Dvořák et al. (2021) and Dvořák et al. (2022), these algorithms were de-
signed with the purpose of verifying whether a set of arguments was weakly admis-
sible and serves as a building block to later determine the credulous acceptability of
one argument.

2.2.1 Verifying weak admissibility of a set of arguments

Solving problems under weak admissibility semantics is difficult. In an attempt to
simplify the problem at hand, Baumann et al. (2020b) recommend the elimination
of all self-attacking arguments as well as their incoming and outgoing attacks. Al-
though this pre-processing step delivers small gains, we make it mandatory and
will assume in the following sections that the AF has been stripped off of all self-
attacking nodes.

Given an AF F = (A, R),let F be stripped-off self attacking arguments and let
S ⊆ A, verifying weak admissibility of this set in F according to the iterative proce-
dure described by (Dvořák et al., 2021), consists of three main steps, as illustrated in
Algorithm 1.

1. Verifying that S is conflict-fee, i.e. S ∈ c f (F). If not, S is not w-admissible.

2. Compute the reduct of F with respect to S.

3. Iterate over all subsets T of the reduct that contain at least one attacker of S.

(a) Verify whether T is w-admissible in the reduct of F w.r.t S. If so, S is not
w-admissible.

4. If no set T containing at least one attacker of S in the reduct could be found,
the set S is w-admissible.

Algorithm 1 Verifying w-admissibility of a set S

Require: S ⊆ Args(F)
1: procedure VER-WADM(S, F)
2: if NOT ISCONFLICTFREE(F, S) then
3: return False
4: FS ← REDUCT(F, S)
5: for all T ∈ {T|T ⊆ Args(FS) ∧ T attacks S} do
6: if VER-WADM(FS, T) then
7: return False
8: return True

By decreasing the size of the AF — applying the reduct— in the last step in
Algorithm 1, the recursion depth is bounded from above by the number of nodes in
the original AF (Dvořák et al., 2021).
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2.2.2 Deciding credulous acceptability under weak admissibility seman-
tics

Given an AF F = (A, R) and an argument a ∈ A. Let Args(F) = A, i.e. the set of
arguments A contained in F, let admw(F) denote the weakly admissible sets of F.
One approach to solve the problem of credulous acceptability under w-admissible
semantics consists of two building blocks (Dvořák et al., 2021): the first one relates
to finding a set of arguments containing a and then verifying whether this set is
w-admissible, see Algorithm 2.

1. Find a set S ⊆ A such that a ∈ S, and S has not been previously processed.

2. Test whether S ∈ admw(F)), if true, a is credulously accepted under admw

semantics and we can stop. If not test the next set S until we have no more
new sets to test, then a is not credulously accepted under admw semantics.

Algorithm 2 Deciding credulous acceptability under admw semantics

Require: a ∈ Args(F)
1: procedure CREDACC-WADM(F, a)
2: SS ← GENERATESUBSETS(F, a)
3: for all S ∈ SS do
4: if VER-WADM(F, S) then
5: return True
6: return False

Notice how Algorithm 2 describes a blind search for a solution (Pearl, 1984), the
order in which the sets of arguments containing the argument a are tested for w-
admissibility is not governed by any criterion other than the order in which they
were generated. The approach mentioned above also involves another kind of de-
cision problem: the problem of deciding or verifying whether a set of arguments
S ⊆ A is w-admissible. We describe a solution to this problem in the following
section.

Up to now, we have presented alternatives to solving decision problems under
weakly admissible semantics for one argument and for a set of arguments. For the
purpose of our research and for the sake of implementing an exact solver that pro-
vides the precise credulous acceptance status of every argument in an AF, the fol-
lowing section presents a constructive approach to generating extensions in abstract
argumentation.

2.2.3 Solving Search Problems with SCC-Recursiveness

All classic semantics lend themselves to the idea of partitioning an AF into Strongly
Connected Components to generate all of its extensions component-wise (Baroni et
al., 2005).
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We call a directed graph strongly connected if given any pair of nodes in the
graph, there are directed paths between them. Formally, let F = (A, R) denote a
directed graph, and for any two nodes a, b ∈ A, there are paths from a to b and from
b to a. Then we say F is strongly connected (Tarjan, 1971; Tarjan, 1972, Definition 4).

Furthermore, we say two nodes a, b ∈ A in F are equivalent if there is a closed
path from a to a which also contains b. Let Ai denote one of the n sets of equivalent
nodes in F, with i = 1, . . . , n. Suppose Fi = (Ai, Ri) and Ri = {(a, b) ∈ R|a, b ∈ Ai}.
We call each Fi a Strongly Connected Component (SCC) of F, provided Fi is strongly
connected and for every subgraph Fi, Fj in F neither the nodes Ai nor the edges Ri
are subsets of Aj, Rj, respectively (Tarjan, 1972, Lemma 8).

The nodes in a directed graph can be partitioned into SCCs, where the nodes in
each component are strongly connected, i.e. every node contained in the SCC can
be reached through a directed path from any other node in the same SCC (Skiena,
2020).

Similarly, the AF is represented as a directed graph and its nodes are partitioned
into components, so that every node is assigned to only one component. The as-
signment condition depends on the node being reachable from any other node also
contained in the SCC by a directed path. Partitioning a directed graph into its SCCs
inevitably results in a directed acyclic graph of SCCs with one or more initial SCCs
from which we can start the computation of extensions in a sequential form using a
base function (Baroni et al., 2005).

SCC-recursiveness represents a divide-and-conquer approach to constructing
extensions. Instead of dealing with the whole AF at once, we can work with sin-
gle SCCs starting from the initial SCCs — SCCs with no incoming attacks by any
other SCC — and working our way “down” until we have exhausted all possibili-
ties of finding extensions (Dvořák et al., 2022). SCC-recursiveness also requires that
a semantics can be characterized by a base function. The base function should be
capable of generating the extensions of the AF consisting of a single SCC for the
desired semantics.

Unfortunately, SCC-recursiveness cannot be applied to all weak admissibil-
ity semantics. In particular, Dvořák et al. (2022) proved that we can use SCC-
recursiveness without further ado to find weakly preferred extensions in a given
AF. The procedure consists of partitioning an AF into SCCs (Baroni et al., 2005). We
now assume a new AF consisting of only the arguments contained in the initial SCC.
Remember that this is an initial SCC, therefore, there are no incoming attacks, and
for the moment we will ignore the outgoing attacks. The idea from here is to apply
a base function to generate all weakly preferred sets of this SCC. After generating
the weakly preferred extensions for this portion of the AF, we encounter one of the
following situations:

1. At least one weakly preferred extension was found.

2. No weakly preferred extensions were found.
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In the first case, in which we found at least one w-preferred extension in the
initial SCC, we compute the reduct of the AF with respect to the extension found and
recursively continue the process of finding w-preferred extensions in the reduced
AF, each new extension found is added to the presiding one by a union of sets.

In the second case, in which no w-preferred extensions could be found in the
SCC, we have to eliminate the arguments contained in the SCC, as well as their
out-going attacks, from the graph representing the AF. Then, we find w-preferred
extensions in the new downsized AF.

Algorithm 3 Finding Weakly Preferred Extensions with SCCs

1: procedure FINDWPREFEXTENSIONS(F)
2: SCCS← STRONGLYCONNECTEDCOMPONENTS(F)
3: for all initial SCC ∈ SCCS do
4: wpre f ext← BASISFUNCTION(F, SCC)
5: if wpre f ext ̸= {∅} then
6: Fwp ← REDUCT(F, wpre f Ext)
7: wpre f ext← wpre f ext ∪ FINDWPREFEXTENSIONS(Fwpe)
8: else
9: Remove SCC from F

10: wpre f ext← FINDWPREFEXTENSIONS(F)
11: return wpre f ext

SCC-recursiveness offers certain advantages in the computation of w-preferred
extensions, because the partitioning of the AF and the subsequent reduction in size
make run-time scale exponentially with the size of the largest SCC but run-time also
scales in polynomial time with the size of the AF (Dvořák et al., 2022). Furthermore,
certain graph structures allow the complexity of weak admissibility semantics to
approach their classic counterparts, that is their complexity decreases considerably.

We cannot and should definitely not count on AFs having convenient structures
and even with clever algorithms, problem solving in weak admissibility semantics
continues to be hard. Maybe it is time to explore some data-centric alternatives
and see how statistical tools and Machine Learning (ML) can contribute to solving
problems in abstract argumentation under weak admissibility semantics.

2.3 Machine Learning in Abstract Argumentation

In Section 2.1, we established that argumentation frameworks can be defined as a
directed graph with nodes representing the arguments in the AF and the directed
edges characterizing the attacks. This kind of representation has enabled the appli-
cation of advanced techniques in ML (Kuhlmann and Thimm, 2019; Craandijk and
Bex, 2020; Malmqvist et al., 2020). These ML models share a common goal: solving
the computational problem of deciding the credulous acceptability of arguments
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under preferred semantics in the classical sense. Mainly, this problem can be cast as
a binary classification problem.

To this effect we were able to identify two classes of implementations. On the
one hand, we have implementations that partially exploit the directed nature of
the graph and are based on spectral Graph Convolutional Neural Network (GCN)
(Kuhlmann and Thimm, 2019; Malmqvist et al., 2020); on the other hand, we have
an implementation which exploits the digraph more extensively and are based on
spatial Message Passing Neural Network (MPNN) models (Kollias et al., 2022). Both
classes are discussed below.

2.3.1 Graph Convolutional Neural Network (GCN) Models

Graph Convolutional Neural Network (GCN) build on the idea that graphs can be
treated in a similar way as visual data. The goal is to learn a function whose input
consists of two components (Kipf and Welling, 2016):

1. A description of the graph structure in matrix form. Commonly, the adjacency
matrix of an undirected graph.

2. A feature matrix X of size N×D, where N denotes the number of nodes in the
graph and D denotes the number of input features.

The learned function produces an output at the node-level denoted by a matrix
Y of size N × F, where F denotes the number of output features per node. The
learned function contains filters with a limited perceptive field which then feed into
an activation layer, the neural network activates when certain patterns are present
at some spatial position of the input.

Kuhlmann and Thimm (2019) set out to train a classification model based on a
modified version of the Graph Convolutional Neural Network (GCN) proposed by
Kipf and Welling (2016). The aim of the GCN model was to determine the credu-
lous acceptability status of the arguments in an AF under preferred semantics. The
training and test set in this experiment was partly generated by probo (Cerutti et
al., 2014b) and partly by AFBenchGen (Cerutti et al., 2014a), additional test data
was obtained from the International Competition on Computational Models of Ar-
gumentation (ICCMA) 2017 1. The results in terms of overall accuracy on the test
data were rather moderate, ranging from 60 to 80 percent of correctly classified ar-
guments. Further analysis shows that the proportion of arguments that were cred-
ulous acceptable for real and were classified as such by the model was at most 27
%. The model showed a better performance at classifying arguments as non credu-
lously accepted, with a rate of up to 98% correctly classified arguments. However,
the accuracy loss experienced by using the GCN model was to some degree com-
pensated by the faster running time as compared to exact methods. These results
support the widely known trade-off between finding optimal solutions for complex
problems and the cost of arriving at those solutions (Simon, 1996; Pearl, 1984).

1http://argumentationcompetition.org/2017/results.html
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Later on, Malmqvist et al. (2020) devised an experiment in which the input where
set to include node embeddings generated using DeepWalk (Perozzi et al., 2014) be-
sides the adjacency matrix of the undirected graph derived from the AF. The model
consisted of 4 to 6 convolutional hidden layers. These hidden layers contained an
additional residual connection composed of a feature matrix containing the in- and
out-degree of each node and the normalized adjacency matrix. The goal of this
model was to classify arguments in terms of credulous and skeptical acceptability
with respect to preferred semantics. The training and test set in this experimen-
tal setting was conformed by a selection of the benchmark dataset used during the
International Competition on Computational Models of Argumentation (ICCMA)
2017.

Malmqvist et al.’s model with six convolutional layers showed superior accuracy
as compared to Kuhlmann and Thimm’s model applied to the same training/test
set. Particularly, the correct classification of credulously accepted arguments went
from 10% using Kuhlmann and Thimm’s model to 71% using Malmqvist et al. with
an unbalanced dataset. Regarding the classification of not credulously accepted ar-
guments, classification accuracy was lower for Malmqvist et al. with 92% as com-
pared to 97%. Regarding solution cost, Malmqvist et al. (2020) findings were consis-
tent with Kuhlmann and Thimm (2019), the cost of training and using the model to
classify arguments was relatively low when compared to the cost of computing an
exact solution with a good solver.

2.3.2 Message Passing Neural Network (MPNN) Models

Message Passing Neural Networks are an alternative technique to processing
graphs in ML (Gilmer et al., 2020). This technique aims at encoding information
on the graph into a feature vector and consists of two phases:

Message passing phase collects a series of updates of a node in T steps. The up-
dates consist of a hidden state and aggregated messages from the node’s
neighbor.

Readout phase computes a feature vector for the whole graph using a readout func-
tion.

Unlike the GCN model used in Kuhlmann and Thimm (2019) and Malmqvist
et al. (2020), MPNN can be easily extended to fully harness the directed nature of
attacks in an argumentation framework (Gilmer et al., 2020). Remember that in both
studies, the adjacency matrix was always formed from the undirected graph of the
argumentation framework. The techniques described in Kipf and Welling (2016),
Kuhlmann and Thimm (2019), and Malmqvist et al. (2020) make one crucial math-
ematical assumption: the adjacency matrix is symmetric and thus its Laplacian is
symmetric too, the Laplacian is also positive semi-definite. This assumption de-
rives from the fact that undirected graphs produce symmetric adjacency matrices
and Laplacians which can be later factorized using eigenvalues and orthonormal
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eigenvectos (Strang, 2019). Assuming a positive semi-definite Laplacian is crucial
for the application of spectral convolutions and ultimately the filtering step. How-
ever, the Laplacian of a directed graph cannot always be factored in the same way a
Laplacian of an undirected graph can be factored (Veerman and Lyons, 2020; Kollias
et al., 2022).

To circumvent this issue with directed and undirected graphs and account for
the directed nature of the graph on an argumentation framework, Craandijk and Bex
(2020) developed a model called Argumentation Graph Neural Network (AGNN)
that applied and extended the concepts of a MPNN to directed graphs. The goal of
the AGNN model was to determine credulous and skeptical acceptability for each
one of the classic semantics: grounded, preferred, stable and complete semantics.
The model was trained on a data set containing one million AFs with a number
of arguments between five and 25. The data set was generated using the ICCMA
2017 benchmark generators. The test set consisted of a thousand AFs containing
25 arguments each. Their results when compared to Kuhlmann and Thimm (2019)
were vastly superior when analyzed under the lens of the Matthews Correlation
Coefficient (MCC). This measure of a classifier performance has proved more robust
than the more usual measures of performance, particularly in the presence of an
unbalanced number of members in each class.

The authors also claimed that their model can also be applied to larger and more
complex AFs than seen during the training stage by just increasing the number of
steps T.

Problems in weak admissibility semantics are hard (Dvořák et al., 2021) and the
availability of working exact solvers is limited. Probably due to the relatively nov-
elty of weak admissibility semantics, we have not seen any studies assessing the
feasibility of applying ML techniques towards solving computational problems in
this area. In this study we would like to address both issues. During the course
of this research we design and implement an exact solver for credulous acceptabil-
ity under weak admissibility semantics. The solver provide us with the necessary
data to later use statistical tools and ML techniques to investigate the viability of
approximate solutions with low cost.

As we have seen, two different types of ML techniques has been applied to the
problem of deciding credulous acceptability under preferred semantics. The results
are promising in the sense that once a model has been trained, it can perform rel-
atively well at identifying an arguments’ credulous acceptability in very short run
time.
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Chapter 3

Credulous Acceptability under
W-Admissibility

In this chapter, we briefly discuss the two general approaches to solve problems in
abstract argumentation. We also describe our own implementation as well as the
caveats and assumptions that led its development.

3.1 Types of Implementation

Typically, researchers and experts have implemented solutions to computational
problems in abstract argumentation using two kinds of approaches (Charwat et al.,
2015; Cerutti et al., 2018):

1. reduction-based implementation, and

2. direct implementation.

Reduction-based implementations make use of sophisticated well-maintained
solver tools initially designed for other problem domains. By translating a reasoning
problem into an equivalent formalism appropriate to the solver in question, we can
take advantage of existing software to produce outputs that will be interpreted as
solutions to the original problem (Cerutti et al., 2018). This type of implementation
require developers to have a solid understanding of both the formalism of abstract
argumentation and the formalism of the target system.

On the other hand, direct implementations consist of software written from
scratch for the specific problem at hand. They are able to incorporate certain fea-
tures specific to abstract argumentation that may drive great improvement, while
incorporating the same feature in a reduction-based approach may only lead to lim-
ited improvement, if at all (Cerutti et al., 2018).

Unlike classic semantics, weak admissibility semantics has not seen much de-
velopments on the implementation of tools for this particular formalism. After
consulting with the proponents and specialized researchers of the theory behind

17
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weak admissibility semantics, neither a reduction-based nor a matured direct im-
plementation was available. One publicly available implementation of a reasoner
for weakly admissibility semantics is included in the TweetyProject 1 (Thimm, 2014;
Thimm, 2017) and is a direct implementation in Java developed by Lars Bengel at
the Artificial Intelligence Group in Hagen.

After reviewing this implementation, I decided against incorporating it in my
research for two main reasons:

1. I suspected that this implementation would only work in reasonable time for
AFs containing a limited amount of arguments. This suspicion would later
prove correct in our own implementation. The repeated generation of conflict-
free sets even in a reduced AF requires a considerable amount of resources,
slowing down the process.

2. Interfacing with this reasoner required some serious effort to first process the
amount of AFs needed for the analysis and to produce an output structure
conductive to further analysis and processing.

Furthermore, our research goals require that we determine the credulous accept-
ability status of arguments under weak admissibility semantics in a “large” number
of AFs under constraints relative to time and limited computational resources. To
this end, we developed a direct implementation using the ideas proposed by Dvořák
et al. (2021) and Dvořák et al. (2022).

In the following sections, we will discuss an alternative statement of our prob-
lem that will contribute to the application of more refined strategies and possible
improved use of computational resources.

3.2 Problem Reformulation

As stated above, our goal was to determine the credulous acceptability status un-
der weak admissibility semantics for every argument in a number of AFs. Instinc-
tively, we felt inclined to use some adaptation of Algorithm 2, and run it for each
argument in an AF. However, this course of action would have prevented us from
taking advantage of some strategies mentioned by Dvořák et al. (2022). These strate-
gies would not be applicable to weak admissibility semantics, but taking a different
perspective on the problem would allow us to use them without further ado.

There exists a conceptual link between weakly preferred extension and weakly
admissible extensions, and the argument goes like this:

”For an AF F = (A, R), E ⊆ A is called weakly preferred (or w-pref)
in F (E ∈ prw(F)) if and only if is ⊆-maximal in admw(F).” (Baumann
et al., 2020a, Definition 2.7).

1http://tweetyproject.org/

https://www.fernuni-hagen.de/aig/en/
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Because weakly preferred extensions are maximal (with respect to set inclusion)
weakly admissible extensions, this implies that for any C such that C ∈ admw(F)
there exists some D ∈ prw(F) such that C ⊆ D. It follows that the union of all
weakly preferred extensions in any AF equals the union of all weakly admissible
extensions of that AF.

In other words, let CAadmw ⊆ A be the set of all credulously accepted arguments
in an AF F = (A, R) under weak admissibility semantics, then

CAadmw =
∪

C∈admw(F)

C =
∪

D∈prw(F)

D (3.1)

Under this premises, we were able to restate the problem at hand, from deciding
credulous acceptability of arguments under weak admissibility semantics to enu-
merating all weakly preferred extensions in an AF, forming the union of the weakly
preferred extensions and obtaining the set CAadmw of credulously accepted argu-
ments under weak admissibility semantics.

In summary, our main new problem is ”enumerating all weakly preferred ex-
tensions in an AF”. This reformulation opens up the chance of considering SCC-
recursiveness as an strategy to iteratively reduce the problem size in the best cases
as described in Section 3.4.

Before we move on to the thick of our problem solution, we introduce two pre-
liminary steps to computing weakly preferred extensions. It should be noted that
both preprocessing steps can also be used in the determination of other extensions
under weak admissibility semantics.

3.3 Preprocessing Steps

The steps delineated in the following parts constitute an effort to reduce the problem
size in order to make our solution more scalable. In the best case, these steps will
greatly simplify the problem. In the worst case, they will do almost nothing for
the problem size and the resources needed to solve the problem. The cost of these
operations is nevertheless low and they will be carried out by default.

3.3.1 Exclusion of Self-Attacking Arguments

The first preprocessing step was initially proposed by Baumann et al. (2020b,
Theorem 3.10) and guarantees that the weak admissible and weakly preferred
extensions—computed with the resulting AF after this step is executed— will be
consistent with the extensions computed with the original AF.

The preprocessing consists of determining all arguments with self-loops. For-
mally, let F = (A, R) be an AF and let L ⊆ A be the set containing any argument
a ∈ A such that if (a, a) ∈ R then a ∈ L.

Once we have determined the set L of all self-attacking arguments we may pro-
ceed to remove them from F. Both the self-attacking arguments L as well as all
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incoming and outgoing edges to and from every argument a ∈ L will be banned
from the updated AF Fo.

Eliminating all self-attacking arguments from an AF will be carried out exactly
once and always at the point of object initialization. The succeeding steps will al-
ways assume that the AF under examination is free of self-attacking arguments.

3.3.2 Computing the Grounded Extension

The second preprocessing step is based on two important arguments. First, we ar-
gue that computing the grounded extension will be a low cost processing step that
would in some cases reduce a large AF into a manageable size.

Second, Baumann et al. (2020b, Proposition 5.11) provide the theoretical basis
for the computation of the grounded extension as a step towards computing w-
preferred extensions. More specifically, a by-product of the mentioned Proposition
is that ”w-complete extension always contain the classical grounded part.” More-
over, because weakly preferred extensions are maximal (with respect to set inclu-
sion) weakly complete extensions (Baumann et al., 2020b, Theorem 5.3), we can
safely assume that weakly preferred extensions also always contain the classical
grounded part.

Although, this step delivers good results for graphs containing initial nodes, in
the case of highly connected graphs (for example, large graphs with only one SCC)
this step will not offer a serious advantage. Nevertheless, its low computational cost
justifies its inclusion in our solution as a standard step.

Notice that in this procedure we are referring to the grounded extension in the
classical sense and should not be confused with its weak admissibility counterpart,
the weakly grounded extension. Computing the grounded extension of a given AF
F = (A, R) requires the following iterative steps (Baroni et al., 2005):

1. determining all initial nodes in the graph, i.e. identifying the unattacked ar-
guments in an AF

2. eliminating the initial nodes as well as the nodes attacked by it from F, i.e.
computing the reduct of F with respect to the initial nodes.

3. apply step 1 and 2 to the resulting AF until no initial nodes are found.

Once we have computed the grounded extension according to Algorithm 4, we
proceed to compute the reduct of the AF with respect to the grounded extension.
This will exclude from the AF, not only the grounded extension itself but also all
arguments attacked by it, leaving us, in the best case, with a smaller AF than the
original. The grounded extension will then be added to all the weakly preferred
extensions found in the “smaller” AF.

Unlike the first preprocessing step, this step is carried out not only at the be-
ginning of the program but also number of times throughout the weakly preferred
extension construction process, as we will see in the following section.
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Algorithm 4 Generating the Grounded Extension

Require: F = (A, R)
1: procedure GENERATEGROUNDEDEXTENSION(F)
2: gext← {}
3: if |A| == 0 then
4: return {}
5: for all unattacked arg ∈ A do
6: ADD(gext, arg)
7: Fgext ← REDUCT(F, gext)
8: gext← gext ∪ GENERATEGROUNDEDEXTENSION(Fgext)
9: return gext

3.4 Enumerating Weakly Preferred Extensions

In Section 2.2.3 we outlined an algorithm that would find weakly preferred exten-
sions with the aid of SCCs. The main idea is that the graph structure drives the
incremental construction of extensions (Baroni et al., 2005) as each initial SCC is pro-
cessed and nodes are subsequently suppressed based on the extensions found in the
SCC under examination. However, there were a few loose ends which we will de-
scribe in the paragraphs ahead. First, we will tackle the task of computing SCCs. We
will revisit Algorithm 3 and define the basis function, then we go on and integrate
the concept of the grounded extension into the wider and much general problem of
generating all weakly preferred extensions of an AF. We will also discuss an adap-
tation of Algorithm 1 presented in Section 2.2.1 for verifying weak admissibility of
a set of arguments in an AF that incorporates the ideas behind SCC-recursiveness.

3.4.1 Computing Strongly Connected Component (SCC)

We found several algorithms which compute the SCCs of a directed graph in linear
time. We had the suspicion that a recursive algorithm would prove problematic
in view of Python’s recursion limit, so they were discarded from the beginning.
Further study lead us to assume that not all of the non-recursive algorithms would
provide the best performance for any graph structure. Hsu et al. (2017) showed
that Tarjan’s algorithm (Tarjan, 1971) offered superior time performance for most
digraph structures irrespective of the programming language (C++, Java) in which
they were implemented.

We will not enter into the details of Tarjan’s algorithm, it does not belong to
the scope of this work. Suffice to say that we decided on the modified version of
this algorithm proposed by Nuutila and Soisalon-Soininen (1994). The reason be-
hind this decision was that this algorithm could process “sparse graphs and graphs
containing trivial components more economically”. Particularly, in the case where
we iteratively reduce the size of the original AF and more SCCs with one element



22 CHAPTER 3. CREDULOUS ACCEPTABILITY UNDER W-ADMISSIBILITY

appear, this algorithm remains efficient.

3.4.2 Finding Weakly Preferred Extension with SCC-Recursiveness

We already discussed the general idea behind SCC-recursiveness. Previously, we
also briefly discussed efficient algorithms to compute SCCs and presented and jus-
tified our choice. Still we are missing important pieces of the puzzle. The first one
relates to the so-called “basis function” which we will address now.

Algorithm 5 Finding Weakly Preferred Extensions

Require: F = (A, R)
1: procedure FINDWPREFERREDEXTENSIONS(F)
2: wpre f ext← {}
3: SCCS← STRONGLYCONNECTEDCOMPONENTS(F)
4: for all initial scc ∈ SCCS do
5: c f setsscc← GENERATECONFLICTFREESETS(scc)
6: wpre f ← False
7: for all c f set ∈ c f setsscc do
8: if ISWADMISSIBLE(scc, c f set) then
9: wpre f ← True

10: Fc f set ← REDUCT(F, c f set)
11: otherwpre f sets← GENERATEWPREFERREDEXTENSIONS(Fc f set)
12: for all otherset ∈ otherwpre f sets do
13: ADD(wpre f ext, (c f set ∪ otherset))
14: if wpre f ̸= True then
15: F ↓A\scc← REMOVE(F, scc)
16: otherwpre f sets← GENERATEWPREFERREDEXTENSIONS(F ↓A\scc)
17: for all otherset ∈ otherwpre f sets do
18: ADD(wpre f ext, otherset)
19: return wpre f ext

Algorithm 5 outlines a fine-grained version of Algorithm 3. After we have iso-
lated one of the initial SCCs from the rest of the AF we apply the basis function.
The SCC has no incoming edges, so we only need to cut loose the outgoing edges.
By definition, for each of the elements in an SCC there exists a path from any of the
other elements of the SCC, so we can safely assume that at this point, there will be
no initial nodes on which we could profit from computing the grounded extension.

The basis function (highlighted in Algorithm 5) applied to any initial SCC under
consideration consists of generating all conflict-free sets in the SCC and testing each
one of them for weak admissibility. We introduce a flag indicating the existence or
non-existence of a weakly admissible extension in the SCC.

In case an extension was found, we compute the reduct of the original AF with
respect to the weakly admissible extension found, and continue to generate exten-
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sions in the reduced AF that will later be joined together to form a preferred ex-
tension, in accordance with Dvořák et al. (2022, Theorem 5.8). After computing the
reduct of the AF, we may safely assume that our new AF will contain some initial
nodes. This is why instead of recursively applying the FINDWPREFERREDEXTEN-
SIONS procedure we use instead a generating procedure. This procedure will be
explained in the next section.

In case no weakly admissible extensions were found in the SCC, we completely
remove the SCC from the AF, all nodes and outgoing edges are removed from the
AF. Next, we continue to generate weakly preferred extensions from the resulting
restriction of AF. At this point, it is safe to assume there will be some initial nodes
in the restriction.

The second missing piece of the puzzle relates to the integration of the grounded
extension to the overall w-preferred extension generation process. It is time to direct
our attention to this piece.

3.4.3 Generating Weakly Preferred Extensions

The last building block in our solution consists of integrating the grounded exten-
sion and with the w-preferred extensions found using SCC-recursiveness.

The first step in this procedure corresponds to computing the grounded exten-
sion as explained in 3.3.2. Once we obtain the grounded extension, we determine
the reduct of the AF with respect to the grounded extension and proceed to gener-
ate the weakly preferred extensions in the reduced AF. If we have found weakly
preferred extensions in the reduced AF we are ready to add to each one of them the
grounded extension and return all w-preferred extensions of the AF.

Algorithm 6 Generating Weakly Preferred Extensions

Require: F = (A, R)
1: procedure GENERATEWPREFERREDEXTENSIONS(F)
2: wpre f exts← {}
3: gext← GENERATEGROUNDEDEXTENSION(F)
4: Fgext ← REDUCT(F, gext)
5: auxwpre f exts← FINDWPREFERREDEXTENSIONS(Fgext)
6: for all auxwpe ∈ auxwpre f exts do
7: ADD(wpre f exts, (auxwpe ∪ gext)))
8: output wpre f exts

In performing the steps depicted in Algorithm 6 we are closer to the solution.
But it is time to take a step backwards and address the final missing piece of the
puzzle. We are speaking about verifying weak admissibility of a set of arguments in
an AF taking into account the procedures discussed previously.
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3.4.4 Verifying weak admissibility of a set of arguments

We are now ready to present a modified version of Algorithm 1 that incorporates the
concept of the grounded extension along with some of the functions and procedures
presented in previous sections.

Our modified version of Algorithm 1 includes a series of shortcuts derived from
the theory behind weak admissibility semantics. The function requires two argu-
ments: an AF F = (A, R) and a subset of the arguments of the AF S ⊆ A. It is for the
subset S that we wish to determine whether it is weakly admissible. The procedure
returns true if the subset is weakly admissible in the AF, and false otherwise.

Algorithm 7 Verifying Weak Admissibility

Require: F = (A, R), S ⊆ A
1: procedure ISWADMISSIBLE(F, S)
2: if S == ∅ then
3: return True
4: if NOT ISCONFLICTFREE(F, S) then
5: return False
6: att(S)← ATTACKERS(S, F)
7: if att(S) == ∅ then
8: return True
9: FS ← REDUCT(F, S)

10: if (Args(FS) ∩ att(S)) == ∅ then
11: return True
12: grext← GENERATEGROUNDEDEXTENSION(FS)
13: if (grext ∩ att(S))! = ∅ then
14: return False
15: auxF ← REDUCT(FS, grext)
16: if (Args(auxF) ∩ att(S))! = ∅ then
17: wpre f exts← GENERATEWPREFERREDEXTENSIONS(auxF)
18: for all ext ∈ wpre f exts do
19: if ext ∩ att(S)! = ∅ then
20: return False
21: return True

As mentioned above, we introduce some steps that quickly help us determine
weak admissibility. The first shortcut derives from the axiom “the empty set is al-
ways weakly admissible” (Dvořák et al., 2022, Proposition 4.7), in case our subset
S ⊆ A were empty, we can immediately assert that it is w-admissible. The second
shortcut can be inferred from the definition of weak admissibility given in Baumann
et al. (2020b, Definition 3.3) and was already part of Algorithm 1. A set S which does
not conform to conflict-freeness can be immediately deemed not w-admissible. If
the set S under examination passes the conditions posted above, we go on to create
another set containing all of the arguments that attack S, this set we call att(S). If
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the set att(S) is empty, meaning S is unattacked in F, it immediately follows that S
is w-admissible in F.

At this point is where things start getting interesting, S is not empty, it is conflict-
free and there are arguments in the AF attacking it. We get to the part were the
reduct of F with respect to S is computed as suggested by Dvořák et al. (2021), re-
sulting in a new AF FS in which the arguments in S are excluded as well as all the
arguments attacked by the arguments in S. In case the reduct does not contain argu-
ments attacking S, the second condition in Baumann et al. (2020b, Definition 3.3) is
met and weak admissibility can be ascribed to the set S. Should the opposite be the
case and there are arguments attacking S in the reduct we call for the computation
of the grounded extension in the classical sense as described in Section 3.3.2. This
step finds its justification in Baumann et al. (2020b, Proposition 5.11) and it tells us
that any argument attacking S that is also a member of the grounded extension of
the reduct of F will automatically render S non-weakly admissible.

If after all the previous steps, the w-admissibility of S could not be determined,
we reach a stage where the heavy computational legwork must be carried out. We
have already computed the grounded extension of the reduct FS and made sure
that none of the arguments that attack S are in it. Remember the grounded exten-
sion is always contained in the weakly complete extensions and also in the weakly
preferred extensions. In addition, as we established in Section 3.2, credulous accept-
ability under weakly admissible semantics is equivalent to credulous acceptability
under weakly preferred semantics. Besides, the second condition for weak admis-
sibility (Baumann et al., 2020b, Definition 3.3.) can be interpreted as the following
statement:

For any attacker y of S, we have that y is not credulously accepted under weakly
preferred semantics in the AF consisting of the reduct of the original AF F with
respect to S, denoted by FS.

We are not really interested in enumerating all weakly preferred extensions in
the reduct FS of the original AF F, what we intend instead is to reduce the problem
at hand as much as possible and to find out whether any of the remaining attackers
of S is credulously accepted under weakly preferred semantics in the AF FS. We
compute the reduct of FS with respect to the grounded extension, denoted by auxF,
to try to further decrease the size the problem.

As long as the new AF auxF still contains arguments attacking S, we go on to
generate all weakly preferred extensions of auxF and check whether any of these
w-preferred extensions contains an argument attacking S. As soon as the existence
of an argument attacking S in a w-preferred extension is established, we can say
that S is not weakly admissible in F and the procedure returns False. Otherwise, the
procedure ends when all weakly preferred extensions of auxF have been examined
and no extension contains an argument attacking S, in which case, we say that S is
w-admissible in F, returning True.
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3.5 Solver Design

We chose Python 3.8 as the programming language throughout our research. This
decision was made due mainly to the availability of a number of tools, libraries and
frameworks that would facilitate not only the development of the solver, but would
later play an important role in the analysis and processing of the generated data.

Our solver was conceived with an object-oriented perspective. Our solution in-
stantiates an object of the DiGraph class defined in the Python package NetworX
Release 2.8.8 (Hagberg et al., 2008) to characterize an AF.

Before undergoing actual processing the DiGraph first gets stripped off of all
nodes with self-loops and their corresponding incoming and outgoing edges (see
Section 3.3.1 for more information).

Out of the resulting DiGraph object, three data structures are extracted. The first
one is a list consisting of the nodes of the DiGraph. Additionally, two dictionary
structures are created. The keys of these two dictionaries are formed by the nodes
contained in the graph unburdened of self-loops. While the first dictionary contains,
for each node, the set of all predecessors of that node, the values of the second
dictionary are constituted by all the successors of that node.

Most of the operations in our software involve manipulation of the three data
structures mentioned above in the form of set operations such as union, intersection
and difference. The solver returns the set of all weakly preferred extensions of an
AF.

3.6 Experimental Evaluation

Our solver was evaluated on an Apple M1 processor with 8 GB RAM on two sets
of AFs. The first set consisted of the AFs depicted in the examples presented by
Dvořák et al., 2022. The second set AFs was compiled from the ICCMA website and
consisted of the published benchmarks of the competition in the years 20172 and
20193.

The first set of AFs was mainly used to validate correctness. There were a total
of 14 AFs conforming this set; each AF contained between 3 to 10 arguments and
between 3 and 15 attacks. The advantage of choosing this set was that the weakly
preferred extensions could be computed by hand and allowed us to perform “sanity
checks” at different stages of development.

The second sample set provided us with a way to test our solver more broadly
with more challenging AFs, in terms of size and structure complexity. This sam-
ple originally consisted of 1,388 AFs. Some AFs were listed more than once in this
dataset and we proceeded to remove duplicates from our database ending up with
908 unique AFs, see Table 3.1 for a statistical description of this sample in terms of
number of nodes and edges in each AF. On further examination of the data, we

2https://www.argumentationcompetition.org/2017/results.html
3https://www.argumentationcompetition.org/2019/results.html
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Argumentation Framework Composition (n = 908)
Arguments Attacks

Mean 10,515.45 269,369.11
Standard Deviation 122,965.25 749,895.60
25th percentile 161.00 599.00
50th percentile 499.00 5,849.00
75th percentile 1,471.75 48,637.00
Mininum 2.00 1.00
Maximum 2,500,000.00 6,257,500.00
Skewness 16.46 4.14
Kurtosis 388.33 21.09

TABLE 3.1: ICCMA Sample

realized that the set of AFs used in the 2019 competition were essentially a subset of
the one used in the 2017 edition.

From this data, we can immediately notice the marked difference between the
sample mean and the 50th percentile which indicates a positively skewed distribu-
tion on both the number of arguments and the number of attacks per AF. More
specifically, our ICCMA sample contains a great amount of AFs with a number of
arguments between 2 and 1,400 and a few outliers with a very large number of ar-
guments. The skewness was estimated to be 16.46 which confirms that our data set
is heavily skewed to the right. The same can be said about the number of attacks in
the AFs in this case the skewness was estimated at 4.14 and is a bit less skewed than
the number of arguments.

Furthermore, given the size and complexity of our sample, and because we sus-
pect our solver is still in need of further improvement, we limited the execution time
on each member of the sample to the arbitrarily chosen limit of ten minutes. If after
ten minutes computation the solver had not returned a solution, the computation
was aborted and the solver moved on to the next AF. The rationale behind this
choice was made on the “back of the envelope” calculation that if on average each
AF would take 600 seconds to process, we would need around six to seven days
(night and day) to process the whole sample. In the end, we were able to obtain the
w-preferred extensions for 247 AFs. This result amounts to less than a third of the
sample size and might be an indicator that the ten minute average processing time
was just too optimistic, since we were expecting to obtain w-preferred extensions for
at least half of the sample. However, processing time is not linear and the problem
is still very hard to solve.

One important observation we want to point out is that imposing a run-time
limit could be a cause of bias in the data. More specifically, because our sample is
composed of elements which are “easily” available, our solved sample may not be
a representative sample of the ICCMA dataset. As we can see from Table 3.2, the
mean of the number of arguments of the solved sample differs from the mean of the
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Solved Argumentation Framework Composition (n = 247)
Arguments Attacks

Mean 1,759.01 376,877.18
Standard Deviation 3,438.20 867,047.49
25th percentile 25.00 97.00
50th percentile 121.00 801.00
75th percentile 1,203.50 359,955.50
Minimum 2.00 1.00
Maximum 14,665.00 5,378,385.00
Skewness 2.42 3.83
Kurtosis 5.07 17.02

TABLE 3.2: ICCMA Solved Sample Description

FIGURE 3.1: Composition of the ICCMA Sample
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Dataset Composition
Graph Type Acyclic Bipartite Symmetric
Original ICCMA Dataset (n = 908) 0.03% 0.14% 0.03%
Solved ICCMA Dataset (n = 247) 0.06% 0.24% 0.10%

TABLE 3.3: Graph Types in Dataset

FIGURE 3.2: Differences between solved and unsolved AFs in the
ICCMA sample

total sample by one degree of magnitude, amounting to a skewness coefficient of
2.42. Notice how the distribution of the number of arguments in the solved sample
is still positively skewed but not as much as in the original sample. Regarding the
number of attacks, we observed a similar effect, the mean in the solved sample is
larger than the mean in the original dataset. In this case, the distribution of the
number of attacks in the solved dataset is also skewed to the right by a estimated
3.83, slightly less skewed than the original sample. Figure 3.1 offers a depiction of
how the solved set differs in distribution with respect to the unsolved set in both the
linear and the logarithmic scale.

In particular, the logarithmic scale provides a more nuanced picture of how
solved and unsolved AFs are distributed with respect to the number of attacks and
the number of arguments.

The solved sample might also differ in other important ways from the original
ICCMA sample, the structure of the graphs plays an important role how “easy” it is
to compute its weakly preferred extensions, see Figure 3.2. For example, Baumann
et al. (2020a) and Dvořák et al. (2022) claim that computations are easier for acyclic,
symmetric and bipartite graphs. From Table 3.3 we are able to distinguish a larger
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Run-time Summary (n = 247)
Mean 18.033485 s
Standard Deviation 70.911677
25th percentile 0.004248 s
50th percentile 0.437006 s
75th percentile 3.852466 s
Minimum 0.000032 s
Maximum 538.549455 s

TABLE 3.4: Solved Dataset Run-Time

presence of these types of graphs in the solved dataset as compared to the original
dataset.

Notwithstanding the biases caused by the ten minute run-time limit, we will
be implementing this policy for the rest of the study. The reasons are of a mere
practical nature: we need as many exact solutions for as many AFs in reasonable
time to attain the goals of the study.

A closer look at the run-time also revealed a positively skewed distribution with
large differences between the fastest computed AF and the slowest. The majority of
AFs, around three quarters of the sample, could be processed in under four seconds
with some outliers requiring more time.

3.7 Limitations

Particularly, while testing for weak admissibility in order to generate weakly pre-
ferred extensions, our implementation will compute branches in the search space
more than once leading to a waste of computational resources. We were not able
to device a mechanism which would do away with this issue, so we will leave it to
future research to deal with this problem.

We are also well aware that a rigorous evaluation of our solver should have
included a thorough comparison against other algorithms or existing tools. In this
case, we should have compared our tool against the Java implementation by Lars
Bengel, which at the time of this writing was the only publicly available tool. Or we
could have programmed a solution using the algorithms in Dvořák et al. (2021).

Due to time constraints we will leave the above mentioned tasks open for fu-
ture work. We will also assume that our implementation delivers acceptable perfor-
mance in terms of run time and considering the number of AFs we will evaluate.
Therefore, making it the default option for the rest of this work.



Chapter 4

Exploratory Data Analysis

In the previous chapter we implemented an exact solver for weakly preferred se-
mantics. This tool, despite sub-optimality, will help us determine the ground truth
for the credulous acceptability of the arguments in a number of AFs. The ability to
determine this information is essential in the pursue of the other goals of this study.

The next step consists of putting together a sample set of AFs with reliable infor-
mation about the credulous acceptability of their arguments under weak admissibil-
ity semantics. Because in this work we deal exclusively with credulous acceptability
under weak admissibility semantics, in some instances, we refer to it as just “credu-
lous acceptability” for short.

In the following sections, we delineate the process of collecting a “large” sample
set. We explain the relation between the data collected and the goals of the study,
we then proceed to statistically analyze their features at the AF-level as well as at
the argument level.

Ultimately, the goal of this step of the study is be, with the help of statistics, iden-
tify a set of predictor variables of credulous acceptability under weak admissibility
semantics and learn patterns that influence the acceptability status of arguments in
an AF.

4.1 Data Collection

The first step in our workflow consists of assembling a sample set or data set of AFs
and its corresponding arguments. This step will also be carried out in preparation
for later steps.

In section 3.6 we explored the capabilities of our solver on the ICCMA Bench-
mark for the years 2017 and 2019. A closer look at the set revealed duplicated AFs
which were eliminated from the sample. We were able to compute the ground truth
for credulous acceptability under weak admissibility semantics for less than a third
of the unique AFs in the sample, subject to a time limit. Although not at all discour-
aging, ML techniques are primarily based on the premise of a large sample.

31
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In contrast, in statistics a common rule-of-thumb is to think of a large enough
sample size as one that contains at least 10 observations for each feature under ex-
amination. Should we adopt the statisticians approach, our sample with 247 AFs
would be more than enough for analysis. However, from the point of view of the
data scientist, this would be considered a meager sample. Mostly the sample size in
ML depends largely on the complexity of the problem and accuracy requirements
of the model. A non-linear model trained with a large sample yields, in general, bet-
ter accuracy than the same model trained with a smaller sample (Kuhlmann et al.,
2022).

Similar exploratory studies (Kuhlmann and Thimm, 2019; Craandijk and Bex,
2020; Malmqvist et al., 2020) have used very different sample sizes for their analy-
sis. Their sample sizes range from nine hundred to over one million AFs. Already
Kuhlmann et al. (2022) have discussed the discrepancy in sample sizes and sample
composition of previous studies. Nevertheless, we are probably constrained by a
sub-optimal ground truth solver, limited computational resources and limited time.
Thus, based on previous estimations we conclude that around 3,000 AFs would con-
stitute a handsome feasible sample size to conduct a sound analysis.

Next, we have to determine the sources and composition of the 3,000 AFs
needed. Not only do we need to generate this number of AFs but we also need
to be able to solve them almost surely within ten minutes, so as to comply with time
constraints imposed by the nature of this work. Considering the performance of our
solver on the ICCMA sample, we conclude that AFs consisting of 5 to 55 arguments
would be a challenge our solver could manage. For matters of convenience, we
use the AF-generator suite implemented by Craandijk and Bex (2020)1. This gen-
erator suite includes some of the benchmarks defined at the ICCMA 2017, namely
AFBenchGen2, AFGenBenchGen, Grounded Generator, SccGenerator and StableGenera-
tor (Gaggl et al., 2020). These benchmarks have received wide acceptance from the
expert community.

In the following section we will present a description of the AF sample generated
using the above mentioned tool.

4.1.1 AF Sample Description

We were able to generate 4,615 unique AFs using the generators mentioned in the
previous section. The generated AFs consisted, as planned, of between five and
fifty-five arguments.

Out of the generated AF sample we were able to solve 3,307 instances in under
ten minutes. As we have previously explained, the ten minute run-time influences
the composition of the final experimental sample. Table 4.1 illustrates this assump-
tion. The average number of arguments in the total sample is slightly greater than
the average in the solved sample. Both samples are nearly symmetric, a conclusion
we reach by comparing the mean to the 50th percentile, also called the median, and

1https://github.com/DennisCraandijk/DL-abstract-argumentation/
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Number of Arguments
Total Sample Solved Sample

(n = 4,615) (n = 3,307)
Mean 33.81 30.25
Standard Deviation 13.85 14.03
25th percentile 23.00 18.00
50th percentile 35.00 28.00
75th percentile 45.00 43.00
Mininum 5.00 5.00
Maximum 55.00 55.00
Skewness -0.17 0.20
Kurtosis -1.09 -1.08

TABLE 4.1: Number of arguments in the Generated AF Sample

Number of Attacks
Total Sample Solved Sample

(n = 4615) (n = 3,307)
Mean 185.56 138.35
Standard Deviation 199.61 188.68
25th percentile 47.00 36.00
50th percentile 113.00 63.00
75th percentile 260.00 154.00
Mininum 4.00 4.00
Maximum 1,529.00 1,529.00
Skewness 2.11 3.08
Kurtosis 6.07 12.07

TABLE 4.2: Number of attacks in the generated AF sample

finding no big differences in either sample. Also by examining the skewness coef-
ficient of each sample, we notice they are both rather small, with the total sample
being slightly negatively skewed as compared to the solved sample which is posi-
tively skewed. The negative kurtosis value for both samples tells us, in part as we
expected, that both samples, when compared to a normal distribution, have a flat-
tened peak and rather thin tails. We can trace this phenomena back to the fact that
when the sample was generated, the number of arguments in each AF is uniformly
distributed, meaning that each number in the range from five up to 55 has the same
probability of being chosen as the number of arguments in the generated AF.

The distribution of the number of attacks in the generated sample is positively
skewed and the skewness only gets bigger in the solved sample, as we observe in
Table 4.2. The solved sample has more outliers with respect to the total generated
sample, and we find a greater concentration of unsolved AFs in the upper half of the
distribution of the number of attacks, as shown in Figure 4.1, solved and unsolved
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FIGURE 4.1: Composition of the Generated AFs

AFs are identified by the label "1" and "0", respectively. More specifically, AFs with
154 attacks or less constitute almost three quarters of the solved sample. Regarding
the number of attacks, it can be said that the solved sample contains smaller AFs.

Comparing the solved set with the unsolved set, we reach the same conclusion
as above, the AFs which could be solved within ten minutes are, in general, smaller
than those whose solution would have taken longer to compute. In Figure 4.2, we
notice a bias towards AFs with smaller amounts of arguments, but the bias is larger
when we consider the number of attacks in both unsolved and solved set. Clearly,
the solved set tends to contain more AFs with a smaller number of attacks.

So far, we have generated and solved a desirable amount of AFs. We have ac-
knowledged the different ways in which our data may be biased. In spite of the
sampling biases, we will continue with our study of the solved data set. In the fol-
lowing sections, we have a closer look at the arguments in the solved sample. We
deal with two questions:

1. What are the properties of the arguments in the sample?

2. How is credulous acceptability affected by the properties of the arguments?

4.1.2 Experimental Data Set

To answer the questions posed in the previous and in posterior sections, we do not
work with the entire solved data set at once. In preparation for the application of
ML techniques, we partition the solved data set by randomly assigning each AF into



4.1. DATA COLLECTION 35

FIGURE 4.2: Differences between the unsolved and the solved AFs

Partition Proportion Number of AFs

Train Set 60% 1,984
Validation Set 10% 331
Test Set 30% 992

TABLE 4.3: Partitions of the solved AF Sample
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one of three buckets without replacement, each bucket is assigned a different size,
as depicted in Table 4.3.

The random assignment without replacement of AFs into sub-sets, i.e. an AF
is assigned to one and only one sub-set, bestows each sub-set with representativity
with respect to the population of solved AFs. For the purposes of statistical analysis
carried out in this chapter, we focus only on the train set, this set be also referred to
as the experimental set. The other two partitions will be ignored for the time being,
until their reappearance at the end of this chapter and again in Chapter 5.

4.2 Argument-level Analysis

The arguments in an AF are conceptualized as atomic entities, only the attack rela-
tion with other arguments in the host AF is relevant to its study (Dung, 1995). With
this idea in mind and the characterization of AFs as directed graphs, we collected
four quantitative properties of arguments represented as node in a directed graph:

• in-degree, or number of incoming attacks

• out-degree, or number of outgoing attacks

• number of nodes in the graph, or total number of arguments in the host AF

• number of edges in the graph, or total number of attacks in the host AF

The properties mentioned above were accompanied by two additional pieces of
information:

• whether the argument was self-attacking, and

• whether the argument in the AF was credulously accepted under w-
admissibility semantics.

The properties mentioned above where organized in tabular form to allow for
the use of statistical procedures. Each argument was characterized in terms of these
properties or features and the exploratory analysis is presented in the next section.

4.2.1 Exploratory Analysis

Consolidating the arguments of the 1,984 AFs in the training set resulted in an argu-
ment sample of nearly sixty thousand arguments. Table 4.4 summarizes measures
of location and dispersion of our sample.

For now we will focus on the in-degree and the out-degree features of the argu-
ments. Three quarters of the arguments in the sample have up to 6 incoming attacks
or are the sources of outgoing attacks. Half the arguments in the sample have 3 or
less incoming or outgoing attacks. We observe some extreme values for both mea-
sures at the upper extreme of the scala, i.e. arguments that are attacked by 35 other
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Arguments in Experimental Data Set (n = 59,983)

In-degree Out-degree Arguments in AF Attacks in AF

Mean 4.55 4.55 36.82 182.42
Standard Deviation 5.28 5.10 13.18 224.58
25th percentile 1.00 1.00 25.00 49.00
50th percentile 3.00 3.00 38.00 81.00
75th percentile 6.00 6.00 48.00 241.00
Minimum 0.00 0.00 5.00 4.00
Maximum 35.00 37.00 55.00 1487.00
Skewness 1.88 1.95 -0.30 2.48
Kurtosis 3.65 4.14 -1.01 7.29

TABLE 4.4: Argument Properties Summary

FIGURE 4.3: In- and Out-degree Histogram
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Credulously Accepted
No Yes

Self-attacking
No 55.74% 40.42%
Yes 3.84% 0.00%

TABLE 4.5: Self-attacking and Credulously accepted arguments

Arguments in Experimental Data Set (n = 57,681)

In-degree Out-degree

Mean 4.47 4.41
Standard Deviation 5.27 5.02
25th percentile 1.00 1.00
50th percentile 2.00 3.00
75th percentile 6.00 6.00
Minimum 0.00 0.00
Maximum 34.00 37.00
Skewness 1.90 2.01
Kurtosis 3.65 4.45

TABLE 4.6: Data set summary: excluding self-attacking arguments

arguments. We also notice both distributions are positively skewed by observing
how the sample mean differs from the 50th percentile or median. The sample mean
is larger than the median, thus we can say the distributions are non-symmetric be-
cause they have longer right tails, a phenomenom we can graphically appreciate
from Figure 4.3. We can conclude that the distribution of the features in-degree and
out-degree is nonnormal, they do not have a bell-shaped distribution. They are also
non-symmetric and have heavier tails than the normal distribution (kurtosis is in
both cases larger than 3).

We continue our analysis of the argument sample with the additional proper-
ties of an argument: whether it is a self-attacking argument and whether it is cred-
ulously accepted under weak admissibility semantics. Both features were coded
as boolean values, and their relative frequencies are presented in Table 4.5. Self-
attacking arguments make up for nearly four percent of the arguments in our sam-
ple. From the definition of weak admissibility, we can tell that none of them will be a
member in a weak admissible set, as observed in the table. Because these arguments
are never weakly admissible, we can exclude them from further analysis.

The resulting data set containing no self-attacking arguments keeps compliance
with some of the observations made above relative to their distribution, with one
exception in the in-degree dimension: the mean and the median drift further apart,
as can be observed form Table 4.6, an indicator of an asymmetric distribution. Other
than that, the distribution of both features continues to be non-symmetric, has heav-
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FIGURE 4.4: Histogram in- and out-degree excluding self-attacking
arguments

CD-admw

In-degree -0.53
Out-degree -0.17
Arguments in AF -0.01
Attacks in AF -0.24

TABLE 4.7: Spearman correlation coefficient of argument features

ier tails than a normal distribution and is definitely not bell-shaped (Figure 4.4),
pointing out towards a non-normal distribution.

Letting aside single distributions, we want to explore how the credulously ac-
cepted arguments differ from the non-accepted arguments and Figure 4.5 provides
us with some confirmation that in some of the argument features, there are differ-
ences between the non-credulously accepted arguments (grouped under the label
0.0) and the credulously accepted arguments (grouped under the label 1.0).

We are also interested in exploring how strong is the relationship between the
argument features and credulous acceptability under weak admissibility semantics,
denoted by CD-admw for short. That is to say, we want to quantify the linear rela-
tionship between the features collected and credulous acceptability. The Spearmann
correlation coefficient offers a robust measure of this relationship in the presence of
outliers. The outliers in most of the features can be observed in Figure 4.5 and are
indicated as small circles. The correlation coefficients are listed in Table 4.7 and
suggest a negative relation between the in-degree and credulous acceptability un-
der weak admissibility semantics, i.e. as the in-degree is larger, the possibility of
credulous acceptability decreases. The same can be said for the out-degree and the
number of attacks in the AF but their influence is less strong. On the other hand, the
number of arguments in the AF does not seem to exercise influence on the credulous
acceptability of an argument.
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FIGURE 4.5: Differences between non-accepted and accepted argu-
ments
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The analysis carried out has helped us to generate some insight into credulous
acceptability and how it is affected by the features we have collected on each argu-
ment. Sometimes, it is also useful to add new features that are functions of existing
features. This activity is part of what statisticians and data scientist call “data trans-
formation”. We delineate this process in the next section.

4.2.2 Data Transformation

So far, we have postponed the in-depth discussion of the number of arguments and
attacks in the host AF as features describing an argument. We consider that incor-
porating them directly as a feature may not convey as much information as incor-
porating them in the form the denominator in a ratio with the in-degree and the
out-degree as numerators.

The rationale behind the incorporation of the number of arguments and attacks
into a ratio stems from a rather intuitive idea. Let F1 = (A1, R1) and F2 = (A2, R2)
be two AFs and suppose the number of arguments in F1 and F2 is denoted by |A1|
and |A2|, respectively. The number of attacks is denoted by |R1| and |R2| , respec-
tively. Let a and b be two arguments such that a ∈ A1 and b ∈ A2. We denote
the in-degree and out-degree of an argument a as in_degree(a) and out_degree(a),
respectively. Moreover, let |A1| = 3 and |A2| = 30, |R1| = 3 and |R2| = 30, and
suppose in_degree(a) = in_degree(b) = 2 and out_degree(a) = out_degree(b) = 1.
We see that in terms of in-degree and out-degree, both arguments are similar, they
defer on the number of arguments and attacks of the AF in which they live. To be
able to better describe an argument a, we propose, for example, that the proportion
of arguments attacking it with respect to the total number of arguments in the AF, is
an informative feature of the surroundings in which a lives. In this manner, the ratio
in-degree to number of arguments for a would be in_degree_to_num_args_a f (a) =
in_degree
|A1| = 1 ÷ 3 = 0.3333 and for b in_degree_to_num_args_a f (b) = in_degree

|A2| =

1÷ 30 = 0.033. The extra feature offers a more differentiated description of both
arguments.

Due to the considerations exposed above we compute the ratio of the in-degree
and the out-degree with respect to both the number of arguments and the number
of attacks in the respective AF. From here on, the number of arguments and attacks
will be excluded from the analysis in favor of the four ratios defined roughly as
follows:

In-degree to arguments ratio = in_degree
Numbero f ArgumentsinAF

In-degree to attacks ratio = in_degree
Numbero f AttacksinAF

Out-degree to arguments ratio = out_degr
Numbero f ArgumentsinAF

Out-degree to attacks ratio = out_degree
Numbero f AttacksinAF



42 CHAPTER 4. EXPLORATORY DATA ANALYSIS

FIGURE 4.6: Differences between credulously accepted status: ratio
features
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Ratios CD-admw

In-degree to arguments -0.51
In-degree to attacks -0.45
Out-degree to arguments -0.15
Out-degree to attacks 0.08

TABLE 4.8: Spearman correlation coefficient of argument ratio fea-
tures

Figure 4.6 provides visual insights of how credulously accepted arguments differ
from non-accepted arguments in terms of the new computed features. For all new
dimensions, we can see differences in their distribution indicative that they may
have some prediction power on acceptability.

It is important to gain an idea of how strong is the relationship between the
new features and credulous acceptability. We obtain this measure of relationship by
means of the Spearman correlation coefficient, as shown in Table 4.8. We observe
a moderate negative correlation between the in-degree ratios and credulous accept-
ability. Whereas the relationship between the out-degree ratios and acceptability
tends to be rather weak.

As a consequence of the results above, we decide to keep the new ratio features
for further analysis and discard the number of arguments and attacks as predic-
tive features of credulous acceptability. Our next step is to explore whether the
selected properties of arguments have prediction power concerning the determi-
nation of credulous acceptability under weak admissibility semantics. We are also
interested in how much prediction power do the selected properties possess when
deciding whether an argument is credulously accepted or not. The following sec-
tion aims at answering both questions with the help of a technique called logistic
regression.

4.3 Logistic Regression

With the intention to continue to model the influence of the argument features on
credulous acceptability, we choose logistic regression.

Logistic regression aims at describing and testing relationships between a cate-
gorical variable —in our case the dichotomy between non-credulous acceptability
and credulous acceptability— and the argument features (Peng et al., 2002). Other
regression techniques fall out of consideration due to their strict requirements re-
garding statistical assumptions of normality, linearity and continuity.

Running a logistic regression on our data results in the computation of the odds
of the dichotomous variable, in our case credulous acceptability, from the values
of the argument features. The odds of an argument being credulously accepted
are the ratio of the probability of the argument being credulously accepted to the
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probability of the opposite.
To carry out this experiment we follow the guidelines provided by Peng et al.

(2002).

4.3.1 Experimental Setup

Our initial hypothesis on the training data set is to determine whether the likelihood
of an argument being credulously accepted is related to the specified argument fea-
tures. Our argument sample comprises 57,681 elements, and does not include self-
attacking arguments. Missing values are not present in this sample. The argument
features —also referred to as independent or exogenous variables— are specified as
follows:

• In-degree: a numerical variable containing integer values

• In-degree to arguments ratio: numerical variable containing floating-point
values

• In-degree to attacks ratio: numerical variable containing floating-point values

• Out-degree: a numerical variable containing integer values

• Out-degree to arguments ratio: numerical variable containing floating-point
values

• Out-degree to attacks ratio: numerical variable containing floating-point val-
ues

The variable we are interesting in predicting —also called the dependent or en-
dogenous variable— is credulous acceptability and is encoded as one when the ar-
gument is credulously accepted and zero when it is not.

Once we determine whether our endogenous variable is affected by the indepen-
dent or exogenous variables, we would also like to know how strong is this effect.
The logistic regression analysis was carried out using the Python library statsmod-
els version 0.13.5.

Results

Using the training set —self-attacking arguments excluded — we fit a logistic re-
gression model to explain the predicted odds that an argument is credulously ac-
cepted. The model included six independent variables and an intercept. The results
of logistic regression shows that
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coef std err z P > |z| [0.025 0.975]

in_degree -0.3734 0.009 -40.088 0.000 -0.392 -0.355
in_degree_to_num_arg_ratio 12.0582 0.403 29.925 0.000 11.268 12.848
in_degree_to_num_att_ratio -51.7930 0.824 -62.846 0.000 -53.408 -50.178
out_degree 0.0679 0.008 8.381 0.000 0.052 0.084
out_degree_to_num_arg_ratio -5.8970 0.361 -16.315 0.000 -6.605 -5.189
out_degree_to_num_att_ratio 15.4766 0.624 24.811 0.000 14.254 16.699
const 1.2454 0.022 55.472 0.000 1.201 1.289

Model Evaluation
Likelihood ratio chi-squared statistic 17,177.49 0.000 df 7

Wald test (chi-squared) statistic 11,228.11 0.000 df 7
F-test 1,612.59 0.000 df 7

Dependent var.: CD-admw No. Observations: 57,681

TABLE 4.9: Logistic Regression Analysis of credulous acceptability

Predicted logit of(CD-admw) = 1.245384
− 0.373446 ∗ in_degree
+ 12.058229 ∗ in_degree_to_num_arg_ratio
− 51.792977 ∗ in_degree_to_num_att_ratio
+ 0.067944 ∗ out_degree
− 5.896998 ∗ out_degree_to_num_arg_ratio
+ 15.476552 ∗ out_degree_to_num_att_ratio

(4.1)

.
Equation 4.1 shows the linear relationship between the independent variables

and the natural logarithm of the odds of an argument being credulously accepted.
With the results of the logistic regression model obtained from the data we can

start to address the first hypothesis. The null hypothesis in this context is defined
as: the constant term —the value 1.245384 in Equation 4.1— alone offers a good
fit to the data without the inclusion of the independent variables. The alternative
hypothesis is defined as: the independent variables offer a better fit to the data than
the intercept alone.

The likelihood ratio statistic, the Wald statistic and the F-test provided the an-
swer to the previous question (see Table 4.9). The conclusion of all three tests is that
we can reject the null hypothesis at both the 0.05 and 0.01 significance level for our
training data set. In other words, we have no reason to believe that a model with
only the constant term will be more adequate to describe the natural logarithm of
the odds of credulous acceptability of an argument.

Regarding the coefficients in our model, we can ask whether they are actually
different from zero, since a coefficient with value zero suggests a variable which
could be excluded from the model. From Table 4.9, we can reject the null hypothesis
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Dependent variable
CD-admw

in_degree 0.688
in_degree_to_num_arg_ratio 1,172,513.249
in_degree_to_num_att_ratio 0.000
out_degree 1.070
out_degree_to_num_arg_ratio 0.003
out_degree_to_num_att_ratio 5,264,788.936
const 3.474

TABLE 4.10: Odd ratios

that a coefficient in our model equals zero at the 0.05 and at the 0.01 significance
level. Apparently, all the variables selected for the model plus a constant term are
linearly related to the logarithm of the odds of an argument being credulously ac-
cepted.

There is little useful information that we can gain form our model as it is. The
output of our model is given in the logarithmic scala, a trait that is generally hard to
interpret. We can however, reach other conclusions when transforming to the odd
ratios.

From Table 4.10 we find that increasing the in-degree by one unit while keeping
every thing else constant will turn an argument 0.688 times less likely to be credu-
lously accepted while increasing the out-degree by one unit (all other variables held
constant) will make an argument 1.070 times more likely to be credulously accepted.
We can also observe two variables which when all other variables are held constant,
have apparently immense effects on how many times an argument is more likely to
be accepted. However, the ratio variables, by their very nature are constrained to be
in the closed interval zero to one. Thus, we will never observe increments of one,
the increments in the magnitude of these variables will be, in general, very small.

When performing a statistical analysis, like the one we have carried out so far,
the ensuing step is to assess how well does the model predicts the outcomes in the
data set used. Mainly, because in statistics, it is assumed that the experimental data
set is representative of the population and that any conclusion inferred from the
analysis will generalize to the population. A point in which statistical analysis and
ML differ.

In the previous sections, we described the population under study as the set of
unique AFs created using the generator tool provided by Craandijk and Bex (2020)
containing between 5 and 55 arguments and solved in under ten minutes by the tool
described in Chapter 3. Out of the population, we made a randomized partition and
obtained the current experimental data set. This process gives us enough reason to
assume our experimental data set is representative of the population.

It should not surprise the reader that the model assessment to be presented is not
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Precision Recall F1-score Support
CD-admw

NO 0.77 0.79 0.78 33434
YES 0.70 0.68 0.69 24247
Accuracy 0.74 57681
macro avg 0.73 0.73 0.73 57681
weighted avg 0.74 0.74 0.74 57681

MCC = 0.4672

TABLE 4.11: Logistic Model Assessment

Precision Recall F1-score Support
CD-admw

NO 0.77 0.78 0.78 17310
YES 0.68 0.66 0.67 11833
Accuracy 0.73 29143
macro avg 0.73 0.72 0.72 29143
weighted avg 0.73 0.73 0.73 29143

MCC = 0.4486

TABLE 4.12: Logistic Model Assessment on the Test data set

carried out in a test set, but in the same set used to generate the model. Clarifications
being made, we proceed with the assessment of the model.

The metrics we use to asses the model are typical of any study of binary clas-
sification using logistic regression plus the phi coefficient also known in ML as
Matthews Correlation Coefficient (MCC).

The model assessment using the metrics shown in Table 4.11, indicate that our
model does a moderately good job in predicting credulous acceptability from the
selected argument features. In all dimensions of the assessment we do better than
randomly assigning credulous acceptability to arguments in an AF.

The model’s accuracy is moderate, but it offers a great advantage over an exact
solver: the computational cost of computing both the model and making predictions
is negligible.

For the sake of comparability with the other techniques applied in this work, we
re-assess our model on the test data set created previously. As we can observe from
Table 4.12, the logistic regression model performs better than random classification
on the test set, while still keeping resource consumption at a negligible level.
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Chapter 5

Machine Learning (ML)
Experiments and Analysis

In the previous chapter, we explored how statistics can help us to identify features
of arguments that influence their credulous acceptability under weak admissibility
semantics. The results obtained were to some degree promising when we account
for the resources consumed. Our logistic regression model was able to predict cred-
ulous acceptability with 73% overall accuracy and a MCC of 0.4486, showing it was
better than random guessing.

In this chapter, we are interested in exploring whether “more advanced” tech-
niques would improve the above mentioned baselines. The chapter is divided in
two parts. The first part investigates Support Vector Machine (SVM)’s potential to
make predictions about credulous acceptability using the variables defined in the
previous chapter.

The second part is dedicated to the analysis of capabilities of GCNs to address
our problem of interest.

5.1 Support Vector Machine (SVM)

From the previous parts of this study we have gained a rough idea of the patterns in
our data. We have been getting ready for some more advanced techniques. To this
effect we would like to start with one “simple” but powerful classification technique
in ML: Support Vector Machine (SVM).

SVM is a product of statistical learning theory which proposes the choice of a
hyper-plane that separates the space through the middle maximizing the distance
between the nearest sample and the separating hyper-plane. This technique requires
that the samples to be classified be represented as high-dimensional vectors in a
high-dimensional space (Noble, 2006).

Although SVM is simple and has been replaced during the last decades by more
complex models, it can lead to good results in some practical cases (Russell and

49



50 CHAPTER 5. Machine Learning (ML) EXPERIMENTS AND ANALYSIS

Norvig, 2021). Not only can it deliver adequate performance, it also possesses an
advantage none of the newer more complex ML techniques has: it can be analyzed
from the point of view of a linear separating hyperplane while also being able to
represent complex functions (Hearst et al., 1998; Noble, 2006).

When trying to linearly separate data points belonging to different classes, dif-
ferent candidate hyperplanes could do the job (Strang, 2019). If the training data is
linearly separable, any of the candidate hyperplanes will induce zero missclassifica-
tions. However, it does not necessarily means that the model will perform equally
good in the presence of unseen data. The objective here is to make the model gen-
eralizable to unseen data coming from the same distribution as the training data
(Russell and Norvig, 2021). This is where the maximum margin hyperplane ap-
pears.

The preferred hyperplane or maximum margin hyperplane is selected, so that it
maximizes the distance between the hyperplane and any of the data points in either
class. The distance to the nearest data point is called the margin of the hyperplane
(Noble, 2006). This is the distance that we are trying to maximize in order to find the
maximum margin hyperplane. The vectors stretching perpendicularly from the sep-
arating hyperplane to the nearest data points are called the support vectors. Thus
the name Support Vector Machine (SVM).

In designing a SVM we are trying to balance two different objectives. On one
hand, we want to minimize the number of data points which are missclassified.
To keep an account of the missclassified data points, it is standard practice to use
the hinge loss. On the other hand, we want to maximize the distance between the
separating hyperplane and the closest data point in either class. By applying some
algebraic tricks we can reformulate the problem of maximizing the distance from a
hyperplane to the closest data point into a minimization problem. By introducing a
parameter C in the final objective function we can balance between the importance
of the loss and the importance of the size of the margin. The parameter C is also
called a hyperparameter that can be varied at he designer’s discretion to change the
behavior of the model (Goodfellow et al., 2016).

In most practical cases, the data will not be linearly separable, as its the case in
our data set. This is when the so-called kernel trick comes to the rescue (Strang,
2019; Russell and Norvig, 2021). The trick is based on the idea that if we map our
data into higher dimensions, eventually we will find a linear separator. A kernel
is a function that maps features into a higher dimensional space in a non-linearly
fashion. Unfortunately, there is no bullet-proof method to choosing the right kernel
function other than trial an error.

SVM does not make assumptions on the distribution of the data, neither on the
training set nor on the test set. It assumes, however, that both data sets are drawn
from the same distribution. In other words, the process to generate both sets are the
same.
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5.1.1 Experimental Setup

To carry out the experiments in this section, we use the tools provided by the Python
library scikit-learn Release 1.2.1. The implementation of SVM in this tool set comes
in handy to all the experiments proposed.

The training data set, the validation set and the test data set as well as the se-
lected features have been already discussed in Sections 4.1.2 and 4.2.1. The argu-
ment features are the same as the independent variables used in the logistic regres-
sion model and we leave out arguments with self-loops. Additionally, the features
for this experiment have been centered and scaled, following the recommendation
made in the scikit-learn documentation 1. This preprocessing of the data can have
positive effects on the performance of the algorithm. Because we have previously
observed that our samples contain many outliers, we make use of the RobustScaler
on the training data set. The same centering and scaling model was later applied to
both the validation and the test set.

The objective function in our experiment is based on the scikit-learn’s implemen-
tation of a support vector classifier. This implementation uses a Least Squares SVM.
The difference with respect to a classical SVM resides in the fact that the hinge loss
in the objective function is squared. This change in the formulation of the problem
makes an SVM a lot more effective when working with large amounts of data. The
second term of the objective function —the dot product of the coefficients of the
maximal margin hyperplane— was the standard in the SVM definition (Gareth et
al., 2021).

We run a series of experiments varying the value of the parameter C.
In each run the parameter C could assume one of the following values:
10−4, 10−3, 10−2, 10−1, 1, 102, 103 or 104. As previously explained, this parameter
drives the importance we give towards minimizing the number of missclassifica-
tions or accepting more missclassifications in the training set hoping that the SVM
will perform better in unseen data.

As explained previously, when dealing with a data set which is not linearly sepa-
rable, it is hard to tell which kernel would be appropriate to separate the data points
into their respective classes by mapping each data point into a higher dimension.
For this reason, we tested four different kernels on the training data. The kernels
are defined as follows (Hearst et al., 1998; Hofmann et al., 2008; Strang, 2019; Gareth
et al., 2021):

1. Linear Kernel: K(xi, xj) = ⟨xi, xj⟩+ const

2. Polynomial Kernel: K(xi, xj) = (⟨xi, xj⟩+ const)d

3. Radial Basis Function (RBF) Kernel: K(xi, xj) = exp(−γ||xi − xj||2))

4. Sigmoid Kernel: K(xi, xj) = tanh(γ⟨xi, xj⟩+ const)

1https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
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Precision Recall F1-score Support
CD-admw

NO 0.78 0.77 0.77 17310
YES 0.67 0.68 0.67 11833

Accuracy 0.73 29143
macro avg 0.72 0.72 0.72 29143

weighted avg 0.73 0.73 0.73 29143
MCC = 0.4454

TABLE 5.1: Linear SVM Results (C = 0.0001)

Precision Recall F1-score Support
CD-admw

NO 0.77 0.86 0.81 17310
YES 0.75 0.62 0.68 11833

Accuracy 0.76 29143
macro avg 0.76 0.74 0.74 29143

weighted avg 0.76 0.76 0.76 29143
MCC = 0.4954

TABLE 5.2: 4th Degree Polynomial SVM Results (C = 1.0)

where xi and xj are two data points or observations in the data set and ⟨xi, xj⟩
is the inner product between a pair of training observations. The polynomial kernel
offers the possibility of varying the degree d. In our experiments, we tested polyno-
mial kernels within the degrees ranging from two to four.

Another adjustable parameter is introduced in the RBF and the Sigmoid kernel:
the constant γ, also called the gain or the spread. In the RBF kernel, the spread γ
when taking small values the SVM will show near to linear behavior, when taking
larger values we might overfit the model. In the experiments γ can take the follow-
ing values: 10−2, 1/6, 10−1, 1.0, 10, 102 or 1/(6 ∗ σ2), where σ2 is the sample variance
and 6 is the number of properties of an argument.

The “best model” for each kernel is chosen according to the highest MCC
achieved on the validation data set.

Results

Tables 5.1 to 5.4 illustrate the best results for each kernel experiment based on a
particular setting of hyperparameters. On average, SVM models performed at the
same level as the logistic regression model. In practice, all five models are better
at predicting non-credulous acceptability than its counterpart, the credulously ac-
cepted class. They are also better at determining the credulous acceptance status of
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Precision Recall F1-score Support
CD-admw

NO 0.77 0.86 0.81 17310
YES 0.75 0.61 0.68 11833

Accuracy 0.76 29143
macro avg 0.76 0.74 0.74 29143

weighted avg 0.76 0.76 0.76 29143
MCC = 0.4978

TABLE 5.3: RBF SVM Results (C = 0.1, γ = 1.0)

Precision Recall F1-score Support
CD-admw

NO 0.79 0.74 0.76 17310
YES 0.65 0.71 0.68 11833

Accuracy 0.75 29143
macro avg 0.72 0.72 0.72 29143

weighted avg 0.73 0.73 0.73 29143
MCC = 0.4410

TABLE 5.4: Sigmoid SVM Results (C = 0.01, γ = 0.01 )

an argument than if we threw a fair coin and decided credulous acceptability on the
basis of the result.

5.2 Graph Convolutional Neural Network (GCN)

We have previously explained some of the basic ideas underlying GCN models. In
Section 2.3.1, we enumerated the inputs and outputs of this technique as imple-
mented by (Kipf and Welling, 2016).

The basic premise of the GCN model is that a graph can be treated as a two di-
mensional structure. A Convolutional Neural Network (CNN) ressembles the way
a human recognize patterns in an image, by identifying edges, contours, color clus-
ters, and so on (Gareth et al., 2021; Strang, 2019). In a similar way, a Convolutional
Neural Network (CNN) can be helpful in learning to recognize credulously accepted
arguments in an AF.

Previous studies (Kuhlmann and Thimm, 2019; Kuhlmann et al., 2022;
Malmqvist et al., 2020) have used variations of Kipf and Welling’s GCN model. For
example, Kuhlmann and Thimm (2019) proposed an GCN architecture with consist-
ing of one convolution layer followed by a single neuron with a linear function and
an activation layer based on the rectified linear unit ReLU(z) function. The input
was conformed by the adjacency matrix of the undirected graph of an AF and a fea-
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ture matrix consisting of the in- and out-degree of the arguments in the AF. The
later has given this model its nickname: FM2.

Other studies have used more complex architectures (Malmqvist et al., 2020). Be-
sides the adjacency matrix of the undirected graph, additional graph embeddings
have been added to the inputs. Another important change to the architecture was
the addition of more convolution layers and residual connections. The final activa-
tion layer was in this case base on a sigmoid function.

In this part of the study we are interested exploring the feasibility of the GCN
architecture as proposed initially by Kuhlmann and Thimm (2019) in determining
the credulous acceptability of single arguments in an AF.

The details of this experiment are explained below.

5.2.1 Experimental Setup

The training, validation and test data sets are known from Section 4.2.1. In previous
analysis, we have ignored the self-attacking arguments. However, for this experi-
ment we will take no provisions in this respect.

We adapted the code provided by Craandijk and Bex (2020) to meet our require-
ments. The adaptation consisted mainly of adding weakly preferred semantics as
an option and include additional performance metrics so as to make it comparable
to previous experiments.

The convolutional layer GCNConv included in the Python package
torch_geometric implements one-to-one the convolution operation as described by
Kipf and Welling (2016). As such it was carried out on the data conformed by the
adjacency matrix and the two dimensional feature matrix consisting of the in- and
out-degree of each argument.

In this experiment the GCN was trained batch-wise, i.e. AFs were processed
in batches of size 32, whereas in the original setting all adjacency matrices in the
training set were diagonally stacked to form a large input matrix. Batch size is one
of those parameters which can be adjusted to change the behavior of the model. This
experiment was carried out fixing the batch size to 32 because the training sample
was exactly divisible by this number.

We did only one run of the experiment with learning rate set to maximum of
0.0001, hidden dimension was 128 and there was no dropout layer. The best model
is chosen based on the smallest loss in the validation set. Loss was quantified us-
ing binary cross-entropy between the predicted likelihood of being credulously ac-
cepted and the true status of an argument.

Other adjustable parameters were set to the standard values of the convolution
and readout functions provided by the torch package.

We allowed the FM2 model to look for a classifier in a thousand iterations or
epochs. At the end of each epoch, the model obtained was tested on the validation
set. Only the best performing model with respect to the loss was temporarily stored.
Later on, in case another model showed smaller loss on the validation set would the
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Precision Recall F1-score Support
CD-admw

NO 0.73 0.88 0.80 18357
YES 0.73 0.50 0.59 11833

Accuracy 0.73 30190
macro avg 0.73 0.69 0.70 30190

weighted avg 0.73 0.73 0.72 30190
MCC = 0.4160

TABLE 5.5: FM2 Model Results

stored model be replaced by the better model.

Results

The results of this experiment on the test set are displayed in Table 5.5. The MCC
indicates a moderate prediction quality in line with the overall accuracy. The model
does a better job at correctly classifying non-credulously accepted arguments than
it does at correctly identifying the counter-class: credulously accepted arguments.
Overall, in spite of its complexity, the performance of this model on the test set is
the weakest when compared to the models computed so far.
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Chapter 6

Discussion and Conclusion

Classic semantics in argumentation are problematic in the face of particular attack
structures, i.e. self-attacking arguments or arguments in odd-length attack cycles
(Dung, 1995; Baroni et al., 2018). Weak Admissibility semantics suggest an alter-
native that is neither too strict nor too permissive in the definition of collectively
acceptable arguments or extensions. Research has shown that computational prob-
lems in this semantics were hard and complex to solve.

In the beginning of this research we set out to accomplish three goals. They
were aimed at gaining a better understanding of computational problems in weak
admissibility semantics from an empirical perspective. We took a particular interest
in credulous acceptability under weak admissibility semantics.

In the following sections we summarize and discuss our results in light of our
own findings with respect to each of the three goals formulated in Chapter 1.

6.1 Weak Admissibility Semantics

We started out by implementing an interpretation of the algorithms proposed by
Dvořák et al. (2021) and Dvořák et al. (2022). We targeted our implementation to
enumerate weakly preferred extensions in a given AF.

To achieve our target, we made use of theoretically founded techniques aimed at
reducing the problem size and —to a lesser extend— also the problem complexity
Dvořák et al. (2022).

We showed how enumerating weakly preferred extensions constitutes a build-
ing block in the solution of the problem of deciding credulous acceptability of the
arguments in an AF under weak admissibility semantics. Still, there remains some
work to do to implement solvers for the other problems in weak admissibility se-
mantics.

By the standards of the ICCMA 2017, our solver did a rather humble job in solv-
ing less than a third of the total benchmark in under 10 minutes. Unfortunately, we
did not have the resources to obtain a solution for every AF in the benchmark suite.
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We concluded that the solved set differed in many different dimensions from the
unsolved set, particularly we detected a non linear interaction between arguments,
attacks and the performance of the solver in terms of run-time.

Future research could do away with the 10 minute limit we imposed on run-time
and analyze the behavior of the solver in light of number of arguments, attacks,
SCCs, graph types, and other features of the AF. This step could help us identify
bottlenecks or help us direct the code optimization process (Vallati et al., 2019).

Having a completely solved data set would also increase the chance that we find
better heuristics that may complement an exact solver.

6.2 Statistical Analysis and Logistic Regression

Many statisticians and data scientists recommend performing a descriptive analysis
of the data available before jumping into any modeling. This advice is often over-
looked. We tend to go directly into formulating models which attempt to recreate
the relation between input and output without further analysis of the data.

The above recommendation was the reason for the second goal of the study. We
explored whether “simpler” techniques would be useful in identifying determinants
of credulous acceptability under weakly admissible semantics.

However, we felt that the small portion of solved AFs we had computed in the
previous steps would not be enough to comply with the comparability requirements
in this and in subsequent experiments. A different compilation of AFs was gener-
ated and solved to continue the study. We have already explained the way in which
our data set may be biased. We have to face the fact that the bias on the data set
is one of the major weakness of our study. This weakness was mainly induced by
the ten minute limit on run-time. Future work, should probably be better off by
eliminating this constraint.

It was important to gain an idea of how the data was distributed, i.e. what fea-
tures are shared among arguments, how did they differ from one another. From
simple exploratory statistics we discovered discrepancies between credulously ac-
cepted arguments and their non-accepted counterparts. Furthermore, we incorpo-
rated relevant AF information to create more informative features that proved also
influential in the credulous acceptability of arguments under weak admissibility.

Our analysis resulted in the definition of six argument features that had a rela-
tionship to credulous acceptability. With our selected feature were able to compute
“simple” and more “complex” models, but there are other characteristics at the AF-
level and at the argument-level that were left unexplored. For example, the number
of SCCs in the host AF, size of the largest SCC, and other measures mentioned by
Vallati et al. (2019). These features could be also incorporated to the argument fea-
tures by translating them into ratios, i.e. a new feature could reflect the probability
of an argument of being a member in the largest SCC of the host AF. Thus providing
more distinctive features at the argument level.
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More distinctive features could render the arguments linearly separable in
higher dimensions, a fact from which an SVM’s performance would profit.

We computed a logistic model that not only predicted credulous acceptability
under weak admissibility semantics better than chance. The logistic model also of-
fered us some degree of interpretability. We learned that the ratio of the in-degree to
the number of arguments in an AF can greatly influence the likelihood of an argu-
ment being credulously accepted. The same can be said about the ratio out-degree
to number of attacks.

To the best of our knowledge, this type of analysis has not been performed previ-
ously neither in the realm of weak admissibility semantics nor in the realm of classic
semantics. We showed that, at least for our data set, “simple” techniques perform
at the level of more complex techniques without compromising interpretability and
with a rather tiny resource consumption.

Future work could —on the basis of a completely solved ICCMA data set— re-
produce our experiments and establish whether similar performance results can be
achieved in this and maybe other data sets. In short, future research should take on
the question of general feasibility of simpler prediction models on both classic and
weakly admissible semantics.

We want to bring to the readers attention that weak admissibility semantics will,
in general, result in more credulously accepted arguments than their classic coun-
terparts. We conjecture that the expectation of the number of credulously accepted
arguments under weak admissibility semantics will be larger than under classic se-
mantics. Further research could shed some light into this conjecture and possibly
analyze how arguments under each semantics differ.

The number of credulously accepted arguments in our sample sets was smaller
than the number of non-accepted arguments. It is worth noting that we did not
take any provisions that would incorporate and mitigate this potential issue into the
models we computed. We will leave it to future research to address this situation.

6.3 Machine Learning (ML) Models

ML techniques enable us to learn directly and automatically from the data. ML
models can make really good predictions without an explicit model structure. Also
these models are not subject to the constraints posed to other regression methods.
On the other hand, training these models is also more difficult, it requires large
amounts of data and one has to pay attention to how the hyperparameters are tuned.
Suddenly, we may find ourselves testing a numerous combination of parameters. As
a result, interpretability is sacrificed. We know what went into the model, we know
what came out, but we are unable to explain which features played a role in the
output.

With the six argument features found in the descriptive and exploratory phases,
we modeled a SVM using four different kernels and varying, for each model, the
regularization parameter. For the RBF kernel and the Sigmoid kernel we also var-
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ied the gain parameter. The best results were achieved by the SVM with an RBF
kernel. The RBF kernel performed marginally better than the other kernels. Its per-
formance was very similar to the fourth degree polynomial kernel, however the RBF
kernel was faster to compute. When compared to the results of the logistic model,
it got better at identifying non credulously accepted arguments, but the same can-
not be said about credulously accepted arguments. The accuracy of the model was
marginally better than the other models computed but only because more non cred-
ulously accepted arguments were correctly identified.

When using even more complex techniques such as the FM2 model based on
GCNs, we found that the overall accuracy was not better than the simpler models.
The FM2 model’s ability to correctly identify non-credulous acceptability was better
than in the RBF-SVM model. From all the models computed, the FM2 model was
the weakest at correctly identifying credulously accepted arguments. In our view,
the results of this model were rather meager compared to its resource consumption
in terms of training time and computational resources.

We did not carry out any type of formal assessment regarding resource con-
sumption when computing models and testing them on unseen data. However, we
perceived large discrepancies in the time we had to wait to obtain a model. Logis-
tic regression returned almost immediately a moderately good prediction model.
Other techniques took minutes or even hours to compute also moderately good
models. We cannot help but ask ourselves, whether there is some merit to the statis-
tician’s advice: “look first at the data”.

In another vein, other ML models have shown significantly better results when
applied to classic semantics (Craandijk and Bex, 2020). In this work, we assessed
only two models. One of them had not been previously used in the context of neither
classic semantics nor weak admissibility semantics —the SVM model. The second
model, FM2 (Kuhlmann and Thimm, 2019), is better known for its mild results in
classic semantics and in this work. It is only natural to ask oneself whether the
AGNN model would do a good job predicting credulous acceptability under weak
admissibility semantics. However, this question will also have to be addressed by
future research.

6.4 Recommendations for Future Work

Regarding the data collection process, we faced the challenge of not sharing a com-
mon AF repository with other researchers, a situation that Kuhlmann et al. (2022)
have already pointed out. Except for the set of AFs from the ICCMA 2017 compe-
tition, every researcher has had to invest resources in the generation of their own
AF sample set. In this research we benefited in this respect, from previous work by
Craandijk and Bex (2020), but not without being well aware that this work missed
some other important benchmarks which have been in further development since
the ICCMA 2017 (Gaggl et al., 2020).

Future work might surely benefit from the integration of all available and widely
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accepted AF generation tools in one standard toolbox. Better yet would be the online
availability of a common repository of AFs on which researchers can train and test
their models. This step would make research in this field a bit more rigorous and
comparable.

Worthy of consideration is also the implementation of a “hybrid” solver in which
an exact algorithm is complemented with a approximate solution based on the re-
sults of this work. It has been remarked in this work and in other studies (Kuhlmann
et al., 2022; Kuhlmann and Thimm, 2019; Craandijk and Bex, 2020; Malmqvist et al.,
2020), that some models deliver results in reasonable time at the expense of accu-
racy. However, in our opinion, the further development of exact solvers should not
be at odds with the use of approximate solutions that under the right circumstances
and at the right point may significantly decrease the search space (Pearl and Kim,
1982).

In this work, we did not more than re-purpose the model proposed by Kipf and
Welling (2016) and adapted by (Kuhlmann and Thimm, 2019) to the problem of
determining credulous acceptability under weak admissibility semantics. In section
2.3.1, we explained how the GCN model consists of the adjacency matrix of the
undirected AF graph. In section 2.3.2 we described how this model would crumble
down if the undirected adjacency matrix would be substituted by the adjacency
matrix of the directed graph. However, more recent research by Kollias et al. (2022)
have studied how to encode information from the adjacency matrix of a directed
graph for the purposes of training a GCN for classification. Future research should
consider this findings and incorporate them in new predictive models.
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Appendix A

Weak Admissibility Exact Solver

A.1 Algorithm using SCC-recursiveness

"""
F i l e : wadmsolver . py

A c l a s s c o n t a i n i n g t h e methods t o g e n e r a t e weak ly p r e f e r r e d
e x t e n s i o n s a c c o r d i n g t o t h e

d e f i n i t i o n s p r e s e n t e d by Baumann e t a l . (2020 ,2020 a ) us ing
t h e a l g o r i t h m s p r o p o s e d in Dvorak e t a l . ( 2 0 2 1 , 2022) .

The a r g u m e n t a t i o n framework (AF) i s c o n t a i n e d in a d i g r a p h as
d e f i n e d by t h e Python module ’ ne tworkx ’ .

Author : C a r l a I . Sanchez Agui lar , A r t i f i c i a l I n t e l l i g e n c e
Group , F e r n u n i v e r s i t a e t in Hagen

"""
import networkx as nx

c l a s s WAdmSolverSCC :
a f = nx . DiGraph ( )

def _ _ i n i t _ _ ( s e l f , a f : nx . DiGraph ) :
"""
Args :

a f : An AF r e p r e s e n t e d as a DiGraph o b j e c t
.

"""
s e l f . a f = af . copy ( )
# E l i m i n a t e a l l s e l f − a t t a c k i n g arguments . F i r s t
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p r e p r o c e s s i n g s t e p .
s e l f . a f . remove_nodes_from ( nx . nodes_with_sel f loops ( a f )

)
s e l f . nodes = l i s t ( s e l f . a f . nodes )
s e l f . edges = s e t ( s e l f . a f . edges )
s e l f . s u c c e s s o r s = { } # Arguments a t t a c k e d by an

argument
s e l f . predecessors = { } # A d i c t i o n a r y c o n t a i n i n g t h e

d e f e a t e r s o f e a c h argument .

for node in s e l f . nodes :
s e l f . s u c c e s s o r s [ node ] = s e t ( s e l f . a f . s u c c e s s o r s (

node ) )
s e l f . predecessors [ node ] = s e t ( s e l f . a f .

predecessors ( node ) )

def s u c c e s s o r s _ o f ( s e l f , af_nodes , nodes_set ) :
"""
Computes t h e s e t o f arguments in AF a t t a c k e d by t h e

s e t o f arguments ’ n o d e s _ s e t ’ .
: param a f _ n o d e s : A l i s t o f t h e nodes c o n t a i n e d

in t h e AF .
: param n o d e s _ s e t : A s u b s e t o f ’ a f _ n o d e s ’
: r e t u r n : The s e t o f a l l nodes

a t t a c k i n g ’ n o d e s _ s e t ’ in AF .
"""

s u c c e s s o r s _ o v e r _ a l l = s e t ( )
for node in nodes_set :

s u c c e s s o r s _ o v e r _ a l l = s u c c e s s o r s _ o v e r _ a l l | s e l f .
s u c c e s s o r s [ node ]

return s u c c e s s o r s _ o v e r _ a l l & s e t ( af_nodes )

def predecessors_of ( s e l f , af_nodes , nodes_set ) :
"""
Finds t h e arguments in ’ a f _ n o d e s ’ a t t a c k i n g t h e s e t

o f arguments ’ n o d e s _ s e t ’
: param a f _ n o d e s : A l i s t c o n t a i n i n g t h e

arguments o f an AF .
: param n o d e s _ s e t : A s e t o f arguments in AF .
: r e t u r n : A s e t o f arguments in ’

a f _ n o d e s ’ a t t a c k i n g any argument in t h e s e t ’
n o d e _ s e t ’
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"""
d e f e a t e r s _ o v e r a l l = s e t ( )
for node in nodes_set :

d e f e a t e r s _ o v e r a l l = d e f e a t e r s _ o v e r a l l | s e l f .
predecessors [ node ]

return d e f e a t e r s _ o v e r a l l & s e t ( af_nodes )

def strongly_connected_components ( s e l f , af_nodes ) :
"""
G e n e r a t e s t h e SCCs o f t h e AF con fo rmed by a f _ n o d e s .

We borrowed some c o d e from t h e Python
p a c k a g e ’ ne tworkx ’ and a d a p t e d i t t o a c c e p t a l i s t o f

t h e nodes in AF . We d e c i d e d f o r t h e
non− r e c u r s i v e i m p l e m e n t a t i o n o f Tar j a n ’ s a l g o r i t h m

a d a p t e d from Nuut i l a e t a l . ( 1 9 9 4 ) b e c a u s e i t
works w e l l wi th b o t h s p a r c e g ra phs and with h i g h l y

c o n n e c t e d g rap hs .
: param a f _ n o d e s : A l i s t o f t h e nodes c o n t a i n e d

in t h e AF .
: r e t u r n : The s e t o f s t r o n g l y c o n n e c t e d

components o f AF .
"""

preorder = { }
lowlink = { }
scc_found = s e t ( )
scc_queue = [ ]
i = 0 # P r e o r d e r c o u n t e r
# We want t o o b t a i n t h e s u c c e s s o r s o f e a c h node

c o n t a i n e d in ’ a f _ n o d e s ’ , s u c c e s s o r s s h o u l d be p a r t
# o f ’ a f _ n o d e s ’
s u c c e s s o r s = { node : i t e r ( s e l f . s u c c e s s o r s [ node ] & s e t (

af_nodes ) ) for node in af_nodes }
s u c c e s s o r s _ d i c t = { node : ( s e l f . s u c c e s s o r s [ node ] & s e t

( af_nodes ) ) for node in af_nodes }
for source_node in af_nodes :

i f source_node not in scc_found :
s tack = [ source_node ]
while s tack :

v = s tack [ −1]
i f v not in preorder :

i = i + 1
preorder [ v ] = i
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done = True
for w in s u c c e s s o r s [ v ] :

i f w not in preorder :
s ta ck . append (w)
done = Fa lse
break

i f done :
lowlink [ v ] = preorder [ v ]
for w in s u c c e s s o r s _ d i c t [ v ] :

i f w not in scc_found :
i f preorder [w] > preorder [ v ] :

lowlink [ v ] = min ( [ lowlink
[ v ] , lowlink [w] ] )

else :
lowlink [ v ] = min ( [ lowlink

[ v ] , preorder [w] ] )
s ta ck . pop ( )
i f lowlink [ v ] == preorder [ v ] :

scc = { v }
while scc_queue and preorder [

scc_queue [ − 1 ] ] > preorder [ v ] :
k = scc_queue . pop ( )
scc . add ( k )

scc_found . update ( scc )
y i e l d scc

else :
scc_queue . append ( v )

def reduct ( s e l f , nodes_af , nodes_set ) :
"""
Computes t h e r e d u c t o f t h e AF arguments ’ n o d e s _ a f ’

wi th r e s p e c t t o a s e t o f arguments ’ n o d e s _ s e t ’ .
: param n o d e s _ a f : A l i s t c o n t a i n i n g t h e

arguments o f an AF .
: param n o d e s _ s e t : A s e t o f arguments from which

t o compute t h e r e d u c t in AF .
: r e t u r n : A l i s t o f arguments c o n t a i n e d

in t h e r e d u c t o f t h e AF w. r . t . ’ n o d e s _ s e t ’ .
"""
nodes_set_plus = s e l f . s u c c e s s o r s _ o f ( nodes_af ,

nodes_set )
nodes_star = nodes_set | nodes_set_plus
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return s e t ( nodes_af ) − nodes_star

def g e n e r a t e _ c f _ s e t s ( s e l f , af_nodes ) :
"""
Computes a l l t h e c o n f l i c t − f r e e s e t s in AF , n o t i c e we

assumed AF c o n t a i n s no s e l f − l o o p s .
: param a f _ n o d e s : A l i s t o f t h e nodes c o n t a i n e d

in AF , none o f t h e nodes a t t a c k s i t s e l f .
: r e t u r n : The s e t o f a l l c o n f l i c t − f r e e

s e t s in AF .
"""
c f _ s e t s = s e t ( )
i f len ( af_nodes ) > 0 :

c f _ s e t s . add ( f rozenset ( [ af_nodes [ 0 ] ] ) )
# Compute a new AF which d o e s not i n c l u d e n e i t h e r

t h e c u r r e n t argument , nor t h e arguments
a t t a c k e d by i t .

aux_af = s e l f . reduct ( af_nodes , s e t ( [ af_nodes [ 0 ] ] )
)

compatible_nodes = s e t ( )
for node in aux_af :

i f node not in s e l f . predecessors_of ( af_nodes ,
s e t ( [ af_nodes [ 0 ] ] ) ) :
compatible_nodes . add ( node )

i f len ( compatible_nodes ) > 0 :
a u x _ c f _ s e t s = s e l f . g e n e r a t e _ c f _ s e t s ( l i s t (

compatible_nodes ) )
for aux_set in a u x _ c f _ s e t s :

c f _ s e t s . add ( f rozenset ( s e t ( [ af_nodes [ 0 ] ] )
| aux_set ) )

o t h e r _ c f _ s e t s = s e l f . g e n e r a t e _ c f _ s e t s ( af_nodes
[ 1 : ] )

c f _ s e t s = c f _ s e t s | o t h e r _ c f _ s e t s

return c f _ s e t s

def is_w_adm ( s e l f , af_nodes , c f _ s e t ) :
"""
Checks whe the r t h e s e t o f arguments ’ c f _ s e t ’ i s

weak ly a d m i s s i b l e in AF .
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: param a f _ n o d e s : A l i s t c o n t a i n i n g t h e
arguments o f AF .

: param c f _ s e t : A s e t o f c o n f l i c t − f r e e
arguments in AF .

: r e t u r n : True i f t h e s e t ’ c f _ s e t ’ i s
weak ly a d m i s s i b l e in AF , F a l s e o t h e r w i s e .

"""
# we assume t h e t e s t f o r c o n f l i c t − f r e e s e t s has be en

c a r r i e d out .
i f len ( c f _ s e t ) == 0 :

return True # The empty s e t i s w− a d m i s s i b l e

# Find t h e d e f e a t e r s o f t h e arguments c o n t a i n e d in ’
c f _ s e t ’ in t h e a r g u m e n t a t i o n framework ’ a f ’ .

d e f e a t e r s = s e l f . predecessors_of ( af_nodes , c f _ s e t )
# When t h e r e a r e no d e f e a t e r s o f ’ c f _ s e t ’ , t h e s e t i s

w− a d m i s s i b l e .
i f len ( d e f e a t e r s ) == 0 : # The s e t ’ c f _ s e t ’ has no

d e f e a t e r s in ’ a f ’ .
return True

reduct_af = s e l f . reduct ( af_nodes , c f _ s e t )
# Find t h e d e f e a t e r s o f ’ c f _ s e t ’ t h a t a r e p r e s e n t in

t h e r e d u c t .
d e f e a t e r s _ r e d u c t = reduct_af & d e f e a t e r s
# I f t h e r e a r e no d e f e a t e r s o f ’ c f _ s e t ’ in t h e r e d u c t

, t h e s e t i s w− a d m i s s i b l e .
i f len ( d e f e a t e r s _ r e d u c t ) == 0 :

return True
# Compute t h e grounded e x t e n s i o n o f t h e r e d u c t .
red_gr_ext = s e l f . generate_grounded_ext ( reduct_af )
# In c a s e t h e grounded e x t e n s i o n c o n t a i n s a d e f e a t e r

o f c f _ s e t , t h e s e t i s not w _ a d m i s s i b l e .
i f len ( d e f e a t e r s _ r e d u c t & red_gr_ext ) > 0 :

return Fa lse

# Compute t h e r e d u c t o f t h e p r e v i o u s AF w. r . t . t o t h e
grounded e x t e n s i o n

aux_af = s e l f . reduct ( reduct_af , red_gr_ext )
# In c a s e t h e r e a r e s t i l l d e f e a t e r s o f ’ c f _ s e t ’ in

t h i s r e d u c e d AF
i f len ( d e f e a t e r s _ r e d u c t & aux_af ) > 0 :
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for w_pref_set in s e l f . generate_w_pref_sets ( l i s t (
aux_af ) ) :

i f len ( d e f e a t e r s _ r e d u c t & w_pref_set ) > 0 :
return Fa lse

return True

def f ind_w_pref_se t s_scc ( s e l f , af_nodes ) :
"""
Finds t h e w− p r e f e r r e d s e t s us ing s t r o n g l y c o n n e c t e d

components .
: param a f _ n o d e s : A l i s t c o n t a i n i n g t h e

arguments o f AF .
: r e t u r n : The s e t o f w− p r e f e r r e d

e x t e n s i o n s o f AF .
"""
w_pref_sets = s e t ( )
s c c s = l i s t ( s e l f . strongly_connected_components (

af_nodes ) )

i f len ( af_nodes ) == 0 :
w_pref_sets . add ( f rozenset ( ) )

for scc in s c c s :
# S o r t out i n i t i a l SCCs , i . e . SCCs which have no

incoming e d g e s .
i f len ( s e l f . predecessors_of ( af_nodes , scc ) − scc )

== 0 :
s c c _ c f _ s e t s = s e l f . g e n e r a t e _ c f _ s e t s ( l i s t ( scc )

)
w_adm_set_in_scc = Fa l se # A f l a g d e n o t i n g

t h e e x i s t e n c e o f w−adm s e t s in t h e s c c
for s c c _ c f _ s e t in s c c _ c f _ s e t s :

i f s e l f . is_w_adm ( l i s t ( scc ) , s c c _ c f _ s e t ) :
w_adm_set_in_scc = True # A w−adm

s e t was found in t h e s c c
reduct_af_nodes = s e l f . reduct (

af_nodes , s c c _ c f _ s e t )
i f len ( reduct_af_nodes ) == 0 :

w_pref_sets . add ( s c c _ c f _ s e t )
else :

# Compute t h e r e d u c e d AF which
on ly s h o u l d i n c l u d e t h e nodes
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in t h e r e d u c t
for o t h e r _ s e t in s e l f .

generate_w_pref_sets (
reduct_af_nodes ) :

w_pref_sets . add ( s c c _ c f _ s e t |
o t h e r _ s e t )

i f not w_adm_set_in_scc :
# A w− a d m i s s i b l e e x t e n s i o n was not found

in t h i s SCC , go on l o o k i n g f o r w−
a d m i s s i b l e s e t s in t h e AF

# r e s u l t i n g from removing t h e s c c
new_af_nodes = s e t ( af_nodes ) − scc
for o t h e r _ s e t in s e l f .

generate_w_pref_sets ( new_af_nodes ) :
w_pref_sets . add ( f rozenset ( ) |

o t h e r _ s e t )

return w_pref_sets

def generate_grounded_ext ( s e l f , af_nodes ) :
"""
G e n e r a t e s t h e grounded e x t e n s i o n o f an AF . Th i s

f u n c t i o n was a d a p t e d from Wolfgang Dvorak ’ s
s o l v e r f o r Dung ’ s s e m a n t i c s .
: param a f _ n o d e s : A l i s t o f c o n t a i n i n g t h e

arguments o f t h e AF .
: r e t u r n : A s e t o f arguments con fo rming

t h e grounded e x t e n s i o n o f AF .
"""
g r _ s e t = s e t ( )

i f len ( af_nodes ) == 0 :
return s e t ( )

# Find u n d e f e a t e d nodes .
for node in af_nodes :

i f len ( s e l f . predecessors_of ( af_nodes , [ node ] ) ) ==
0 :
g r _ s e t . add ( node )

i f len ( g r _ s e t ) == 0 :
return s e t ( )
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# Compute a new a f in which b o t h u n d e f e a t e d nodes and
nodes a t t a c k e d by t h e s e a r e not in .

reduced_af = s e l f . reduct ( af_nodes , g r _ s e t )

g r _ s e t = g r _ s e t | s e l f . generate_grounded_ext (
reduced_af )

return g r _ s e t

def generate_w_pref_sets ( s e l f , af_nodes ) :
"""
Given an a r g u m e n t a t i o n framework , t h i s f u n c t i o n

g e n e r a t e s weak ly p r e f e r r e d s e t s on t h e p r e m i s e o f
f i r s t

c a r r y i n g out a s e c o n d pre − p r o c e s s i n g s t e p which
c o n s i s t s o f f i n d i n g t h e grounded e x t e n s i o n thus in

t h e b e s t c a s e s
r e d u c i n g t h e s i z e o f t h e s e t o f arguments c o n t a i n e d

in t h e AF . I t th en u s e s an a p p r o a c h b a s e d on SCCs
t o f i n d

weak ly p r e f e r r e d s e t s h a t w i l l complement t h e
grounded e x t e n s i o n and form weak ly p r e f e r r e d
e x t e n s i o n s .

: param a f _ n o d e s : A l i s t o f c o n t a i n i n g t h e
arguments o f t h e AF .

: r e t u r n : A s e t c o n t a i n i n g a l l weak ly
p r e f e r r e d e x t e n s i o n s found in t h e AF .

"""
w_pref_sets = s e t ( )

# Compute t h e grounded e x t e n s i o n , s e c o n d
p r e p r o c e s s i n g s t e p

gr_ext = s e l f . generate_grounded_ext ( af_nodes )
# E l i m i n a t e t h e grounded e x t e n s i o n and t h e arguments

i t d e f e a t s ( r e d u c t ) from t h e a f .
reduced_af = s e l f . reduct ( af_nodes , gr_ext )
# We need t o f i n d t h e w− p r e f e r r e d e x t e n s i o n s in t h e

r ema in ing r e d u c e d AF .
aux_w_pref_sets = s e l f . f ind_w_pre f_se ts_scc (

reduced_af )
# Add t h e grounded e x t e n s i o n s t o t h e w− p r e f e r r e d s e t s

found in t h e r e d u c t .
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for w_pref_set in aux_w_pref_sets :
w_pref_sets . add ( f rozenset ( w_pref_set | gr_ext ) )

return w_pref_sets

def generate_w_pref_extensions ( s e l f ) :
"""
Returns t h e w− p r e f e r r e d s e t s in t h e AF .
"""
return s e l f . generate_w_pref_sets ( s e l f . nodes )
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