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Zusammenfassung

Die Elizitierung ist ein neuer Ansatz zur Rekonstruktion von Argumentationsframe-
works. Sie ist durch einen interaktiven Prozess gekennzeichnet, in dem ein Agent
ein Argumentationsframework besitzt und Fragen hierzu beantworten kann. Das
Ergebnis des Prozesses ist die Rekonstruktion eines Argumentationsframeworks,
das dem des Agenten äquivalent ist. In dieser Masterarbeit wird die Elizitierung von
Argumentationsframeworks unter Beschränkung auf semantische Entscheidungs-
fragen mit Bezug zu den klassischen Semantiken untersucht. Die daraus rekon-
struierten Argumentationsframeworks besitzen unter der gegebenen Semantik die
gleichen Extensionen wie jene des Agenten, d.h. sie sind σ-äquivalent. Dazu wer-
den zunächst die Eigenschaften der klassischen Semantiken untersucht, die sich für
Algorithmen im interaktiven Teil eignen. Anschließend werden die semantischen
Entscheidungsfragen spezifiziert, die an den Agenten gestellt werden können. Die-
se orientieren sich an den bekannten Berechnungsproblemen der abstrakten Argu-
mentation. Aus den geeigneten Eigenschaften und Fragen werden Algorithmen für
den Frageteil des Elizitierungsprozesses entwickelt und anschließend hinsichtlich
ihrer Leistungsfähigkeit evaluiert. Es zeigt sich, dass ohne vorherige Enumerierung
für viele Semantiken außer der begründeten und der vollständigen Semantik ein
naiver Ansatz mittels Durchfragen aller Extensionen besser abschneidet. Darüber
hinaus wird diskutiert, inwiefern eine unmittelbare argumentkongruente Rekon-
struktion eines σ-äquivalenten Argumentationsframeworks aus den gesammelten
Informationen erfolgen kann. Dies ist nur bei konfliktfreien Mengen sowie vollstän-
diger Semantik zuverlässig möglich.

Abstract

Elicitation is a novel approach to the reconstruction of argumentation frameworks.
It is characterised by an interactive process in which an agent possesses an argumen-
tation framework and is able to answer questions about it. The result of this process
is the reconstruction of an argumentation framework equivalent to that of the agent.
In this Master’s thesis, the elicitation of argumentation frameworks is investigated
under the restriction of using semantic decision questions with reference to the clas-
sical semantics. The argumentation frameworks reconstructed therefrom have the
same extensions as these of the agent under the given semantics, i.e. they are σ-
equivalent. For this purpose, properties of the classical semantics that are suitable
for algorithms in the interactive part are first examined. Then, the semantic decision
questions that can be posed to the agent are specified. These are oriented towards
the well-known computational tasks of abstract argumentation. Algorithms for the
question part of the elicitation process are developed from the suitable properties
and questions and then evaluated with regard to their performance. It is shown
that without prior enumeration, for many semantics except grounded and complete
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semantics, a naïve approach by means of asking for all extensions performs bet-
ter. Furthermore, it is discussed to what extent an immediate argument-congruent
reconstruction of a σ-equivalent argumentation framework can be done from the
collected information. This is only reliably feasible for conflict-free sets as well as
the complete semantics.
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1. Introduction

The subject area of formal argumentation, as a subfield of Artificial Intelligence (AI),
deals with approaches to the formal modelling of human argumentation and the use
of these models to infer knowledge. The idea is to recreate human knowledge rea-
soning this way. In 1995 Phan Minh Dung founded the approach of abstract argu-
mentation with his to this day influencing seminal paper [20]. There he introduced
an abstract representation of arguments and their attack relation. For this purpose,
the arguments are abstracted in such a way that their internal structure is no longer
relevant for further considerations. A lot of work has been put into drawing mean-
ingful conclusions from so-called (abstract) argumentation frameworks (AF). These
AFs consist of directed graphs where the nodes represent the arguments and the
edges define the attack relation. The meaning behind an attack of an argument A
against an argument B is that there is a contradiction. So if an argument A is ac-
cepted, then B must be rejected. To determine the set of accepted arguments, a
calculus is applied. What follows is a brief illustration using an example based on
an argument about plant watering.

The weather forecast announces dry weather.

It is raining right now.

I should water the plants.

Figure 1: An illustration of an argument about plant watering.

Example 1. Consider Figure 1 with its reasoning and the three statements. A decision is to
be made on whether to water the plants. This result lies in the acceptance of the argument I
should water the plants. The argument itself is attacked by the statement that It is raining
right now. This is indicated by the arrow. So if this observation is true and the argument It
is raining right now is accepted, then I should water the plants is rejected and therefore
the plants do not need to be gardened. The reverse is also possible.

However, the argument It is raining right now is in mutual conflict with the third state-
ment The weather forecast announces dry weather that has not yet been considered
further. So a decision must be made beforehand between the two conflicting arguments.
Only then a decision can be concluded.

So if one of the two arguments is accepted, the other is rejected. Depending on the obser-
vation made regarding the weather, it can be reasoned whether the plants need to be watered
or not.
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As mentioned before, the actual contents of the arguments are abstracted away. Therefore,
an abstract framework results in a structure as in Figure 2, where the arguments are identi-
fied by variable names. Without going into more detail at this point, such an AF is described
by a pair of the set of arguments and the set of attacks, in formal notation (Arg,AR). So in
this case F1 =

(
{A1, A2, A3}, {(A1, A2), (A2, A1), (A2, A3)}

)
.

A1 A2 A3

Figure 2: The abstract argumentation framework modelled in accordance with Ex-
ample 1.

Although the basic idea of abstract frameworks is very simple, this approach can
be used for different scenarios. For example, as in recent publications on recommen-
dation systems [42] or persuasion dialogues [15]. As part of active research, Dung’s
approach was enriched in a wide range for example by adding concepts as pref-
erences and strength [12] or by developing weighted argumentation systems [24].
New research findings continue to be published.

One such object of study that plays an important role is the calculus. It deter-
mines consistent or accepted arguments based on the attack relations and is called a
semantics. The set of arguments calculated by this function is called an extension.
Several semantics are already named in Dung’s work, which are also commonly re-
ferred to as the classical semantics. These are called complete, grounded, preferred
and stable semantics. Over the years, more semantics have been developed that
represent different ideas. Nevertheless, all semantics pursue the goal of finding the
accepted arguments. Conversely, it can be assumed that there is a direct or indirect
conflict between the arguments that are not part of the outcome. This may indicate
that these arguments could be contradicted by the extensions via a direct attack of
the arguments in the extensions or that they could be rejected due to other conflicts
not directly connected to the acceptable arguments. The latter explanation may indi-
cate that there is a possibility that these arguments are compatible with the accepted
arguments, but just not in the given extension.

A1 A2 A3

A4 A5

Figure 3: An example of an abstract argumentation framework with five arguments.
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Example 2. To give an example of semantics and their extensions, assume an AF like the
one in Figure 3. This AF has five arguments with several attacks between themselves. The
two arguments A1 and A2 attack each other. Also argument A5 attacks itself and is attacked
by A4 as well. Furthermore, A2 attacks A3. Without going into more detail about the char-
acterisation of semantics at this point, we choose so-called conflict-free sets as the semantics.
We therefore consider a semantics in general as a function that provides us with extensions
to an argumentation framework, i.e. sets of arguments that fulfil a certain condition. For
conflict-free sets, the condition is that if there is no attack between two arguments, they are
accepted as extensions.

This condition is always true for the empty set ∅, i.e. if no argument is chosen, then there
is no conflict. Further, all arguments except A5 are not self-attacking, so each argument
forms an extension by itself, i.e. {{A1}, {A2}, {A3}, {A4}}. Moreover, there are no at-
tacks between A1, A4, A3, so extensions can also be formed from them {A1, A3}, {A1, A4},
{A3, A4} as well as all three arguments together {A1, A3, A4}.

With these introductory thoughts on the broader research field in which this the-
sis is situated, we next touch on the research topic of elicitation and introduce the
motivation and problem. Afterwards, we formulate the central research question
and present the structure of the thesis.

1.1. Motivation and Problem Specification

The previously given context to abstract argumentation provides a basis for calcu-
lating extensions, i.e. the set of arguments accepted together. If one assumes that
an agent possesses such a model and knows about the extensions, it is also conceiv-
able that through previously known information and, in particular, by questioning
the agent, one gathers further information in order to construct or reconstruct an
abstract argumentation framework that completely or to some extent replicates the
agent’s model such that the same extensions arise.

Kuhlmann [34] gave an introductory elaboration of the problem and named it
the elicitation of abstract argumentation frameworks. Thereby, the ability to choose
questions to ask for needed information in the process can be considered unique
to this approach [34]. So far, no further work based on this is known, with the ex-
ception of Kuhlmann et al.’s [35] paper on agents that hold several semantics as so-
called types and the subsequent questions of which semantics can be distinguished
on the basis of that type, taking into account some of the characteristics of AFs.

Let us demonstrate the usefulness of this approach with the following train of
thought: We assume, for example, that an agent reads a newspaper article with
arguments for and against a matter, for instance living in a suburb, and now, based
on information such as the amount of accepted arguments or the like, which the
agent provides, the agent’s hidden AF is to be found out.

Now we take the position of an interviewer who also read the article and there-
fore at least knows all the arguments as well. Now we want to elicit information
from the agent by asking a series of questions, in order to then produce an AF from
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compiled information. Two successive steps can therefore be identified. First, we
conduct an interview and then we create an AF, which is a reconstruction of the
agent’s AF.

So far, this research topic has received little attention. Initial work has already
been done on the approach of reconstructing an AF with information already given.
Niskanen et al. [37] and Riveret et al. [43] have already dealt with reconstructing
an AF on the basis of extensions respectively labels (a method of encoding further
information beyond acceptance by means of multiple values).

These approaches correspond to the activities to be done in the second step. If,
however, the information for a reconstruction is not yet available and must be col-
lected, which corresponds to the first step, then no work exists apart from the intro-
duction by Kuhlmann [34] described above.

Altogether, elicitation is a process based on the interaction between two parties,
an agent with an AF and an interviewer who may have partial information and may
ask questions. The fundamental problem we address in this Master’s thesis is to find
an elicitation process in which all arguments and a semantics are revealed to the in-
terviewer and the interviewer now poses questions to the agent, who answers them
truthfully, as it would be the case with an oracle. In the process, the interviewer uses
the answers given to decide which further questions to ask. Once he has gathered
all the information, the interviewer constructs an AF that corresponds to the desired
notion of equivalence.

A1 A2 A3

A4 A5

Figure 4: An example of a reconstructed argumentation framework with five argu-
ments.

For this purpose, it must be understood that a set of extensions in many cases can
be realised by more than one argumentation framework. We revisit Example 2 for
this purpose. Here, nine extensions {{}, {A1}, {A2}, {A3}, {A4}, {A1, A3}, {A1, A4},
{A3, A4}, {A1, A3, A4}} were identified as conflict-free sets. The interviewer knows
all the arguments {A1, A2, A3, A4, A5} and also comes up with these nine extensions
through clever questioning. Figure 3 represents the AF of the agent. Now, if our
goal as the opposing party is to construct an AF that produces the same extensions,
we can obtain an AF like the one in Figure 4 by guessing the attack relations. To do
this, we just need to preserve the conflicts between the extensions so that they arise.
For example, A5 is not in any extension and so can be removed from all extensions
by only attacking itself. As a result, it is obvious that the attack relations are differ-
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ent, but nevertheless, the same extensions with respect to the conflict-free sets are
produced.

This also demonstrates a problem of reconstruction: Reconstructing a syntacti-
cally identical AF requires a lot of information beyond the knowledge of the exten-
sions. Therefore, standard equivalence is only described by the semantics σ. Two
AFs are considered equivalent if they produce the same extensions under the same
semantics. It is also called σ-equivalence in the following. This concept guarantees
that the desired result, i.e. the accepted arguments, is achieved by both compared
argumentation frameworks. If however new information, that is attacks and new ar-
guments, is added to the two AFs, then the two may no longer be equivalent under
σ-equivalence.

As a broader restriction, if σ-equivalence is used as a condition for the generated
AFs to be accepted, then there is no guarantee that only the syntactically identical
AF will be found. That is, there is a set of AFs that are equivalent in terms of ex-
tensions under the semantics and thus can be called a σ-equivalent class. Then the
agent’s AF is a member of it, but if there is more than one AF, then it is unclear
which of these syntactically corresponds to that of the agent’s AF.

In this Master’s thesis, we intend to fundamentally develop algorithms for the
first interview part that go beyond Kuhlmann’s [34] naïve approach. Since there
are already approaches for σ-equivalent reconstructions, the second step is based
on these. The implication of this for the first step is that only the extensions need to
be elicited. Therefore, we set the restriction that only questions with relation to the
extensions are asked.

However, the approaches of this thesis are chosen in such a way that further work
based on this body of work can examine the algorithms under a stricter variant of
equivalence, such as strong equivalence described by Oikarinen and Woltran [38].

1.2. Objective and Research Question

What follows is the presentation of the overall objective of the Master’s thesis, which
aspect of the research area of elicitation will be dealt with and the research question
derived from it. In addition, the further structure of this thesis is presented.

The objective is, that the Master’s thesis should contribute to the overall goal
of developing algorithms for the elicitation of abstract argumentation frameworks.
The algorithms to be developed contribute to the subfield of eliciting σ-equivalent
AFs by asking only extension-related questions.

From this objective we derive the following research question:

Research Question. What are meaningful properties of the semantics and the possible
extensions of an AF in respect of elicitation and how can they be formed into algorithms only
using semantic questions for eliciting sigma-equivalent AFs under admissible and conflict-

5



free extensions1 as well as the complete, grounded, preferred and stable semantics?

To check whether the properties found actually lead to better algorithms, we will
benchmark the algorithms against the naïve approach in an experiment. One of the
performance indicators here is the CPU runtime of the different algorithms devel-
oped compared to the naïve approach (see Section 4.3.1). For a valuable algorithm
the runtime should be lower in favour of the algorithms developed.

In order to develop such algorithms that subsequently allow for the reconstruc-
tion of an AF by asking questions first, some restrictions or assumptions have to be
made to sufficiently narrow down the scope of the problem. As mentioned before,
the notion of σ-equivalence is used to determine equivalency between the found
AF and the hidden AF of the agent. In addition, a reasonable assumption must be
made about the agent’s ability to answer questions. Therefore the kind of problems
the agent can solve and subsequently the set of questions must be specified. The ex-
act set will be defined later in this thesis, but, already anticipating later analyses, the
restriction is that only decision questions with a relation to extensions are answered
by the agent. These are polar questions that can only be answered truthfully with a
yes or no.

So in order to answer the research question, a literature review is conducted first.
This is done in order to get an overview of the problem of elicitation and related
approaches such as learning AFs. Next, it is investigated which questions could
usefully be asked to an agent in such a scenario. With this question pool in hand,
algorithms for the classical semantics are developed to elicit σ-equivalent AFs. In
addition, we give an insight into the possibilities of reconstruction from the collected
information. The algorithms are then implemented and evaluations are carried out
on the basis of this implementation to examine the performance of the approach.

The contributions to the subject area of elicitation of this Master’s thesis are:

1. Finding meaningful boundaries regarding the agent’s ability to answer ques-
tions, and building on this, establishing a question pool that the interviewer
can use to elicit the agent’s AF.

2. The inspection and identification of properties of classical semantics, that are
useful for narrowing the search space.

3. The development of algorithms that couples the found properties with the
possible questions.

4. The implementation of the algorithms and the evaluation of their performance.

The Master’s thesis is therefore organised as follows: Section 2 gives the neces-
sary background for abstract argumentation frameworks and their semantics. In

1For the sake of simplification, admissible and conflict-free extensions from now on will be seen as
semantics, too.
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addition, the approach of labelling instead of forming extensions is briefly intro-
duced. In order to assess the computability of the questions to be developed, the
field of computational complexity is briefly introduced. Furthermore, the problem
of elicitation is revisited and the naïve approach is explained.

Following on from this, Section 3 looks at the approaches that have been taken to
address the reconstruction of AFs so far.

With this background knowledge, the algorithms are developed and described in
Section 4. This is the main contribution of this Master’s thesis. First, the algorithmic
process of elicitation is described, and then the questions for the agent are defined.
After that, the algorithms for the classical semantics are developed. Finally, the
reconstruction from the collected information is discussed and what limitations it
has.

The proposed algorithms were implemented on this basis. These were then evalu-
ated and in Section 5 the results are discussed in terms of their performance. Finally,
Section 6 provides a summary of the topic and identifies further directions for future
work.

2. Background

This section is intended to provide a basis for further elaboration on the topic. For
this purpose, literature important for further understanding is cited and an intro-
duction to those approaches is given. This background section begins with the con-
cept of abstract argumentation frameworks [20] followed by a description of the idea
of argumentation semantics [20] and its realisation in the form of extensions [20]. In
order to be able to understand similar approaches to the reconstruction of argu-
mentation frameworks, the alternative approach of labellings [14] is also briefly de-
scribed. Before turning to elicitation, the topic of computational complexities [1] will
be touched upon. This will be necessary later in order to evaluate different types of
elicitation questions in terms of their tractability. This is finally followed by a more
formal description of the approach of eliciting argumentation frameworks [34] than
what was described in the introductory section.

2.1. Abstract Argumentation Frameworks

First of all, the essential concept of Dung’s (abstract) argumentation frameworks [20],
which is fundamental to this Master’s thesis, is outlined. Therefore, the following
definitions are taken from or based on Dung’s work [20].

An argumentation framework consists of two components. One is the set of argu-
ments Arg and the other is the attack relation, a binary relation AR over Arg. The
word abstract in abstract argumentation frameworks comes from the fact that the
inner structure of the argument is not important for the reasoning. It is based purely
on the relations between the arguments.
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Definition 1. An abstract argumentation framework (AF ) is a pair ⟨Arg,AR⟩, where
Arg is a set of arguments and AR ⊆ Arg ×Arg is a binary relation.

In the context of this Master’s thesis, it is assumed that all argumentation frame-
works are finite.

Definition 2. Given an AF F = (Arg,AR), it is that Arg ⊆ U is finite. Further F denotes
the set of all argumentation frameworks over U .

A1

A3

A4

A5

A6

A7A2

Figure 5: An example argumentation framework F2.

To represent that an argument a ∈ Arg attacks an argument b ∈ Arg the notation
a ↪→ b is used; so that a attacks an argument b if a ↪→ b holds. Moreover, this notion
can also be extended to sets, so that a set S ⊆ Arg of arguments attacks an argument
b if b is attacked by an argument in a ∈ S. Conversely, an argument a can also attack
a set if an argument b ∈ S from the set is attacked by the argument a.

Another important notion is defence. A set E defends an argument a if every
attacker of a is attacked by an argument from E.

However, sets of arguments cannot be considered only in terms of their attacks
on any other arbitrary argument and vice versa. An important property is conflict-
freeness, which means that the arguments in a set do not attack each other.

Definition 3. A set S of arguments is conflict-free if no argument in S attacks an argu-
ment in S.

Example 3. Consider the argumentation framework in Figure 5. Several conflict-free sets
can be determined. An example is {A1, A2}. The two arguments A1 and A2 of this set do
not attack each other and are hence conflict-free.

The set {A1, A2, A3} can be taken as a counterexample. It is not conflict-free because A3

is attacked by both A1 and A2.

Now, when choosing a set of arguments of an argumentation framework, the
question arises of how to determine their acceptance. A rational agent will only
accept a set of arguments if it can defend itself against all attacks (see Definition 4).
This set can then be said to be admissible (see Definition 5).
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Definition 4. Let F = (Arg,AR) be an argumentation framework. Then an argument
a ∈ Arg is acceptable with the respect to S ⊆ Arg iff for each argument b ∈ Arg: if
b ↪→ a then there is a c ∈ S such that c ↪→ b.

Definition 5. An set of arguments S is admissible if S is conflict-free and each argument
in S is acceptable with respect to S.

Example 4. Consider Figure 5 a second time. In this example, a set is looked for that covers
Definition 4 and Definition 5 on acceptability and admissibility. The set {A1, A2} from
Example 3 satisfies these, although this is a rather straightforward example. Another set is,
for instance, {A1, A2, A4, A7}. The set is conflict-free because none of the arguments attack
each other. Moreover, arguments A1 and A2 attack argument A3 (in fact only one of the
two is needed) and so argument A4 is accepted by the defence. Since A5 is attacked by A4,
argument A7 is likewise defended and is therefore accepted. Thus all arguments of the set are
accepted in respect of the set and the set is therefore not only conflict-free but also admissible.

Finally, further notions for extensions and the characteristic function shall be de-
scribed. E+ denotes a set containing all attacked arguments of E, i.e. E+ = {a ∈
Arg | E attacks a}. Moreover, the range is a set E

⊕
containing the extension and

all arguments attacked by the extension, i.e. E
⊕

= E ∪ E+. Finally, FE is called an
E-reduct of an AF F such that FE = (E∗, AR ∩ (E∗ × E∗)) with E∗ = Arg \ E

⊕
.

And lastly, the characteristic function Γ, which is defined as follows:

Definition 6. Let F = (Arg,AR) be an argumentation framework. Then ΓF (E) is a
function that returns all arguments that are defended by the extension E, i.e. ΓF (E) =
{a ∈ Arg | E defends a}.

2.2. Extension-based Semantics

A semantics is a calculation method for evaluating the arguments. This is neces-
sary because some arguments have to be rejected based on the attack relation. It
must therefore be determined whether an argument is justified or not. The different
semantics have their nuances and therefore each provides a particular evaluation
methodology that describes under which attacks an argument is still justified or
not.

Already in the fundamental paper by Dung [20], the complete, grounded, pre-
ferred and stable semantics are described. They are therefore also called classical
semantics.

The function for evaluating a semantics is generally described by the extension-
based or the labelling-based approach. In the following, the extension-based ap-
proach will be examined in closer detail to begin with. In the succeeding subsection,
the labelling approach is briefly described.

An extension is a subset of Arg in an argumentation framework (Arg,AR) that
includes the arguments that can be accepted together. A semantics in this case then
defines a set of extensions that can be derived from an argumentation framework

9



according to the methodology of semantics. The formal account is given in Defini-
tion 7 and is based on the definition for semantics from [49].

Definition 7. An extension-based semantics is a function σ such that for every argumen-
tation framework F = (Arg,AR), σ(F ) ∈ 22

Arg with 2S as the notation for the power set
of S. The elements of σ(F ) are called extensions.

Although the two concepts of conflict-freeness and admissibility are not semantics
in the ordinary sense, they will be considered among the classical semantics for the
sake of simplicity for the rest of the Master’s thesis. To complete the picture, the
remaining, ordinary classical semantics will therefore be described next.

All the subsequent semantics are based on the idea of admissibility. A first stricter
selection criterion for justified arguments is provided by the complete semantics. It
restricts the derived extensions so that each extension only contains exactly those
arguments that it also defends.

Definition 8. Let F = (Arg,AR) be an AF. A set of arguments E ⊆ Arg is a complete
extension if E is admissible and each argument a ∈ Arg that is acceptable w.r.t. E belongs
to E, so that a ∈ E.

Example 5. Consider the argumentation framework F2 = (Arg,AR) in Figure 5. To
find the complete extensions, extensions that are admissible can be formed and examined
to see if all arguments are also contained in the extension it defends. Therefore, the empty
set ∅, which is always admissible, should be checked first. But since there are arguments
that are not attacked by any other, namely A1 and A2, and are thus always defended by
conflict-free sets, the empty set is not a complete extension. However, the set {A1, A2} is
complete by having both arguments. So the remaining extensions always have {A1, A2}
as a subset. Since A3 is always attacked if A1 or A2 occur in a set, this argument for set
formation is dropped. It is not part of any admissible set. The attack relation of A4 and
A5 represents a decision. If one of the two arguments is selected in either case, A7 or A6

is defended respectively. Thus the complete extensions are {A1, A2}, {A1, A2, A4, A7} and
{A1, A2, A5, A6}.

Based on the complete semantics, two further semantics can be defined, which
in turn restrict the choice of arguments based on the attack relation. The two se-
mantics are the grounded and preferred semantics. First, the grounded semantics is
defined. It is characterised by containing that complete extension which is minimal
with respect to set inclusion. Since there is always exactly one minimal extension,
this means that the grounded extension is always unique. Informally speaking, it
therefore contains those arguments that are not attacked by any other argument.

Definition 9. Let F = (Arg,AR) be an AF. A set of arguments E ⊆ Arg is a grounded
extension if and only if E is admissible and E is the minimal complete extension with
respect to set inclusion.

Example 6. Consider once again the argumentation framework F2 = (Arg,AR) in Figure
5. As already shown in Example 5, the complete extensions are {A1, A2}, {A1, A2, A4, A7}
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and {A1, A2, A5, A6}. The minimal extension in terms of set inclusion is, therefore, {A1, A2}.
It is easy to see that these are the arguments that are not attacked by anyone else.

Now be the preferred semantics defined. The preferred extensions are defined as
those admissible extensions that are maximal with respect to set inclusion.

Definition 10. Let F = (Arg,AR) be an AF. A set of arguments E ⊆ Arg is a preferred
extension if and only if E is admissible and E is a maximal admissible set with respect to
set inclusion.

Example 7. As in the previous example, consider the argumentation framework F2 =
(Arg,AR) in Figure 5. As a reminder, the complete extensions are {A1, A2}, {A1, A2, A4,
A7} and {A1, A2, A5, A6}. Therefore, {A1, A2, A4, A7} and {A1, A2, A5, A6} are the pre-
ferred extensions in F , since there is no complete superset of both of them.

A1

A3

A4

A5

A6

A7A2

Figure 6: An modification of the argumentation framework in Figure 5.

The last remaining classical semantics is the stable semantics. It also further re-
stricts the complete one. I.e. a stable extension is a complete extension, but it also
attacks every other argument of the argumentation framework outside of the exten-
sion. As the only semantics of the described ones, it can be that there is no stable
extension at all. This is known to occur when there are odd attack cycles.

Definition 11. Let F = (Arg,AR) be an AF. A set of arguments E ⊆ Arg is a stable
extension, if and only if E is complete and for every arguments a ∈ Arg \ E, E ↪→ a.

Example 8. Consider the argumentation framework F2 = (Arg,AR) in Figure 5. As
a reminder, the complete extensions are {A1, A2}, {A1, A2, A4, A7} and {A1, A2, A5, A6}.
Since extensions {A1, A2, A4, A7} and {A1, A2, A5, A6} attack all arguments outside them-
selves, they are also stable. A modification F3 of F2 can be seen in Figure 6, which shows an
odd attack cycle between arguments A1, A3 and A2. In this case, there is no stable extension
because the only complete extension is the empty set ∅ and this obviously does not attack all
other arguments.

The semantics are generally expressed by the function σ(F ) for any argumen-
tation framework F . The actual semantics, on the other hand, are expressed by
replacing σ with the corresponding function name of the semantics.

11



Definition 12. The classical semantics are denoted by σ ∈ {cf, ad, co, gr, pr, st} where

• cf is the set of conflict-free sets;

• ad is the set of admissible sets;

• co is the set of complete extensions;

• gr is the set containing the grounded extension;

• pr is the set of preferred extensions;

• st is the set of stable extensions.

Finally, the relationships between the semantics should be discussed. The seman-
tics are based on the conflict-free nature of the sets. Based on this, these sets must
also be admissible, i.e. every admissible set is also conflict-free. Since the complete
semantics is a stronger concept than the admissible semantics, every complete ex-
tension is also an admissible one. With regard to grounded semantics, it must be
said that, by definition, every grounded extension is also a complete extension. The
same can be said of preferred semantics. An interesting case is the stable seman-
tics. Every stable extension is also a complete extension, but moreover, every stable
extension is also a preferred one. Figure 7 illustrates this once again graphically.

conflict-free semantics

is a

admissible semantics

is a

complete semantics

is a

grounded semantics

is a

preferred semantics

is a

stable semantics

Figure 7: The relationships between the classical semantics.

2.3. Labelling-based Semantics

This Master’s thesis focuses on the extension-based approach. However, there is
another commonly used approach in the literature that makes use of argument la-

12



belling. Since related work uses labellings, besides extensions, to reconstruct ab-
stract argumentation frameworks, these will be briefly introduced. Caminada and
Gabbay [14] gave a good overview of formal definitions for the classical semantics
using the labelling concept in their article. The approach was already described
in 1999 by Jakobovits and Vermeir [31] for Dung’s argumentation frameworks and
is based on an earlier work by Pollock [41]. Extensions include those accepted ar-
guments that successfully argue against contesting arguments. Furthermore, they
implicitly convey the information that all arguments that are not in an extension
have been rejected. Not only can this also be expressed through argument labelling,
but additional information about the contested arguments becomes clear. Thus, ex-
plicitly rejected arguments can be identified, but also those that are withheld from
explicit assessment.

The following definitions are taken from or based on [14].

Definition 13. Let Λ = {in, out, undec} be the labels and F = (Arg,AR) be an AF. A
labelling is a total function L : Arg → Λ.

There are three labels associated to the argument labelling. The labelling-based
semantics is a function producing a set of labellings.

The next aim is to illustrate the complete labelling.

Definition 14. Let F = (Arg,AR) be an AF and L be a labelling on F . L is a complete
labelling if and only if for every a ∈ Arg:

• if a is labelled in then all its attackers are labelled out;

• if a is labelled out then one of its attackers is labelled in;

• if a is labelled undec then not all its attackers are labelled out and none of its attackers
is labelled in.

in(L), out(L) and undec(L) denote the set of arguments labelled in, out, undec respectively.

A1 A2 A3 A4

Figure 8: An argumentation framework with four arguments.

Example 9. Consider the argumentation framework F4 = (Arg,AR) in Figure 8. For F ,
there is only one complete labelling based on the criteria. Starting with argument A1, this
is always to be labelled as in. Subsequently, A2 is to be labelled out. Since A2 is out, the
mutual conflict with A3 is resolved and A3 is also in with the same consequence as for A1

and a2 that A4 is out. None of the arguments is undec. That is, in(L1) = {A1, A3} and
out(L1) = {A2, A4} for the one complete labelling L1.
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A parallel is evident, for every AF F the set of complete extensions is exactly the
set of arguments of the complete labelling which are in, i.e., in set builder notation
{in(L)|L is a complete labelling}.

The other classical semantics can furthermore be described by restrictions for the
complete labelling. For this purpose, Caminada and Gabbay [14] have established
several intuitive definitions and theorems that can be summarised as in the follow-
ing definition. The reader is referred to their work for detailed descriptions.

Definition 15. Let F = (Arg,AR) be an AF and L be a labelling on F .
L is a

• grounded labelling if L is a complete labelling where either

– in(L) is minimal with respect to set inclusion,

– out(L) is minimal with respect to set inclusion or

– undec(L) is maximal with respect to set inclusion.

• preferred labelling if L is a complete labelling where either

– in(L) is maximal with respect to set inclusion or

– out(L) is maximal with respect to set inclusion.

• stable labelling if L is a complete labelling such that undec(L) = ∅.

2.4. Signatures and Realisability

One perspective on semantics and the abstract argumentation frameworks is the
concept of realisability and their signatures. Given a set S, it is checked whether it
is realisable under a semantics σ, i.e. it is determined whether there is a set of σ-
extensions that match S. The concept of signatures is the collection of all realisable
sets.

A lot of basic work on this can be found in the research paper by Dunne et al. [23],
which is why many of the following definitions and examples are based on it. For
proof of the statements, the reader is referred to the referenced articles.

2.4.1. Signatures of Extension-Based Semantics

First of all, the realisable sets are to be characterised and their properties described.
For this purpose, a formal Definition 16 of signatures is to be given first.

Definition 16. The signature Σσ of a semantics σ is defined as Σσ = {σ(F ) | F ∈ F}.

Next are some definitions of notation used to characterise the signatures of se-
mantics in this subsection.
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Definition 17. Given S ⊆ 2U ,

• ArgsS denotes
⋃

S∈S S and ||S|| for |ArgsS|,

• PairsS denotes {(a, b) | ∃S ∈ S : {a, b} ⊆ S} and

• dcl(S) denotes {S′ ⊆ S | S ∈ S}, also referred to as downward-closure.

The set S is also called an extension-set if ArgsS is finite, i.e. in the following this
term is used as only finite AFs are considered in this thesis. Therefore, it should be
noted that for all semantics σ considered, each element S ∈ Σσ is an extension-set.

It should also be taken into consideration that for any a ∈ ArgsS, (a, a) ∈ PairsS
holds for all extension-sets S.

A1 A2 A3 A4

Figure 9: An argumentation framework for Example 10.

Example 10. To familiarize the reader with Definition 17, suppose the extension-set S =
{{A1, A3}, {A1, A4}, {A2, A4}}. The terms can be applied as follows:

• ArgsS = {A1, A2, A3, A4} and ||S|| = 4,

• PairsS = {(A1, A1), (A2, A2), (A3, A3), (A4, A4), (A1, A3), (A1, A4), (A2, A4),
(A3, A1), (A4, A1), (A4, A2)} and

• dcl(S) = {∅, {A1}, {A2}, {A3}, {A4}, {A1, A3}, {A1, A4}, {A2, A4}}.

The AF in Figure 9 produces under the complete semantics the extension-set S and therefore
S ∈ Σco.

As in the subsection on semantics, conflict-free sets are considered first. A prop-
erty of these sets is that their subsets are also all conflict-free. This corresponds to
the fact that these sets are downward-closed, i.e. that for a given AF the downward-
closure does not affect the set of conflict-free sets.

Moreover, it is obvious, too, that for semantics based on admissibility, such as the
stable or preferred semantics, σ(F ) is incomparable for any AF.

Definition 18. Given S ⊆ 2U , S is

• downward-closed if S = dcl(S) and

• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S, S′ ∈ S,
S ⊆ S′ implies S = S′.

Nevertheless, incomparability is not sufficient as a property, as Dunne et al. [23]
show in the following example:
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Example 11. Consider the incomparable extension-set S = {{A1, A2}, {A1, A3}, {A2, A3}}
and a semantics σ that preserves conflict-freeness, i.e. σ(F ) ⊆ cf(F ) for any AF F . Now
suppose there exists an AF F with σ(F ) = S. Then F must not contain attacks between
A1 and A2, A1 and A3, and respectively A2 and A3. But then σ(F ) typically contains
{A1, A2, A3}.

In order to exclude sets like S from the example, different approaches can be dis-
cussed. For the stable semantics, as well as for the stage and naive semantics not
considered in the thesis, a strong condition can be made to characterise them. This
is called tightness.

Informally, it can be said that if an argument does not occur in an extension, then
there are reasons for this, such as a direct conflict. So for incomparable sets, if there
is a set S ∈ S and an argument a that does not occur in S, so that for each s ∈ S there
is another set S′ with a and s as members, then the incomparable set is not tight. As
[23] points out, for incomparable sets S the premise of the condition S ∪ {a} /∈ S is
always fulfilled. Therefore, it is only necessary to check whether for all S ∈ S and
a ∈ ArgsS \ S there is an s ∈ S such that (a, s) /∈ PairsS.

Definition 19. An extension-set S ⊆ 2U is tight if for all S ∈ S and a ∈ ArgsS it holds
that if S ∪ {a} /∈ S then there exists an s ∈ S such that (a, s) /∈ PairsS.

Example 12. Consider once again the extension set S = {{A1, A2}, {A1, A3}, {A2, A3}}
from Example 11. This extension-set is incomparable but not tight, since there is no rea-
son to, for instance, exclude A3 from the extension {A1, A2}. This is because (A1, A3)
and (A2, A3) are both contained in PairsS. On the other hand, the extension-set S′ =
{{A1, A2}, {A1, A3}, {A2, A4}, {A3, A4}} is easily checked to be tight.

Two statements can be made about the properties of tightness according to Dunne
et al. [23]:

Lemma 1 (Dunne et al. [23, Lemma 2]). For a tight extension-set S ⊆ 2U it holds that

1. the ⊆-maximal elements in S form a tight set, and

2. if S is incomparable then each S′ ⊆ S is tight.

It is worth noting that the second statement of the lemma implies that if the
downward-closure of an incomparable extension-set S is tight, then S itself is tight,
too.

With these insights, the characteristics for the conflict-free and stable signatures2

can already be described.

Theorem 1 (cf. Dunne et al. [23, Theorem 1]). For a set S ⊆ 2U it holds that

• Σcf = {S ̸= ∅ | S is downward-closed and tight},

• Σst = {S | S is incomparable and tight}.
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A1 A2

B2

A3

B3

Figure 10: An argumentation framework F used in Example 13 in accordance with
[23]

Example 13. Consider the AF F5 in Figure 10. There is an extension-set S = stb(F5) =
{{A1, B2, B3}, {A2, B1, B3}, {A3, B1, B2}}. One can check that S is tight, for instance,
E = {A1, B2, B3}: For each argument t not in E (i.e. B1, A2, A3) there is an argument
s ∈ E such that (s, t) /∈ PairsS. In this instance A1 plays this role for each t, since neither
(A1, B1), (A1, A2), nor (A1, A3) is contained in PairsS. The two remaining extensions are
to be approached symmetrically.

It is worth pointing out that the downward-closure of the extension-set is not tight,
i.e. dcl(S) is not tight. In fact, it is given that {B2, B3} ∈ dcl(S), but for B1 it is that
{B1, B2, B3} /∈ dcl(S), but (B1, B2) and (B1, B3) are contained in Pairsdcl(S) = PairsS.

For the remaining classical semantics, weaker properties must be found for the
extension-sets. One of these is conflict-sensitivity. It checks for the absence of the
union of any pair of the extensions in an extension set, whether it is justified by a
conflict raised by S.

Definition 20. A set S ⊆ 2U is called conflict-sensitive if for each A,B ∈ S such that
A ∪B /∈ S, it holds that ∃a, b ∈ A ∪B : (a, b) /∈ PairsS.

Two known facts are that, on the one hand, for a, b ∈ A, (a, b) ∈ PairsS holds by
definition and therefore conflict-sensitivity is determined only by arguments A ∈
A \ B, b ∈ B \ A for A,B ∈ S and, on the other hand, that for incomparable S the
property reduces to check for each A,B ∈ S(A ̸= B) whether a, b ∈ A ∪ B exists so
that (a, b) /∈ PairsS.

As with tightness (cf. Lemma 1), the following statements can be made about the
property of conflict-sensitivity according to Dunne et al. [23]:

Lemma 2 (Dunne et al. [23, Lemma 4]). For a conflict-sensitive extension-set S ⊆ 2U ,

1. the ⊆-maximal elements in S form a conflict-sensitive set,

2. if S is incomparable then each S′ ⊆ S is conflict-sensitive, and

2In fact, Dunne et al. also described characteristics for the naïve and stage signatures not considered
in this thesis.
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3. S ∪ {∅} is conflict-sensitive.

This allows the admissible and preferred signatures to be characterised3:

Theorem 2 (cf. Dunne et al. [23, Theorem 1]). For a set S ⊆ 2U it holds that

• Σad = {S ̸= ∅ | S is conflict-sensitive and contains ∅},

• Σpr = {S ̸= ∅ | S is incomparable and conflict-sensitive}.

A1 A3

A6 A5

A2 A4

A′
1

A′
2

Figure 11: An argumentation framework for Example 14.

Example 14. Consider the AF F6 in Figure 11 in accordance with example 4 in [23]. Let
S1 = {A1, A2}, S2 = {A1, A4, A5} and S3 = {A2, A3, A5} with S = {S1, S2, S3}. Then
S = pref(F6). So S is conflict-sensitive, since for each pair of extensions, there exists a
pair of arguments not contained in PairsS. Still, since S1 ∪ {A5} /∈ S but (A1, A5) and
(A2, A5) are contained in PairsS, the extension-set S is not tight.

Next, the complete semantics and its signature need to be looked at. For it, a
more attenuated property is needed than for the previous ones. For this purpose,
the completion-sets CS(E) is to be defined first.

Definition 21. For an extension-set S ⊆ 2U and E ⊂ U , the completion-sets CS(E) of E
in S is defined as the set of ⊆-minimal sets S ∈ S with E ⊆ S.

The necessary property for the characterisation of the complete signature is called
com-closed. Given an extension-set S and elements T thereof and there is no evi-
dence of a conflict between the arguments in ArgsT, then S has to contain a unique
superset of ArgsT which is the completion-set. This is the opposite of the case when
S would be conflict-sensitive, because then ArgsT would have to be in S.

Definition 22. A set S ⊆ 2U is called com-closed if for each T ⊆ S the following holds:
if (a, b) ∈ PairsS for each a, b ∈ ArgsT, then ArgsT has a unique completion-set in S,

i.e. |CS(ArgsT)| = 1.
For a com-closed extension-set S ⊆ 2U and E ⊆ ArgsT, the unique element of CS(E) is

denoted by CS(E).

3Dunne et al. [23] also characterised the semi-stable signature that is not considered in this thesis.
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It has already been worked out that for incomparable sets the notions conflict-
sensitivity and com-closed agree.

Since no precise characterisation has been given so far, only the properties found
in [23] are described below:

Proposition 1 (Dunne et al. [23, Proposition 4]). For each AF F ,
co(F ) is a non-empty, com-closed extension-set with (

⋂
S∈co(F ) S) ∈ co(F ).

So it can just be said that the complete signature is probably a subset of these
properties, i.e. Σco ⊂ {S | S is com-closed and (

⋂
S∈S) ∈ S}.

A1 A′
1 A3 A′

2 A2

Figure 12: An argumentation framework for Example 15.

Example 15. Consider the AF F7 in Figure 12 in accordance with example 5 in [23]. There
is co(F ) = {∅, {A1}, {A2}, {A1, A2, A3}}, which is com-closed. This can be checked by
having a look on the completion-set where Cco(F )({A1} ∪ {A2}) = {{A1, A2, A3}}.

Also co(F ) is not conflict-sensitive as {A1, A2} /∈ co(F ), but (A1, A2) ∈ Pairsco(F ).

The characterisation of the grounded signature can be directly inferred from the
fact that every argumentation framework F has exactly one grounded extension,
i.e. |grd(F )| = 1, and every extension-set with |S| = 1 is realisable by an AF with
(ArgsS, ∅) under the grounded semantics.

Theorem 3 (cf. Dunne et al. [23, Theorem 1]). For a set S ⊆ 2U it holds that
Σgr = {S | |S| = 1}.

{∅}

{{∅}}ΣcfΣadΣco Σna

Σpr

 =

Σss

   Σstg

    =
Σst \ {∅}

Σ𝒰

Figure 13: Relationship between the subsets of all signatures considered in [23].
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Before briefly reviewing findings on the realisability of the signatures, it should
be mentioned that there is a relationship between the signatures similar to that of
the semantics. For this purpose, the properties of Lemma 3 and 4 can be considered.

Lemma 3 (Dunne et al. [23, Lemma 3]). Every tight extension-set is also conflict-
sensitive.

Lemma 4 (Dunne et al. [23, Lemma 5]). Each conflict-sensitive extension-set is com-
closed.

Moreover, Dunne et al. [23] show that there is a subset relationship between
the considered signatures. The Venn diagram in Figure 13 illustrates these rela-
tions. The outer ellipse contains all extension sets over U and is therefore notated
as ΣU = {S ⊆ 2U | S is an extension-set}. The singleton {∅} belongs to the stable
semantics, since it is only realisable by the stable semantics. However, {{∅}} is the
set consisting of the extension-set {∅} and can be realised by all considered seman-
tics. It is noted that signatures for further, non-classical semantics are included here,
which have not been considered in detail so far. These are denoted by Σσ where
σ ∈ {il, eg, na, stg, ss}.

The right side shows those signatures that consist only of incomparable sets. Fur-
thermore, the intersection of the signatures with Σco is exactly the same with Σgr

(plus the not further specified Σeg and Σil), which contain all extension-set S with
|S| = 1. Also, these semantics only have the empty extension set with conflict-free
and admissible sets in common.

2.4.2. Realisability of Extension-Sets

For the previously gained insights into the characteristics of extension sets for the
considered semantics, except for the complete one, it shall now be shown that they
are sufficient. The concept of realisability will serve this purpose. It is to be under-
stood as follows: An extension-set S ⊆ 2U is realisable under the semantics σ if there
is an AF F ∈ F, such that σ(F ) = S.

This is to be accomplished by a canonical argumentation framework that has an
attack relationship between all arguments that do not appear together in any set of
the extension set.

Definition 23. Given an extension set S, the canonical argumentation framework for S
is defined as

F cf
S = (ArgsS, (ArgsS ×ArgsS) \ PairsS).

For conflict-free sets, this type of AF is sufficient, as described in the following
proposition.

Proposition 2 (Dunne et al. [23, Proposition 5]). For each extension set S ̸= ∅, which is
downward-closed and tight,
cf(F cf

S ) = S.
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In order to work for the stable semantics, unwanted sets must be removed from
the previously defined canonical argumentation framework. These can be removed
by adding new arguments, which are attacked by all other sets of S but not by the
unwanted extensions.

Definition 24. Given an extension-set S and its canonical framework F cf
S = (ArgcfS , ARcf

S ),
let X = st(F cf

S ) \ S. It is defined that

F st
S = (ArgcfS ∪ {Ē | E ∈ X}, ARcf

S ∪ {(Ē, Ē), (a, Ē) | E ∈ X, a ∈ ArgsS \ E}).

Hence the following Proposition 3 4.

Proposition 3 (Dunne et al. [23, Proposition 7]). For each non-empty, incomparable and
tight extension-set S,

st(F st
S ) = S.

For the other semantics based on admissibility, the previously defined canonical
framework is not sufficient. It turns out, however, that such semantics can still be
generated by means of so-called defence formulae. The defence formula specifies
conditions for an argument to be in an extension. Therefore, DS

a ∧ a represents a
superset of some acceptable positions.

Definition 25. Given an extension-set S, the defence formula DS
a of an argument a ∈

ArgsS in S is defined as:

DS
a =

∨
S∈S, s.t. a∈S

∧
s∈S\{a}

s.

DS
a given as a logically equivalent CNF is called CNF-defence-formula CDS

a of a in S.

As it turns out, the procedure is divided into two parts. First, a canonical frame-
work is created. Based on this, it is modified so that only elements from S are
allowed. In the second step, self-attacking arguments are added, which are then
attacked in turn by the arguments with new attack relations.

Definition 26. Given an extension-set S, the canonical defence-argumentation-framework
F def
S = (ArgdefS , ARdef

S ) extends the canonical AF F cf
S = (ArgsS, AR

cf
S ) as follows:

• ArgdefS = ArgsS ∪
⋃

a∈ArgsS
{αaγ | γ ∈ CDS

a}, and

• ARdef
S = ARcf

S ∪
⋃

a∈ArgsS
{(b, αaγ), (αaγ , αaγ), (αaγ , a) | γ ∈ CDS

a, b ∈ γ}.

Next, the proposition that the characteristics are sufficient for admissibility is
given.

Proposition 4 (Dunne et al. [23, Proposition 8]). For each conflict-sensitive extension-
set S where ∅ ∈ S, it holds that ad(F def

S ) = S.

4Moreover, it holds that st(F st
S ) = stg(F st

S ) for the not considered stage semantics.
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The canonical defence-argumentation-framework is also sufficient for the pre-
ferred and the complete semantics. For the preferred semantics, additional self-
attacking arguments a′ are added for each argument a in ArgsS with an attack rela-
tion a ↪→ a′.

Proposition 5 (Dunne et al. [23, Proposition 9]). For each non-empty, incomparable and
conflict-sensitive extension-set S there exist F with pr(F ) = σ.5

To close the concept of realisability, it should be mentioned that the complete
semantics can be realised if the extension-set S is realisable under the admissible
semantics.

Finally, it should be noted that Dunne et al. [23] also provided initial results for
the question of the maximum number of extensions that can be achieved for an AF
under a semantics. Before that, Baumann and Strass [9] conducted a detailed analyt-
ical and empirical study on the maximal and average numbers of stable extensions
in abstract argumentation frameworks. As a result, they proposed a function that
gives the maximum number of stable extensions for an AF with n arguments. This
result can be understood to some extent as an answer to how much quantitative dis-
agreement a semantics can express according to [23]. The key result of Baumann and
Strass is the following Theorem 4. The interested reader is referred to their paper [9]
for a detailed proof.

Theorem 4 (Baumann and Strass [9, Theorem 1]). For any natural number n, it holds
that

max
F=(Arg,AR)∈F,|Arg|=n

|st(F )| = Λ(n)

where the function Λ : N→ N is defined by

Λ(n) =


1, if n = 0 ∨ n = 1,
2s, if n ≥ 2 ∧ n = 3s,

4 · 3s−1, if n ≥ 2 ∧ n = 3s+ 1,
2 · 3s, if n ≥ 2 ∧ n = 3s+ 2.

In order to gain insights about the extent of structural diversity a semantics can
express and therefore to determine the number of extensions given a fixed amount
of arguments, the diversity function is to be defined according to the results in [23].

Definition 27. Given a semantics σ, the diversity function is defined as:

∆σ(n) = max
F∈F,||σ(F )||=n

|σ(F )|

5As shown in the proof to this proposition (Proposition 9 in [23]) it holds that ss(F def
S ) = S
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The first results reveal for the conflict-free and admissible sets σ ∈ {cf, ad} that
∆σ(n) = 2n is applicable6. This is easy to demonstrate because with an extension
set S with ||S|| = n, the AF (ArgsS, ∅) has 2n conflict-free and admissible sets.

In their work, Dunne et al. [23] were able to prove that the results for the function
Λ can be transferred to ∆σ for all incomparable semantics considered so far as well
as the not addressed naïve, semi-stable and stage semantics (i.e. σ ∈ {na, stg, ss}).
For a proof, the reader is also asked to read this in [23], as before.

Theorem 5 (Dunne et al. [23, Theorem 5]). For σ ∈ {na, st, stg, pr, ss} and any natural
number n, it holds that

∆σ(n) = Λ(n).

For the complete semantics, a conjecture was brought up by Baumann and Strass
[10] in 2015, which lacked formal proof. It was not until a fair six years later that
formal proof was provided by Ulbricht [48]. Ulbricht used findings about AFs for
the proof instead of classical graph problems as for the other semantics before.

The proof uses a bi-cover of an AF and so-called proper guesses E′ about subsets
of arguments {a1, ..., at}. These guesses are proper if no 1 ≤ i ≤ t such that Xi ⊆⋃

i ̸=j Xj . They are then applied to the characteristic function of an AF E∗ = Γ(E′)

and together with a complete extension of the reduct of the AF E′′ ∈ co(FE′
) using

the guesses yields a complete extension E ∈ co(F ) = E∗ ∪ E′′ (cf. Lemma 5.2 in
[48]).

Another important finding is that if the guessed subset is proper, then all the
arguments are in conflict of at least as many bi-cover sets as there are countable
arguments in that guessed subset (cf. Lemma 5.3 in [48]).

With this knowledge, a good starting point for calculations is to find the size of the
set of all proper sets that give complete extensions i.e. |{E ∈ co(F ) | E∩S = Γ(E′)}|
with E′ being the proper guess. For even numbers of arguments, the maximum
number of extensions can be easily computed using the number of bi-cover sets and
the number of arguments that are covered.

However, for odd numbers, different cases of attacks have to be distinguished in
order to arrive at the desired inequality for odd numbers with some calculations. A
complete proof can be found in [48].

The results in [48] can be formulated as the following function:

Theorem 6 (Ulbricht [48]). For σ = co and any natural number n ≥ 2, it holds that

∆σ(n) =

{
3n/2, if n is even,

4 · 3(n−3)/2, if n is odd.

As this subsection is comparatively long, important findings are summarised once
again. A foundation has been created that allows the set of extensions which can

6Notice that Dunne et al. [23] also applied this upper bound to complete semantics, but
newer results show a more precise upper bound. They showed that an AF ({a, a′ | a ∈
ArgsS}, {(a, a′), (a′, a), (a′, a′) | a ∈ ArgsS}) has 2n complete extensions.
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be expressed by an AF to be investigated. For this purpose, characteristics were
named which describe under which specific conditions argumentation frameworks
exist. Except for the grounded semantics, statements can be made in this regard. In
addition, results were named for the more specific realisation of these AFs. In the
end, the number of maximal extensions for a given set of arguments was examined
for these semantics.

2.5. Computational Complexity

In this section, the topic of computational complexity will be briefly touched upon.
To put it simply, this field of computer science deals with complexity classes and
assigns problems to these classes. The different complexity classes are characterised
by requirements for computation time and memory size. A problem that can be
assigned to a complexity class has an algorithm that solves the problem within the
requirements of the complexity class. Models have been created to consider prob-
lems without real-world systems and their inherent constraints. The best known
model and the most widely used are Turing machines.

In the following, some basics are given in order to be able to describe and classify
problems of abstract argumentation in the course of this thesis. Since this is only a
brief outline of the subject, the interested reader is encouraged to refer to standard
publications such as [40] and [1] for further details on this topic.

The first thing to establish is what an algorithm is. Basically and informally, an
algorithm can be described as computing a function f and processing a set of finite
rules so that a valid and finite input is processed into a finite output. Time is needed
to process each step and space is needed to hold information in between.

For such an algorithm, its efficiency can be measured. This is typically measured
by the number of operations of the function based on the length of the input. An-
other function T can capture the efficiency by returning the maximum number of
operations for the input length of the algorithm. Since the fine-grained details of a
calculation are often not relevant, the Big-Oh notation was introduced. A Definition
28 according to [1] is given.

Definition 28. If f, g : N → N, then i) f = O(g) if there exists a constant c such that
f(n) ≤ c · g(n) for every sufficiently large n; ii) f = Ω(g) if g = O(f); iii) f = Θ(f)
is f = O(g) and g = O(f); iv) f = o(g) if for every ϵ > 0, f(n) ≤ ϵ · g(n) for every
sufficiently large n; v) f = ω(g) if g = o(f).

Next, the complexity classes in this thesis should be briefly mentioned. These are
mainly ones for decision problems as well as one for counting problems.

The first thing that should be noted is, that decision problems in class P are those
that have a polynomial-time algorithm and have an answer or solution for an input
i with length |i| after |i|k many steps. Here, regardless of the size of k, an algorithm
in class P is efficient. Large values for k, such as 200, do not seem efficient, but are
so compared to other classes. Before briefly giving the definitions for the classes, it
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should also be noted that the class L contains those problems that can be solved in
logarithmic size and polynomial time. P and L are therefore considered tractable,
besides obviously trivial algorithms, while other classes are considered intractable.

Definition 29. For a given input i with size |i|, the class trivial contains algorithms of k
time, where k is independent of the input i.

Definition 30. For a given input i with size |i|, the class L contains algorithms of log(|i|)
space.

Definition 31. For a given input i with size |i|, the class P contains algorithms of |i|k time
with k > 0.

In addition to the classes already introduced before, the first intractable class now
follows. Problems in EXPTIME can be solved in exponential time, which is equiva-
lent to a brute-force search.

Definition 32. For a given input i with size |i|, the class EXPTIME contains algorithms of
k|i| time with k > 0.

Besides P and EXPTIME, there are problems that fall in the class of NP that are
solvable in non-deterministic polynomial time. Here, there is a set of witnesses7 for
each instance of the problem. A witness is characterised by being a function that has
polynomial size in |i| and thus an element from this witness function w ∈ W (i) can
be verified in polynomial time. The result of a decision problem is yes if and only if
there is at least one element of the witness function also a witness for instance i.

In more straightforward terms, for a given input i, it is easy to check whether it
returns yes as a decision, but finding a valid input is considered difficult.

For the following Definition 33, borrowed from [1], the concept of the Turing ma-
chine is used. A Turing machine has an alphabet of symbols that can be stored on k
tapes. In addition, the Turing machine has a set of possible states in which registers
can be located. Finally, there is a so-called transition function that describes how the
Turing machine has to execute each step.

Definition 33. A decision problem L ⊆ {0, 1}∗ is in NP if there exists a polynomial p :
N→ N and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) such that M(x, u) = 1

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1, then u is a witness for x (with respect
to L and M ).

The complement of a decision problem Q is denoted by Q̄. Therefore the following
short definition can be given. However, it is important to note that the class coNP
itself is not the complement of the class NP (cf. [1])!

7often called a certificate
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Definition 34. For a decision problem Q, the class coNP is defined as
coNP = {Q | Q̄ ∈ NP}.

Before briefly touching on the polynomial hierarchy (PH), reductions and com-
pleteness as well as the complexity of counting problems, the class DP should be
mentioned. DP is the difference class of decision problems that have an intersection
of instances i of both a problem Qa ∈ NP and also Qb ∈ coNP are accepted. The
Definition 35 is in accordance with the work in [39]. An example of a problem in DP
is the SAT-UNSAT problem where two boolean formulae are tested to see if one is
satisfiable and the other is not.

Definition 35. Given two decision problems Qa and Qb, the class DP is defined as DP =
{Qa ∩Qb | Qa ∈ NP, Qb ∈ coNP}.

There is a hierarchy for the classes of polynomial runtime that consists of several
levels. At the bottom level is P. In the levels above it are the two well-known NP and
coNP. However, there are levels beyond this which are described by the classes ΣP

i+1

and ΠP
i+1 for i ≥ 0. One way to define them is to use a so-called oracle machine.

It has a special tape (the so-called oracle tape) on which it can be checked whether
there is o ∈ O for some problem O. This access to such a check is called an oracle.

Definition 36. For the polynomial hierarchy, P is equal to ΣP
0 , ΠP

0 and ΘP
0 .

For all i ≥ 0 there is ΣP
i+1 = NPΣP

i , ΠP
i+1 = coNPΣP

i and ΘP
i+1 = PΣP

i . With Q ∈
{P,NP, coNP}, the problem QO is then decided by the oracle machine with access to an
oracle O that is complete.

Next, hardness describes problems that are at least as hard as all others in the
class. To show that a problem Qb is at least as hard as another problem Qa in the
class C, one uses the so-called reduction ≤p, where there is a function f that can
be computed polynomial-time that transforms every element in the domain to the
codomain if and only if for x ∈ Qa there is f(x) ∈ Qb. Moreover, the problem Qb is
complete if it is part of the class C.

Definition 37. For a given complexity class C, a problem Q is hard for C if for all problems
Q′ in C there is a (polynomial-time) reduction Q′ ≤p Q.

Furthermore, if Q ∈ C, then Q is complete for C, also abbreviated as C-c.

Finally, counting problems should be dealt with briefly. In this type of problem,
one is not interested in finding only one witness, which is the class NP, but the actual
number of them. The class #P describes these problems. The closeness of #P to NP
can be seen in Definition 38 which is taken from [1]. However, #P is a problem class
where a function f returns a natural number.

Definition 38. A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N→ N
and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x|) |M(x, y) = 1}|.
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This lays all the groundwork for considering the computational complexity in
abstract argumentation.

2.6. Eliciting Argumentation Frameworks

This Master’s thesis explores the idea of the elicitation of argumentation frameworks
under the condition that only questions related to the extensions of the system are
asked. Therefore, the concept of eliciting argumentation frameworks is an impor-
tant prerequisite for deeper investigation. In the elicitation scenario, there is an
agent that has an argumentation framework and does not reveal at least parts of
it. The goal is to uncover this abstract argumentation framework by asking ques-
tions. Kuhlmann [34] introduces this new line of reconstruction of argumentation
frameworks and provides some preliminary insights.

The elicitation of abstract argumentation frameworks is thus an interactive sce-
nario in which an agent is questioned by an interviewer. In doing so, it is permis-
sible and intentional to choose the further questions based on the answers in order
to approach the agent’s hidden AF. That makes this problem unique compared to
previous related work such as the problem of learning AFs based on labellings [43]
or synthesising AFs [37] based on example extensions.

In the scenario described so far, it is unclear whether the agent hides the entire
argument framework or only parts of it. Previous work on the topic assumes that
the set of arguments is known and only the attacks between the arguments are hid-
den by the agent. Also, it is important to note that the agent in the scenario answers
every question truthfully, like an oracle.

Kuhlmann [34] already noted that finding the exact identical AF, especially the
attack relation, is difficult because although even a few questions can significantly
reduce the amount of possible solutions, it is often not enough to obtain an unique
solution as it is possible that the same scenario can be modelled differently resulting
in multiple AFs that represent that scenario. In other words, the arguments are the
same between two AFs, but the notion of attack differs. In fact, it can be assumed
that the reconstruction of the syntactically identical abstract framework is very com-
plicated. An example of this has already been shown in the motivational part of the
introduction in Subsection 1.1. As a consequence, the goal is to find an equivalent
solution with respect to a semantics. σ-equivalence describes the notion of standard
equivalence in accordance with Oikarinen and Woltran [38] and states that if one
AF has the same extensions under a given semantics as an AF to be compared, then
they are considered equivalent.

This concept guarantees that the desired result, i.e. the accepted arguments, is
achieved by both compared argumentation frameworks. If however new informa-
tion, that is attacks and new arguments, is added to the two AFs, then the two may
no longer be equivalent under σ-equivalence. Nevertheless, stricter requirements
for equivalence can also be made, as will be clarified below.
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So if reconstructing the exact AF seems too complicated and, considering the sce-
nario, several AFs describe the same, then it needs a concept of when the AFs ex-
press the same outcome. That is why Oikarinen and Woltran [38] introduced an-
other type of equivalence. The concept of strong equivalence, as they named it,
compares the relation between argumentation frameworks e.g. F and F ′. The two
AFs are equivalent under any semantics, if both AFs are still equivalent under the
standard concept of equivalence when introducing new arguments and attacks from
a third AF G. So F ∪G and F ′ ∪G are equivalent.

F : A1 A2 A3
F ′: A1 A2 A3

F ∪G:

A1 A2 A3

A4

F ′ ∪G:

A1 A2 A3

A4

Figure 14: The abstract argumentation frameworks modelled in accordance with Ex-
ample 16.

Example 16. To illustrate the two different notions of equivalence, this example is intended
to show the differences in accordance with [38]. Consider the following two argumentation
frameworks F = ({A1, A2, A3}, {(A1, A2), (A2, A3), (A3, A1)}) and F ′ =

(
{A1, A2, A3},

{(A3, A2), (A2, A1), (A1, A3)}
)

as illustrated in Figure 14.
These two AFs produce the same extensions under most known semantics. Thus, both

have the same unique extension, the empty set, using the preferred semantics. They are
therefore σ-equivalent with σ being in this case the preferred semantics (so σ = {pr}). But
if new information of an AF G = ({A3, A4}, {(A4, A3)}) is added, so as the union of F and
G, then a different picture emerges.

The unique preferred extension is now {A3, A4} for F ∪ G and while for F ′ ∪ G it is
now {A1, A4}. The two AFs are thus not strongly equivalent, because the implicit informa-
tion that did not come into play before with σ-equivalence now actually makes a difference
between the AFs.

The formulation of the strong equivalence notion is therefore motivated by the
fact that it makes it decidable as a property whether two AFs have the same implicit
information. It also brings the ability of local simplification, i.e. without looking
at an entire framework. Some subframeworks F and F ′ are replaceable if they are
strongly equivalent, whereas under σ-equivalence the ability to replace one AF with
the other cannot be guaranteed.
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For the further work of the thesis, the notion of σ-equivalence will nevertheless be
used, as approaches for the (re-)construction of AFs under this concept are already
available. However, this Master’s thesis is structured in such a way that further
types of equivalence can be investigated in the reconstruction based on it. The choice
of semantics for equivalence is also limited to the classical ones:

Definition 39. Let σ ∈ {ad, cf, co, gr, pr, st}, then two AFs F = (Arg,AR) and F ′ =
(Arg′, AR′) are σ-equivalent if they possess the same σ-extensions, i.e., σ (F ) = σ (F ′).

Next, the questions will be dealt with on the surface before they are addressed in
greater depth in the later part of this thesis. The questions to be asked can be divided
into two categories. On the one hand, there are syntactical and on the other semantic
questions. Syntactical questions refer to the arguments and their attack relationship.
These questions can concern the whole AF, such as “Does the AF contain any self-
attacks?” or “How many attacks are there?”, as well as individual arguments, such
as “Does argument a attack argument b?” or “Is there an attack between arguments
c and d?”. In contrast, semantic questions have a connection to the extensions and
can be “Is E ⊆ Arg a σ-extension of the AF ?”, “What are the grounded extensions
of your AF” or “How many extensions exist with respect to σ?”, for example.

Another distinctive feature is already clear from the example questions. On the
one hand, there are decision questions, i.e. those that are polar and can be answered
with yes or no, and there are queries that are functional and are answered, for exam-
ple, a set, an attack pair or the number of arguments in an extension. In the context
of this Master’s thesis, the restriction is made that the agent may only be asked de-
cision questions that are semantic questions, too. In addition, it will be determined
later which exact questions the agent can answer. Nevertheless, it is possible to pose
queries in the same way and this could be the subject of further research.

That elicitation is possible in principle is demonstrated by the two-step naïve ap-
proach. It can be described as follows [34]:

1. Ask the questions of “Is E ⊆ Arg a σ-extension of FA” with respect to every
possible subset of arguments in given Arg. As a result, the σ-extensions of FA

are known.

2. Compute all possible AFs from Arg. For every possible AF G, compute σ (G)
and check whether σ (FA) = σ (G). If this is the case, a solution was found and
an equivalent AF FE := G is returned.

This naïve approach makes use of a single decision question, namely whether a
subset of arguments is an extension of the agent’s argumentation framework with
respect to a given semantics. Already with this one question, σ-equivalent argu-
mentation frameworks can be elicited. However, this approach is considered very
inefficient and therefore hardly practicable for larger AFs. However, it shows that
in principle semantic decision questions can be used to solve the problem.
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3. Related Work

The work done so far on the reconstruction of argumentation frameworks will be
presented in this section. The reconstruction approaches are based on the fact that
information or parts of it are already given, from which the AF is (re-)constructed.
From the perspective of elicitation, where sufficient information must first be ac-
quired, this procedure is the second stage. Therefore, the following elaborations
are a building block for the realisation of the elicitation approach of argumentation
frameworks.

First, a look at the work on synthesising argumentation frameworks from exam-
ples by Niskanen et al. [37] will be taken. The synthesis problem here is an extension
of realisability. In cases of non-realisability, e.g. those occurring in the dynamics of
argumentation as in the revision of AFs, the semantically closest AF is to be gener-
ated from existing knowledge. Thus, cases are particularly considered in which no
AF can actually represent the knowledge.

After that, the work on learning attacks from labellings is briefly examined. Riveret
et al. [43] provide an algorithm for grounded labellings as input. This differs from
the approach in [37]. In particular, the semantics for the input are restricted and
additional information is added with labellings compared to extensions.

Last, Kido and Liao’s [33] work on what they call the inverse problem in the con-
struction of argumentation frameworks is briefly reviewed. Here, a conflict between
arguments is to be detected from a noisy set of acceptable arguments. They propose
a Bayesian solution that allows for subjective beliefs about the existence of an attack
and also handles uncertainties about the probability that an attack actually arises.

3.1. Synthesising AFs from Examples

The AF synthesis problem is introduced in the paper by Niskanen et al. [37] This
problem is an extension of the realisability previously explained in the background
section (cf. Subsection 2.4). The pursued goal is to always generate an AF from ex-
isting knowledge even if none could actually be constructed from the knowledge.
At the same time, the generated AF should also be the semantically closest to the
given knowledge. In addition to the implementation of this problem, they provide
MaxSAT-based algorithms as well as encodings for Answer-Set Programming (ASP)
in which the AF can be generated from positive and negative examples of the exten-
sions and the associated semantics. The algorithm synthesises an AF whose cost is
minimal over all unsatisfied examples.

First of all, it must be clarified what an example actually is. Examples represent
semantic information that may be weighted.

Definition 40. An example e = (S,w) is a pair with S ⊆ A where A is a set of arguments
and w as an positive integer. Se represents the set of an example e and we the weight
respectively.
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Similar to realisability, SE = {Se | e ∈ E} expresses the set that contains all sets of
arguments from the example sets.

Next, an instance of the AF synthesis problem is to be defined. It consists of a
set of arguments A, positive and negative examples E+ and E− respectively, and a
semantics σ.

Definition 41. The quadruple P = (A,E+, E−, σ) is an instance of the AF synthesis
problem where A is a non-empty set of arguments, E+ and E− are two sets with positive
and negative examples respectively, and a semantics σ with (SE+ ∪ SE−) ⊆ 2A.

With respect to an argumentation framework F , F satisfies all positive examples
e if Se ∈ σ(F ). Likewise, F satisfies all negative examples if Se /∈ σ(F ).

The cost associated with an AF with respect to an instance is denoted by cost(P, F )
and is the sum of all weights of examples not satisfied by the AF. The cost function
is given as follows:∑

e∈E+

we · I(Se /∈ σ(F )) +
∑
e∈E−

we · I(Se ∈ σ(F ))

The indicator function I(·) returns 1 if the property of membership in a set is satis-
fied and otherwise 0.

In summary, the task can be given in a formal representation, where an input of
arguments, positive and negative examples, and semantics is given as a precondi-
tion, and the output is to ensure that an argumentation framework is found whose
cost is minimal.

The Task of Argumentation Framework Synthesis
REQUIRE: P = (A,E+, E−, σ) such that (SE+ ∪ SE−) ⊆ 2A

ENSURE: An AF F ∗

TASK: Find an AF F ∗ with F ∗ ∈ arg minF=(Arg,AR∗)−(cost(P, F ))

The properties of the synthesis problem that have to be fulfilled are described
by Niskanen et al. [37]. The relation to Dunne et al.’s work [23] on realisability is
established by working out conditions for which 0-cost solutions exist and which
properties fulfil 0-cost solutions. The interested reader is invited to read the details
in section 4 in [37].

At this point, the reader is also invited to study the MaxSAT-based algorithms for
conflict-free, admissible, stable and complete semantics, as well as MaxSAT-based
counterexample-guided abstraction refinement (CEGAR) approach for preferred se-
mantics and also the answer-set programming algorithm in Section 6 of [37].

In summary, this approach can be used to find argumentation frameworks that
have as many positive examples as possible as extensions while producing as few
negative examples as possible. Pre-determined weights among the examples are

31



taken into account. However, since only one AF is generated at minimal cost, it is
the case that in cases where new knowledge is added, an AF is generated again. It
is therefore not possible to generate a set of AFs and only continue searching in this
set when new knowledge is added. Therefore, for elicitation, the synthesis of AFs
can only take place when all the necessary information for finding an AF is given.
Since the agent in this thesis always answers truthfully, this approach is suitable for
generating AFs from the extensions elicited.

3.2. Learning Attacks in Probabilistic AFs

Another approach to constructing argumentation frameworks comes from Riveret
and Governatori [43]. In contrast to the previously mentioned synthesis problem
(cf. Subsection 3.1), four-valued grounded labellings are assumed here as input
knowledge. The aim here is to learn from these the attacks between the arguments
and thus to reconstruct them. The algorithm proposed by Riveret and Governatori
has a weighted argumentation graph as a substructure for this and uses rules that
adjust the weights in such a way that a decision can be made about whether an
attack occurs or not. In the end, an argumentation framework according to Dung
can then be extracted from the weighted argumentation framework. An overview
of the algorithm is therefore provided below, with definitions taken from [43]. For a
detailed description, the reader is referred to paper [43].

Although the proposed algorithm will be described in a concise manner, a few
preliminary definitions must nonetheless be made. For subsequent work, for in-
stance, the concept of a sub-framework8 is needed.

Definition 42. A sub-framework H of an argumentation framework F = (Arg,AR) is
an argumentation framework (ArgH , RH), where ArgH ⊆ Arg and ∀a, b ∈ ArgH , (a ↪→
b) ∈ AR iff (a ↪→ b) ∈ ARH .

As mentioned at the beginning, a four-valued labelling is expected as input for
the algorithm. The labels themselves are the three known labellings in, out, undec
and additionally the label off, which signifies arguments that do not exist in the
semantics. The labelling itself works as known from the three-value labelling.

Definition 43. Let Λ = {in, out, undec, off} be the labels and F = (Arg,AR) be an AF. A
labelling is a total function L : Arg → Λ.

There is always only one unique grounded {in, out, undec} labelling for an argu-
mentation framework, but several grounded {in, out, undec, off} labellings can be
generated for the sub-frameworks. Those arguments that are not expressed by the
sub-framework are then labelled off. The other arguments are labelled according to
the grounded {in, out, undec} labelling as known.

8It may be noted that [43] terms this concept a sub-graph.
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Definition 44. Let F = (Arg,AR) be an argumentation framework and H = (ArgH , ARH)
an induced sub-framework of F . A grounded {in, out, undec, off} of F is a {in, out, undec, off}
labelling such that:

• every argument in ArgH is labelled according to the grounded {in, out, undec} la-
belling of H , and

• every argument in Arg \ArgH is labelled off.

The next step is to define the weighted argumentation framework. It is used
within the algorithm and extends Dung’s argumentation framework with weights
for each attack. The article [24] gives a good overview of the topic and the reader is
referred there for details.

Definition 45. A weighted argumentation framework is a triple W = (Arg,AR,w)
where (Arg,AR) is an abstract argumentation framework according to Dung and w :
AR→ R a function assigning weights to every attack.

On the basis of the assigned weights, the algorithm calculates those attacks that
are necessary to construct an AF in which the input labellings can be generated. For
this purpose, the weights have different interpretations: An attack a ↪→ b is

• discarded if wa↪→b < 0,

• confirmed if wa↪→b > 0 and

• undecided if wa↪→b = 0.

Finally, the so-called credit rules are required, according to which the algorithm
progressively decides with each labelling to be processed whether an attack is con-
firmed or discarded. For this purpose, four rules are applied according to which
the attack relations are weighted depending on the labelling of two arguments. The
interested reader can delve into the exact rules in the work of Riveret and Governa-
tori [43].

Algorithm 1 Algorithm for learning attacks from labellings in accordance with [43]
Require: Arg as a set of arguments, L as a set of grounded {in, out, undec, off} la-

bellings
Ensure: An argumentation framework F

C ← (ArgC , ARC , w)
For any a, b ∈ AC , initialise wa↪→b

while (there is computational budget) ∨ (an attack is undecided) do
Get a labelling instance L from L
Apply credit rules Ri(L, C) where i = 1..4
Optionally prune discarded attacks in C

F ← prune(C)
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As before for the synthesis of AFs from examples (cf. Subsection 3.1), the task of
the algorithm can be specified as follows:

The Task of Learning Attacks from Examples
REQUIRE: Arg as a set of arguments,

L as a set of grounded {in, out, undec, off} labellings
ENSURE: An argumentation framework F
TASK: Find an AF F that yields as many labellings as it can.

The algorithm proposed by Riveret and Governatori [43] iteratively assigns weights
according to the credit rules for the attack relations as long as a computational bud-
get has not yet been reached or as long as each attack has not yet been confirmed or
discarded. As soon as the condition is fulfilled, the AF induced so far is returned.
Algorithm 1 illustrates this. The reader is asked to study the source literature [43]
for a in-depth explanation of how it works.

Lastly, Riveret and Governatori [43] showed that, given an inexhaustible compu-
tational budget, a argumentation framework was almost certainly found that was
indistinguishable from the labelling source. However, the algorithm does not sup-
port any other of the classical semantics. Moreover, a four-valued labelling forms a
special case. In contrast to synthesising with extensions, not only are classic three-
valued labellings used here, but extra information is introduced with an additional
label, which must first be extracted by an agent, for example. This means that sig-
nificantly more information has to be revealed or discovered.

3.3. A Bayesian Approach to the Direct and Inverse Problem

The work of Kido and Liao [33] introduces the concept of the inverse problem. Here,
a noisy set of acceptable arguments is assumed and then attack relations are sought
that explain the sets well in terms of semantics. The inverse problem is the converse
of the direct problem, where sets of acceptable arguments are to be found with re-
spect to a semantics for a given attack relation. The abstract probabilistic model
proposed by Kido and Liao works with both the direct and inverse problems when
the attack relations are probabilistically distributed. The following description and
definitions are based on Kido and Liao’s work [33].

First of all, both the direct and inverse problem are to be specified according
to [33]:

Direct problem Given an attack relation between arguments of an argu-
mentation framework, a direct problem aims to find sen-
timents regarding acceptability of the arguments, i.e. for
example extensions, defined with respect to a semantics.

Inverse problem Given noisy sentiments regarding acceptability of argu-
ments, an inverse problem aims to find an attack relation
between the arguments explaining the sentiments well in
terms of the semantics.
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The inverse problem is based on finding an attack relation for a given acceptabil-
ity, e.g. a set of extensions. For this purpose, both the semantics and the arguments
are already known and, if necessary, already known attack relations can be included.

Definition 46. An inverse problem is defined as follows: Given an acceptability acc,
an attack relation is to be found that satisfies acc = σ(Arg,Argk, AR) where σ is the
semantics, Arg are the fixed arguments, Argk are already known arguments and AR is the
attack relation.

The noise mentioned before in the specification of the problem are thereby effect
irrelevant for the given semantics or can even be false or inaccurate observations.
This noise must also be taken into account when solving the problem. It extends the
previous equation by η, which denotes the noise: acc = σ(Arg,Argk, AR) + η. To
solve the inverse problem, a probabilistic model is formulated, given a probabilistic
distribution over the attacks and the acceptance. The generative model of abstract
argumentation is taken for the inverse problem to trace the causalities back to the
actual argumentation framework starting from acceptance. This is achieved by com-
puting the posterior distribution over attack relations with the given acceptability
variables. For more specific details, the reader is referred to the paper [33]. There,
theoretical and empirical evaluations of the correctness of the model are also carried
out.

The probabilistic model formulated by Kido and Liao [33] is suitable to consider
uncertainty due to missing data or noisy observations and still construct an argu-
mentation framework. In the scenario of this Master’s thesis, all information re-
ceived is undistorted, since it is assumed as a prerequisite that the interviewed agent
always answers truthfully. Nevertheless, for further research on the topic, e.g. elici-
tation using noisy sentiments of multiple agents may be of interest.

4. Algorithms for Eliciting Abstract Argumentation
Frameworks

The elicitation is a two-step procedure in which the agent is questioned in the first
stage by means of the input information on the arguments and the semantics. For
this purpose, a question is formulated, which the agent answers. Based on this an-
swer, a new question is formulated. Once all the information has been collected, i.e.
in the scenario of this thesis that all the extensions have been found, the procedure
moves on to the second stage, in which an equivalent argumentation framework is
reconstructed from the collected information. This argumentation framework is the
result of the procedure. Figure 15 visualises this approach.

In the following work, we focus primarily on the first interviewing stage of the
procedure. For the second stage, called the reconstruction, there is existing work on
canonical AFs and synthesising argumentation frameworks (see also Subsections
2.4 and 3.1). Therefore, we only briefly discuss the extent to which the information
collected allows for a more immediate reconstruction.
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Figure 15: Illustration of the two stages of the elicitation procedure.

This section hence deals with the development of the algorithms for the inter-
viewing stage in eliciting argumentation frameworks, taking into account that only
questions are asked that are also related to semantics. For this purpose, we present
the general structure of the algorithms in more detail. Next, the questions that can
be asked of the agent are narrowed down and then formulated. The collected prop-
erties of the investigated semantics and their extensions are the basis for this. Subse-
quently, the developed algorithms are introduced and we describe for each seman-
tics their functioning.

Finally, we discuss in further depth the reconstruction and its limitations with the
collected information.

4.1. Detailed Specification of the Elicitation Procedure and Algorithms
to Be Developed

The short introductory description of the two stages of the elicitation procedure
should first be deepened. For this purpose, we present the procedure as a more
formal description in Algorithm 2. The general goal of the elicitation algorithm is to
take given information and the possibility of collecting further information through
questioning and then construct an argumentation framework that satisfies the given
equivalence conditions. In the case of this Master’s thesis, this is the σ-equivalence.

Thus, an interaction takes place between an interviewer and an agent, whereby
the interviewer can ask those questions that the agent can also answer. An agent
in turn has an argumentation framework FA and a question pool Q that it can an-
swer. We therefore define an agent that answers all questions truthfully as Agent =
(FA,Q). An agent has a type or configuration, which is described by indices. The
upper indices restrict the question pool and the lower indices describe further prop-
erties, e.g. extensions already known before the interview. We say an agent can solve
or answer a question Q ∈ Q if for each question input x there exists an answer y.

The interview itself takes then place between the interviewer and the agent as a
first stage. It is a question cycle that depends on the semantics under consideration.
The first question to start with must be defined for each semantics. It is asked in the
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Algorithm 2 Eliciting procedure with its two distinct stages
Require: FA = (Arg,AR) as the agent’s AF, Agent = (FA,Q) as the agent,

σ as the semantics
Ensure: An argumentation framework FE such that σ(FE) = σ(FA)

S← INTERVIEW AGENT(Agent,Arg, σ)
FE ← RECONSTRUCT AF(S, σ)

initial state and therefore cannot be selected based on previous answers. This ques-
tion does not have to be the same for all semantics. For example, it seems reasonable
to ask about the existence of any extension for the stable semantics. However, this
question would be worthless for some of the other classical semantics, since they
always have at least one extension.

For all later cycles, in turn, previous answers of the agent can be used in the se-
lection of the question to be asked.

The selected question is then asked to the agent and the agent gives his answer to
it. The answer can then be evaluated. On the one hand, the result of the questioning
can be used to further restrict the search space by removing impossible extension
sets. On the other hand, it can be decided whether enough questions have been
asked to construct an equivalent argumentation framework of the agent. If contin-
ued, the question cycle takes place again from the beginning.

However, if it is decided that there are no further questions to be asked, then this
stage is finished. For this first stage, we develop algorithms in the Subsection 4.3.
There, different from what is depicted in Algorithm 2, we keep the agent implicit as
a parameter.

The result of this interviewing stage is an extension set S. We transfer this to-
gether with the semantics into the reconstruction stage. We will discuss later in
Subsection 4.4 which options for reconstruction are possible from the information
obtained.

With this approach established, all that remains is to specify the questions that
can be asked in order to develop algorithms that perform the filtering, the ques-
tioning process per semantics and the discussion on the generation of σ-equivalent
argumentation frameworks for the different semantics.

4.2. Question Forming

An essential part of the process is the questions to be asked to the agent. For this
purpose, we examine the scenario in more detail, in order to be able to define some
restrictions.

An agent has an argumentation framework that is hidden to the outside. In a real-
world example, the agent may have read a newspaper article that places arguments
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for and against a topic. An interviewer would then like to question the agent to
find out which arguments the agent accepts, in order to also construct an argumen-
tation framework that comes to the same conclusion under the same acceptability
semantics as that of the agent.

In the considered scenario of this Master’s thesis, the agent always answers truth-
fully to the interviewer’s questions. Nevertheless, it is assumed that the agent is
reluctant to disclose information. This will become important for the selection of
question types again soon.

In such a scenario, basically an infinite number of questions could be asked.
Therefore, some restrictions and assumptions have to be made in order to suffi-
ciently narrow down the scope of the problem. Thus, the categorisation of questions
should be taken up again.

It is helpful to look at existing work on the analysis and the definition of meaning-
ful categories for questions, as for example, in Graesser and Person’s work [30] in
the analysis of tutoring or Lehnert’s work [36] in computational models for question
answering. The distinction between yes-no questions and wh-questions, previously
called decision questions and queries, already described in the section on elicita-
tion, can be found there in the form of the question category verification for yes-no
questions and other categories such as casual consequences, concept completion or
quantification and many more for queries. However, Singer [44] suggests that yes-
no questions are not one-dimensional but two-dimensional. For this purpose, there
are two question acts, namely request reports (wh-questions or also called queries
before) and request verification (yes-no questions or decision questions). These can
then be assigned to the categories according to [44].

Inspired by the question types from [36] and the multidimensionality from [44],
the dichotomy between decision questions and queries will be presented once again
and the two-dimensionality will be considered with regard to questions types an
agent can answer in the context of elicitation of abstract argumentation frameworks.

On the one hand, questions can also be categorised according to the question re-
sult similar to Singer’s question acts. Decision questions are those that are posed as
yes-no questions, i.e. are polar in that they only allow two possible answers. In ad-
dition, there are queries (also called wh-questions) that are asked as open questions
and are functional in the sense that they provide an outcome to the initial question
that is more complex than the decision for ‘yes’ or ‘no’. For example, such results
can be sets with arguments in the context of formal argumentation.

On the other hand, a distinction can be made between syntactic and semantic
questions as two broader question classes. The former relate to the structure of
the graph, i.e. to the arguments and their attack relation, while the latter have a
connection to the extensions. In the context of the Master’s thesis, these are therefore
properties and arguments of the extensions.

Table 1 outlines both dimensions of the question types and gives examples. In
contrast to Singer, in addition to the question acts (decision question and query),
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Question Class
Question
Act

Semantic Questions Syntactic Questions

Query Which arguments are credu-
lous accepted?

Is there an odd-cycle attack
relation?

Decision
Question

Is E ⊆ σ(F )? Is an Argument a not in an
Extension E and not attacked
by E?

Table 1: Two-dimensional representation of the question types with example ques-
tions from the subordinate question categories.

there is the dimension of question classes instead of question categories. The rea-
soning behind this is that question classes are superordinate to question categories.
Within a question class, different question categories can be grouped, e.g. in the
naïve procedure, the question about the existence of an extension has already been
addressed (cf. Subsection 2.6), which can be included in the category of existence
questions.

After answering the question of which question acts and question classes an agent
can answer and the subsequent compilation of possible questions, the question cat-
egories for the scenario of the Master’s thesis are compiled.

4.2.1. Selection of Question Types and the Compilation of Questions

Since only questions related to extensions are to be asked in this Master’s thesis, pri-
marily semantic questions are of interest. Therefore, the algorithms builds on this
question class. So we will not allow for syntactic questions, even if they have a re-
lation to extensions. I.e. the attacks between arguments may not be asked, but also
for example whether an argument is not part of the extension because it is attacked
by the latter is not permitted to be asked.

With regard to the distinction between decision questions and queries, it can be
assumed that queries would oversimplify the algorithms, since the agent answers
truthfully to them. For example, if an agent answered truthfully to the query “What
are all the extensions?”, then the whole interview part of the elicitation would be
superfluous. At this point, one must return to the agent’s reluctance to reveal infor-
mation. This is because it seems more natural for the agent to answer only decision
questions in a real world scenario, since he is in a passive role similar to an exami-
nation.

In summary, this means that for the given setting, questions are sought that are
semantic and have the form of a decision question. In addition, syntactic decision
questions are to be found that are related to extensions.
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Formulating Questions A starting point for formulating the questions are com-
putational problems in abstract argumentation frameworks with respect to seman-
tics. Dvořák and Dunne published an article [26] on this that deals with the compu-
tational problems and their complexity. Next, these problems are to be outlined and
the questions concerning them are to be collected.

First of all, there are computational problems on the acceptance status of the argu-
ments within the extension set. They represent different degrees of scepticism and
are called credulous and sceptical reasoning respectively. Arguments that occur in
all extensions are accepted sceptically. Arguments that are not found in all but at
least one extension are accepted credulously. Given the agent’s AF FA = (Arg,AR)
and an argument a ∈ Arg, the following questions can be formulated:

• Credulous Acceptance Credσ: Is a contained in some E ∈ σ(FA)?

• Sceptical Acceptance Sceptσ: Is a contained in each E ∈ σ(FA)?

Another problem is extension verification, which asks whether a set of arguments
is an extension of the agent and, given the arguments Arg of the agent’s AF, can be
formulated as follows for a set E ⊆ Arg:

• Verification of an extension V erσ: Is E ∈ σ(FA)?

As already explained in the background subsection on extensions, it may be that
the stable semantics has no extension at all. For the other semantics, it may be of
interest to know if there are extensions other than the empty set. Again, let the
agent AF be given to formulate this into questions:

• Existence of an extension Existsσ: Is σ(FA) ̸= ∅?

• Existence of a non-empty extension Exists¬∅σ : Does there exist a set E ̸= ∅
such that E ∈ σ(FA)?

As a final problem, Dvořák and Dunne state the decision whether a semantics has
a unique extension for a given argumentation framework. Again, let the AF of the
agent be given:

• Uniqueness of the solution Uniqueσ: Is there a unique set E ∈ σ(FA), i.e., is
σ(F ) = {E}?

Another relevant reasoning problem, as listed e.g. in [16], is the question of how
many extensions are produced by a semantics for an argumentation framework
(Countσ = |σ(F )|). This does not fall under the category of decision questions and
thus gets omitted. However, a similar decision question can be formulated. Given
the agent’s AF:

• Actual count question ActualCountnσ: Is |σ(FA)| = n?
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With that, the semantic decision questions are determined. As previously intro-
duced, no syntactical questions are allowed and therefore none are searched for.

At this point, as explained at the beginning of this subsection, the questions asked
can be classified into different categories. The question categories result from the
decision problems considered. Table 2 summarises the question categories for the
question act of decision questions. However, since we formulated no questions for
queries due to the scenario, just as non-extension related questions, as well as syn-
tactic questions, are not allowed in this scenario, too, it is not possible to determine
categories for them and thus shall be part of future work.

Question class Question category Decision questions

Semantic Questions

Acceptance Credσ, Sceptσ
Verification V erσ
Existence Existsσ, Exists¬∅σ
Uniqueness Uniqueσ
Counting ActualCountnσ

Table 2: Grouping of the semantic decision questions into question categories.

The collection of questions an agent can answer is denoted by the set Q. For an
agent who is only able to answer decision questions a subset QDec is used. Further,
if the agent is only able to answer semantic questions, then this can be noted with a
superscript QSem

Dec . This results in a subset relationship QSem
Dec ⊆ QDec ⊆ Q.

The semantic questions are QSem
Dec = {Credσ, Sceptσ, V erσ, Existsσ, Exists¬∅σ ,

Uniqueσ, ActualCountnσ}.

4.2.2. On the Complexity of Questions

Next, we evaluate the complexity of the selected questions for each semantics. This
is important for making the elicitation algorithms as efficient as possible.

With the restriction to decision questions, this includes the reformulation of the
counting question into a decision question, a far-reaching research basis for the
complexity of decision problems can already be drawn on. Moreover, the choice
of decision questions is analogous to the well-known computational problems for
semantics is favourable, since here, in principle, all upper bounds on the complexi-
ties are already known for the classical semantics. Different authors contributed for
different problems and (classical) semantics. The works were summarised in [26] by
Dvorák and Dunne which can be used as an overview of the subject.

Brief outlines of the findings are presented in the following. In addition, Table 3
presents the complexity classes for the classical semantics. It is borrowed from [26].

41



σ Credσ Sceptσ V erσ Existsσ Exists¬∅σ Uniqueσ
cf in L trivial in L trivial in L in L
ad NP-c trivial in L trivial NP-c coNP-c
gr P-c P-c P-c trivial in L trivial
co NP-c P-c in L trivial NP-c coNP-c
st NP-c coNP-c in L NP-c NP-c DP-c
pr NP-c ΠP

2 -c coNP-c trivial NP-c coNP-c

Table 3: Complexity of computational problems for AFs (cf. [26])

In his seminal paper [20], Dung already gave the first insights into the classi-
cal semantics. It follows from his considerations that Sceptad, Existsad, Existspr
and Existsgrd are trivial in their complexity. Their properties make this evident.
Likewise, for the grounded semantics, the acceptance problems Credgr and Sceptgr
are in P, and the verification problem V ergr is also in P. For the latter, Dvorák and
Woltran [29] also showed that they are P-hard. From the properties in Dung’s paper
[20] it can be inferred for the grounded semantics that Exists¬∅gr is in L. Furthermore,
it can be inferred for V erad and V erstb that they are in L. In general, the distinction
between problems in L and those which are P-complete can be attributed to Dvorák
et al. [27] respectively Dvorák and Woltran [29].

Furthermore, it can be concluded from the properties that it is sufficient for Credcf
to check whether the argument in question attacks itself, so it follows that this prob-
lem is in L. This efficient check carries over to V ercf . For Sceptcf and Existscf it can
be deduced from the properties that they can be solved trivially, since, among other
things, the empty set always exists since it is conflict-free.

Already in 1996 Dimopoulos and Torres [19] explored abstract argumentation by
using graph theoretical structures as well as logic programs and default logic. Con-
sequently, the following complexity statements can be deduced from this: Sceptst
and V erpr are coNP-complete. Furthermore, the following problems are complete
for NP: Credad, Exists¬∅ad for the admissible semantics, Exists¬∅co for the complete se-
mantics, Credst, Existsst and Exists¬∅st for the stable as well as Credpr and Exists¬∅pr
for the preferred semantics.

Later, Dunne and Bench-Capon [22] could show for sceptical acceptance of pre-
ferred semantics Sceptpr that this problem is ΠP

2 -complete.
Also Coste-Marquis et al. [17] gave further insights into the complexity of com-

plete semantics in their work on symmetric AFs. According to their research Credco
is NP-complete, Sceptco P-complete, Existsco is trivial, too, and that V erco can be
solved efficiently (as it is known today V erco is in L).

Finally, the complexity of uniqueness must be determined. In his technical report,
Dvorák [25] gives the complexity classes for all classical semantics. The uniqueness
problem Uniquegr for the grounded semantics is trivial because one of its proper-
ties is that it always has exactly one extension. Uniquecf is in L, while Uniquead,
Uniqueco and Uniquepr are coNP-complete. The stable semantics stands out in that
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one of its properties is that it does not guarantee that an extension exists at all. This
means that an extra check is necessary to determine whether an extension exists,
and Uniquest is therefore DP-complete among the randomised reductions.

This sets the upper bound of the complexity of all classical semantics and the deci-
sion problems or the questions to the agent. The remaining question to be examined
is therefore the number of extensions. The question ActualCountnσ takes a number n
and checks whether n = Countσ. Countσ is the counting problem for enumerating
the extensions, i.e. how many extensions there are in the end.

Baroni et al. [3] studied the complexity of extension counting problems and showed
that in the general case #P-completeness prevails. Nevertheless, they show that
there are a few tractable cases.

4.3. Algorithms for Interviewing

The next step is to look at the algorithms to be developed. To do this, we first deal
with the division of the computational complexity of the scenario and the selection
of the agent type. After we have set these, we proceed to design the interviewing
algorithms in the subsections.

Regarding the complexity there are two parts to the first stage. On the one hand
the interviewer has to do calculations on what question to ask as well as on deciding
whether to continue or halt as all extensions have been found. Another view on this
is, that the interviewer does some preprocessing before asking the agent that acts as
some kind of oracle. The response or result of the agent is then post-processed.

This two-part work also means that the complexity is not only made up of the
interviewer’s part but also that of the agent. Therefore before designing elicitation
algorithms it is necessary to have a look on the agent. It is established that the agent
answers truthfully such that the agent acts as an oracle. This is the first condition
imposed on the agent which is meaningful not only to the design of the algorithm,
but also on the overall complexity as no additional computations are required on
e.g. the probability of the answer being true or not.

Next the agent is only able to answer decision questions with the restriction that
i) there is a relation to extensions and ii) that they are only semantic, so the set QSem

Dec

is used. As all questions apart from ActualCountnσ are directly also computational
decision problems in AFs results from studies of the complexity directly apply to
them.

For the later implementation of the algorithms, additional properties are of inter-
est, such as whether the agent has already enumerated the extensions or not. These
have no influence on the scope of questions that the agent can answer, as they relate
to the implementation of the calculation of the answers. Therefore, these proper-
ties are added as a subscript. In Section 5 on the experiments, this distinction is
discussed again. In the following, however, it is assumed for the sake of illustra-

43



tion that the agent has no state, which means that every calculation of the answer
is carried out by the agent without prior knowledge of the previous one and thus
also that the agent cannot fall back on any enumeration in advance or during the
interview round. We denote this with the previous restrictions as AgentDec,Sem

¬E .
One effect of this decision, however, is the complexity of the agent’s calculation of

answers. If an agent can already access previously calculated information, answers
can be calculated more easily if necessary. For example, if the agent enumerated
all extensions in advance, i.e. solved the computational problem Enumσ giving
Enumσ(F ) = E = σ(F ) and stored the result, then the complexity of the considered
questions in QSem

Dec boils down to search problems in E.
Second, the answering of the ActualCountnσ question depends i) on whether the

agent already computed E, because then |E| = Countσ(F ) meaning counting is a
by-product of enumeration, and ii) if an agent internally solves ActualCountnσ by
computing Countσ once and storing this result, then the computational complexity
differs between the first time the question is asked and any further questions about
the count.

Yet the behaviour of an AgentDec,Sem
¬E is in line with the complexities considered

in the previous section on the questions to be asked and their complexity. There
it is also assumed that there is no prior knowledge, i.e. no state in a process, to
answer the question. With regard to the development of the algorithms, it can thus
be assumed that these upper bounds are applicable. In the experiments in Section 5,
the effect on the runtimes for agents without state and with state is examined in
more detail.

Figure 16 establishes the connection. A contains all possible types of an agent. An
agent that always answers truthfully as an oracle is denoted as Agent. Within this
type of agent, the one that can only answer decision questions AgentDec is chosen.
In the case of this thesis, an AgentDec,Sem is chosen that can only answer questions
related to semantics. Finally, there is the restriction that this agent AgentDec,Sem

¬E can
neither enumerate nor keep a count internally.

𝒜

Agent AgentDec AgentDec,Sem AgentDec,Sem¬𝔼

Figure 16: A visualisation of the narrowing of the agent.
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At this point, the feasibility of asking questions to an AgentDec,Sem
¬E with complex-

ity classes such as NP, coNP and higher in PH should also be discussed. In general,
it could be assumed that a few questions can be asked in these complexity classes
without impacting the overall performance too much. In principle, there is a stan-
dard implementation for these questions and the identified questions in classes L or
P are improvements of these. On top of that, the standard implementations of the
questions respectively calculation tasks are often obviously inefficient. In addition,
many of the questions can only be used meaningfully in iterations or even have it-
erations in their standard implementation. We specify these as follows (apart from
Existsσ as it is only for σ = st relevant):

• The standard procedure to Credσ is to non-deterministically guess an exten-
sion containing the occurring argument. After that, it is verified and in case of
answering yes, the argument is accepted credulously.

• For Sceptσ, on the other hand, it has to be shown that among all guessed ex-
tensions the argument is not accepted sceptically, i.e. the extension is verified
and does not contain the argument to be checked. If the answer is no for all
extensions guessed in this way, the argument is accepted sceptically.

• For Exists¬∅σ a non-empty extension is to be guessed non-deterministically. If
this is verified, then Exists¬∅σ is to be answered yes.

• For ActualCountnσ, it is verified that the cardinality matches the given number.
For this, all extensions must be enumerated. All extensions are to be verified
and compared with the number n to be checked. If both are the same, the
answer is yes.

• Finally, for Unique, all possible extensions must be verified (or chosen non-
deterministically and verified). If only one is found, the question must be an-
swered yes; if a second is found or none at all, the question must be answered
no.

It is apparent that in these algorithms the questions must already (partially) verify
the extensions. This makes their use within the algorithms to be developed ques-
tionable in terms of overall performance. We argue they are therefore not feasible to
use in the algorithms9.

Turning to the interviewer side, the complexity here consists of, on the one hand,
the number of questions to be asked in order to arrive at the final extension set.
On the other hand, the calculation of which question to ask next and the decision
whether all extensions have been found must be included in the complexity. These
considered components correspond to those in Figure 15.

9See also Appendix B where we additionally evaluated the performance with another kind of solver
implementation using these questions in modified versions of the developed algorithms.
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The complexity can only be determined together with the response complexities
of the agent due to the cyclical process on the part of the interviewer. This is because
the interviewer tries to find all extensions and therefore works through all the nec-
essary steps to obtain a solution. However, since the interviewer cannot determine
the answer to partial problems themselves, they ask the agent. The agent then cal-
culates the answer to the question. With this result, the interviewer can ask for the
next steps. Within this cycle, the complexity of the questions to the agent is decisive
for the overall performance of the interviewing part of the elicitation process.

Based on this knowledge, algorithms for the classical semantics can now be de-
scribed. For this purpose, on the one hand, the algorithm for the interview part per
semantics will be outlined and, on the other hand, the generation of σ-equivalents
AF with the collected information will be discussed.

4.3.1. Naïve Approach as a Baseline

Before an algorithm is actually shown for each classical semantics, we should estab-
lish a baseline first. This serves to compare the algorithms with an approach that
works for all classical semantics. This approach is the naïve one from Section 2.6
and was already developed in the introductory paper by Kuhlmann [34] to show
the overall feasibility of elicitation.

For the interviewing stage it relies on asking the agent whether a set of arguments
is accepted, i.e. whether it represents an extension. This procedure corresponds to
forming the power set 2Arg for all known arguments Arg and asking the agent via
V erσ for each set whether this is a valid extension.

Algorithm 3 Naïve Approach for Interviewing Part
Require: Arg as a set of arguments, σ as the semantics
Ensure: An extension set S

S← ∅
S ← 2Arg

for all s ∈ S do
r ← Ask agent V erσ(s)
if r = ⊤ then

S← S ∪ {s} ▷ Add s to the extension set S

The decisive disadvantage can be seen quickly. The number of extensions in-
creases exponentially with the number of arguments and with them the number of
questions to be asked. This procedure is an exhaustive search, also called the brute-
force search. In this case, all possible extensions not only have to be tried out, they
all have to be confirmed or rejected by the agent via the verification question. It is
obvious that this is not an efficient procedure.
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4.3.2. Conflict-Free Sets

We start with the examination of conflict-free sets. To do this, we first collect feasi-
ble questions and then describe and prove the algorithm. The questions and their
complexity can be seen in Table 3.

Questions For conflict-free sets, the picture is that all questions are either in com-
plexity class L or are even trivial. Since there is always a conflict-free set, namely the
empty set, it is of interest whether there is another one besides the empty set. For
Exists¬∅cf it is sufficient to check whether an argument does not attack itself. A sim-
ilar approach can be taken to answer Credcf . If an argument is not self-attacking,
then it is accepted. Therefore, the question Exists¬∅cf can also be replaced by check-
ing all arguments for their credulous acceptability. If one is credulously accepted,
then Exists¬∅cf is to be answered in the positive. In the case that none is accepted, it
is to be negated. The same applies to the question Uniquecf . Only if all arguments
attack themselves, there is only one existence, i.e. the empty set. This can also be
compensated by asking Credcf for all arguments. In addition, V ercf is included
in the question pool, since it is in L and is necessary in order to have a suspected
extension confirmed by the agent respectively to have the extension rejected by the
agent. Lastly, using ActualCountnσ is not an option because of its default implemen-
tation by finding all extensions and counting them, this is also true for all following
algorithms. The interested reader can check the results from supplementary experi-
ments in Appendix B, which support this.

Algorithm 4 Conflict-free Sets Algorithm for the Interviewing Part
Require: Arg as a set of arguments, σ = cf
Ensure: An extension set S

ArgsS ← ∅
for all a ∈ Arg do ▷ Step I

if Credcf (a) = ⊤ then
ArgsS ← ArgsS ∪ {a}

S← {{}}
S ← 2ArgsS \ S
for all s ∈ S do ▷ Step II

if ∃s′ ∈ S : s ⊆ s′ then
S← S ∪ {s}

else
r ← Ask agent V ercf (s)
if r = ⊤ then

S← S ∪ {s}

Description For conflict-free sets, i.e. σ = cf , recall from Definition 3 that a set is
conflict-free, if there is no attack between the arguments in this set. From the signa-
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ture of conflict-freeness Σcf it is also known that it is downward-closed and tight.
This reflects on the one hand the fact that if e.g. three arguments {A1, A2, A3} are
accepted, then all their subsets will be too, e.g. {A1, A3} as one possible subsets.
Furthermore, this implies the fact that the empty set {} is always conflict-free and
therefore the extension-set contains at least the empty set. On the other hand tight-
ness represents the condition, that a conflict-free set cannot contain arguments that
are attacked by the set.

From the Subsection 2.4 on signatures and realisability it is known, that the max-
imal number of sets in a conflict-free extension-set is the same as the cardinality of
sets of the power set of all arguments, i.e. ∆cf (n) = 2n.

With this knowledge, the algorithm for finding conflict-free sets can be drawn.
As for a stop condition, there is no meaningful one apart from having all possible
extensions enumerated. However, the enumeration can be optimised as the empty
set {} is always a valid conflict-free set and therefore is verified upfront. In addition,
for a found conflict-free set all the subsets can be accepted by the downward-closure
condition.

In the case of conflict-free sets, tightness does not provide any benefit. This is
due to the fact, that the extension-set S can be checked for tightness, but this de-
mands that all extensions already have been found as no further property restricts
the possible extensions10.

Up to this point the described algorithm uses only the V ercf question, similar to
the naïve approach. As V ercf has an upper bound in L and Credcf , too, it is feasible
to ask for all known arguments if they are credulously accepted. In case there is any
self-attacking argument, it won’t be in any conflict-free set and therefore the number
of arguments for the power set reduces, i.e. n = |{a | Credcf (a) = ⊤, a ∈ Arg}|.

As for implementing Algorithm 4, on a deterministic computer it is a good idea to
start with the superset of all other sets in the power set, that is the set where every
other set is a subset, and then testing it and all subsets of it. This top-down approach
makes heavy use of the downward-closure condition as for each found set, all the
subsets can be accepted.

Example 17. Let the agent have an hidden AF FA = ({A1, A2, A3, A4, A5, A6, A7},
{(A1, A3), (A2, A3), (A3, A4), (A3, A5), (A4, A5), (A5, A4), (A4, A6), (A5, A7)}). This AF
is identical to the AF F2 in Figure 5 used in several examples.

With σ = cf and σ(FA) = {{}, {A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7},
{A1, A2}, {A1, A4}, {A1, A5}, {A2, A4}, {A1, A6}, {A2, A5}, {A1, A7}, {A2, A6},
{A2, A7}, {A3, A6}, {A3, A7}, {A4, A7}, {A5, A6}, {A6, A7},
{A1, A2, A4}, {A1, A2, A5}, {A1, A2, A6}, {A1, A2, A7}, {A1, A4, A7}, {A1, A5, A6},
{A2, A4, A7}, {A2, A5, A6}, {A1, A6, A7}, {A2, A6, A7}, {A3, A6, A7}, {A1, A2, A4, A7},
{A1, A2, A5, A6}, {A1, A2, A6, A7}}. The interviewer only knows Arg and σ.

First, the interviewer asks the agent about the credulous acceptance of all arguments and

10E.g. the stable semantics are tight and incomparable and therefore it is possible to make use of the
tightness property, since if s is verified and a /∈ s, then there will be no s ∪ {a}.
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collects these in the set ArgsS = {A1, A2, A3, A4, A5, A6, A7}. It can be seen that no
argument is missing, as none of the arguments attack themselves.

Next, the empty set {} is added to S, since it is always acceptable (the same could be done
with all credulously accepted arguments, but is omitted from the algorithm for simplicity).

Now all possible extensions are tried out. For reasons of comprehensibility, not all possible
extensions are shown, but only two positive examples and one negative example.

Let us start with a positive example. Let the set s = {A1, A2, A4, A7} be given and S
contains only the empty set. Since s ⊈ {}, the second case applies and the agent verifies s as
an extension. Therefore s is added to S.

Now we suppose a negative example. For this s = {A1, A2, A3, A4}. S contains the
previously found extension and the empty set. So it has to be checked whether s is a subset
of a set in S. This is obviously not the case, since s ⊈ {} and s ⊈ {A1, A2, A4, A7}. Since
the agent also rejects V ercf (s), s is not in S.

Finally, the second positive example. For this we take the set s = {A1, A4, A7}. S contains
the previously found extension and the empty set. Again, it is necessary to check whether s
is a subset. This is the case since s ⊆ {A1, A2, A4, A7} and therefore s can be added to the
extension set without asking the agent for verification.

We conclude this example with these results. For all other possible sets in S, proceed in
the same way. In the end, after all possible sets have been tried, the extension set is equal to
the result of the semantic function using cf for the AF FA, i.e. S = σ(FA).

Proof of Corectness for Algorithm 4 In order to prove the correctness, the indi-
vidual steps are to be proven. The steps can be taken from the comments in Algo-
rithm 4.

Proof of step I. Let Arg be all arguments of the agent’s AF and σ the semantics and
let us prove, that ArgsS only contains credulously accepted arguments. Asking the
agent ∀a ∈ Arg : Credσ(a) by definition gives for each argument whether it is
credulously accepted or not. Collecting those where the question is positive results
in ArgsS containing only credulously accepted arguments by definition.

Proof of step II. Let ArgsS be a set of all credulously accepted arguments, S the ex-
tension set, S the power set of ArgsS and FA be the hidden AF of the agent.

As the step II is iterative, we will give a proof of correctness by a loop invariant
and induction.

Invariant: At the start of each iteration of S, S should contain only those exten-
sions from S such that S is a subset of the extension-set of the agent’s AF.

Initialisation: At the start of the first iteration the invariant states that S should
contain only those extensions from S, where at this point no extension has been
chosen from, such that S, which contains only the empty set at this point, is a subset
of the extension-set of the agent’s AF. As S = {{}} and {{}} ⊆ σ(FA) with FA being
the AF of the agent is always true by Definition 3, this holds.
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Maintenance: Assume that the invariant holds at choosing s ∈ S. Then it must
be that S must only contain extensions that the agent would verify to be part of their
AF, too.

So for adding s to the extension-set S the following must be valid.
If there exists a set s′ in S such that s is a subset of s′ then s is also a valid extension.

This is correct because Theorem 1 states that the extension-set is downward-closed
so that Definition 18 and Definition 17 hold. That is, for any S ∈ Σcf it holds that
{S′ ⊆ S | S ∈ S}. Therefore s can be added in this case.

In the case that s is not a subset, the agent must verify the extension and in the
positive case, it is added to the extension set S. This holds because the agent always
answers V ercf truthfully.

Termination: When the loop terminates, S = σ(FA) where FA is the AF of the
agent. The loop terminates when there is no remaining set of arguments in S to
inspect. Since S is finite, this is trivial.

4.3.3. Admissible Sets

Now that an algorithm for the conflict-free sets has been developed, one for the
admissible sets follows. Here, too, we first find questions that are tractable for an
Agentdec,sem¬E and develop the algorithm based on this. A proof follows as before.

Questions For admissible sets, according to Table 3, only the question V erad is
tractable, since it lies in complexity class L. Sceptad and Existsad are trivial due to
the properties of σ = ad (cf. also Definition 5). The verification can be implemented
by the agent by checking the arguments. The necessary check corresponds to that
from the Definition 5. Since each argument to the extension must also be accepted,
it can simply be checked for each argument of the set of arguments to be checked
whether this argument is accepted, i.e. each attacker is in turn attacked by another
argument.

Other useful questions like Credad, Exists¬∅ad and Uniquead are in NP or coNP.
Asking large numbers of these questions is therefore probably detrimental to perfor-
mance (cf. experimental results in Section 5), which is why we do not include them
in the basic algorithm. Nevertheless, a modified algorithm using these questions is
presented in Appendix A, and in Appendix B we briefly review the performance
using additionally another solver.

Description The semantics of admissibility has few properties. With respect to its
signature Σad, it can be inferred from Theorem 2 that the empty set always forms an
extension and that all extensions are conflict-sensitive to each other.

First is the verification of whether s is in the extension set S, the agent can verify
s and in the case that s could not only theoretically be part but actually forms an
extension, it can be included in the extension set.

50



Algorithm 5 Admissible Sets Algorithm for the Interviewing Part
Require: Arg as a set of arguments, σ as the semantics
Ensure: An extension set S

ArgsS ← Arg
S← {{}} ▷ Step I
PairsS ← {}
S ← 2ArgsS \ S
for all s ∈ S do

▷ Step II
if s ∈ S then

continue
▷ Step III

r ← Ask agent V erσ(s)
if r = ⊤ then

S← S ∪ {s} ▷ Add s to the extension set S
for all p ∈ s× s do

PairsS ← PairsS ∪ {p} ▷ Add pairs of arguments appearing together

for all S ∈ S do ▷ Step IV
if S ∪ s /∈ S then

c← ⊤
if ∀a, b ∈ S ∪ s : (a, b) ∈ PairsS then

c← ⊥
if c ̸= ⊤ then ▷ No conflict means potential for existing

if V erad(S ∪ s) then
S← S ∪ {S ∪ s}

Once this is the case, the latter property of conflict-sensitivity can be used as a
criterion in advance to check whether a set of arguments to be checked, s, has further
compatible extensions. For this, for all arguments that exist in the union of s and the
extension set S, there is a pair that is in PairsS. If this is the case, one can let the
agent verify if the union set is indeed a valid extension11.

In the case of admissibility, we make no use of the diversity function as a stop
condition, since ∆ad = 2|ArgsS |, i.e. the upper limit corresponds to the size of the
search space of extensions.

Example 18. We also give an example for the algorithm for admissible sets. For this we
again use AF F2 = FA from Figure 5. The hidden AF of the agent is FA = ({A1, A2, A3, A4,
A5, A6, A7}, {(A1, A3), (A2, A3), (A3, A4), (A3, A5), (A4, A5), (A5, A4), (A4, A6),
(A5, A7)}) and σ = ad.
11The disadvantage of this method is that some extensions cannot be found in advance at an early

stage because the necessary pairs have not yet been formed. This is because S is still incomplete
and grows with the iterations.
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For σ(FA) we get the following extensions-set {{}, {A1}, {A2}, {A1, A4}, {A1, A5},
{A2, A4}, {A1, A2}, {A2, A5}, {A1, A2, A4, A7}, {A1, A2, A5, A6}, {A1, A2, A4},
{A1, A2, A5}, {A1, A4, A7}, {A1, A5, A6}, {A2, A4, A7}, {A2, A5, A6}}. The interviewer
only knows Arg and σ. Due to the number of extensions, we will only select a few examples
to demonstrate how the algorithm works.

The algorithm first accepts {} and then forms the power set without the empty set. We
start with the first iteration with the set of arguments s = {A1}. Step II is skipped because
S is still empty. The agent verifies s = {A1} and we add this to S so that S = {{A1}}. We
also form the pair PairsS = {(A1, A1)}.

We proceed and choose s = {A2}. Since S = {{A1}}, step II is performed, but s /∈ S.
Therefore we continue with step III. Here the agent verifies first that s ∈ S. As this is the
cas ewe get S = {{A1}, {A2}}. For PairsS we now get {(A1, A1), (A2, A2)}. We proceed
with step IV. Here {A1}∪ {A2} do not have no pairs for {(A1, A2), (A1, A2)}, so we do not
add it for the moment. However, there will be an invariant where s = {A1, A2} ∈ S and
then it will get verified by the agent.

Finally, we show a negative example. Suppose s = {A3}. We do not find s ∈ S as well as
that the agent does not verify s to be an extension. In this case, we do not add to S and also
do not perform step IV.

Proof of Correctness for Algorithm 5 In order to prove the correctness, the indi-
vidual steps are to be proven. The steps can be taken from the comments in Algo-
rithm 5.

Proof of step I. Adding the empty set {} (or ∅) is trivial since this is already proven
by, among other things, the Theorem 2.

Proof of the main part. Let ArgsS be a set of all arguments, S the extension set, S the
power set of ArgsS without the empty set and FA be the hidden AF of the agent.

As the main part is iterative, we will give a proof of correctness by a loop invari-
ant and induction. The steps II, III and IV within the loop maintenance and the
termination are considered.

Invariant: At the start of each iteration of S , S should contain only those exten-
sions from S such that S is a subset of the extension-set of the agent’s AF.

Initialisation: At the start of the first iteration the invariant states that S should
contain only those extensions from S, where at this point no extension has been
chosen from, such that S, which contains only the empty set as an extension at this
point, is a subset of the extension-set of the agent’s AF. As S = {{}} and {{}} ⊆
σ(FA) with FA being the AF of the agent is always the case according to Theorem 2,
this holds.

52



Maintenance: Assume that the invariant holds at choosing s ∈ S. Then it must
be that S must only contain extensions that the agent would verify to be part of their
AF, too.

Step II: Starting with step II, it is checked whether s ∈ S exists. If this condition
is fulfilled, e.g. because previously for an s′ the condition existed that S ∈ S :
V erad(S ∪ s′) = ⊤ and S ∪ s′ = s, so intuitively speaking s could already be formed
from a union set before, then s need not be checked further.

It is easy to show that this is correct. At a point in time T0, ST0 = {{A0}, {A1, A2},
{A3}} is given. Since s0 = {A1, A2} is already given, it does not need to be checked.
Now, if s1 = {A1, A3} occurs at some later point in time T1, then s1 /∈ ST1 with
ST1 = ST0 . Therefore s1 needs to be checked. This corresponds to the condition of
step II.

Step III: Next comes step III. The question V erad holds by definition, so that if the
agent s answers in the affirmative, it is added to the extension set S and the pairs
are formed from all the arguments, which are then added to PairsS.

Step IV: We continue with step IV only if the case in step III applies. Here we check
whether we can already form further extensions from both the extension set S and
the extension s to be checked, which the agent does not have to verify further. The
case occurs when there is no conflict for each extension in S together with the ex-
tension to be verified. The contrary case is given in the Definition 20 for conflict-
sensitivity.

Therefore, for each S ∈ S, we check whether S ∪ s does not yet occur in S. If this
is the case, this union set should be examined more closely. In the case that for all
constructible pairs (a, b) from a, b ∈ S ∪ s there is also a pair in PairsS, there is no
conflict. That is, the arguments could occur together. This case is verified by V erad
and, if verified positive, S ∪ s is included in S. No pairs need to be formed here, as
they all already exist.

That this step works can be shown by means of Definition 20. It states that if
A ∪ B /∈ S for A,B ∈ S, then ∃a, b ∈ A ∪ B : (a, b) /∈ PairsS. We assume A = s
and S ∈ S : B = S, then in order for conflict-sensitivity to be preserved, S ∈ S are
in principle admissible for all S ∪ s only if ∀a, b ∈ S ∪ s : ∄(a, b) /∈ PairsS. If such a
case exists for an S ∈ S, it is worthwhile to have the agent S∪s verified. Verification
holds by definition.

Suppose the converse, that S ∪ s /∈ S but ∀a, b ∈ S ∪ s : (a, b) ∈ PairsS holds. This
would be caught by verification so that no false extensions are included in S.

The invariant is finished as there is no further step.

Termination: When the loop terminates, S = σ(FA) where FA is the AF of the
agent. The loop terminates when there is no remaining set of arguments in S to
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inspect. Since S is finite, this is trivial.

4.3.4. Complete Semantics

We continue with the first classical semantics in the narrower sense. The complete
semantics is especially of interest as the grounded and the preferred semantics,
among others, build on the complete semantics, as shown in the Figure 7 at the
end of Subsection 2.2 on extension-based semantics.

As before, we start by selecting questions based on complexity as shown in Ta-
ble 3. This is followed by a description of the Algorithm 6. The algorithm was
created using the previously selected questions. Afterwards, a proof of correctness
follows.

Questions For the complete semantics it can be seen from Table 3 that only Sceptco
and V erco are in P and L respectively as complexity class. For Sceptco it can be
said that it is in P, since it is only necessary to check whether an argument is in
the grounded semantics, which has Credgr in P. For V erco, on the other hand, it is
sufficient for the agent to check whether the set E to be checked is conflict-free and
whether the characteristic function applied to that set E also has E as its result, i.e.
ΓFA

(E) = E with the agent’s AF FA. This makes E admissible and ensures that any
argument accepted in E is also in E.

With the assumption made earlier that large numbers of questions in classes out-
side L and NP are not beneficial for the runtime, further questions are not consid-
ered in this basic version of the algorithm. A modified version with the additional
questions is briefly presented in Appendix A.

Description The complete semantics is special in the respect that no precise char-
acterisation and thus signature has been found for it up to the present. I.e. the
properties found can lead to an extension-set being com-closed and also satisfying
(
⋂

S∈S S) ∈ S, but yet no AF F exists for which co(F ) = S (see also example 8 in [23]).
Nevertheless, at least some unwanted extensions can be excluded and thus the

number of questions that the agent has to answer can be presumably reduced. For
this purpose, it is verified at the beginning of the algorithm whether the empty ex-
tension exists. The background is that if it exists, the intersection over all arguments
in the extensions is empty12.

On the other hand, if the empty extension is not part of the extension set, then after
two sets have been found, the intersection can be formed, thus creating a condition
according to which unwanted extensions can be sorted out. For example, if S is
{{A1, A2, A4}, {A4}}, a set of arguments such as {A1, A3} need not be checked, since
the argument A4 is the current intersection of all extensions in S and the intersection
of this set {A4}with the set to be checked, {A1, A3}, is no non-empty subset.

12This also means that the unique grounded extension is empty.
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Algorithm 6 Complete Semantics Algorithm for the Interviewing Part
Require: Arg as a set of arguments, σ = co
Ensure: An extension set S

ArgsS ← Arg
S← {}
z ← Ask agent V erco({}) ▷ Step I
if z = ⊤ then

S← S ∪ {{}}
e← ∅
S ← 2ArgsS \ {{}}
for all s ∈ S do

if ∆co(|ArgsS |) = |S| then ▷ Step II
break

if z = ⊥ ∧ |S| ≥ 2 ∧ |(s ∩ e)| ≠ 0 ∧ (s ∩ e) ⊈ e then ▷ Step III
continue ▷ Intersection of all arguments not given

r ← Ask agent V erco(s) ▷ Step IV
if r = ⊤ then

S← S ∪ {s}
if z = ⊥ ∧ |S| ≥ 2 then ▷ Step V

e←
⋂

S′∈S S
′ ▷ Find the intersecting arguments

Unfortunately, the check for com-closed is not meaningful to check within an in-
variant, because all further possible extensions are missing. Thus, it is not possible
to tell whether two arguments from S∪ s, with s the set of arguments to be checked,
actually forms a unique completion set (cf. Definition 22).

In addition, the diversity function is again used as an upper limit for the number
of extensions. It therefore serves as a stop condition.

Finally, the omission of the question Sceptco may be noticeable. In fact, this has to
do with the fact that knowing about sceptically accepted arguments does not reduce
the set of arguments of the search space ArgsS . Moreover, additional complexity is
added for checking whether an argument has already been accepted sceptically or
not. This version of the algorithm therefore omits this.

Example 19. For the current example, let us consider repeatedly the AF F2 from Figure 5.
For σ = co and F2 = FA we get here σ(FA) = {{A1, A2}, {A1, A2, A5, A6},
{A1, A2, A4, A7}} with Arg = {A1, A2, A3, A4, A5, A6, A7}. We show three positive ex-
amples and two negative examples below.

The algorithm starts with step I by verifying the empty set. Here, the agent answers
negatively since {} /∈ gr(FA). Therefore, it is not added to S. We note this result in the
variable z. Then we iterate over the power set without the empty set.

Let us start with a positive example for s = {A1, A2, A5, A6}. Since we have the upper
bound at ∆gr(|Arg|) = 9, step II does not stop us. For step III, z = ⊥, however, the
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cardinality of the extension set is at |S| = 0, thus this check is also to be ignored. We ask
the agent for V erco(s) and the agent accepts this. We add s to S. We do not perform step V
because |S| = 1 and the condition is not satisfied.

We continue with s = {A1, A2}. Again, the stop condition is not fulfilled. The condition
of step III still does not apply either. So we let the agent verify s. Since it decides positively,
we add s to S. Now that z = ⊥ and |S| = 2 are satisfied, we perform step V. We form the
intersection of {A1, A2, A4, A7} ∩ {A1, A2} and obtain e = {A1, A2}.

Next, two negative examples are to follow with the first one being s = {A1, A3}. Again,
the stop condition does not apply, but step III does, since z = ⊥ and S ≥ 2. Now we have to
check whether s is a superset of e = {A1, A2}. Since this is not the case, we proceed to the
next possible extension.

Now we take s = {A1, A2, A3}. Again, the stopping condition does not apply, but step
III needs to be examined more closely because z = ⊥ and S ≥ 2. s is indeed a superset of e,
so we proceed to step VI. However, since the agent does not verify s, we do not add it to the
extension set S.

Let us conclude this example with a positive example. Let s = {A1, A2, A5, A6}. Again,
the stop condition does not apply, but once more, step III. We note that s ⊇ e, so the agent
can verify s. He confirms s and so we add this to S. The condition from step V is not satisfied
because of |S| > 2.

Once all possible extensions have been tried, we again get S = co(FA) = {{A1, A2},
{A1, A2, A5, A6}, {A1, A2, A4, A7}} in this example.

Proof of Correctness for Algorithm 6 In order to prove the correctness, the indi-
vidual steps are to be proven. The steps can be taken from the comments in Algo-
rithm 6.

Proof of step I. Let V erco be the computational problem to verify that a given set of
arguments is an extension of the agent’s AF. As V erco holds by definition, this step
is trivial.

Proof of the main part. Let ArgsS be a set of all arguments, S the extension set, S the
power set of ArgsS without the empty set and FA be the hidden AF of the agent.

As the main part is iterative, we will give a proof of correctness by a loop invari-
ant and induction. All steps II to V within the invariant and the termination are
considered.

Invariant: At the start of each iteration of S , S should contain only those exten-
sions from S such that S is a subset of the extension-set of the agent’s AF.

Initialisation: At the start of the first iteration the invariant states that S should
contain only those extensions from S, where at this point no extension or the empty
set has been chosen from, such that S, which contains no extension or the empty
set at this point, is a subset of the extension-set of the agent’s AF. As S = {} and
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{} ⊆ σ(FA) or S = {{}} and V erco({}) = ⊤ with FA being the AF of the agent, this
holds.

Maintenance: Assume that the invariant holds at choosing s ∈ S. Then it must
be that S must only contain extensions that the agent would verify to be part of their
AF, too.

We start with step III, since step II is a termination condition and is covered in the
termination part.

Step III: Given e which holds a set of arguments, s which holds the chosen set of
arguments to be checked, S which holds the current state of the extension set and
z which is either true or false and contains the result of V erco({}). In the case that
the empty set is not part of the extension set and two or more extensions have al-
ready been found, then s∩ e must be a subset of s and not empty, otherwise s can be
discarded. To prove this, we assume the contrary, that s ∩ e is not a subset of e, but
s is a valid extension and the empty set is not part of the extension set. Moreover,
two extensions S′ and S′′ have already been found, so that {S′, S′′} ⊆ S. In this case
e = (

⋂
S∈S S). In order that S ∪ {s} is valid, however, there must be no intersection

between s ∩ e and e. But since {e} ⊆ co(FA), this would mean that there must be
e = {} so that there is no intersection. But this is a contradiction, since the condition
of step III only comes into play if {} /∈ S respectively {} /∈ co(FA).

Step IV: We continue with step IV. Here we ask the agent whether the set s to be
checked is indeed an extension after all the previous criteria have been met. If this
is the case, we add the extension to the extension set.

Finally, in case the empty set is not part of the extension set and we have now
found at least two extensions, in step V we form the intersection that must be the
superset for the intersection of itself and all further possible extensions.

Step V: For step V, let the extension set be S = {S′, S′′} and the intersection of it be
(
⋂

S∈S S) = I . I corresponds to the grounded extension as it is the unique minimal
extension with respect to set inclusion. So the intersection of S′ and S′′ is the empty
set, if and only if there are no common arguments in both sets S′ and S′′, but then
this contradicts the condition that {} /∈ S. Next we show that for a third E = S′∪{a}
it still holds I = (

⋂
S∈S∪{E} S). As I has to be minimal, if a ∈ E is also in I , then a is

also in S′ and S′′, therefore it would have been in I , too, such that I = (
⋂

S∈S∪{E} S)
holds. The same goes for more than three sets, too.

Termination: When the loop terminates, S = σ(FA) with FA being the AF of the
agent. The loop, therefore, terminates in two cases:

1. if there is no set of arguments in S is left to be checked or

2. if the theoretical maximal number of extensions has been found.

57



The first case is trivial. The second case holds by the Definition 27 as well as
Theorem 5.

4.3.5. Grounded Semantics

Next, the grounded semantics should be addressed. It too is based on the admissi-
bility of accepted arguments. Its special property, however, is that it is, according to
Definition 9, the minimum complete extension with respect to set inclusion.

While this property is in principle only helpful if the complete extensions are
known (and in the case of this Master’s thesis the agent only answers to one se-
mantics), it can be deduced that there is only one unique grounded extension. Ex-
pressed differently, it describes that |gr(F )| = 1 for any AF F . This simplifies the
search for the extension set S, since there must always be exactly one extension (cf.
also Theorem 3).

Also with this semantics, we first check which questions can be used to then de-
scribe the Algorithm 7 and give a proof of correctness at the end.

Questions Similar to the conflict-free sets, all questions with reference to grounded
semantics are also tractable. These are in the complexity classes L and P respectively
or are even entirely trivial. Due to the already known property of forming only one
extension, the question Credgr is very suitable for finding the possible arguments
of the extension. The implementation corresponds to calculating the least-fix point
of the characteristic function and then checking there whether the argument occurs
and is thus accepted. Sceptgr can be implemented analogously. For V ergr, the least-
fix point of the characteristic function must be compared with the set of arguments
to be verified.

The question Exists¬∅gr is also interesting, because it is suitable to check quickly
and efficiently whether the extension contains any arguments at all and whether it
is worthwhile to continue searching. To do this, one checks whether there is at least
one argument that is not attacked by other arguments.

Description The algorithm starts by asking for the existence of a non-empty exten-
sion, i.e. Exists¬∅gr . If this is answered in the positive, the corresponding arguments
can be searched for, in order to find the extension set S.

For this, it is sufficient to ask for the acceptance of each argument. The ques-
tion category of acceptance contains two decision questions, whereby the choice
between the questions Credgr and Sceptgr is a matter of personal preference since
both are sufficient in the following algorithm as each accepted argument can only
be contained in the single extension.

If all arguments are found, the extension E formed from them is assigned to the
extension set S. This also applies if the extension is empty.

Example 20. Once again we take the example from Figure 5 where F2 = FA is assumed.
For σ = gr we get σ(FA) = {{A1, A2}}. We now show by way of example how this

58



extension can be elicited.
To do this, the algorithm first checks Exists¬∅gr which is answered positively by the agent

so that it enters the loop body. For the arguments Arg = {A1, A2, A3, A4, A5, A6, A7},
credulous acceptance is now tested. In the case of arguments A1 and A2, the agent accepts
them and we can add them to E so that E = {A1, A2}. All other arguments are not accepted
by the agent, so they are not added to E.

Finally, E is added to S so that S = σ(FA) for σ = gr.

Algorithm 7 Grounded Semantics Algorithm for the Interviewing Part
Require: Arg as a set of arguments, σ = gr
Ensure: An extension set S

E ← ∅
if Exists¬∅gr = ⊤ then

for all a ∈ Arg do
r ← Ask agent Credσ(a)
if r = ⊤ then

E ← E ∪ {a} ▷ Add argument a to the extension E

S← {E}

Proof of Correctness for Algorithm 7

Proof. Proving correctness is trivial because first the agent is asked for Exists¬∅gr .
This is valid by definition. There are two cases: i) If only an empty extension exists,
skip the loop. ii) Run the loop because the extension is not empty.

The loop iterates over all arguments and asks for acceptance of the argument by
Credgr. Again, this holds by definition. A formal proof of correctness by using a
loop invariant is therefore omitted.

At the end, the extension is assigned to the extension set. This also holds by
definition, since σ = gr has only |S| = 1.

4.3.6. Preferred Semantics

The second to last classical semantics is the preferred semantics for which an algo-
rithm has to be developed. We start again by finding suitable questions in order to
describe the Algorithm 8. Afterwards, we proceed with proving the algorithm.

Questions The questions of the preferred semantics are all in NP, coNP or even
higher in the polynomial hierarchy, as indicated in Table 3. That is, no tractable
questions can be found for these semantics in the case of an Agentdec,sem¬E .

We therefore select only the question V erpr, which is in the complexity class coNP
and is complete for it. The question can be implemented with the understanding of
the Definition 10 as follows:
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For the verification, the agent can first check the extension passed with the ques-
tion respectively the set of arguments E to be checked for their admissibility. If this
is the case, a superset of E can be guessed. If this superset is also admissible, then
E cannot be a preferred extension, since E is not maximal with respect to set inclu-
sion. If no superset can be found that is also admissible, then E is an extension of
the agent’s AF.

Algorithm 8 Preferred Semantics Algorithm for the Interviewing Part
Require: Arg as a set of arguments, σ as the semantics
Ensure: An extension set S

ArgsS ← Arg
U← {}
S← {}
PairsS ← {}
S ← 2ArgsS

for all s ∈ S do
if ∆pr(|ArgsS |) = |S| then ▷ Step I

break
if s ∈ U then ▷ Step II

continue ▷ No superset of found extensions
if ∃s′ ∈ S s.t. s ⊃ s′ ∨ s ⊂ s′ then ▷ Step III

continue ▷ Incomparability is required
if ∃S′ ∈ {S ∪ s|S ∈ S}∀a, b ∈ S′ : (a, b) ∈ PairsS then ▷ Step IV

continue ▷ Conflict-sensitivity is required
r ← Ask agent V erσ(s) ▷ Step V
if r = ⊤ then

S← S ∪ {s} ▷ Add s to the extension set S
for all p ∈ s× s do

PairsS ← PairsS ∪ {p} ▷ Add pairs of arguments appearing together
if |S ≥ 2| then ▷ Step VI

for all S, S′ ∈ S do
if S ̸= S′ then

U ← S ∪ S′

U← U ∪ {U} ▷ Not allowed in an incomparable extension-set

Description The algorithm starts by creating all possible sets of arguments as a
power set. Then each one is examined. Next to this, U represents the set of all su-
persets to found extensions in S. As before, S represents the collection of all found
extensions, also called extension set. In addition, the argument pairs to S are col-
lected in PairsS.

In its basic idea, the algorithm is based on the elaborations of the Theorem 2 on
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the signature Σpr. First, however, it is known that s ∈ S can only be valid if s is
maximal with respect to set inclusion, since Definition 10 describes this. Thus, if U
contains the set s, then s need not be considered further. How U comes about will
be shown later.

The next criterion to be applied is incomparability. From Definition 18 it can be
seen that for this purpose sets are to be compared pairwise. I.e. s must be compared
with all S ∈ S. It must not be the case that s is a subset of S and vice versa. Otherwise
s need not be considered further.

Another criterion to be checked is that the conflict-sensitivity is given. This is
described in Definition 20. Applied to the case of elicitation, this means that if for a
set S′ ∈ {S ∪ s|S ∈ S} there exists no pair a, b ∈ S′ which is missing in PairsS, then
s need not be considered further.

If these three criteria are met, the agent can be asked whether s actually occurs as
an extension, i.e. V erpr is applied. If this is the case, then s is added to the extension
set S and all pairs are formed from the arguments in s. Furthermore, if there is
more than one extension in S, then for all S, S′ ∈ S with S ̸= S′ the union can be
formed. This represents a superset which cannot occur, since otherwise for S and
S′ the maximality with respect to the set inclusion according to Definition 10 is not
given.

Finally, the stop condition should be named. This is again the diversity function,
this time with respect to the preferred semantics ∆pr. If |S| = ∆pr, the search can be
stopped because the computational upper limit of extensions has been reached.

Example 21. For this example, let us again take the AF F2 from Figure 5. For σ = pr
and F2 = FA we get here σ(FA) = {{A1, A2, A5, A6}, {A1, A2, A4, A7}} with Arg =
{A1, A2, A3, A4, A5, A6, A7}. We show two positive examples and two negative examples.

We anticipate that the stop condition in step I is not satisfied in this example.
Let us start with a positive example for s = {A1, A2, A5, A6}. Since U does not yet

contain any supersets, we skip this step II. Since S is still empty as an extension set, we also
skip step III. The check of step IV is unnecessary for the same reason. We therefore let the
agent s verify. Since it confirms s, we add this to S. Since |S| = 1, step VI need not be
performed. We obtain the following set for PairsS (every x stands for a pair in PairsS):

A1 A2 A3 A4 A5 A6 A7

A1 x x - - x x -
A2 x x - - x x -
A3 - - - - - - -
A4 - - - - - - -
A5 x x - - x x -
A6 x x - - x x -
A7 - - - - - - -

We continue with the second positive example of s = {A1, A2, A4, A7}. Since S is still
empty, we skip this step. We now check whether s is incomparabile to S. Since s is nei-
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ther a subset nor a superset to {A1, A2, A5, A6}, this is given. Also, conflict for conflict-
sensitivity can be established between s and S′ ∈ S, so in both the pair (A3, A3) is not
present. The agent can now positively verify s. We add this extension back to the extension
set S. Since this satisfies |S| ≥ 2, we also add to U the union set of {A1, A2, A5, A6} and
{A1, A2, A4, A7}, which is {A1, A2, A4, A5, A6, A7}. For PairsS we get:

A1 A2 A3 A4 A5 A6 A7

A1 x x - x x x x
A2 x x - x x x x
A3 - - - - - x -
A4 x x - x - - x
A5 x x - - x x -
A6 x x - - x x -
A7 x x - x - - x

The first negative example is supposed to be the formed superset {A1, A2, A4, A5, A6, A7}.
It is easy to see that in step II s is rejected and we can continue with another presumed ex-
tension.

Let us conclude this example with another negative example. For this, s = {A1, A2, A4}.
This set is not present in U, which is why step II does not reject it. However, the incompa-
rability check takes effect here, since s is a subset of {A1, A2, A4, A7} and is therefore not
valid.

If we continue in this way, S = pr(FA) is given at the end.

Proof of Correctness of Algorithm 8 In order to prove the correctness, the indi-
vidual steps are to be proven. The steps can be taken from the comments in Algo-
rithm 8.

Proof of the main part. As the main part is iterative, we will give a proof of correct-
ness by a loop invariant and induction. All steps I to step VI within the loop main-
tenance and the termination are considered.

Invariant: At the start of each iteration of S, S should contain only those exten-
sions from S such that S is a subset of the extension-set of the agent’s AF.

Initialisation: At the start of the first iteration the invariant states that S should
contain only those extensions from S , where at this point no extension has been
chosen from, such that S, which contains no extension at this point, is a subset of the
extension-set of the agent’s AF. As S = {} and {} ⊆ σ(FA) with FA being the AF of
the agent, this holds.
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Maintenance: Assume that the invariant holds at choosing s ∈ S. Then it must
be that S must only contain extensions that the agent would verify to be part of their
AF, too.

Let S be the power set of all arguments ArgsS from the agent’s AF (also given as
Arg). U is a collection of all supersets from the elements of S and S is the extension
set, i.e. the collection of all verified extensions. In addition, PairsS contains the
argument pairs, i.e. arguments that occur together in at least one extension that are
already present in S at the time of holding.

Step I in the loop is dealt with in the proof part for the termination and is therefore
skipped for the moment.

Step II: This step checks whether s is a superset to the extensions already found and
continues the loop if it evaluates to true, due to the criterion of maximality with
respect to set inclusion (cf. Definition 10).

That this holds is easy to see. Given two extensions S, S′ ∈ S and the set of argu-
ments s to be checked. Since it is well known that the union of two sets is a superset
of both, i.e. S ⊆ S ∪ S′ and S′ ⊆ S ∪ S′ respectively, and S as well as S′ must be
admissible and maximal with respect to set inclusion, S ∪ S′ ⊈ s must hold, other-
wise S and S′ are not maximal. Since all S ∪S′ ∈ U (see also step VI), s cannot be an
extension of the agent’s AF if s ∈ U 13.

Step III: Since step II only sorts out exact S∪S′ = s for S, S′ ∈ S, we still have to check
incomparability in general, i.e. that there is no set in S for which s is a superset. We
check this in step III with two conditions. The first is that s is a subset of an element
in S. If this is the case, we can proceed. This holds by Definition 18.

Conversely, it must also not be the case that an S ∈ S is a superset to s, for in this
case s would not be maximal with respect to set inclusion. This is checked in the
second condition. For this converse, assume that s ∈ S and ∃S ∈ S : s ⊆ S ∧ s ̸= S.
Now if s were in S, then {s, S} ⊆ S and so there would be an element in S which is a
subset of another element, i.e. ∃S, S′ ∈ {s, S} ⊆ S : S ⊆ S′∧S ̸= S′. This contradicts
Definition 18.

Step IV: Next, check for conflict-sensitivity in step IV. Assume that S ∈ S and that
s ∪ S /∈ S (see steps before). So there must be a conflict between s and S, otherwise
the condition of conflict-sensitivity would not be met. This can only be the case if
there is (a, b) /∈ PairsS. If we assume the opposite, so that (a, b) ∈ PairsS as well
as for all other x, y ∈ s ∪ S there is (x, y) ∈ PairsS, then there would be no conflict
between any two arguments and {a, b} ⊆ s ∪ S. However, then again s ∪ S would
have to be in S, which is a contradiction to the Definition 2014.

13This step is especially reasonable from a runtime point of view, since the check for an element
present in a set varies between best O(1) (e.g. hash sets) and worst O(n) (sets implemented as
arrays and having to search for the element iteratively), depending on the implementation.

14See also the proof of proposition 2 in [23].
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Therefore, step IV checks all S′ ∈ {S ∪ s|S ∈ S}, so that for S′ there exists an
argument pair (a, b) which is not present in PairsS so far.

If all these criteria are met, the agent is asked to verify s in step V via V erpr. In
case the agent does not verify them, the iteration is finished. However, if the agent
answers in the positive, in this case s is added to S as an element. In addition, all
pairs are formed.

Also, step VI is subsequently performed in the branch of step V.

Step VI: If there are two or more extensions in S, the superset can be formed from all
S, S′ ∈ S. This superset can then be included in the collection U (cf. step II, where it
is also shown that this procedure is correct).

The invariant is finished.

Termination: When the loop terminates, S = σ(FA) with FA being the AF of the
agent. The loop, therefore, terminates in two cases:

1. if there is no set of arguments in S is left to be checked or

2. if the theoretical maximal number of extensions has been found.

The first case is trivial. The second case holds by the Definition 27 as well as
Theorem 5.

4.3.7. Stable Semantics

As before, we first review and select the possible questions for asking the agent.
Therefore, it is useful to look at the questions and their complexity as shown in
Table 3. This is followed by an intuitive description of the algorithm with reference
to the formal description in Algorithm 9. This is followed by an example and finally,
we prove that it works.

Questions In contrast to the preferred semantics, the question V erst is in com-
plexity class L, i.e. it is to be expected that a guessed extension can be verified
by the agent in reasonable time. The situation is different for the remaining ques-
tions, which are in the complexity classes NP, coNP and DP. Especially for the stable
semantics, the question Existsst would be helpful because, as mentioned in the
background, there is not a stable semantics for every AF. Since the typical non-
deterministic way for the question is to use an algorithm based on guessing an ex-
tension and checking if it exists, this question is not tractable considering an agent
that did not enumerate the extensions beforehand, and the expected advantages to
the interviewing algorithm without the Existsst resp. Exists¬∅st matching in this
case are not large. The question Credst hides a similar algorithm. Here, an exten-
sion is first guessed and then the specified argument is searched for. As it is also
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questionable here whether there is an improvement in the actual running time, this
question is excluded for the time being15. The sceptical acceptance Sceptst can be
formulated as a complementary problem, i.e. it is shown that an argument is not ac-
cepted sceptically. We restrict the algorithm to V erst for the time being in order not
to have both an NP-c and a coNP-c question to the agent in the algorithm. Uniquest
is also omitted due to its complexity.

Algorithm 9 Stable Semantics Algorithm for Interviewing Part
Require: Arg as a set of arguments, σ = st as the semantics
Ensure: An extension set S

ArgsS ← Arg
PairsS ← {}
S ← 2ArgsS

for all s ∈ S do
if ∆st(|ArgsS |) = |S| then ▷ Step I

break
if ∃s′ ∈ S : s ⊃ s′ ∨ s ⊂ s′ then ▷ Step II

continue ▷ Incomparability is required
D ← ArgsS \ s
t← ∀d ∈ D ∃a ∈ s : (d, a) /∈ PairsS ▷ Step III
if t = ⊥ then

continue ▷ S ∪ {s} is not tight
r ← Ask agent V erσ(s)
if r = ⊤ then ▷ Step IV

for all p ∈ s× s do
Add p to PairsS

S← S ∪ {s} ▷ Add s to the extension set S

Description We will describe the algorithm next. It consists essentially of four
steps. The main part is the loop for iterating over the search space in S . In step I,
the stop condition is applied. When the maximum number of extensions is reached,
then the loop can be terminated early. Otherwise, this loop is terminated thus the
algorithm is finished, when all sets in the search space have been checked.

As long as this is not the case, it is checked in step II whether the set is incompa-
rable to all extensions found so far. This is one of two criteria according to Theorem
1 for stable semantics. The extensions found so far are in the extension set S. If this
is not the case, it need not be considered further and the next one can be checked.

If it is incomparable, the next step III is to find out whether the set of arguments
together with the extension set still fulfil the criterion of tightness in order to satisfy
Theorem 1. For this purpose, for each argument that does not occur in the set to

15In the experiments, the algorithm is then tested with and without Credst
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be checked, there must be a pair of this argument and one argument in the set to be
checked, that is not yet in PairsS. The idea behind this is that only those are suitable
to serve as a pair for the tightness test.

If it is also ensured that the tightness criterion is fulfilled in principle, the agent can
be asked to verify the extension. This is performed in step IV. If the agent answers
positively, all pairs of arguments in the extension are added to PairsS, since they
occur.

Finally, the set is attached to the extension set as an extension.

Example 22. Let the agent have an hidden AF FA = ({A1, A2, A3, A4, A5}, {(A1, A4),
(A1, A5), (A3, A4), (A4, A3), (A5, A1), (A5, A2)}).

Then σ = st and σ(FA) = {{A1, A2, A3}, {A4, A5}, {A3, A5}}. The interviewer only
knows Arg and σ.

First, the interviewer sets ArgsS = {A1, A2, A3, A4, A5}. In its initial state, PairsS has
no pair of arguments that are accepted, as illustrated in the following table. As notation, an
existing pair is marked with x and a non-existing pair with a dash -. The columns represent
the first argument of the pair, the rows the second argument.

A1 A2 A3 A4 A5

A1 - - - - -
A2 - - - - -
A3 - - - - -
A4 - - - - -
A5 - - - - -

In the next step, extensions have to be guessed. For illustration purposes, not all different
sets from the power set S are gone through, instead the first two extensions are directly
guessed correctly. This is followed by the missing third extension and finally an unverifiable
set of arguments is to be checked.

The maximum number of extensions according to the diversity function is 6, since n =
|Args| ∧ n = 3s+ 2 with s = 1 and thus 2 · 3s = 6.

Now we start with the set of arguments s = {A1, A2, A3}. Since |S| = 0 is not termi-
nated. Moreover, S ∪ {s} incomparable. Since for all arguments ArgsS \ s = {A4, A5}
pairs can be found with the arguments from Args∫ that are not in PairsS, such as (A4, A1),
(A5, A1), tightness is also given. Since the agent verifies s, PairsS can be adjusted as fol-
lows:

A1 A2 A3 A4 A5

A1 x x x - -
A2 x x x - -
A3 x x x - -
A4 - - - - -
A5 - - - - -
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We continue with the set s = {A4, A5}. Since |S| = 1 is not terminated here either.
Again, S ∪ {s} is incomparable. That S ∪ {s} could also be tight is made possible by pairs
like (A1, A4), (A2, A4) and (A3, A4) being not in PairsS. Since tightness is given, the
agent can be asked for verification. The agent answers positively and PairsS now looks like
this:

A1 A2 A3 A4 A5

A1 x x x - -
A2 x x x - -
A3 x x x - -
A4 - - - x x
A5 - - - x x

Now the third extension s = {A3, A5} is to be checked. Again, the algorithm does not
terminate because |S| = 2. Also for this invariant, S ∪ {s} incomparable and tightness can
be checked with the pairs (A1, A5), (A2, A5) and (A4, A3), which all are not contained in
PairsS. Since the agent also verifies s, we get the following PairsS:

A1 A2 A3 A4 A5

A1 x x x - -
A2 x x x - -
A3 x x x - x
A4 - - - x x
A5 - - x x x

Finally, s = {A1, A5} is to be checked, which is not in σ(FA). First, again the algorithm is
not terminated because only three extensions have been found and ∆st(|ArgsS |) = 6. Next,
the incomparability is checked again, which is also the case as S ∪ {s} is given. However, it
is easy to check that under the circumstances of the extensions found earlier, S ∪ {s} cannot
be tight. It is ArgsS \ s = {A2, A3, A4} to be checked. For the first argument A2, the pair
(A2, A5) can not be found in PairsS. For the second argument A3 pairs can be found, since
both (A3, A1) and (A3, A5) are in PairsS. Therefore, we can proceed with another guessed
set of arguments.

In the end, after all possible sets have been tried, the extension set is equal to the result of
the semantic function using st for the AF FA, i.e. S = σ(FA).

Proof of Correctness of Algorithm 9 In order to prove the correctness, the indi-
vidual steps are to be proven. The steps can be taken from the comments in Algo-
rithm 9.

Proof. Let ArgsS be a set of all arguments, S the extension set, PairsS be the set of
argument pairs that occur in at least one extension, S the power set of ArgsS and
FA be the hidden AF of the agent.
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As the main part of the algorithm is iterative, we will give a proof of correctness
by a loop invariant and induction.

Invariant: At the start of each iteration of S , S should contain only those exten-
sions from S such that S is a subset of the extension-set of the agent’s AF.

Initialisation: At the start of the first iteration the invariant states that S should
contain only those extensions from S, where at this point no extension has been
chosen from, such that S, which contains no extension at this point, is a subset of the
extension-set of the agent’s AF. As S = {} and {} ⊆ σ(FA) with FA being the AF of
the agent, this holds.

Maintenance: Assume that the invariant holds at choosing s ∈ S. Then it must
be that S must only contain extensions that the agent would verify to be part of their
AF, too.

Step II: First we check if the incomparability requirement is satisfied in step II. Re-
member from Definition 18 that all elements of S have to pairwise incomparable,
i.e. for each S, S′ ∈ S, S ⊆ S′ implies S = S′. If the chosen s is a subset of any
found extension in the extension-set S, then it must not be considered further. To
prove this, assume that s is a subset of any s′ ∈ S and s ̸= s′, then due to incom-
parability the agent will not verify s for their AF. Therefore s must not be considered.

Step III: Next, we check if s is tight with respect to current state S in step III. Different
to Definition 19 it is not clear if S is complete or not. However, due to incompara-
bility we know that if the agent verifies s, then there can be no subset nor superset.
Therefore we can assume for now that S ∪ {s} must be tight. To be tight under this
circumstances means that for a ∈ ArgsS there is s∪{a} /∈ S and therefore there exists
an as ∈ s such that (a, as) /∈ PairsS. As we do not need to consider arguments in s
itself, we only need to check whether pairs of ArgsS \ s and arguments in s are not
in PairsS correspondingly, because for all these arguments a pair is needed, which
is not contained in PairsS. Assume the contrary that there is a s ∈ S ∧ s ∈ S such
that there is an argument as ∈ s so there is (a, as) ∈ PairsS for all a ∈ ArgsS . Then
s ⊆ S is not tight, as by the definition of tightness there must be a pair that is not in
PairsS. Contradiction!

Step IV: Following these checks, in step IV, the agent is asked to verify s, there are
two cases: i) The agent verifies s to be an extension, then first all pairs of arguments
are added to PairsS, because they occur together.

Second, the set s is added to the extension-set S.
In case ii) the agent does not verify the set of arguments as an extension of their

AF and therefore s is not considered further.

68



Termination: When the loop terminates, S = σ(FA) with FA being the AF of the
agent. The loop, therefore, terminates in two cases:

1. if there is no set of arguments in S is left to be checked or

2. if the theoretical maximal number of extensions has been found.

The first case is trivial. The second case holds by the Definition 27 and the Theo-
rem 4 as well as Theorem 5.

4.3.8. Discussion

Finally, the algorithms developed for the interview part will be discussed. For this
purpose, the available information, the questions and the running time will be cov-
ered below.

First, about the available information. Given in the algorithms are both the se-
mantics and the arguments of the agent’s hidden argumentation framework. With
the restriction that the agent can only answer semantic decision questions with an
extension relation, a narrow boundary has been set. The computational problems
considered (Credσ, Scepσ, V erσ, Existsσ, Exists¬∅σ and Uniqueσ; see also Table 4)
provide little insight into the agent’s attack relations or argumentation framework
model.

σ Credσ Sceptσ V erσ Existsσ Exists¬∅σ Uniqueσ ActualCountσ
cf ✓ ✓
ad ✓
gr ✓ ✓
co ✓
st ✓
pr ✓

Table 4: Questions used in the interviewing part according to the algorithm for σ.
A ✓stands for used.

Due to the fact that only information on the extensions could be requested, some
of the findings of Dunne et. al [23] on the signatures were suitable for the devel-
opment of the algorithms. Through the iterative procedure or by guessing pos-
sibly existing extensions, properties such as incomparability, tightness and conflict-
sensitivity can be used for the most part to check whether the extension to be checked
can be contained at all. It should be noted, however, that this cannot be used to catch
all non-existent extensions before they are verified by the agent, nor is it possible to
check for all properties. For example, the com-closed property is not sufficiently
suitable, so that it was not used in the algorithm for complete semantics.
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Furthermore, Baroni and Giacomin [4] gave a classification of semantics based
on so-called principles. However, these principles were not suitable for the appli-
cations in the algorithms, as they often needed a deeper insight into the AF of the
agent (e.g. for reinstatement or directionality). Other principles from [2] such as
allowing abstention could not be applied either.

In addition, the previously mentioned questions and computational problems are
of interest. Only a few of them are in a complexity class considered tractable for
an agent that has not enumerated the extensions in advance. This is particularly
striking since only {cf, gr} ⊆ σ use Credσ as a question in these versions of the al-
gorithms. The absence of this question in the other semantics means that the search
space (the power set of given arguments) cannot be reduced. Since the question
ActualCountσ could also not be meaningfully included (due to its complexity in
#P), no further restrictions of the search space are possible. However, we suspect
that the use of these questions, which have not been utilised so far, may well give a
performance advantage if the solver has good strategies for answering those ques-
tions. Therefore, in Appendix B we also use another solver in addition to the one
from the experiments in Section 5 and briefly examine whether these modified algo-
rithms that also use questions from NP, coNP and other classes perform better with
this other solver that takes a different implementation strategy.

As for ending the search, without ActualCountσ only the fact that a theoretical
upper limit (the diversity function) exists for many semantics makes it possible to
end the search early.

This also points to the runtime complexity. In the absence of stop conditions apart
from the diversity function, the runtime is strongly dependent on the number of ar-
guments the agent’s AF possesses. The iteration over the search space (the power
set) is thus in principle for all semantics at O(n|Arg|) with |Arg| as the number of ar-
guments. This already suggests long runtimes, as will be verified in the experiments
in Section 5 on evaluation.

The only exception is the algorithm for grounded semantics. It only grows with
the size of the set of arguments and is therefore in O(|Arg|).

All in all, the restriction to ask only semantic decision questions and not allowing
an agent to enumerate in advance shows that, on the one hand, a lot of informa-
tion is not available and, on the other hand, that the computation of the questions
by the agent is often not tractable. As a result, only a few questions can be used
meaningfully under these restrictions.

4.4. Discussion on the Reconstruction

In this subsection, we discuss the reconstruction. Above all, it will be shown what
limits there are for a tractable construction of an AF from the information collected
from the interview part. This provides a rationale why more computational complex
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or statistics-based approaches to generating frameworks have their raison d’être.
First, we clarify under which circumstances an extension-set is realisable under a

given classical semantics at all.
On the one hand, a naïve approach can be taken, in which all attack relationships

are simply tried until a suitable AF is found. This algorithm is depicted in Algo-
rithm 10 but is obviously not very efficient, since in the worst case all combinations
have to be tried.

Algorithm 10 Naïve Approach for Generating Part
Require: Arg as a set of arguments, σ as the semantics, an extension set S
Ensure: An argumentation framework FE

R← (Arg ×Arg)
for all r ∈ 2R do

G← (Arg, r)
if σ(G) = S then

break
FE ← G

Dunne et al. [23] demonstrated that for σ, any extension-set S that is contained in
the signature of σ, i.e. S ∈ Σσ, can be realised with a canonical AF or an adapted
version of it (see Definition 23 for canonical AFs; Definition 24 and Definition 26 for
adapted canonical AFs). However, in the case of the adapted canonical AFs, a large
number of artificial arguments are added that are needed for the construction of the
canonical AF, but which do not occur in the agent’s AF.

However, in our case, the arguments of the agent’s AF are known and it is also
known that there is at least one AF realising S without those artificial arguments.
Therefore, in the following, we want to examine the possibilities of reconstructing an
argumentation framework from the given information and discuss the limitations
given the condition that there are no artificial arguments and all arguments of FA are
also in the constructed or generated AF FE . We call such a reconstruction argument-
congruent.

Definition 47. Let Arg be a set of arguments of an abstract argumentation framework F =
(Arg,AR) and σ a semantics. An argument-congruent reconstruction with respect to σ
is one in which a F ′ = (Arg′, AR′) is generated such that Arg = Arg′ and σ(F ) = σ(F ′).

We also say a reconstruction is immediate if the (re-)construction from the inter-
viewing part is tractable, this means doable in polynomial time with regard to time
complexity.

For exploring under which semantics immediate argument-congruent reconstruc-
tions are possible, we first show cases in which an at least σ-equivalent AF can
be generated argument-congruently from the elicited extensions. We then examine
cases in which this is not or not always possible, using among others the example of
the preferred semantics and the running example from Section 2.2.
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4.4.1. Immediate Argument-Congruent Reconstruction

Let us begin with the grounded semantics which produces a unique extension. As
discussed earlier, a canonical AF is very suitable for generating a σ-equivalent AF
under grounded semantics. Such an AF can be described by FE = ({E}, ∅) such that
given the agent’s AF FA it holds that gr(FA) = S = {E} because E ⊆ Arg.

However, this also means that not all the original arguments in Arg are neces-
sarily found in this canonical AF. To get an argument-congruent AF and there-
fore syntactically closer such that all arguments of Arg are in the AF, the missing
arguments Arg \ E can be added to the AF if they attack themselves such that
AR = {(a, a) | a ∈ (Arg \ E)}. The associated AF will look like FE = (Arg′, AR′)
has Arg′ = Arg then.

Algorithm 11 Algorithm for an Argument-Congruent Reconstruction of the
Grounded Semantics
Require: Arg as a set of arguments, an extension set S
Ensure: An argumentation framework FE

E ← S1 ▷ Get the first element via an implicit index set
N ← Arg \ E
AR← {(a, a) | for each a ∈ N}
FE ← (Arg,AR)

Algorithm 11 depicts how to generate such an AF. However, Example 23 shows
why such a σ-equivalent AF is not guaranteed to be syntactically identical to the
agent’s hidden AF.

A1

A3

A4

A5

A6

A7A2

Figure 17: An example for a σ-equivalent reconstruction of framework F2 under the
grounded semantics.

Example 23. For a reconstruction example, let us take again the already known AF F2

from Figure 5, which already served as a running example before. For this AF, Arg =
{A1, A2, A3, A4, A5, A6, A7} and the extension set from the first interview step is S =
{{A1, A2}}. We extract the extension from S such that E = {A1, A2} and form the set dif-
ference Arg\E = {A3, A4, A5, A6, A7}. For each of these arguments in the set difference we
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generate a self-attack so that we get the AF FE with FE = ({A1, A2, A3, A4, A5, A6, A7},
{(A3, A3), (A4, A4), (A5, A5), (A6, A6), (A7, A7)}). The σ-equivalence is satisfied with
σ(F2) = S for σ = gr.

Figure 17 visualises this AF. It is obvious that although the same arguments were used,
the attack relations between AF F2 and the one reconstructed here differ. Thus, only self-
attacks are present in the reconstructed AF while F2 does not have a single self-attack. In
exchange, all other attack relations in F2 are missing in the reconstructed AF.

Let us continue with another semantics for which such an approach is possible.
That are conflict-free sets. This follows directly from Proposition 2, according to
which a canonical AF F cf

S can also be generated, which satisfies cf(F cf
S ) = S. Any

arguments not in ArgsS can again be added to an AF by self-attacks, so that AR is
generated from the union of (ArgsS×ArgsS)\PairsS and {(a, a) | a ∈ Arg\ArgsS}.
Algorithm 12 formally describes how such an argument-congruent reconstruction
is possible.

Algorithm 12 Algorithm for an Argument-Congruent Reconstruction of Conflict-
Free Sets
Require: Arg as a set of arguments, an extension set S
Ensure: An argumentation framework FE

Generate PairsS
Generate ArgsS
AR1 ← (ArgsS ×ArgsS) \ PairsS
AR2 ← {(a, a) | a ∈ Arg \ArgsS}
FE ← (Arg,AR1 ∪AR2)

A1 A2 A3

Figure 18: The reconstructed argumentation framework F1 from Example 1.

Example 24. In this example, we show the argument-congruent reconstruction of conflict-
free sets. Our otherwise used running example F2 from Figure 5, is not suitable for a
short example in this case. We therefore fall back on AF F1 from Figure 2. Recall F1 =
({A1, A2, A3}, {(A1, A2), (A2, A1), (A2, A3)}) and for σ = cf is σ(F1) = {{}, {A1},
{A2}, {A3}, {A1, A3}}. We also assume that the extension set S = σ(F1) for σ = cf was
found during the interview. Next, we present the procedure of Algorithm 12.

First, we generate the argument pairs with PairsS = {(A1, A1), (A2, A2, (A3, A3),
(A1, A3), (A3, A1)}. Then we form ArgsS and obtain for this ArgsS = {A1, A2, A3}.
Next, we construct the attack relation between all the arguments in ArgsS without the
PairsS and get AR1 = {(A1, A2), (A2, A1), (A2, A3), (A3, A2)}. Moreover, we have to
eliminate all arguments that are not in ArgsS but are in Arg by self-attacks. In this case,
there are no such arguments, so AR2 = {} holds.
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We now (re-)construct FE such that FE = ({A1, A2, A3}, {(A1, A2), (A2, A1), (A2, A3),
(A3, A2)}. Figure 18 represents this. It is noticeable that this is very similar to AF F1 and
differs in the attack relation only by a symmetric attack between A2 and A3. Again, in the
end σ(F1) = S = σ(FE) with σ = cf .

These findings and algorithms also correspond to the state-of-the-art research on
the subclass of analytical AFs as in [8]. An AF is analytic if it has no implicit con-
flicts. Unlike attacks, which are a syntactic element, conflicts are with respect to
a semantics and are characterised by the fact that two arguments do not occur to-
gether. The following Definition 48 and Definition 49 correspond to definitions 3
and 4 in Baumann et al.’s paper [8].

Definition 48. Let an AF F = (Arg,AR), a semantics σ and two arguments a, b ∈ Arg
be given. If (a, b) /∈ Pairsσ(F ), then a and b are in conflict in AF F for semantics σ. If
there is an attack relation between the arguments, i.e. a ↪→ b ∨ b ↪→ a, then the conflict is
explicit and otherwise implicit.

Definition 49. Let σ be a semantics, then an AF F is called analytic for σ if all conflict in
F for σ are explicit.

For the other semantics, one consideration can be to put the arguments that do
not occur together in extensions into an explicit conflict. However, because the Ex-
plicit Conflict Conjecture (ECC) was rejected for admissible, complete, preferred and
stable semantics, they cannot be always translated into an AF with only explicit con-
flicts and therefore this consideration cannot be applied. The question underlying
the ECC was whether an arbitrary AF can be transformed into an analytic AF with-
out additional arguments under the stable semantics. The conjecture was disproved
in [8] and, moreover, it was shown for the other not yet considered semantics that
the subclass of finite analytic AFs is a strict subset of finite AFs. From this, it can
be concluded that for these semantics the implicit conflict is part of their expressive
power.

4.4.2. Negative Results in Immediate Argument-Congruent Reconstruction

From the previous results, we now want to show that immediate construction algo-
rithms, as previously given with Algorithm 11 and Algorithm 12, are not sufficient
for (immediate) argument-congruent reconstructions from the given information
and therefore more computational complex approaches are needed for semantics
other than conflict-free sets and the grounded semantics such as e.g. described in
the synthesis of AFs [37] for these semantics.

For this, we show the limits on the basis of the preferred semantics. However,
since the Explicit Conflict Conjecture has also been refuted for other semantics, the
ideas can be applied to these as well.
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Demonstration on Preferred Extensions It is known that the preferred seman-
tics is based on admissibility. Thus, in order to realise an extension E under the
given arguments Arg, there must be a conflict between the arguments in E and the
AF’s arguments that are not in E. This conflict must be designed in such a way that
the AF’s arguments are not in E do not appear in E while all other extensions can
still be successfully produced. An extension under Arg with Arg from an AF F is
thus producible if for each argument a ∈ Arg \ E either i) it holds that it does not
occur in any other extension, i.e. ∀E′ ∈ S : a /∈ E′ or ii) if it occurs in another exten-
sion, then in all remaining extensions E′ ∈ S with E′ ̸= E there must be at least one
argument b ∈ E for which there is no pair, i.e. (a, b) /∈ PairsS.

A first approach based on the previously described algorithms would be to con-
struct an analytical AF, i.e. one where all those conflicts are made explicit by attacks.
Thus, for each (a, b) /∈ PairsS, an attack a ↪→ b is generated for an explicit conflict.
This gives us an argumentation framework F = (Arg, {(a, b) | (a, b) /∈ PairsS∧a, b ∈
Arg}).
Example 25. Let us take again the AF from Figure 5, i.e. FA = ({A1, A2, A3, A4, A5,
A6, A7}, {(A1, A3), (A2, A3), (A3, A4), (A3, A5), (A4, A5), (A5, A4), (A4, A6), (A5, A7)},
under the preferred semantics, σ = pr. After the interview has been conducted with the
agent, the extension-set S = {{A1, A2, A4, A7}, {A1, A2, A5, A6}} was elicited and thus
σ(F ) = S holds. In order to produce a σ-equivalent AF FE from S, PairsS must first be
calculated. The attack relation AR can be constructed from all pair of arguments that are not
in PairsS, such that AR = {(A1, A3), (A2, A3), (A3, A1), (A3, A2), (A3, A3), (A3, A4),
(A3, A5), (A3, A6), (A3, A7), (A4, A3), (A4, A5), (A5, A3), (A5, A4), (A4, A6), (A6, A3),
(A6,A 4), (A4, A6), (A5, A7), (A7, A5), (A6, A7), (A7, A6), (A7, A3)}.

Thus FE is constructed. Obviously, all conflicts are now explicit and symmetric in this
case. It is worth noting, that A6 and A7 are in explicit conflict, while in FA there is only an
implicit conflict.

The Example 25 can be used to illustrate such a construction. In this case, by
means of the construction of an analytic AF, it could be provided that S = pr(FE) =
pr(FA). Noticeably, the AF FE has symmetric attacks with the exception of the self-
attack A3 ↪→ A3. This self-attack can be understood as a special case when an argu-
ment is not found in any extension at all, i.e. {a} ⊈ S. In this case, that argument
is in conflict with all arguments in all extensions. Such an argument can be deleted
from all extensions by only attacking itself, i.e. a ↪→ a, since a self-attacking argu-
ment cannot be conflict-free. All other conflicts with this argument then must not
be stated explicitly. This reduces the number of attacks, since according to the algo-
rithm described earlier, a large number of conflicting pairs would be found that are
meaning less, as a pair (a, a) would be found and besides all the symmetric attacks,
this argument a would be also be self-attacking to make the conflict explicit.

In Example 26, for instance, such an AF FE is constructed. From this, it can be
concluded that not only analytical AF exist for the extension set under the preferred
semantics. This circumstance is called quasi-analytic in [8]. See also Definition 50
which is in accordance with [8].
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Definition 50. An AF F is called quasi-analytic for σ, if there is an AF F ′ such that
ArgF = ArgF ′ , σ(F ) = σ(F ′) and F ′ is analytic for σ. Otherwise an AF is non-analytic
for σ if it is not quasi-analytic for σ.
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Figure 19: An example for a constructed σ-equivalent AF FE in Example 26.

Example 26. Let us take again the AF from Figure 5, i.e. FA = ({A1, A2, A3, A4, A5,
A6, A7}, {(A1, A3), (A2, A3), (A3, A4), (A3, A5), (A4, A5), (A5, A4), (A4, A6), (A5, A7)},
under the preferred semantics, σ = pr. After the interview has been conducted with the
agent, the extension-set S = {{A1, A2, A4, A7}, {A1, A2, A5, A6}} was elicited and thus
σ(F ) = S holds. In order to produce a σ-equivalent AF FE from S, PairsS must first be
calculated. Thereupon it can be established that A3 does not occur in any extension and
therefore A3 cannot be conflict-free. So we add to AR in FE the relation (A3, A3) and in
the following A3 must not be considered further. Now those relations can be calculated for
arguments that cannot occur together in an extension. This, together with the self-attack for
A3, gives AR = {(A4, A5), (A5, A4), (A4, A6), (A6,A 4), (A4, A6), (A5, A7), (A7, A5),
(A6, A7), (A7, A6)}. Thus FE is constructed, see also Figure 19 for an illustration. Obvi-
ously, A3 in FE attacks itself, while in FA the argument is attacked by A1 and A2. This
attack relation in turn no longer exists and A1 and A2 are isolated. Between A4 and A6 as
well as A5 and A7 there are now symmetrical attacks instead of unidirectional ones. More-
over, A6 and A7 are in explicit conflict, which only occurs implicitly in FA.

Next, we show that forming attacks solely from pairs of arguments that do not
occur together does not always lead to the desired result. In Example 27, we demon-
strate such a case by using a modification of the AF from Example 5.

Example 27. Let us take the modified AF from Figure 20 such that F = ({A1, A2, A3, A4,
A5, A6, A7}, {(A1, A2), (A2, A1), (A1, A3), (A3, A1), (A1, A4), (A3, A4), (A4, A3),
(A3, A5), (A4, A6)}) under the preferred semantics, i.e. σ = pr. Several modifications are
made to the attack relation, such that e.g. A7 is not attacked any more as well as that there
is, for instance, a symmetric attack between A1 and A2 amongst further changes. After
conducting the interview part, an extension-set S = {{A2, A3, A6, A7}, {A2, A4, A5, A7},
{A1, A5, A6, A7}} is gathered.

We now show that making all conflicts explicit does not create an AF that realises this ex-
tension. Therefore the attack relation AR has to be created from {(a, b) | (a, b) /∈ PairsS ∧
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Figure 20: An example for an AF F in Example 27, where a σ-equivalent AF can not
be argument-congruently constructed immediately from the given infor-
mation.

a, b ∈ Arg}) with Arg being the arguments of F . This results in the AF FE = (Arg,
{(A1, A2), (A3, A4), (A1, A3), (A3, A5), (A1, A4), (A4, A1), (A6, A4), (A2, A1), (A4, A3),
(A3, A1), (A5, A3)}). This AF FE is depicted in Figure 21 and has as the extension-set
σ(FE) = {{A2, A4, A5}, {A2, A3, A6, A7}, {A1, A5, A6, A7}, {A2, A5, A6, A7}}. This vi-
olates the postcondition that S = σ(F ) = σ(FE), since pr(F ) ̸= pr(FE).

One way to repair this AF FE is to remove the attack A5 ↪→ A3. However, it is not
straightforward to find out which conflicts actually need to become explicitly attack relation-
ships.
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Figure 21: The AF FE in Example 27.

Finally, in [8], the conclusion is drawn that there are also non-analytic AFs for
σ = pr (cf. collary 26 in [8]). This is based on the theorem that there exist non-
analytic AFs for the stable semantics. The authors prove this in theorem 24 of their
paper. In the example used for the proof, the stable extensions coincide with, among
others, the preferred extensions. From this, they conclude that there are also non-
analytical AFs for the preferred semantics.

This, together with the realisation that attacks cannot be formed directly from the
pairs of arguments that do not occur together, since the symmetry in {(a, b) | (a, b) /∈
PairsS ∧ a, b ∈ Arg}) when a ̸= b does not always give the expected result, leads to

77



the fact that the approach is not suitable for immediate argument-congruent recon-
struction.

Overall conclusion In summary, without syntactic questions setting out the at-
tack relations, no immediate argument-congruent reconstruction is possible for all
existing finite AFs with respect to the remaining semantics σ = {ad, co, pr, st}. A
reconstruction based only on the given information (that is, the semantics, the ex-
tension set and the occurring arguments in the AF) only works partially for specific
classes of AF. Therefore non-immediate approaches as e.g. an iterative approach
like the AF synthesis are of interest if one wants to reconstruct the AF argument-
congruent. Baumann et al. [8] also showed that the decision whether an analytic
AF for σ ∈ {ad, co, pr, st} exists lies in the problem class NP and is complete for NP.
Therefore, even the cases where reconstruction would be immediately possible are
not of much relevance, since NP-completeness is seen intractable and approaches
like AF synthesis are mostly NP-complete16, too, and in the case of a zero-cost so-
lution always directly lead to an AF which is σ-equivalent. This means that instead
of checking whether it is a case for immediate reconstruction, one can also directly
perform a reconstruction that is not immediate and obtain a σ-equivalent AF.

5. Evaluation

To assess the practicability of the algorithms introduced in Section 4, some exper-
iments are now following. We have developed three scenarios for this purpose.
In the first experiment, we assume that the agent has not already enumerated the
extensions and is not able to remember this information in the question-answer ex-
change. At first, the naïve baseline will be compared with the developed algorithms.
Then, we will experimentally test which runtime differences occur when the agent
was previously able to enumerate the extensions. Finally, as a third scenario, mod-
ifications are made to the algorithms so that for agents who were previously able
to enumerate all extensions, the questions that were previously intractable are also
applied. The runtimes are also measured in this case.

With regard to the experiments, it should be mentioned that the focus is on the
interview part. Therefore as approaches for reconstruction already exist, a com-
parison between naïve baseline and existing approaches in the reconstruction of a
σ-equivalent AF is not considered experimentally. The underlying reason is that
complexity analyses and experiments already exist in the literature, e.g. for abstract
argumentation framework synthesis in [37].
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Figure 22: Number of AF in pbbg-train with a certain argument count.

5.1. Experimental Setup

The different algorithms for the interviewing part were implemented using Java and
the TweetyProject library, an open source project providing an general interface for,
amongst others, computational argumentation [46, 47]. For this purpose, we de-
veloped solvers for the individual computational tasks of the questions directly in
Java. However, in the Appendix B we briefly present what effect the use of a differ-
ent solver has on the performance. This first stage of the elicitation process is also
the main focus of this Master’s thesis.

The frameworks of the third International Competition on Computational Models
of Argumentation (ICCMA’19) [11] on the one hand and the test data set (pbbg-test)
and training data set (pbbg-train) from the work of Craandijk and Bex [18] on the
other hand were used as the data basis. The ICCMA’19 datasets consist of 326 AFs
without the new benchmarks. In contrast, the latter datasets from [18] consist of
1000 AFs with |Arg| = 25 arguments for pbbg-test and one hundred thousand AFs
with 5 ≤ |Arg| ≤ 25 for pbbg-train. 1000 datasets were randomly selected from the
pbbg-train for the experiments. The distribution of the randomly chosen AFs can
be seen in Figure 22. It is noteworthy that about one third of the randomly selected
AFs have an argument count of |Arg| = 25.

16Except for the grounded semantics which is in P and the preferred semantics which is NP-hard and
in ΣP

2 in the unrestricted case.
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The different datasets allow us to compare AFs of different difficulties. While the
pbbg-train and pbbg-test are small AFs, the ICCMA’19 AFs vary in size from small
AFs with the size of pbbg-train and pbbg-test to AFs with several hundred argu-
ments. In addition, due to its fixed number of arguments, pbbg-test serves to check
to what extent the attack relationships influence the running times of the algorithms.

The following experiments were carried out with the implementations mentioned
on a machine with an Intel Core i5-8350U with 1.70 GHz and 4 cores as well as 8 GB
RAM. Debian 11 bullseye was used as the operating system and Eclipse Temurin for
JDK 17 was used as the Java platform.

5.2. Evaluation of the Developed Algorithms

The first experiment compares the naïve baseline with the developed algorithms for
an agent of the type Agentdec,sem¬E . For this purpose, the runtime and the number of
arguments in each instance are the metrics to be measured. The aim is to answer the
following questions:

1. How well do the developed algorithms perform in terms of runtime compared to the
naïve algorithm?
To benchmark the performance, the developed algorithms will be compared
with the naïve baseline in terms of CPU runtime. The aim is to examine
whether the developed algorithms bring about an improvement.

As part of the analysis, a hypothesis is formulated and then tested using the
Wilcoxon signed-rank test. This statistical hypothesis test is a non-parametric
test for matched-pair data. This test assigns a sign to each observation de-
pending on whether the observation is below or above a value. The paired
difference test is suitable for two matched samples and the one-sample vari-
ant for testing the location of a population. A comprehensive explanation can
be found in the article by Whitley and Ball [51].

2. Do the number of arguments and the running time correlate?
The aim of this question is not only to check whether there is a correlation but
also whether they are linearly or non-linearly related.

For this purpose, a regression analysis is carried out as a standard statistics
instrument. As a measure besides the coefficient of determination, the mean
absolute percentage error (MAPE) is used as a measure of accuracy and is de-
fined as MAPE = 100%

n

∑n
t=1 |

At−Ft
At
|with At the true value and Ft the forecast

value. It is a popular measure of prediction accuracy and is therefore suitable
for checking how far a prediction for a function deviates from the actual run-
time data. This measure is explained clearly for the interested reader in the
paper [32], among others.
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To investigate these questions, the data sets pbbg-train and pbbg-test are used. An
upper time limit (a timeout) was set at five minutes. All semantics σ = {cf, ad, co, gr,
pr, st}were used for the comparison of the algorithms.

First, we describe the results in the following subsections per semantics. There-
fore a scatter plot illustrates the comparison of the running times between the algo-
rithms. Furthermore, a box plot for pbbg-train per semantics is given to investigate
the influence of the set of arguments on the execution time.

Subsequently, the questions posed earlier are answered collectively for the all of
the semantics from the data obtained.

5.2.1. Conflict-Free Sets

Let us start with the evaluation of the algorithms for eliciting conflict-free sets. Fig-
ure 23 is a scatter plot with the X-axis for the runtime of Algorithm 4 in milliseconds
and the Y-axis for the naïve algorithm. Both datasets pbbg-test (with red triangles)
and pbbg-train (with cyan X-markers) are shown. It is noticeable in this graph that
there is a high number of timeouts for Algorithm 4. Apart from a few outliers, it can
be seen that the naïve algorithm was faster.

0 50 100 150 200 250 300
Developed Algorithm (in ms) 1e3

0

50

100

150

200

250

300

Na
iv

e 
Al

go
rit

hm
 (i

n 
m

s)

1e3
300 sec. timeout

30
0 

se
c.

 ti
m

eo
ut

Conflict-Free Sets
pbbg-test
pbbg-train

Figure 23: Results for the CPU runtime of the interviewing algorithms for eliciting
conflict-free sets.

This is also confirmed by Table 5, which shows the number of timeouts and the
average runtime in nanoseconds. Since the diversity function was not used as a
stop condition, there is no entry in the table for this condition. It is clear from the
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table that there is a high number of timeouts for the newly developed algorithm.
This can be seen both in the dataset pbbg-train with the very small instances with
5 ≤ |Arg| ≤ 25 and in the instances from pbbg-test with |Arg| = 25. In pbbg-train,
timeouts occurred from |Arg| ≥ 18 arguments. Although only with 24 arguments
did more than two-thirds of all instances time out.

dataset algorithm # timeouts
avg time

(ns)
#∆cf = |S|

pbbg-train
naïve 0 5.78 · 1010 -
developed 436 1.44188 · 1011 -

pbbg-test
naïve 0 1.23347 · 1011 -
developed 881 2.84769 · 1011 -

Table 5: Performance of the naïve and developed algorithms for the conflict-free sets
on datasets pbbg-train and pbbg-test.
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Figure 24: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 4 for conflict-free sets
developed in the Master’s thesis and on the right side (b) the naïve ap-
proach. Note that in the left plot the inter-quartile range for the fourth
data bin 20 ≤ n ≤ 25 is close to the upper limit due to the many timeouts
and therefore difficult to see.

Next, the dataset pbbg-train should be used to check whether there is a relation-
ship between the number of arguments of an instance and the CPU runtime. First,
the linear relationship should be checked. The coefficient R2 for a linear test is 0.702.
The left plot in Figure 24 represents the data for the Algorithm 4 developed. From it,
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we can speculate that the relationship is non-linear. With a mean absolute percent-
age error of 18.07% for a 19th degree polynomial function, an acceptable prediction
can be made. However, the R2 value here is also only 0.786, which is nevertheless
sufficient for a strong correlation. So a non-linear correlation can be confirmed, but
just the more arguments are added, the greater is the dispersion of the runtime.

For the naïve variant we also test both a linear and a non-linear correlation. For
the linear correlation we find the value 0.641 for the coefficient of determination R2.
The right plot in Figure 24 suggests that there is a non-linear correlation. For a poly-
nomial function of the 18th degree, an R2 value of 0.994 can be determined and a
MAPE of only 0.08%. So that a strong correlation exists in this case.

From the preceding data, it can be assumed that the naïve algorithm performs
significantly better. The number of timeouts is particularly high in pbbg-test for the
algorithm developed in this Master’s thesis. The hypothesis that the naïve algorithm
has a better performance is therefore tested with the Wilcoxon signed-rank test. The
one-sided test with x̃N for the CPU runtime in nanoseconds of the naïve algorithm
and x̃D for the CPU runtime in nanoseconds of the previously developed algorithm
has the hypothesis H0 : x̃D ≥ x̃N . For the two data sets, this gives:

• pbbg-train: the p-value for this data set is p < 0.05 with p ≈ 1.79 · 10−156. The
sum of the ranks of the difference T+ is 493475. There is a clear strong effect
size with r = 0.986.

• pbbg-test: Again, the p-value is p < 0.05 with p ≈ 4.529 · 10−164 and for
T+ = 499397 and a strong effect size of r = 0.998.

The hypothesis can therefore be accepted and the better performance of the naive
algorithm can be considered statistically significant.

5.2.2. Admissible Sets

Let us continue with the admissible sets. Here, too, Figure 25 represents a scatter
plot in which the runtime of Algorithm 5 can be read on the X-axis and that of the
naïve algorithm on the Y-axis. Again, both datasets pbbg-test (with red triangles)
and pbbg-train (with cyan X-markers) are depicted.

In contrast to the conflict-free sets earlier, it can be seen from the plot that far fewer
instances timed out for the pbbg-train dataset. The runtimes also seem to be closer
together in general. For pbbg-test, on the other hand, a high number of timeouts can
be seen, but also some instances in which the naïve algorithm was even slower. But
here, too, the overall picture is that the naïve algorithm performed better altogether.

This is supported by the data from Table 6. The data shows only 63 timeouts for
pbbg-train. For pbbg-test, on the other hand, over 70% ran into the five-minute time-
out again. However, the average runtimes are closer overall than for the conflict-free
sets (cf. Table 5).
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Figure 25: Results for the CPU runtime of the interviewing algorithms for eliciting
admissible sets.

We continue by checking the relationship between the number of arguments of
an instance and the CPU runtime using the dataset pbbg-train. For this purpose, a
linear relationship must first be checked for the developed Algorithm 5. With a co-
efficient of determination R2 of 0.613, the linear relationship is rather unlikely. This
is supported by MAPE = 159.12%, which is an unacceptable error. The left plot in
Figure 26 shows the algorithm. A non-linear relationship can be assumed from the
figure. With a polynomial function of the 23rd degree, a mean absolute percentage
error of only 3.507% can be obtained and the value 0.82 can be determined for R2,
indicating a non-linear correlation.

dataset algorithm # timeouts
avg time

(ns)
#∆ad = |S|

pbbg-train
naïve 0 6.56 · 1010 -
developed 63 9.26 · 1010 -

pbbg-test
naïve 0 2.18602 · 1011 -
developed 713 2.72833 · 1011 -

Table 6: Performance of the naïve and developed algorithms for the admissible sets
on datasets pbbg-train and pbbg-test.

Let us now also check the naïve algorithm with regard to the number of argu-
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ments and the relationship to the runtime. Again, the regression analysis for a linear
correlation only yields an R2 value of 0.603, which suggests a non-linear relation-
ship. If we look at the right plot in Figure 26, this assumption can be confirmed
visually. Using a polynomial function of the 22nd degree, R2 = 0.942 can be deter-
mined and a MAPE of 0.203%. A non-linear correlation also exists here.
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Figure 26: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 5 for admissible sets devel-
oped in the Master’s thesis and on the right side (b) the naïve approach.

Again, we will statistically test whether the assumption that the naïve algorithm
is faster holds. For this purpose, a one-sided Wilcoxon signed-rank test is carried out
once again. Likewise, x̃N and x̃D stand for the CPU runtimes of the naïve algorithm
and the algorithm developed in the Master’s thesis, respectively, in nanoseconds.
The hypothesis is again H0 : x̃D ≥ x̃N , i.e. the runtimes of the naïve algorithm are
shorter. The results for the two datasets are as follows:

• pbbg-train: The test yields a p-value with p ≈ 3.22 · 10−108, making p < 0.05.
The sum of the ranks with positive difference T+ is 451852. A strong effect
size results from r = 0.90.

• pbbg-test: Again, p < 0.05 is clear with p ≈ 3.808 · 10−99. The calculation for
T+ results in 443029 and a strong r = 0.885.

Thus, even for admissible sets, it can be statistically significantly demonstrated
that the naïve algorithm has a better runtime.
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5.2.3. Complete Semantics

Next, we look at the benchmark data for complete semantics. For this purpose, the
scatter plot in Figure 27 shows the runtime of Algorithm 6 on the X-axis and that
of the naïve algorithm on the Y-axis for the instances of the two datasets pbbg-test
(with red triangles) and pbbg-train (with cyan X-markers).

It is immediately noticeable that none of the instances ran into a timeout. Also,
as a first visual observation, it can be taken that the instances seem to be very close
to each other in their runtime. From the distribution of the triangles and X-markers
it can be seen that sometimes the naïve algorithm and sometimes the algorithm
developed in this thesis were faster.

0 50 100 150 200 250 300
Developed Algorithm (in ms) 1e3

0

50

100

150

200

250

300

Na
iv

e 
Al

go
rit

hm
 (i

n 
m

s)

1e3
300 sec. timeout

30
0 

se
c.

 ti
m

eo
ut

Complete Semantics

pbbg-test
pbbg-train

Figure 27: Results for the CPU runtime of the interviewing algorithms for eliciting
under the complete semantics.

If we look at the data from Table 7, this first impression is supported. For pbbg-
train, the dataset with the mixed-sized instances, the runtime of the developed al-
gorithm is slightly faster on average, while for pbbg-test the naive algorithm was
faster. A closer look at the benchmark results show that for pbbg-train in 520 in-
stances the developed algorithm was faster while in pbbg-test the naive one with
511 instances was faster. No apparent property of the elicited extensions can be
determined that leads to such an outcome.

First, the relationship between the number of arguments of an instance and the
CPU runtime for the dataset pbbg-train is to be checked again. Therefore, a linear
relationship between the number of arguments and the runtime is tested. For this,
the coefficient of determination R2 is only 0.606 and MAPE can also be calculated
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with 131.09% for Algorithm 6. If we look at the left plot in Figure 28, we can again
assume a non-linear relationship. For a polynomial function of the 18th degree,
MAPE = 0.176% can be calculated and a coefficient of R2 = 0.945. As expected, a
non-linear correlation is present here, which was to be expected with the algorithmic
design.

dataset algorithm # timeouts
avg time

(ns)
#∆co = |S|

pbbg-train
naïve 0 5.67 · 1010 -
developed 0 5.45 · 1010 0

pbbg-test
naïve 0 1.4841 · 1011 -
developed 0 1.53844 · 1011 0

Table 7: Performance of the naïve and developed algorithms for the complete se-
mantics on datasets pbbg-train and pbbg-test.

The same can be determined for the naïve algorithm. Again, based on the right
plot in Figure 28, it can be assumed that there is no linear correlation. An R2 value
of 0.625 confirms this. For the non-linear regression, R2 = 0.97 can be found with
MAPE = 0.21% for a polynomial function of the 23rd degree. So, again, a non-linear
correlation is present. This is to be anticipated on the basis of the structure of the
algorithm.
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Figure 28: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 6 for complete semantics
developed in the Master’s thesis and on the right side (b) the naïve ap-
proach.
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Finally, we test the hypothesis that the developed algorithm is faster or as fast as
the naïve algorithm. For this purpose, we again use a one-sided Wilcoxon signed-
rank test with x̃D for the CPU runtime of the algorithm developed in the Master’s
thesis in nanoseconds and x̃N analogously for the naïve algorithm. The hypothesis
posed H0 is x̃D ≥ x̃N . For our two pbbg datasets, we obtain the following results:

• pbbg-train: the p-value corresponds to p ≈ 0.0013, which is p < 0.05 below
the necessary limit. The hypothesis is therefore to be accepted. For the sum of
the differences above zero, T+ = 222737 is and therefore an acceptable effect
size of r = 0.445 is obtained.

• pbbg-test: Again, with p ≈ 0.000478 the limit of p < 0.05 is undercut and the
hypothesis is to be accepted. T+ is calculated here to 280422 with a strong
effect size of r = 0.56.

Thus, for σ = co, it can be said that the developed algorithm does not perform
worse but tends to perform better than the naïve algorithm.

5.2.4. Grounded Semantics

We continue with grounded semantics. Due to the design of Algorithm 7, we expect
a significantly better runtime of the developed algorithm compared to the naïve
approach. Figure 29 shows a scatter plot with the runtimes of Algorithm 7 on the
X-axis and the naïve algorithm on the Y-axis for the two datasets pbbg-test (with red
triangles) and pbbg-train (with cyan X-markers).

This plot is special compared to the previous ones. For the developed algorithm
we have relatively short runtimes, while for the naïve algorithm we have a high
timeout share. This observed information is also strengthened by Table 8. For the
dataset pbbg-train with the instances between 5 and 25 arguments, 360 timeouts
have already occurred for the naïve algorithm. The runtime is also several orders of
magnitude higher on average. In fact, the timeouts for the naïve approach occurred
with instances of 24 argument size and larger. This is supported by the data from
pbbg-test, where 74.3% of all instances, rounded up, ran into a timeout. It should
be noted that the diversity function ∆gr was not used and therefore no entries are
available.

Next, we check the correlation between the number of arguments of an instance
and the runtime using the dataset pbbg-train. From the two plots in Figure 30, we
can assume for the left plot, which represents the developed algorithm, that there is
a linear correlation or if it is non-linear, then the polynomial has a low degree. For
the right plot, on the other hand, which represents the naïve algorithm, we assume
that we are again finding a higher degree polynomial function - justified by the
exhaustive search.

We therefore first begin to test a linear relationship for the developed algorithm.
The R2 value calculates to 0.0014, however, also with a low MAPE of only 1.005%.
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Figure 29: Results for the CPU runtime of the interviewing algorithms for eliciting
under the grounded semantics.

If we all take a polynomial function of the second degree, the mean absolute per-
centage error is slightly higher at 1.006% with also R2 ≈ 0.0018. Polynomials of a
higher degree do not bring any improvement, so we conclude that there is a linear
relationship since on the one hand the structure of Algorithm 7 suggests this and on
the other hand the forecast values and thus also the MAPE value are satisfactory. It
can therefore be assumed that the instances are too small and the run times too fast
so that no correlation is indicated.

dataset algorithm # timeouts
avg time

(ns)
#∆gr = |S|

pbbg-train
naïve 360 1.20632 · 1011 -
developed 0 5.68 · 107 -

pbbg-test
naïve 743 2.89101 · 1011 -
developed 0 7.53 · 107 -

Table 8: Performance of the naïve and developed algorithms for the grounded se-
mantics on datasets pbbg-train and pbbg-test.

For the naïve algorithm, despite the assumption that it is a non-linear correlation,
we still first check R2 for a linear function. We calculate this as R2 ≈ 0.697 which is
not sufficient for a strong correlation. With a polynomial function of the 25th degree,
on the other hand, we obtain a R2 value of approximately 0.992 and MAPE = 0.27%,
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which makes it clear that the number of arguments correlates clearly non-linearly
with the running time, as it was to be expected.

We conclude our analysis for the grounded semantics in our first experiment with
the testing of the hypothesis: The runtime of the developed algorithm is faster or at
least as fast as the naïve approach.

For this, we again use a one-sided Wilcoxon signed-rank test with x̃D for the CPU
runtime of the developed algorithm and x̃N for the naïve algorithm. We therefore
formulate H0 : x̃N ≥ x̃D. We obtain the following results for the two datasets
considered:

• pbbg-train: For this dataset the p-value is p ≈ 1.778 · 10−163 and hence the
developed algorithm is faster. The sum of the differences over zero calculates
to only T+ = 498393 and gives an effect size of r = 0.997.

• pbbg-test: Also for this second dataset we calculate p ≈ 1.663 · 10−165 and
T+ = 500500 and therefore r = 1. We can therefore accept the hypothesis.
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Figure 30: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 7 for grounded semantics
developed in the Master’s thesis and on the right side (b) the naïve ap-
proach.

In summary, the Algorithm found here is significantly faster than the naïve ap-
proach.
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5.2.5. Preferred Semantics

As the penultimate semantics, we check the preferred semantics. Performance ex-
pectations are not too high for the developed algorithm as well as for the naïve
algorithm. This is because V erpr is in the complexity class coNP.

The result of the benchmark is shown in Figure 31. Here the runtime of Algo-
rithm 8 is shown on the X-axis and that of the naïve algorithm on the Y-axis. The
instances of the two datasets are shown as usual with red triangles for pbbg-test and
cyan X-markers for pbbg-train.

It is immediately noticeable that a high number of timeouts can be seen. However,
some instances of pbbg-test are also faster for the developed algorithm than for the
naïve one. Nevertheless, the majority of instances that did not time out seem to
be faster in the naïve algorithm. This observation is supported by the data from
Table 9. The naïve algorithm does slightly better for the dataset pbbg-train with 320
timeouts than the developed one with 373 and the runtime is also slightly faster.
A similar picture emerges for pbbg-test, although the number of timeouts for the
naïve algorithm is significantly better here with 513 to 624. The same applies to the
runtime.
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Figure 31: Results for the CPU runtime of the interviewing algorithms for eliciting
under the preferred semantics.
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dataset algorithm # timeouts
avg time

(ns)
#∆pr = |S|

pbbg-train
naïve 320 1.25581 · 1011 -
developed 373 1.35035 · 1011 0

pbbg-test
naïve 513 2.2642 · 1011 -
developed 624 2.57558 · 1011 0

Table 9: Performance of the naïve and developed algorithms for the preferred se-
mantics on datasets pbbg-train and pbbg-test.

Next, we check the relationship between the number of arguments and the run-
time using the dataset pbbg-train. Figure 32 serves as a visualisation of the results.
On the left side, we see the plot for the developed algorithm. Based on the box plot
for the databins, we can assume a non-linear relationship. On the right side of the
figure is the box plot of the naïve algorithm. Here too, as for the previous semantics,
we assume a non-linear relationship.

We start with the developed algorithm and nevertheless check a linear relation-
ship first. As expected, the R2 value is 0.613, which is too low to confirm a linear
relationship. The MAPE value is also 82.84%, which is why we exclude a linear
relationship. With a polynomial function of the 26th degree, however, we find a
coefficient R2 of 0.70 and a MAPE of 6.64%, so that we can assume that there is
a non-linear relationship, which even worsens with each argument more. The R2

value is below a threshold of 0.75 for which we previously assumed a strong corre-
lation. We suspect that this is due to the high number of timeouts.

We check the same again for the naïve algorithm. Here, too, no linear correlation
can be seen with an R2 coefficient of 0.585. Also MAPE is 147.26%. Again, for a
26th degree polynomial function, MAPE is 7.52%, which we consider sufficient in
this case. The R2 value is even only 0.672 in this case. Again, we suspect that no
strong correlation emerges because of the high number of timeouts in the data.

Finally, we check whether the hypothesis that the naïve algorithm is better, based
on the read data, really holds. Again, we use the Wilcoxon signed-rank test with
x̃D for the CPU runtime of the developed algorithm and x̃N for that of the naïve
algorithm. Our hypothesis H0 is that x̃D ≥ x̃N . We check this for both datasets and
get the following results:

• pbbg-train: With a p-value of approximately 5.277 · 10−34 and the sum of the
differences above zero being T+ = 360125 resulting in a strong effect size of
r = 0.738, the hypothesis can be confirmed for this dataset.

• pbbg-test: Also for this dataset we obtain p < 0.05 with p ≈ 1.306 ·10−39. T+ is
calculated to be 370086 and r = 0.739. Therefore, the hypothesis is confirmed
here as well.

Overall, as expected, the performance of the naïve algorithm is comparatively bet-
ter, but nonetheless characterised by a high number of timeouts. For the developed
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Figure 32: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 8 for preferred semantics
developed in the Master’s thesis and on the right side (b) the naïve ap-
proach.

algorithm, the check for incomparability and conflict sensitivity are presumably too
computationally intensive, so that the naïve approach has an advantage.

5.2.6. Stable Semantics

Let us conclude our observations on this experiment with the stable semantics. In
Figure 33, on the one hand, it can be seen for pbbg-test (red triangles) that the de-
veloped Algorithm 9 was either equally fast as the naïve algorithm or significantly
slower. The same can be said about the data set pbbg-train with, among other things,
smaller AFs. Here, too, it can be seen from the cyan x markers that the naïve algo-
rithm was mostly faster and otherwise equally fast.

dataset algorithm # timeouts
avg time

(ns)
#∆st = |S|

pbbg-train
naïve 0 4.45 · 1010 -
developed 0 6.94 · 1010 0

pbbg-test
naïve 0 1.26793 · 1011 -
developed 3 1.90432 · 1011 0

Table 10: Performance of the naïve and developed algorithms for the stable seman-
tics on datasets pbbg-train and pbbg-test.
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Figure 33: Results for the CPU runtime of the interviewing algorithms for eliciting
under the stable semantics.

This observation is also supported by Table 10. This shows that in three cases
pbbg-test even ran into the five-minute timeout. Furthermore, it can be seen for
both pbbg-test and pbbg-train that the naïve algorithm was faster on average.

Using the dataset pbbg-train, which contains instances of different numbers of
arguments, it is checked whether a correlation between the runtimes is recognisable.
For the developed stable semantics algorithm, the coefficient of determination R2

for a simple linear regression of the number of arguments to time is only 0.61. The
left plot in Figure 34 suggests a polynomial relationship. This can be confirmed,
as for a polynomial of the 11th degree the R2 value is 0.953 with a mean absolute
percentage error of 0.726%. Thus, there is a polynomial correlation between the
number of arguments and the running time.

For the naïve algorithm, shown in the right plot in Figure 34, a simple linear re-
gression results in R2 = 0.633. Here, too, a polynomial relationship between the
number of arguments and time can be hypothesised. For a polynomial function of
the 12th degree, an R2 value of 0.986 can be obtained with a mean absolute percent-
age error of 0.437%. Hence, there is a polynomial relationship between the number
of arguments of the AF and the runtime.

Derived from these results, we test the hypothesis that the naïve algorithm has
a faster runtime than the algorithm developed in this Master’s thesis. For the one-
sided Wilcoxon signed-rank test with x̃N for the CPU runtime in nanoseconds of
the naive algorithm and x̃D for the CPU runtime in nanoseconds of the previously
developed algorithm. The hypothesis H0 is x̃D ≥ x̃N .
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Figure 34: Plot of the runtimes per number of arguments of the instances with four
data bins. On the left side (a) is the Algorithm 9 for stable semantics
developed in the Master’s thesis and on the right side (b) the naïve ap-
proach.

For the two datasets, this yields:

• pbbg-train: The sum of the difference over zero calculated in this case is T+ =
477743 and the p-value of p ≈ 3.54 · 10−138 which is p < 0.05 and hence con-
firms that the naïve algorithm performed better with a strong effect size of
0.955.

• pbbg-test: Also for this dataset the p-value is p ≈ 1.94 · 10−164 and therefore
confirms with p < 0.05 that the naïve algorithm performed better. For T+, the
calculated value is 499679 and therefore r = 0.998.

Thus, in this case, the naïve algorithm is statistically significantly faster.

5.2.7. Summary and Answering the Questions

Let us summarise the results. Based on the benchmarks, it was shown that for
σ = {cf, ad, st, pr} the naïve algorithm performed better. In the case of complete
semantics, a slightly better picture emerged for the developed algorithm, which was
faster in some instances and frequently at least as fast overall. Unsurprisingly, for
the grounded semantics, the developed algorithm was significantly faster. Rather
than being based on an exhaustive search of all verified extensions, it is based on
the acceptance of arguments.
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σ pbbg-train pbbg-test
cf naïve naïve
ad naïve naïve
co developed developed
gr developed developed
pr naïve naïve
st naïve naïve

Table 11: Determine for the datasets whether the naïve algorithm or the developed
algorithm performed statistically better according to the Wilcoxon signed-
rank test.

Since the naïve algorithm also had to deal with many timeouts in the grounded
semantics and both algorithms in case of the preferred semantics, two findings from
Oikarinen and Woltran’s work on strong equivalence [38] can be included. Namely,
if ad(FA) = ad(FE) holds, then pr(FA) = pr(FE) also holds. Furthermore, it is also
true that if co(FA) = co(FE), then pr(FA) = pr(FE) as well as gr(FA) = gr(FE).
Therefore, the algorithms for σ ∈ {ad, co} can be used to elicit an extension-set for
σ = pr respectively in the second case σ ∈ {pr, gr} as well as to generate an AF
FE that has the same extension set as FA under the preferred or grounded seman-
tics. To get the desired extension set, the corresponding extensions only have to
be selected from the admissible respectively the complete extension set (cf. Subsec-
tion 2.2 on extension-based semantics).

Finally, we answer the two questions. The first question was: How well do the
developed algorithms perform in terms of runtime compared to the naïve algorithm?

This has already been described before and is illustrated once again in Table 11.
All in all, only the developed algorithms for complete and grounded semantics are
faster than the naïve approach in the case of Agentdec,sem¬E .

The second question was: Do the number of arguments and running time correlate?
This question can be answered positively. However, with the exception of the de-
veloped algorithm for grounded semantics, all algorithms, whether developed or
naïve, show that the correlation is non-linear. This was to be expected, however,
since the algorithms implement an exhaustive search and therefore have an expo-
nential running time in the worst case if no stop condition applies. This is never the
case with the naïve algorithm and with the others it never occurred in the test data
sets that the diversity function ∆σ with the theoretical maximum was equal to the
cardinality of the extension set.

Overall, it can be concluded from the first experiment that of the algorithms de-
veloped, only those of the complete semantics (cf. Algorithm 6) and the grounded
semantics (cf. Algorithm 7) are feasible for smaller AFs, although the runtime was
already in the range of minutes and thus they are not suitable for larger instances.

96



5.3. Analyses on an Agent that Enumerated the Extensions
Beforehand

In this second experiment, the aim is to compare the different configurations of an
agent that can only answer semantic decision questions. For this purpose, we com-
pare the type of the stateless agent Agentdec,sem¬E , which did not enumerate the ex-
tensions before and cannot remember this information, with one that has a state and
already enumerated the extensions, thus an agent of the type Agentdec,semE .

The Agentdec,semE is implemented in such a way that all extensions are enumerated
first and the interviewer can ask his questions afterwards. Since the aim is not to
measure the enumeration performance of a solver, the runtime measurement only
starts from the point at which the interviewer asks his first question.

We again use the 1000 randomly chosen instances from pbbg-train with 5 to 25 ar-
guments. As there is a significant number of instances with 25 arguments in pbbg-
train, we will not run experiments with pbbg-test. For the composition of the in-
stances of pbbg-train see Subsection 5.2.

Next, we formulate the questions we want to answer with this experiment:

• Which of the algorithms are on average faster given an Agentdec,semE ?
To answer this, we compare the arithmetic mean of the running times of both
the developed and naïve algorithms for each data bin of arguments in the
dataset. For this purpose, we form four data bins 5 ≤ |Arg| < 10, 10 ≤ |Arg| <
15, 15 ≤ |Arg| < 20 and 20 ≤ |Arg| ≤ 25. We also examine changes in terms of
the number of timeouts for these data bins.

• In this scenario, are the developed algorithms faster than the naïve algorithm?
To answer this question, we again compare the runtimes and test the runtime
hypotheses using the Wilcoxon signed-rank test.

What follows is a brief elaboration of the results of the second experiment for
the semantics σ = {cf, ad, co, gr, pr, st}. Thereafter, we answer the questions posed
collectively for all semantics.

5.3.1. Conflict-Free Sets

We start with the conflict-free sets. Two comparisons of the runtimes of Algorithm 4
and the naïve approach are illustrated in Figure 35. The left scatter plot is for the
developed algorithm and the right is for the naïve approach. In the left one, it can
be seen that the runtimes seem to be relatively the same between the agent types.
No improvement can be assumed here. From the right plot, it can be seen that even
with the Agentdec,semE there was a deterioration, as there a high number of timeouts
now entered there.

To check these observations, we first look at the collected data from Table 12.
These support the observation because basically the same orders of magnitude are
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recorded for both the developed and the naïve approach for each agent type. The
number of timeouts for Algorithm 4 is hardly different for both types, while for
the naïve approach, they are to the disadvantage of the variant with the agent
Agentdec,semE with 128 additional timeouts.

Based on these findings, we hypothesise that even in the case of Agentdec,semE the
naïve approach has a lower runtime, even if it became worse. To do this, we for-
mulate H0 : x̃D ≥ x̃N for the Agentdec,semE with x̃D the runtime of Algorithm 4
and x̃N that for the naïve algorithm. We check these using the one-sided Wilcoxon
signed-rank test. Again, our boundary for acceptance is a p-value of p < 0.05. This
is passed with p ≈ 3.968 · 10−150 and a sum of ranks of differences above zero with
T+ = 488416. Also giving an effect size of r = 0.976.

In summary, we see no strong improvement and rather even a worsening. This
is because, on the one hand, the credulous acceptance problem is solved via sim-
ple attack verification as well as the verification problem is solved via attacks of
the arguments within the extension to be verified at Agentdec,sem¬E . Depending on
the extension and the structure of the AF, this can be faster than searching the pre-
calculated extensions.
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Figure 35: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 4 for conflict-free sets and on the
right side the naïve approach.

5.3.2. Admissible Sets

We continue with the admissible sets. Here, too, we first analyse the effects of the
agent type. Figure 36 shows two scatter plots. The left one shows the relationship
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between the two agent types for the developed Algorithm 5. Here it is noticeable
that there is a high number of timeouts for Agentdec,semE in relation to the other agent.
The right scatter plot shows this for the naïve approach. Here there seem to be a
few timeouts, but also cases where the Agentdec,semE was faster than the agent type
Agentdec,sem¬E .

Algorithm 4
for σ = cf 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 4.02 · 107 5.99 · 108 5.36 · 1010 2.58 · 1011

time for Agentdec,sem¬E 7.52 · 107 6.27 · 108 5.39 · 1010 2.58 · 1011∑
T/O Agentdec,semE 0 0 37 400∑
T/O Agentdec,sem¬E 0 0 17 419

∆timeouts 0 0 +20 −19

Naïve Algorithm
for σ = cf 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 2.38 · 107 1.60 · 108 1.96 · 109 1.58 · 1011

time for Agentdec,sem¬E 4.44 · 107 1.61 · 108 1.25 · 109 1.11 · 1011∑
T/O Agentdec,semE 0 0 0 128∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 +128

Table 12: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for conflict-free sets. The top table shows the results for Algo-
rithm 4 and the bottom for the naïve algorithm.

These observations are supported by Table 13. For the Algorithm 5, significantly
more timeouts are recorded, especially in the data bin with instances of 20 argu-
ments and above. However, it can be seen from the available data that timeouts
already occur from 15 arguments. In the naïve algorithm, the Agentdec,semE is also
worse in terms of the number of timeouts (7 versus 0). However, the average run-
times are slightly better.

From these findings, we hypothesise the following for the comparison of the de-
veloped and the naïve algorithm for Agentdec,semE : The naïve algorithm has a lower
runtime than the developed algorithm 5. We formulate this to H0 : x̃D ≥ x̃N with x̃D
the runtime of the Algorithm 5 and x̃N for the naïve approach under an Agentdec,semE .
The hypothesis is confirmed by p ≈ 2.82·10−165 and T+ = 500324 giving r ≈ 1, since
p < 0.05.

While the naïve algorithm also performs better in terms of runtime in the case of
Agentdec,semE , the results show that an agent Agentdec,sem¬E otherwise performs better.
Again, the verification via the attacks is apparently faster than the search in the
enumerated extensions.
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Figure 36: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 5 for admissible sets and on the right
side the naïve approach.

Algorithm 5
for σ = ad 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 8.58 · 107 1.78 · 109 8.17 · 1010 2.54 · 1011

time for Agentdec,sem¬E 8.31 · 107 3.33 · 108 8.61 · 109 1.75 · 1011∑
T/O Agentdec,semE 0 0 37 409∑
T/O Agentdec,sem¬E 0 0 0 63

∆timeouts 0 0 +37 +346

Naïve Algorithm
for σ = ad 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 2.26 · 107 1.30 · 108 1.23 · 109 1.08 · 1011

time for Agentdec,sem¬E 8.03 · 107 1.81 · 108 1.37 · 109 1.25 · 1011∑
T/O Agentdec,semE 0 0 0 6∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 +6

Table 13: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for admissible sets. The top table shows the results for Algo-
rithm 5 and the bottom for the naïve algorithm.
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5.3.3. Complete Semantics

Next, we look at the runtime differences for the complete semantics. In Figure 37
can be seen for the agents Agentsec,demE and Agentsec,dem¬E . The left scatter plot shows
Algorithm 6 and the right one for the naïve algorithm. Comparing the two plots,
it can be seen that the pattern is relatively similar. It can also be seen that for some
instances the algorithms with an Agentsec,dem¬E are faster.

Next, we look at whether the data collected supports this hypothesis derived from
the plots. For this purpose, the formed data bins with their results are shown in
Table 14.

Somewhat unexpected is the fact that the Algorithm 6 as well as the naïve algo-
rithm for an Agentdec,sem¬E was for smaller AF faster on average than the same al-
gorithm with Agentdec,semE . Since the algorithm was not changed between the agent
types, it is reasonable to assume that the verification runs faster with few arguments
in one instance. Additionally, for both types of agent per algorithm, it can be seen
from the table that there were no timeouts for the instances between 5 and 25 argu-
ments.

Let us now compare the developed algorithm with the naïve one for an
Agentdec,semE . Based on the slightly better average running times for smaller in-
stances (specifically the 5 ≤ |n| < 10 data bin with |n| = |Arg|), that as with the
Agentdec,sem¬E the naïve algorithm is faster or equally fast. Therefore, we hypothesise
that the running time is less or at least equal for the naïve algorithm than for the
developed algorithm. We again formulate this as H0 : x̃D ≥ x̃N for the Agentdec,semE
with x̃D being the running time of Algorithm 6 and x̃N that for the naïve algorithm.
We check this with a one-sided Wilcoxon signed-rank test.

For the hypothesis H0 we get p ≈ 0.001, which is below the threshold of 0.05 and
T+ = 274862 with an effect size of r = 0.549, which lets us accept the hypothesis.

In summary, we attribute this result to the fact that many verification questions
still had to be asked. In 836 cases the number of questions was the same and in only
67 the difference of questions asked compared to the naïve approach was larger
than 10% out of which even only 28 showed a difference larger than one-third. This
shows that often enough the developed algorithm could not save significant ques-
tions to the agent due to the extension set.
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Figure 37: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 6 for the complete semantics and on
the right side the naïve approach.

Algorithm 6
for σ = co 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 3.33 · 109 2.73 · 1010 1.14 · 109 1.10 · 1011

time for Agentdec,sem¬E 4.96 · 107 1.73 · 109 1.29 · 109 1.04 · 1011∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 0

Naïve Algorithm
for σ = co 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 2.87 · 109 2.62 · 1010 1.11 · 109 1.11 · 1011

time for Agentdec,sem¬E 4.65 · 107 1.72 · 108 1.29 · 109 1.08 · 1011∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 0

Table 14: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for the complete semantics. The top table shows the results for
Algorithm 6 and the bottom for the naïve algorithm.
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5.3.4. Grounded Semantics

Next, we look at grounded semantics. For these, we had already found a very low
runtime for an Agentdec,sem¬E in the Algorithm 7. The two scatter plots in Figure 38 vi-
sually compare the agents for the developed algorithm (left) and the naïve algorithm
(right). Here, it is noteworthy that the runtimes for both algorithms for Agentdec,semE
are significantly smaller.

The data from Table 15 also suggest such a state of affairs. The runtimes for al-
gorithm 7 are an order of magnitude lower at 106 instead of 107. For the naïve
algorithm, the difference is less clear from the runtime, but the number of timeouts
is decisively larger for the data bin n ≤ |n| ≤ 25 with 1 for Agentdec,semE versus 360

for Agentdec,sem¬E .

From the available data and the previous considerations, we hypothesise that
also for an Agentdec,semE the developed algorithm is faster. We therefore formulate
H0 : x̃N ≤ x̃D for the Agentdec,semE with x̃D being the running time of Algorithm
7 and x̃N that for the naïve algorithm. We check this with a one-sided Wilcoxon
signed-rank test. For this we obtain a p-value of p ≈ 1.663 ·10−165 for the hypothesis
and T+ = 500500 such that r = 1 with which we can accept the hypothesis.

So again we see significant improvements in this algorithm for an Agentdec,semE ,
as testing the acceptance of an argument in a set relies on a simple search of the
occurrence and |gr(F )| = 1 this can be done in constant time17.

17See for example Java’s HashSet implementation.
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Figure 38: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 7 for the grounded semantics and on
the right side the naïve approach. Note for the zoomed area in the left
graph that the scale is not to be multiplied by 103.

Algorithm 7
for σ = gr 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 7.06 · 106 7.30 · 106 7.01 · 106 7.20 · 106

time for Agentdec,sem¬E 4.06 · 107 4.43 · 107 1.29 · 107 5.85 · 107∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 0

Naïve Algorithm
for σ = gr 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 2.42 · 108 1.36 · 108 1.07 · 109 1.07 · 1011

time for Agentdec,sem¬E 1.63 · 108 3.64 · 108 3.59 · 109 2.30 · 1011∑
T/O Agentdec,semE 0 0 0 1∑
T/O Agentdec,sem¬E 0 0 0 360

∆timeouts 0 0 0 −359

Table 15: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for the grounded semantics. The top table shows the results
for Algorithm 7 and the bottom for the naïve algorithm.
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5.3.5. Preferred Semantics

As the second to last semantics, we examine the preferred semantics in terms of run-
time for the agent types. Again, two scatter plots were created, which are shown in
Figure 39. The left plot again shows the developed algorithm while the right plot
shows the naïve approach. Especially for the left plot it can be seen that presum-
ably there is a lot difference in the runtime, as there seem to be no timeouts for the
Agentdec,semE . In the right plot we also see a strong improvement in favour of the
agent that enumerated the extensions before. Here, too, there are no more evident
timeouts and the runtime seems to be generally shorter.

Again, the collected data support this visually extracted speculation from the fig-
ure. In Table 16 it can be seen that the average runtimes are clearly lower for the
developed Algorithm 8 with a big advantage for Agentdec,semE , where the timeouts
are also no longer occur. This is similar for the naïve approach, where no more
timeouts occurred for Agentdec,semE .

We deduce from this data that the two algorithms are faster for Agentdec,semE . Our
hypothesis is therefore that the developed Algorithm is faster or equally fast and
thus H0 : x̃D ≤ x̃N for the Agentdec,semE with x̃D the runtime of the Algorithm 8
and x̃N for the naïve one. For the one-sided test for hypothesis H0, we obtain
p ≈ 8.089 · 10−63 with T+ = 97801, therefore it can be accepted since p < 0.05.
However, we point out here the comparatively low effect size of r = 0.195.

So for the preferred semantics, we find that the developed as well as naïve algo-
rithms are significantly faster at Agentdec,semE .

Algorithm 8
for σ = pr 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 4.56 · 107 9.37 · 107 6.23 · 108 6.29 · 1010

time for Agentdec,sem¬E 4.03 · 108 1.08 · 109 6.05 · 1010 2.38 · 1011∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 25 348

∆timeouts 0 0 −25 −348

Naïve Algorithm
for σ = pr 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 1.59 · 108 1.45 · 108 7.55 · 108 7.48 · 1010

time for Agentdec,sem¬E 1.41 · 108 6.05 · 108 5.33 · 1010 2.23 · 1011∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 18 302

∆timeouts 0 0 −18 −302

Table 16: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for the preferred semantics. The top table shows the results for
Algorithm 8 and the bottom for the naïve algorithm.
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Figure 39: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 8 for the preferred semantics and on
the right side the naïve approach.

5.3.6. Stable Semantics

We close the runtime analyses on the agents in experiment 2 with the stable seman-
tics. First, we have a look at the Figure 40 with its two scatter plots. The left one
represents the developed Algorithm 9. For this one, we see a slight improvement
in runtimes among instances in favour of Agentdec,semE . The right scatter plot shows
the naïve algorithm. For this one, the runtime seems to be the same, even with a
slight advantage in favour of Agentdec,sem¬E .

This visual analysis corresponds to the data found in Table 17. For the developed
algorithm, the runtime is marginally better in favour of Agentdec,semE . The situation
is turned around for the naïve approach. While the two data bins with the smaller
instances still show a small advantage for Agentdec,semE , the opposite is true for the
two larger ones.

From the collected data, we therefore assume that in the case of the stable seman-
tics, the naïve approach is marginally faster and otherwise equally fast. We test this
again with a one-sided Wilcoxon signed-rank test with the hypothesis H0 : x̃D ≥ x̃N
with x̃D for the CPU runtime of the developed algorithm and x̃N for that of the naïve
algorithm. We compute p ≈ 6.643 · 10−114 and T+ = 457190 where p < 0.05 and we
therefore accept the hypothesis with an effect size of r = 0.913.

Regarding the stable semantics, we note that for the instances in the dataset pbbg-
train, the naïve approach is again slightly faster. This is mainly due to the fact that
the incomparability and tightness conditions rarely work sufficiently, as too few
extensions are found. Only in 5 instances were the questions asked one third fewer
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compared to 903 instances where the number of questions asked was the same. This,
together with the computation time for the conditions, makes the developed algo-
rithm slightly inferior in the case of the present instances.
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Figure 40: Plot of the runtimes in milliseconds of the two agent types. On the left
side is the scatter plot of Algorithm 9 for the stable semantics and on the
right side the naïve approach.

Algorithm 9
for σ = st 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 1.51 · 108 2.20 · 108 1.27 · 109 1.15 · 1011

time for Agentdec,sem¬E 2.67 · 108 4.33 · 108 1.72 · 109 1.32 · 1011∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 0

Naïve Algorithm
for σ = st 5 ≤ |n| < 10 10 ≤ |n| < 15 15 ≤ |n| < 20 20 ≤ |n| ≤ 25

time for Agentdec,semE 9.55 · 107 1.42 · 108 1.03 · 109 8.88 · 1010

time for Agentdec,sem¬E 1.59 · 108 2.26 · 108 9.51 · 108 8.49 · 1010∑
T/O Agentdec,semE 0 0 0 0∑
T/O Agentdec,sem¬E 0 0 0 0

∆timeouts 0 0 0 0

Table 17: Comparison of runtimes in nanoseconds and timeouts between the two
agent types for the stable semantics. The top table shows the results for
Algorithm 9 and the bottom for the naïve algorithm.
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5.3.7. Summary and Answering the Questions

We conclude this subsection by answering the two questions posed. We start with
the first question: Which of the algorithms are on average faster given an agentdec,semE ?

For the semantics σ ⊆ {cf, ad}we recorded a degradation for the naïve algorithm
and in the case of σ = ad even for the developed algorithm. In the case of σ = co,
there was no clear improvement for the algorithms but even a slight deterioration
for instances with few arguments. In the case of σ = gr, there is a slight improve-
ment for the developed algorithm and a clear improvement for the naïve algorithm
by eliminating timeouts. Very significant improvements occurred for σ = pr in both
algorithms. We attribute this to the fact that V erpr is in the complexity class ΠP

2 for
an Agentdec,sem¬E and a pure search in a precomputed extension set has a significantly
lower computational complexity. Finally, for σ = st a slight runtime reduction can
be seen for the developed algorithm, while for the naïve algorithm there was no im-
provement but rather a minimal deterioration.

The second question to be answered was: In this scenario, are the developed algo-
rithms faster than the naïve algorithm?

From the statistical tests, it can be seen that only for {gr, pr} ⊆ σ was there any im-
provement, although it is worth noting that for the complete and stable semantics,
the developed algorithms are only slightly slower, as can be seen from the data.

5.4. Experiment on Modifications of the Algorithms

We conclude our experiments with a third in which we modified the developed
algorithms once again to take advantage of all possible questions now available
through an Agentdec,semE due to the runtime properties of searches in sets. These fea-
ture the inclusion of ActualCountnσ as well as Exists¬∅σ for all semantics, Credσ for
{ad, co, st, pr} ⊆ σ and Existsst for the stable semantics. The modified algorithms,
except for the grounded semantics, since we did not make any adjustments to it, can
be found with an explanation in Appendix A.

In this experiment, we briefly compare the modified algorithms with the previ-
ously developed ones using the dataset pbbg-train. Secondly, using runtime im-
provements we investigate with the ICCMA’19 dataset up to which number of argu-
ments in an instance the modified algorithms work for the semantics {co, gr, st, pr} ⊆
σ. We left {cf, ad} ⊆ σ out because the modified algorithms are also not fast enough
for large instances.

The questions to be answered are:

• Are the modified algorithms faster on average?
For this we again form four data bins 5 ≤ |Arg| < 10, 10 ≤ |Arg| < 15,
15 ≤ |Arg| < 20 and 20 ≤ |Arg| ≤ 25. We compare the algorithms using the
dataset pbbg-train based on the arithmetic mean of the runtimes for the data
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bins. If the average runtimes and also the number of timeouts are lower, we
accept the assumption even without a statistical test.

• At what number of arguments in an instance are the modified algorithms no longer
practical?
The ICCMA’19 instances contain AFs with up to several hundred arguments.
We examine which instances did not time out and check how many arguments
they have. We present the results.

We will only briefly describe the results of this experiment, as it only re-examines
improvements in runtime and includes an additional dataset. Therefore, we start di-
rectly with answering the first question regarding the improvement of the average
runtime. The Figure 41 shows scatter plots comparing the originally developed al-
gorithms and the modified ones for all considered semantics. Only for the grounded
semantics, no improvements through a modification were possible.

Benchmark Results As for the results, it is notable that there was a consider-
able improvement for the admissible sets. Conversely, there is no improvement, but
rather a minimal worsening, in the case of conflict-free sets. In contrast to the four
other semantics, however, there are still timeouts to be observed for both conflict-
free and admissible sets. For all other semantics apart from the grounded seman-
tics, the improvement is once again clear. This can explicitly be attributed to the use
of the further computational problems respectively questions, which only became
possible by using the Agentdec,semE . The restriction of the possible arguments in ex-
tensions by Credσ and the search for the extension set cardinality by ActualCountnσ
limit the search space decisively. Also, with the acquired cardinality, a good stop-
ping condition is available. The average runtimes per data bin and semantics are
listed in Table 19.

Limit of Practicability Let us now turn to the second question. From the avail-
able data, it is evident that with the modified algorithms, it is not the number of
arguments in an AF that is decisive, but above all the cardinality of the extension
set and, furthermore, the set of credulous accepted arguments. Thus, even instances
with several hundreds of arguments could be solved in cases where there were few
extensions and accepted arguments. The results are shown in Table 18 for the largest
solvable instances and Table 20 for the smallest unsolvable instances. From these ta-
bles it can be seen which instances were solved with how many arguments and
extensions.

Summary We therefore conclude the third experiment with the findings that the
modified algorithms are particularly suitable for σ ⊆ {co, pr, st} are tractable for
larger instances with respect to the number of arguments as long as the number
of extensions is small, that is between 3 and 4 extensions. Only by using all the
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question categories found are runtimes achievable that also make larger instances
solvable. For grounded semantics, on the other hand, it can be noted that it can
also process very large instances although no improvements through a modification
were possible. The good performance is because the algorithm is primarily based on
the question Credgr and only grows with the number of arguments of an instance.

σ Instance |Arg| |S| ||S|| T/O

co

C-3-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
T-4-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
A-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
C-2-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
T-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no

gr

A-2-admbuster_10000 10000 1 5000 no
C-1-admbuster_10000 10000 1 5000 no
T-2-admbuster_10000 10000 1 5000 no
A-3-grd_8034_1_2 8034 1 442 no
C-1-grd_8034_1_2 8034 1 442 no

pr

C-3-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
T-4-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
A-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
C-2-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
T-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no

st

C-3-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
T-4-afinput_exp_acyclic_depvary_step7_batch_yyy08 1009 1 19 no
A-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
C-2-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no
T-4-afinput_exp_acyclic_indvary1_step2_batch_yyy07 1028 1 9 no

Table 18: The largest instances regarding the number of arguments that could be
solved by the modified algorithms for the complete, grounded, preferred
and stable semantics.

time (arithmetic means in nanoseconds)
5 ≤ |Arg| < 10 10 ≤ |Arg| < 15 15 ≤ |Arg| < 20 20 ≤ |Arg| ≤ 25

∑
timeouts

cf 3.66 · 107 5.11 · 108 4.57 · 1010 2.52 · 1011 417
ad 1.52 · 107 9.99 · 107 2.87 · 109 3.30 · 1010 43
co 1.27 · 107 2.01 · 107 7.26 · 108 2.78 · 108 0
gr 3.76 · 106 3.17 · 106 3.28 · 106 3.62 · 106 0
pr 1.38 · 107 2.21 · 107 7.89 · 107 3.90 · 108 0
st 1.39 · 107 2.58 · 107 1.10 · 108 5.36 · 108 0

Table 19: Average runtimes for four data bins and the sum of the timeouts for the
modified algorithms per semantics.
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Figure 41: Plot of the runtimes in milliseconds comparing the modified algorithms
and the originally developed ones for an Agentdec,semE .
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σ Instance |Arg| |S| ||S|| T/O

co

Small-result-b44 27 4 27 yes
Small-result-b12 30 3 30 yes
Small-result-b15 30 3 30 yes
Small-result-b18 30 3 30 yes
C-1-calaveras-transit_20151216_1707.gml.50 32 13404 28 yes

gr - - - - -

pr

Small-result-b44 27 3 27 yes
Small-result-b12 30 2 30 yes
Small-result-b15 30 2 30 yes
Small-result-b18 30 2 30 yes
C-1-calaveras-transit_20151216_1707.gml.50 32 375 28 yes

st

Small-result-b44 27 3 27 yes
Small-result-b12 30 2 30 yes
Small-result-b15 30 2 30 yes
Small-result-b18 30 2 30 yes
Small-result-b60 32 4 32 yes

Table 20: The small instances regarding the number of arguments that could not be
solved for the complete, grounded, preferred and stable semantics.

5.5. Discussion of Results

The results of the experiments will now be discussed briefly. To do this, we will
look at all three experiments individually, seek explanations and possibilities for
improvement and draw an overall conclusion at the end.

The First Experiment The analyses of these experiments showed unexpected re-
sults. Only in two cases were the developed algorithms faster for the two examined
datasets pbbg-train and pbbg-test. Given that the test conditions were introduced
to reflect the properties of the signatures, it was to be expected that the algorithms
would perform better. In fact, however, this was only the case for the complete
semantics and the grounded semantics. Although it is no surprise for the second
semantics, as it does not implement an exhaustive search.

In general, the runtimes were high and the number of timeouts for some seman-
tics like {cf, ad, pr} ⊆ σ were considerably large. This leads to the argument that
an algorithm that works according to the brute force approach is hardly sustainable.
This is not surprising due to the exponential growth, which became visible when
examining the non-linear correlation, among other things.

The Second Experiment This experiment showed that simply changing the agent
type does not necessarily lead to better runtimes. Only for the grounded semantics
could significant runtime improvements be achieved. If one directly compares the
developed algorithms with the naïve algorithm per semantics, it is noticeable that
the naïve algorithm became equally better and was even able to undercut the com-
plete semantics again. The algorithms were even slightly slower for {cf, ad} ⊆ σ.
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Thus, this experiment showed that under certain circumstances the V erσ-question
can be computed quickly and that a search in a previously computed extension set
did not bring such a large improvement in some developed algorithms in princi-
ple that the runtimes for the test conditions could be compensated. However, this
is also due to the fact that properties such as tightness or conflict-sensitivity could
often not be used profitably because the extension sets were designed in such a way
that an exhaustive search meant that first extensions were only found late and thus
the conditions could hardly be used.

The Third Experiment An Agentdec,semE can answer questions that were previ-
ously not tractable by having the extensions enumerated in advance. We modified
the algorithms so that these questions were included. These were among others
Uniqueσ, Credσ or ActualCountnσ. In this mixture, a clear acceleration was recorded
for {co, pr, st} ⊆ σ. For the grounded semantics, no modification was possible, but
also not necessary, as the performance was already good compared to the other se-
mantics.

The experiment showed the influence of the arguments and extensions on the run-
time. For this purpose, the datasets pbbg-train were used for comparison with the
results from experiment 2 and the ICCMA’19 dataset for instances with |Arg| > 25.
What was observed in the analysis is that the number of arguments in an instance
can be high, but the number of extensions (|S|) and the number of arguments in it
(||S||) are crucial. The present results show that by modifying the algorithms by the
uniqueness question, i.e. |S| = 1, the performance for eliciting unique extensions
improves to the level of the algorithm for grounded semantics, since only those ar-
guments have to be found that are in the unique extension by means of Credσ.

For |S| > 1 we recorded that with more than four extensions the number of time-
outs of 5 minutes increased strongly, especially if there were more than 28 to 30
arguments in the extensions, depending on the semantics. We can use the exhaus-
tive search as an explanation, since the modified algorithms only reduced the search
space and were able to determine an actual upper limit, but in the inner loop body
the power set of all accepted arguments continued to be traversed, which allows
results from experiment 2 to be carried over. The instances there had |Arg| ≤ 25 and
the algorithm performed an exhaustive search over |Arg|. Since the search space
of such an exhaustive search grows exponentially with the number of accepted ar-
guments and runtimes well over one minute on average were already observed in
experiment 2, the results from experiment 3 are not unexpected.

Summary All in all, the overall conclusion is that for an Agentdec,sem¬E , elicitation is
generally impractical apart from, on the one hand, the grounded semantics using the
developed algorithm and, on the other hand, conflict-free and admissible sets using
the naïve algorithm. This is partly due to the lack of a good stopping condition
and an exponential runtime of O(n|Arg|) with |Arg| as the number of arguments in
the elicitation. That being said, the naïve algorithm is faster for this class of agent
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in most cases. This is partly due to the fact that the checks within the algorithms
have, among other things, linear runtimes. Since more than one of these checks is
usually used, the realistic runtime of the developed algorithms is worse than that of
the naïve algorithm. These checks do not outweigh the reduction of questions to the
agent in terms of runtime. Much more, at the beginning of the exhaustive search,
little information about the final extension set is known, so that, for example, in the
stable semantics algorithm (see Algorithm 9) PairsS cannot be sufficiently filled yet
and so many verification questions are asked of presumed extensions that would
never have been submitted to the agent for verification with the knowledge of the
entire extension set S.

For Agentdec,semE , on the other hand, the picture looks somewhat different. Al-
though here too the unmodified developed algorithms are slower compared to the
naïve approach for {cf, ad, co, st}, the use of the modified algorithms is faster espe-
cially as the number of arguments increases. This is partly because Credσ can be
used to greatly restrict the search space. A use of ActualCountnσ was also aimed at,
such that the actual number of extensions could be retrieved with it, which must be
lower or equal to the diversity function. This provided a good stopping condition
and decreased the runtime.

Furthermore, for elicitation with an Agentdec,semE , it can be seen that it is much
more feasible from a runtime point of view if the algorithms are extended to include
the additional question options. This is because many questions are reduced in com-
plexity to a search in a set. In this case, however, the total runtime consists not only
of the elicitation by the questions but also of the enumeration of the extensions by
the agent beforehand, so that the runtime consists of an enumeration part T1 and the
interview T2, so that T = T1 + T2 is the total runtime T . It should also be mentioned
that all questions in the end only restrict the search space and, except in the case of
a unique extension, an exhaustive search must still be performed over all accepted
arguments. This means that the runtime T2 grows exponentially in the worst case
for this implementation.

In conclusion, with the restrictions with the selected questions under both agent
types, not enough information could be gathered to find algorithms that did not
have an exponential runtime in the worst case. But even for the average case, it
showed that the lack of a good stopping condition (except in the modified algo-
rithms) also kept the runtimes high. The theoretical upper bounds used in the de-
veloped algorithms did not work for those instances18. However, since conditions
exist to include or exclude certain extensions after collecting enough information,
it makes sense for a future investigation to look again at optimisation potentials
regarding the search space.

18Deeper analysis showed that they were significantly higher than the actual extension set sizes.
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6. Summary and Outlook

In this section, we first summarise the most important findings of this Master’s the-
sis. Then we show what further research can be conducted in the field of elicitation
based on the considerations from this thesis.

6.1. Conclusion

The research topic of elicitation pursues the goal of reconstructing an argumentation
framework from partially revealed information and an interactive question-answer
setting. For this, the reconstructed argumentation framework must meet certain
equivalence criteria. In this Master’s thesis, we therefore developed and analysed
algorithms for questioning an agent to elicit a σ-equivalent argumentation frame-
work, taking into account classical semantics, with the restriction that the agent
honestly answers semantic decision questions.

For this purpose, we first developed a question pool consisting of typical compu-
tational problems for argumentation frameworks. These can be solved by an agent
just with the knowledge about the arguments and their attack relation and, most
notably, without knowing about the extension set under that semantics. With these
questions and known properties about the extension sets of the semantics, algo-
rithms were developed. Only questions that are also considered tractable in terms of
their computational complexity were included. The performance of the algorithms
was then evaluated in an experiment. We also extended these to agents that already
know the extension set and finally modified the algorithms to include questions that
are tractable with such an agent type. Furthermore, we discussed the possibilities
of reconstructing a σ-equivalent argumentation framework from the interview in-
formation. For this purpose, we focused on the reconstruction of an argumentation
framework that contains only those arguments that are also present in the agent’s
argumentation framework.

Based on the results of the experiments from Section 5, it becomes apparent that
the developed algorithms are not suitable for large argumentation frameworks. This
is due to, among other things, only a very weak stop condition and the fact that the
algorithms are based on an exhaustive search. Also, the performance of the self-
implemented question solver is not optimal. Other implementation strategies, such
as MaxSAT instead of procedural Java implementations, could make the modified
algorithms faster than the basic versions developed in Subsection 4.3. This assump-
tion is supported by brief supplementary experiments in Appendix B. The findings
there suggest that if computationally more complex questions can be answered rel-
atively quickly, then this can positively affect the runtime, as the search space can
be reduced in at least some cases. This is in line with the results presented here in
the main body. Our own implementation is not able to use the modified algorithms
in a meaningful way for Agentdec,sem¬E and is only to some degree tractable for the
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modified algorithms with Agentdec,semE , while some other solvers could at least in
some cases be able to answer these more complex questions faster for Agentdec,sem¬E
and therefore drop out later under this agent. Nevertheless, the choice of a solver
only shifts the point at which elicitation becomes impractical.

As for a subject of further investigations, we identified, among other things, that
the opening or modification of the restrictions is of interest, for example, allowing
syntactic questions. With regard to the reconstruction part of the elicitation, this
is of interest, since more information about conflicts can be collected. This means,
that argument-congruent reconstructions can become possible in cases that were not
possible in the scenario of this Master’s thesis. We also suspect that this will make
it easier to formulate stop conditions and sort out sets, thereby improving runtimes
and hence tractability.

6.2. Future Work

As the very last element of this Master’s thesis, we give a rather brief insight into
further research topics. This includes the expansion of the created question pool, the
use of additional or even multiple semantics, the possibilities to translate between
them, and what can be explored to improve argument-congruent reconstruction.

6.2.1. Expansion of the Permitted Questions

Within the scope of the research question, we have made some restrictions, among
other things, on the allowed questions that can be asked of an agent or, conversely,
that the agent can answer. In Subsection 4.2 we eventually selected the concrete
questions and limited ourselves to semantic decision questions. These have a direct
relation to the extensions.

Therefore, further research concerning the questions should be conducted. On the
one hand, from the developed algorithms and the work on properties of signatures,
we see a potential to formulate these properties as questions. Thus, decision ques-
tions such as “Exists (a, b) ∈ PairsS?” or “Is (T ⊆ S)∪S conflict-sensitive?” may be
asked and answered by the agent. Studies to this extent are therefore of interest.

Further opportunities arise from the enlargement of the decision question pool
by syntactic questions, on the one hand with reference to the extensions like, “Does
extension E attack an argument a?” or, on the other hand, questions without this
reference, like, for example, “Does a attack the argument b, i.e. a ↪→ b?”. Here, in
addition to the improvement of the interview algorithms, we also assume one for
the argument-congruent reconstruction, since information on the internal structure
is revealed.

Finally, it should also be examined whether queries can be introduced. For this
purpose, scenarios are to be developed under which circumstances such questions
are to be asked in a meaningful way. In general, but also in the question of queries,
the investigation of the applicability to machine learning can be examined. In this
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Master’s thesis, it was assumed that the agent possesses and hides an argumentation
framework. An agent that accepts arguments based on methods from the field of
machine learning is therefore of interest as a research object, since it is conceivable
that the elicitation approach can be applied there to find an explanatory AF for the
model.

6.2.2. Examine Further and Allow Multiple Semantics

Next, we take a look at possible further research in terms of semantics in elicitation.
First, with regard to extension-based semantics, there are considerably more than
the classical semantics, such as the eager semantics [13] or ideal semantics [21], etc.,
to name only a few. For these, algorithms for elicitation can be developed as the
next step.

In addition, the use of multiple semantics is of interest. This requires the agent to
be able to answer questions about more than one semantics.

In this scenario, insights from Kuhlmann et al. [35] regarding the distinguishabil-
ity of semantics can be used here. A semantics σ distinguishes a second semantics
σ′ if it holds that argumentation frameworks that have the same extensions under σ
have the same extensions for σ′ as well.

The results of their work show that such distinguishability is quasi only given
under specific graph classes. Under the restrictions of the scenario of this Master’s
thesis, they can therefore not be utilised. However, if the pool of questions to the
agent is expanded, as previously suggested in Subsection 6.2.1, so that syntactic
questions may be asked that allow the detection of a graph class, then the results
may be of interest and should be examined accordingly.

In addition, one semantics could be used to retrieve certain information that is
useful for analysing the other semantics. For example, Credcf could be used to find
out which arguments are accepted in conflict-free sets. From this, it can be deduced
which ones attack themselves and these then need not be considered further in e.g.
σ = co. This reduces the search space. This kind of information extraction using
multiple semantics offers a further research option as well.
Finally, instead of extension-based semantics, it makes sense to explore semantics
based on labels. Labels bring additional status information about arguments, as
shown in Subsection 2.3, so that not only could the question-answer process change,
but also there might be an influence on the argument-congruent reconstruction abil-
ities.

6.2.3. Investigating Applicability of Intertranslation

The experiments from Section 5 show that the runtimes of the algorithms can differ
substantially. Therefore, it may be of interest to transfer one semantics into another
in order to have a better overall performance under the same output.
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The idea also corresponds to that of translation, among others. Dvořák
and Woltran first introduced the topic in [29] as an adoption of the idea of reductions
from computational complexity into abstract argumentation.

Informally speaking, a argumentation framework is transformed in such a way
that the original semantics is implemented by a target semantics, i.e. a function
Tr : σ → σ′ is given that transforms σ into another σ′. Spanring [45] as well as
later Dvořák and Spanring [28] gave a lot of insights into possible translations. A
translation is exact if σ(F ) = σ′(Tr(F )) is given. Also, there are less strict variants
as a faithful translation where |σ(F )| = |σ′(Tr(F ))| and σ(F ) = {E ∩ A | E ∈
σ′(Tr(F ))} prove to be more practicable.

However, it turns out that, as Spanring’s Master’s thesis [45] shows, no practical
transformation of a computationally more complex semantics into a simpler one is
possible for the considered computational problems respectively decision questions
and classical semantics shown. Yet, with the background of the experiments on the
developed algorithms, a few translations such as ad to co can be found that might
be interesting.

The choice from possible translations and the examination of their application in
the case of elicitation can therefore be a further subject of research.

6.2.4. Identifying Necessary Requirements on Elicitation for
Argument-Congruent Reconstructions

During the discussion in Subsection 4.4 on reconstruction using only the known
arguments Arg from the agent’s argumentation framework, it was found, that due
to the Explicit Conflict Conjecture, a reconstruction with the collected information
for the complete, grounded and stable semantics as well as the admissible sets is not
possible immediately.

Therefore, requirements need to be formulated that have to be fulfilled in the in-
terview part of the elicitation in order to enable an immediate argument-congruent
reconstruction. These requirements could be set for the questioning process and the
information to be gathered. A starting point for this could be existing studies on
the enforcing problem [6, 50] and the minimal change problem [5, 7]. These ques-
tions deal with how the introduction of new information creates an argumentation
framework that has the desired extensions (or subsets thereof).
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A. Modified Algorithms

What follows is a description of the modified algorithms for an Agentdec,semE . De-
pending on the algorithm, the adaptations are slightly different, so we will present
them one by one. In fact, the core of the extension search algorithm has remained
the same, so we do not describe it in detail. However, some modifications have hap-
pened around this iterative search to narrow the search space. We now list these
modifications and name the semantics to which it applies:

• Checking for the presence of an extension: We introduced this check using Existsσ
only for the stable semantics. It is the only one among the classical semantics
for which there is no guarantee that an extension exists at all.

• Check for at least one non-empty extension: This is realised via Exists¬∅σ and was
introduced for all semantics. In the case where only one empty extension ex-
ists, this makes the solution trivial and speeds up the algorithm.

• Check for more than one extension: This was implemented for all semantics ex-
cept σ = gr, since the cardinality is always |σ(F )| = 1 for any AF F under
σ = gr. For all others, this was taken as a speedup using Uniqueσ. In the
case of semantics where the empty set {} always occurs as an extension, this
is taken. Otherwise, a search is made for the (credulous) accepted arguments
and their set is taken as extension.

• Elicit the number of extensions: The diversity function ∆σ gives an upper limit.
However, this does not give the actual amount of extensions. By means of
ActualCountnσ, a fetching of the actual number of extensions is implemented
in σ ∈ {cf, ad, co, pr, st} iteratively up to the upper bound.

• Search space reduction by accepted arguments: If more than one extension is present,
the agent is asked beforehand which arguments are accepted credulously. This
can reduce the search space in favourable cases, as the power set is smaller.
This is applied to all semantics apart from σ = gr.

In the following subsections, we briefly describe the modified algorithm for each
semantics apart from the grounded semantics as we did no modification to it.

A.1. Conflict-Free Sets

The adjustments in Algorithm 13 for conflict-free sets are somewhat smaller than
in the following algorithms, because Credcf is already present as a question in the
Algorithm 4. We therefore added a check as a bracket to the algorithm whether a
non-empty extension exists (Exists¬∅cf ).

Moreover, in the case that there is more than one empty extension, there follows
another new loop after step I, counting up from 2 to ∆cf and asking the agent

123



whether the counter i corresponds to the cardinality of the extension set. Since the
agent answers truthfully to ActualCounticf and ∆cf by definition contains the the-
oretical upper bound, the loop is always terminated with n = |σ(FA)| with FA the
agent’s AF. Subsequently, in the loop body for the questioning, |S| = n is checked.
Since n contains the cardinality, this stop condition takes effect when all relevant
extensions have been found.

No other changes were made.

Algorithm 13 Modified Algorithm for Conflict-Free Sets for the Interviewing Part
Require: Arg as a set of arguments, σ = cf
Ensure: An extension set S

ArgsS ← ∅
S← ∅
if Exists¬∅cf then

for all a ∈ Arg do ▷ Step I
if Credcf (a) = ⊤ then

ArgsS ← ArgsS ∪ {a}
for i = 2..∆cf (|ArgsS|) do

if ActualCounticf = ⊤ then
n← i
break

S← {{}}
S ← 2ArgsS \ S
for all s ∈ S do ▷ Step II

if |S| = n then ▷ Stop Condition
break

if ∃s′ ∈ S : s ⊆ s′ then
S← S ∪ {s}

else
r ← Ask agent V ercf (s)
if r = ⊤ then

S← S ∪ {s}
else

S← {{}}
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A.2. Admissible Sets

Algorithm 14 Modified Algorithm for Admissible Sets for the Interviewing Part
Require: Arg as a set of arguments, σ as the semantics
Ensure: An extension set S

S← ∅
if Exists¬∅ad then

ArgsS ← ∅
for all a ∈ Arg do

if Credad(a) = ⊤ then
ArgsS ← ArgsS ∪ {a}

for i = 2..∆ad(|ArgsS|) do
if ActualCountiad = ⊤ then

n← i
break

S← {{}} ▷ Step I
PairsS ← {}
S ← 2ArgsS \ S
for all s ∈ S do

if |S| = n then ▷ Stop Condition
break

▷ Step II
if s ∈ S then

continue
▷ Step III

r ← Ask agent V erσ(s)
if r = ⊤ then

S← S ∪ {s} ▷ Add s to the extension set S
for all p ∈ s× s do

PairsS ← PairsS ∪ {p} ▷ Add pairs of arguments appearing

for all S ∈ S do ▷ Step IV
if S ∪ s /∈ S then

c← ⊤
if ∀a, b ∈ S ∪ s : (a, b) ∈ PairsS then

c← ⊥
if c ̸= ⊤ then ▷ No conflict means potential for existing

if V erad(S ∪ s) then
S← S ∪ {S ∪ s}

else
S← {{}}
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A.3. Complete Semantics

For the complete semantics, we have made further changes that go beyond the pre-
vious ones. Algorithm 15 represents these. Again, we use Exists¬∅co and ActualCountico
as well as Credco. A new addition is to be found in Uniqueco. We put this after the
question about credulously accepted arguments, because in the case that |S| = 1
holds, these form the only extension. Everything else is as known.

A.4. Preferred Semantics

The previously mentioned changes for the complete semantics in algorithm 15 can
also be applied to the preferred semantics. Again, Exists¬∅pr and ActualCountipr as
well as Credpr are used, in the same way as before.

A.5. Stable Semantics

Lastly, there remains the stable semantics. For this, too, we have added the same
parts in Algorithm 17 as, for example, in Algorithm 15 to the complete semantics.
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Algorithm 15 Modified Algorithm for the Complete Semantics for the Interviewing
Part
Require: Arg as a set of arguments, σ = co
Ensure: An extension set S

ArgsS ← ∅
S← {}
if Exists¬∅co then

for all a ∈ Arg do ▷ Step I
if Credco(a) = ⊤ then

ArgsS ← ArgsS ∪ {a}
if Uniqueco = ⊥ then

for i = 2..∆co(|ArgsS|) do
if ActualCountico = ⊤ then

n← i
break

z ← Ask agent V erco({}) ▷ Step I
if z = ⊤ then

S← S ∪ {{}}
e← ∅
S ← 2ArgsS \ {{}}
for all s ∈ S do

if |S| = n then ▷ Step II
break

if z = ⊥ ∧ |S| ≥ 2 ∧ |(s ∩ e)| ≠ 0 ∧ (s ∩ e) ⊈ e then ▷ Step III
continue ▷ Intersection of all arguments not given

r ← Ask agent V erco(s) ▷ Step IV
if r = ⊤ then

S← S ∪ {s}
if z = ⊥ ∧ |S| ≥ 2 then ▷ Step V

e←
⋂

S′∈S S
′ ▷ Find the intersecting arguments

else
S← {ArgsS}

else
S← {{}}
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Algorithm 16 Modified Algorithm for the Preferred Semantics for the Interviewing
Part
Require: Arg as a set of arguments, σ as the semantics
Ensure: An extension set S

ArgsS ← ∅
U← {}
S← {}
if Exists¬∅pr then

for all a ∈ Arg do ▷ Step I
if Credpr(a) = ⊤ then

ArgsS ← ArgsS ∪ {a}
if Uniquepr = ⊥ then

for i = 2..∆pr(|ArgsS|) do
if ActualCountipr = ⊤ then

n← i
break

PairsS ← {}
S ← 2ArgsS

for all s ∈ S do
if |S| = n then ▷ Step I

break
if s ∈ U then ▷ Step II

continue
if ∃s′ ∈ S s.t. s ⊃ s′ ∨ s ⊂ s′ then ▷ Step III

continue
if ∃S′ ∈ {S ∪ s|S ∈ S}∀a, b ∈ S′ : (a, b) ∈ PairsS then ▷ Step IV

continue
r ← Ask agent V erσ(s) ▷ Step V
if r = ⊤ then

S← S ∪ {s}
for all p ∈ s× s do

PairsS ← PairsS ∪ {p}
if |S ≥ 2| then ▷ Step VI

for all S, S′ ∈ S do
if S ̸= S′ then

U ← S ∪ S′

U← U ∪ {U}
else

S← {ArgsS}
else

S← {{}}
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Algorithm 17 Modified Algorithm for the Stable Semantics for the Interviewing Part
Require: Arg as a set of arguments, σ = st as the semantics
Ensure: An extension set S

ArgsS ← Arg
S← {}
PairsS ← {}
S ← 2ArgsS

if Existsst = ⊤ then
if Exists¬∅st = ⊤ then

for all a ∈ Arg do ▷ Step I
if Credpr(a) = ⊤ then

ArgsS ← ArgsS ∪ {a}
if Uniquest = ⊥ then

for i = 2..∆st(|ArgsS|) do
if ActualCountist = ⊤ then

n← i
break

for all s ∈ S do
if |S| = n then ▷ Step I

break
if ∃s′ ∈ S : s ⊃ s′ ∨ s ⊂ s′ then ▷ Step II

continue ▷ Incomparability is required
D ← ArgsS \ s
t← ∀d ∈ D ∃a ∈ s : (d, a) /∈ PairsS ▷ Step III
if t = ⊥ then

continue ▷ S ∪ {s} is not tight
r ← Ask agent V erσ(s)
if r = ⊤ then ▷ Step IV

for all p ∈ s× s do
Add p to PairsS

S← S ∪ {s} ▷ Add s to the extension set S
else

S← {ArgsS}
else

S← {{}}
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B. Comparing Two Solver Implementations on
Performance

In this section of the appendix, we briefly compare two implementation types. In
the main part of this Master’s thesis, we used a Java-based implementation devel-
oped by ourselves for solving the computational tasks behind the questions. Since
we also used the dataset of the ICCMA’19 [11] competition, we look at the solvers in-
volved there. The solver mu-toksia was consistently leading in this competition. So
we select it to demonstrate that the choice of solver in the elicitation has a relevance
on the overall performance. Furthermore, we want to show that nonetheless, for ex-
tension sets with large cardinality, these also become impractical, i.e. the runtimes
increase strongly. Since the competition did not consider conflict-free sets and ad-
missible sets and the solver therefore did not implement them, we restrict ourselves
to σ ∈ {co, gr, pr, st} for the comparison.

To carry out the evaluation, we first compare the developed algorithms directly
between our own Java implementation and one that uses the solver mu-toksia. Then
we show that for the dataset pbbg-train even the modified algorithms in Appendix
A are applicable, despite computational tasks in NP. Finally, we briefly show how
this affects the ICCMA’19 dataset. All this is done using an Agentdec,sem¬E . We do not
use graphical illustrations and stick purely to the results in tabular form.

B.1. Performance Comparison of the Developed Algorithms

At the beginning, we will briefly explain how the solver is accessed. For this pur-
pose, the probo interface is used and the usual computational problems are applied.
For Credσ and Sceptσ there are no surprises. The other questions, however, ben-
efit from the fact that V erσ and other iterative checks are not implemented in the
solvers. Thus Enumσ is performed once and thereafter each question is answered
by a search in these extensions. This means that these solvers cannot be compared
one-to-one with the Java implementation. However, the speed advantage of a com-
plete enumeration should be fairly limited, which can be seen, among other things,
in the results below, which show that the chosen solver is not several orders of mag-
nitude faster than the simple, procedural Java implementation.

To evaluate the performance, we selected 50 out of the 1000 randomly selected
instances of pbbg-train from Subsection 5.1.

The results can be seen in Table 21 and can be compared with the results from
Subsection 5.2. Very briefly, it can be said that the performance of the developed al-
gorithms with a faster solver is generally better than the procedural Java implemen-
tation from the main part. However, the results are not many orders of magnitude
apart.
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σ Data Bin time
∑

T/O H0 (Wilcoxon) Accepted?

co

5 ≤ |Arg| < 10 1.06 · 109 0

x̃J ≥ x̃M yes10 ≤ |Arg| < 15 1.11 · 109 0
15 ≤ |Arg| < 20 2.69 · 109 0
20 ≤ |Arg| ≤ 25 2.29 · 109 0

gr

5 ≤ |Arg| < 10 6.67 · 109 0

x̃J ≥ x̃M no10 ≤ |Arg| < 15 8.82 · 109 0
15 ≤ |Arg| < 20 1.17 · 1010 0
20 ≤ |Arg| ≤ 25 2.00 · 1010 0

pr

5 ≤ |Arg| < 10 1.08 · 109 0

x̃J ≥ x̃M yes10 ≤ |Arg| < 15 1.15 · 109 0
15 ≤ |Arg| < 20 2.19 · 109 0
20 ≤ |Arg| ≤ 25 9.84 · 1010 0

st

5 ≤ |Arg| < 10 1.18 · 109 0

x̃J ≥ x̃M yes10 ≤ |Arg| < 15 1.30 · 109 0
15 ≤ |Arg| < 20 2.85 · 109 0
20 ≤ |Arg| ≤ 25 1.62 · 1011 0

Table 21: Performance representation per semantics. The hypothesis H0 is tested by
means of a one-sided Wilcoxon sign-rank test. x̃J is the CPU runtime of
our own implementation and x̃M from mu-toksia.

B.2. Modified Algorithms Using a Faster Solver

In the main part of this Master’s thesis we did not check the use of the modified al-
gorithms with an Agentdec,sem¬E . The background is the poor performance in general.
Since it was previously shown that with mu-toksia the performance is fundamen-
tally better with the developed algorithms, we want to check their adaptation with
questions of the complexity class NP, coNP or higher in the polynomial hierarchy.
For this purpose, we used 50 out of the 1000 randomly selected instances from pbbg-
train (cf. Subsection 5.1).

The results of this experiment are summarised in Table 22. A comparison between
the two solvers (our Java implementation and mu-toksia) shows that mu-toksia was
generally faster for the developed algorithms. This was to be expected, however, a
comparison with the originally developed algorithms from Subsection 4.3 and the
modified ones shows that only in a few cases, those were some larger instances,
were the modified algorithms with mu-toksia faster. A direct comparison between
the two algorithm variants for our Java implementation shows an even stronger
picture (compare results from Table 22 with those from Subsection 5.2). It clearly
shows that the modified ones are slower and that it was therefore a good choice to
exclude questions from classes like NP.

Therefore, using only computational tasks in L or P turned out to be the right
choice for the own solver implementation in general, but we point out that for other
solvers a different picture may emerge in that there may be instances where the
modified algorithms are faster. If Credσ can be answered in a relatively short time
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and the search space of arguments is thereby significantly reduced, this may mean
that instances with many arguments in the AF, but few different arguments in the
extension sets, are also solvable. Large instances, on the other hand, are virtually
impracticable with the both versions of the algorithms, even with fast solvers. In
the next subsection, we will briefly examine this assumption.

σ Data Bin Solver time
∑

T/O H0 (Wilcoxon) Accepted?

co

5 ≤ |Arg| < 10
own 1.18 · 108 0

x̃J ≥ x̃M

yes
(barely)

mu-toksia 9.24 · 109 0

10 ≤ |Arg| < 15
own 5.76 · 109 0
mu-toksia 1.23 · 1010 0

15 ≤ |Arg| < 20
own 4.86 · 109 0
mu-toksia 1.59 · 1010 0

20 ≤ |Arg| ≤ 25
own 6.02 · 1011 0
mu-toksia 2.42 · 1010 0

gr

5 ≤ |Arg| < 10
own 4.06 · 107 0

x̃J ≥ x̃M no

mu-toksia 6.96 · 109 0

10 ≤ |Arg| < 15
own 4.33 · 107 0
mu-toksia 9.29 · 109 0

15 ≤ |Arg| < 20
own 5.85 · 107 0
mu-toksia 1.25 · 1010 0

20 ≤ |Arg| ≤ 25
own 6.42 · 107 0
mu-toksia 2.10 · 1010 0

pr

5 ≤ |Arg| < 10
own 3.00 · 1011 6

x̃J ≥ x̃M yes

mu-toksia 8.06 · 109 0

10 ≤ |Arg| < 15
own 3.00 · 1011 12
mu-toksia 9.09 · 109 0

15 ≤ |Arg| < 20
own 3.00 · 1011 8
mu-toksia 9.77 · 109 0

20 ≤ |Arg| ≤ 25
own 3.00 · 1011 24
mu-toksia 1.81 · 1010 0

st

5 ≤ |Arg| < 10
own 1.09 · 108 0

x̃J ≥ x̃M yes

mu-toksia 1.19 · 1010 0

10 ≤ |Arg| < 15
own 5.32 · 109 0
mu-toksia 1.16 · 1010 0

15 ≤ |Arg| < 20
own 3.10 · 109 0
mu-toksia 1.12 · 1010 0

20 ≤ |Arg| ≤ 25
own 6.42 · 1011 14
mu-toksia 2.44 · 1010 0

Table 22: Comparison of the performance of the own implementation (own) and an-
other solver (mu-toksia) for the modified algorithms per semantics. The
hypothesis H0 is tested by means of a one-sided Wilcoxon sign-rank test.
x̃J is the CPU runtime of our own implementation and x̃M from mu-toksia.

B.3. Large Instances with a Different Solver

Finally, we briefly summarise the results for larger instances. With an Agentdec,sem¬E
and the faster solver mu-toksia, significantly larger instances than in the previous
experiment could not be solved. This is due to the fact that many of the questions
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such as Credσ are dependent in runtime to the number of arguments. Since answer-
ing these questions with upper bounds in NP, coNP or higher seems to take a lot of
time overall, larger instances become equally intractable. The limit here seems to be
between 27 and 32 arguments in the AF of the instance.

σ Instance |Arg| |S| ||S|| T/O
co Small-result-b64 32 6 26 yes
gr - - - - -
pr Small-result-b60 32 4 32 yes
st Small-result-b44 27 3 27 yes

Table 23: The small instances regarding the number of arguments that could not be
solved with mu-toksia for the complete, grounded, preferred and stable
semantics.

B.4. Summary of the Solver Evaluation

From the previous results it can be said that the choice of a solver does have an influ-
ence. It was surprising to see that questions initially excluded in the main part could
be answered relatively quickly, at least compared to the procedural Java implemen-
tation. As a result, the modified algorithms could even solve larger instances better
in cases with, however, small extensions, i.e. few arguments and low cardinality
of the extension set. Nevertheless, it turned out that the modified algorithms did
not always perform better with mu-toksia as the chosen solver and, above all, that
many instances could still not be solved for the ICCMA datasets. The fundamen-
tal statements of the main part of this Master’s thesis therefore remain unaffected
by the choice of a solver. Only the point at which elicitation becomes impractical
depends on the particular chosen solver.
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