
Faculty of Mathematics and Computer Science Artificial Intelligence Group

First complete compilation-founded
implementation of distance-based belief

change

Master’s Thesis
in partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)
in Praktische Informatik

submitted by
Julia Hayat

First examiner: Dr. Jandson Santos Ribeiro Santos
Artificial Intelligence Group

Advisor: Dr. Jandson Santos Ribeiro Santos
Artificial Intelligence Group

Statement

Ich erkläre, dass ich die Masterarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen und
Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnommenen
Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Arbeit gilt auch
für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen. Die Arbeit wurde
bisher in gleicher oder ähnlicher Form weder derselben noch einer anderen Prüfungs-
behörde vorgelegt und auch nicht veröffentlicht. Mit der Abgabe der elektronischen
Fassung der endgültigen Version der Arbeit nehme ich zur Kenntnis, dass diese mit
Hilfe eines Plagiatserkennungsdienstes auf enthaltene Plagiate geprüft werden kann
und ausschließlich für Prüfungszwecke gespeichert wird.

Yes No

I agree to have this thesis published in the library. □ □

I agree to have this thesis published on the webpage of
the artificial intelligence group. □ □

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). □ □

The source code is available under a GNU General Public
License (GPLv3). □ □

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). □ □

. .
(Place, Date) (Signature)

iii

Abstract

The study of belief change addresses the question of how a rational agent should adjust
its beliefs, when facing new, potentially contradictory, information. Following a belief
change operation, there are usually two kinds of checks that are of interest: model
and inference checks. The former are concerned with determining whether the new
belief state holds for particular interpretations, whereas the latter investigate whether
it entails a particular propositional formula. To avoid arbitrariness and ensure repro-
ducibility, several belief change operators have been proposed in the literature. While
these operators have been studied extensively on theoretical grounds, there are only
few academic works on practical implementations. One reason is likely the high com-
putational complexity of many operators with regards to inference and model checks,
which are usually located on the first or second level of the polynomial hierarchy. We
address this shortcoming by implementing and evaluating a compilation-based belief
change application that makes use of Boolean Satisfiability Solving (SAT), Answer Set
Programming (ASP), and Integer Linear Programming (ILP). The application supports
inference and model checks for four distinct distance-based revision and contraction
operators. Given a belief change instance, it firstly determines the minimum distance
via partial Maximum Satisfiability Solving (partial MaxSAT), ASP, or ILP optimization
encodings and subsequently compiles the new belief state that results from the change
operation into a SAT, ASP, or ILP encoding. The resulting encoding can then be lever-
aged for inference and model checks on the new belief state, turning these checks into
feasibility problems. In an extensive evaluation we compare the usage of the different
encodings in terms of runtime. The results show that for the determination of the mini-
mum distance, our partial MaxSAT-based optimization encoding schemes perform best
for each of the four supported change operators. With regards to inference and model
checks we obtain that both the SAT- and the ASP-based encodings outperform their ILP
counterparts. Moreover, the ASP-based encodings outperform the SAT-based ones in
inference checks, whereas with regards to model checks the SAT-based encodings per-
form best. A comparison with a naive baseline implementation further concludes that
our compilation-based approach is clearly superior to the naive approach, irrespec-
tive of the used encoding schemes. Our results demonstrate that compilation-based
approaches to belief change constitute a viable and promising way of implementing
inference and model checks and therefore deserve more research attention within the
academic field of belief change.

v

Contents

1 Introduction 1

2 Background 4
2.1 Formal preliminaries . 4
2.2 Belief change . 6
2.3 Belief bases . 7
2.4 Syntax-based vs. model-theoretic change operators 9
2.5 Dalal’s revision operator . 10
2.6 Satoh’s revision operator . 11
2.7 Harper Identity . 12
2.8 Technologies . 13

2.8.1 Boolean satisfiability solving (SAT) 13
2.8.2 Integer linear programming (ILP) 15
2.8.3 Answer set programming (ASP) 16

2.9 Related work . 19

3 Implementation 22
3.1 Application architecture . 22

3.1.1 Compilation mode . 23
3.1.2 Inference and model check modes 24

3.2 Algorithms . 24
3.2.1 Compilation algorithm schemes 24
3.2.2 Inference and model check algorithm schemes 27

3.3 SAT encodings . 28
3.3.1 Boolean cardinality constraint encoding 28
3.3.2 Dalal’s revision (SAT) . 33
3.3.3 Dalal’s contraction (SAT) . 35
3.3.4 Satoh’s revision (SAT) . 37
3.3.5 Satoh’s contraction (SAT) . 44
3.3.6 SAT inference checks . 46
3.3.7 SAT model checks . 47

3.4 ILP encodings . 47
3.4.1 Dalal’s revision (ILP) . 47
3.4.2 Dalal’s contraction (ILP) . 51
3.4.3 Satoh’s revision (ILP) . 54
3.4.4 Satoh’s contraction (ILP) . 58
3.4.5 ILP inference checks . 60
3.4.6 ILP model checks . 60

3.5 ASP encodings . 61
3.5.1 Dalal’s revision (ASP) . 61
3.5.2 Dalal’s contraction (ASP) . 64
3.5.3 Satoh’s revision (ASP) . 67

vii

3.5.4 Satoh’s contraction (ASP) . 71
3.5.5 ASP inference checks . 73
3.5.6 ASP model checks . 74

4 Evaluation 76
4.1 Experimental setup . 76
4.2 Naive implementation . 79
4.3 Results and discussion . 80

4.3.1 Compilation . 80
4.3.2 Inference checks . 86
4.3.3 Model checks . 90
4.3.4 Further analyses . 93
4.3.5 Comparison with naive implementation 96

5 Conclusion 98

References 101

A Proofs 105

viii

List of Figures

3.1 Application architecture . 24
3.2 Parallel counter circuit by Muller and Preparata [MP75] 30
4.1 Compilation runtime for Dalal’s revision 81
4.2 Compilation runtime for Satoh’s revision 82
4.3 Compilation runtime for Dalal’s contraction 82
4.4 Compilation runtime for Satoh’s contraction 83
4.5 Composition of compilation timeouts and errors 85
4.6 Average solver time / total time ratio of revision instances 85
4.7 Average solver time / total time ratio of contraction instances 85
4.8 Inference check runtime for Dalal’s revision 87
4.9 Inference check runtime for Satoh’s revision 88
4.10 Inference check runtime for Dalal’s contraction 88
4.11 Inference check runtime for Satoh’s contraction 89
4.12 Model check runtime for Dalal’s revision 91
4.13 Model check runtime for Satoh’s revision 91
4.14 Model check runtime for Dalal’s contraction 92
4.15 Model check runtime for Satoh’s contraction 92
4.16 MaxSAT-SAT and MaxSAT-ASP runtime comparison for Dalal’s revision 94
4.17 MaxSAT-SAT and MaxSAT-ASP runtime comparison for Satoh’s revision 94
4.18 MaxSAT-SAT and MaxSAT-ASP runtime comparison for Dalal’s contrac-

tion . 95
4.19 MaxSAT-SAT and MaxSAT-ASP runtime comparison for Satoh’s contrac-

tion . 95
4.20 Average total inference check runtime . 97
4.21 Average total model check runtime . 97

List of Tables

4.1 Composition of SAT instances used for data set generation 78
4.2 Number of inference checks with shortest runtime per encoding type . . 89
4.3 Number of model checks with shortest runtime per encoding type . . . 93
4.4 Number of compilations with shortest runtime per algorithm instance . 95
5.1 Minimum dalal distances of compiled belief change instances 99
5.2 Minimum and maximum number of determined Satoh minimal sets for

compiled belief change instances . 99
5.3 Inference and model check results for non-timed-out belief change in-

stances . 99

ix

List of Algorithms

3.1 Compilation algorithm scheme - Dalal . 25
3.2 Compilation algorithm scheme - Satoh . 26
3.3 Algorithm scheme for inference checks . 27
3.4 Algorithm scheme for model checks . 28
3.5 Creation of binary counter encoding . 31
3.6 Creation of exactly-k constraint encoding 32
3.7 Creation of minimal set constraint L({d1, ..., dn},minp

S(κ, µ)) 43

x

1 Introduction

The study of belief change addresses the question of how a rational agent should adjust
its beliefs, when facing a flux of new, potentially contradictory, information. Originally
emerging from within the field of philosophy, belief change was first picked up by
computer scientists of the database research field, studying the updating of databases
with new incoming data. More recently, the subject of belief change has also gained
considerable attention from the Artificial Intelligence (AI) research community in the
context of artificial rational agents operating in dynamic environments [FH18].

Two of the most important belief change operations are belief revision, defined as the
addition of a new belief to the current belief state while ensuring consistency, and belief
contraction, the renunciation of a belief. In the study of belief change it has become a
common practice to represent beliefs by propositional formulae and sets of beliefs as
conjunctions of such formulae. In propositional logic an interpretation with respect to
a set of atoms is a truth assignment to each of these atoms, and a model of a formula
α is an interpretation of the atoms in α such that α evaluates to true. Accordingly, a
model of a set of beliefs, represented by a conjunction, can be regarded as a possible
interpretation of the world that is in accordance with the held beliefs. Even though in
some cases, particularly when incoming information does not collide with already held
beliefs, belief change can be relatively simple, it is generally a non-trivial task as there
is usually more than one possible solution. Besides, held beliefs are oftentimes deeply
interwoven, making it difficult to remove specific beliefs or to resolve inconsistencies
emanating from newly added beliefs. As an example, let there be an agent with the
beliefs p and p → q, where p and q represent propositional atoms. The agent then re-
ceives the new information ¬q. Simply adding this new belief to the belief state does
not suffice, since q would still be implied. In order to remove the indirect belief q, the
agent can either give up the belief p or the belief p → q. To address these issues, sev-
eral distinct belief change operators have been proposed in the literature. Operators
provide rules for belief change operations and consequently make belief change repro-
ducible, rather than arbitrary. Existing operators can be divided into different families
of operators sharing a common idea or strategy. One such family is the family of dis-
tance-based operators. Operators of this kind conduct belief change by selecting the
new belief state’s models on the basis of distance between the old belief state’s models
and those of the new incoming information. Whereas for some application domains,
such as iterated change, the exact form of the new belief state (be it formulae or mod-
els) is important, for others it is not the precise new belief state that is of interest but
rather whether the new belief state implies a certain belief (inference check) or holds in
a certain interpretation of the world (model check) [HV91b].

While it is commonly agreed in the field of computer science that belief change
should be addressed from both a theoretical and practical perspective, the current re-
search situation is characterized by a clear imbalance to the former. This lack of practi-
cal research undertakings can be - at least partly - attributed to the high computational
complexity of inference and model checks for many of the belief change operators so

1

far proposed on theoretical grounds [EG92] [LS01]. One way of handling this high
complexity in applications is by employing a compilation-based approach. The con-
cept of compilation builds on the idea of dividing intractable problems into two parts,
of which one is known beforehand (fixed part) and the other is given at execution time
(varying part). The fixed part is preprocessed and encoded into a new data structure.
This process is referred to as compilation. The generated encoding is later leveraged in
the varying part’s solving. Applied to distance-based belief change, it is conceivable to
think of the revision or contraction as the fixed part and of the minimum distance de-
termination, which is essentially an optimization problem, as the preprocessing, whose
solution can be incorporated into an encoding of the new belief state, which can sub-
sequently be used for inference and model checks, constituting the varying part. The
efficiency of compilation approaches draws from the fact that the compilation process
needs to be executed only once for an infinite number of problems sharing a common
fixed part. Accordingly, the costs of each inference or model check consist of the costs
of the compilation process of the corresponding belief operation, divided by the total
number of inference and model checks, plus the costs of the actual check. Evidently, the
higher the number of such checks is, the more distributed the costs of compilation are,
and the more efficient is the overall approach. Even though it might not be the case al-
ways, there are many domains, e.g. within the field of AI, where knowledge bases need
to be queried several times, making investigations into the feasibility of using compila-
tion for belief change operations worthwhile. Konieczny et al. [KLM17] suggested such
a compilation approach for the family of topic-decomposable distance-based revision
operators. In their work they proposed a partial MaxSAT (partial Maximum Satisfia-
bility) encoding scheme for determining the minimum distance with a single call to a
solver as well as a SAT (Boolean Satisfiability Solving) encoding scheme of the revised
belief base that is query-equivalent to the new belief base and thus turns the inference
problem into a feasibility problem. They subsequently evaluated the performance of
their compilation process, showing that their suggested approach can successfully com-
pile non-trivial belief revision instances within reasonable time into query-equivalent
SAT encodings. The main downside of their work, however, is the lack of an investi-
gation into the performance of their belief revision encodings with regards to inference
and model checks.

This thesis aims to address the current practical research shortcomings in the field
of belief change by implementing and evaluating a compilation-founded belief change
application for inference and model checks, supporting four distinct distance-based
operators: the revision operators suggested by Dalal [Dal88] and Satoh [Sat88] and
their belief contraction counterparts. In the spirit of Konieczny et al. [KLM17], the
implementation follows a compilation-based approach by containing a preprocessing
step, that carries out the minimum distance determination by generating preprocess-
ing encodings and passing them to corresponding solvers, followed by the genera-
tion of encodings of the post-revision or post-contraction belief states for subsequent
model and inference checks. For each supported belief change operator, three distinct
preprocessing encoding schemes (partial MaxSAT, ASP, ILP) and three distinct belief

2

change encoding schemes (SAT, ASP, ILP) are proposed and implemented. To identify
the most efficient preprocessing and belief change encoding schemes for each opera-
tor, a thorough evaluation of the compilation phase and the belief change encodings’
performance in model and inference checks is carried out. Moreover, the application
is compared to a naive baseline implementation. The motivation behind implementing
and evaluating ASP- and ILP-based approaches in addition to partial MaxSAT/SAT,
suggested by Konieczny et al., lies in the fact that both are established technologies for
solving feasibility as well as optimization problems and therefore constitute promising
candidates for both the preprocessing step and the belief change compilation.

Due to Konieczny et al.’s sole focus on the compilation process, as well as their re-
striction to revision operators and partial MaxSAT/SAT technologies, this thesis can be
regarded as a complement to their work in a three-fold way:

1. by expanding their compilation-based approach to address additional operators,
including contraction operators

2. by making use of alternate technologies (ASP, ILP)

3. by evaluating the performance of belief change encodings, including the SAT-
based one suggested by Konieczny et al., with regards to inference and model
checks

Moreover, given the lack of further research on compilation-based approaches to be-
lief change, our application constitutes the first complete compilation-founded imple-
mentation of belief change, in that it supports not only the compilation process, but also
inference and model checks on the generated encodings.

The remaining part of this work is organized as follows. In Chapter 2 important terms
and concepts are defined and all relevant theoretical aspects of belief change presented.
Besides, Dalal’s and Satoh’s belief change operators are introduced and the technolo-
gies used in our application are described. The last section of the chapter elaborates
further on the shortcomings of current practical research in the area of computational
belief change, stressing the relevance of our work. This is followed by a detailed de-
scription of our application in Chapter 3, including illustrations of the implemented
algorithms, and definitions and proofs of the encoding schemes. Chapter 4 contains
the evaluation of our application, which consists of a runtime analysis of the compi-
lation phase, wherein the different preprocessing encoding schemes are compared, as
well as a comparison of the proposed belief change encoding schemes with regards
to inference and model checks. The chapter starts with a detailed description of the
experimental setup and the implemented naive approach and concludes with the pre-
sentation and discussion of the obtained results. Lastly, in Chapter 5 we summarize
our findings, point out shortcomings of our evaluation and conclude the thesis by sug-
gesting directives for future research activities.

3

2 Background

The aim of this chapter is to introduce the most important aspects of belief change and
the belief change operators proposed by Dalal and Satoh. The chapter begins with the
introduction of a set of formal preliminaries that are needed for a thorough understand-
ing of the former.

2.1 Formal preliminaries

A (propositional) atom is an expression that can be either true or false and that does not
contain any logical connectives. Throughout this paper, unless otherwise stated, we
represent atoms by lower case Latin letters, e.g.

p: The sky is blue.
q: Today is Monday.

The truth values true and false of propositional logic are sometimes denoted by 1 and
0, respectively.

A signature is a finite set of atoms.

A propositional formula is a combination of one or more atoms, using the usual
logical connectives ¬ (negation), ∨ (disjunction), ∧ (conjunction), → (implication) and
←→ (equivalence). Given a particular truth assignment to the atoms contained in a
formula, the formula can be either true or false. Unless otherwise stated, we denote
propositional formulae by lower case Greek letters, e.g.

α: ¬p
β: p ∨ q

A literal is an atom or the negation of an atom.

We denote the set of all atoms occurring in a given propositional formula α, i.e.
its signature, by V ar(α).

A propositional logic language L consists of the set of all propositional formulae
that can be formed from the language’s signature V ar(L).

An interpretation of a signature is a truth assignment to each atom of the signa-
ture and can be thought of as a bit vector. As an example, given the signature {α, β},
the corresponding set of possible interpretations is {10, 01, 11, 00}. Assuming that a
given signature consists of n atoms with n > 0, there consequently exist 2n different
interpretations for the given signature. An interpretation of a propositional formula γ
is an interpretation of V ar(γ).

4

An interpretation M that makes a formula α evaluate to true is called a model of
α, also denoted by the expression M |= α. The set of all models of α is expressed by
Mod(α).

In this work we use the notation value(I, x) to represent the truth value of the
atom x in a given interpretation I . Moreover, we use proj(I, V) to indicate the projec-
tion of a bit vector (interpretation) I over those variables that are contained in the set
V . The projection is an interpretation of the signature V . As an example, let us assume
a formula (α ∨ β) ∧ γ and a model M = 101. Let V = {β, γ}, then proj(M,V) = 01 and
value(M,γ) = 1. Furthermore, proj(N,V) = {proj(I1, V), ..., proj(In, V)} for a given
set of interpretations N = {I1, ..., In}. Note that proj(N,V) is a set and hence does not
contain any duplicates.

The expression α |= β states that satisfaction of α entails satisfaction of β, hence
Mod(α) ⊆ Mod(β). Moreover, two formulae γ and µ are logically equivalent, also
expressed by γ ≡ µ, when Mod(γ) = Mod(µ).

Given three propositional formulae α, β and γ with V ar(γ) ⊆ V ar(α) ⊆ V ar(β),
formulae α and β are query-equivalent iff β |= γ whenever α |= γ and β ̸|= γ whenever
α ̸|= γ. If α and β are query-equivalent, they are also equisatisfiable, i.e. both formulae
are either satisfiable or unsatisfiable at the same time.

A propositional formula in Conjunctive Normal Form (CNF) is a conjunction of
one or more disjunctions, where the disjunctions’s disjuncts are literals. Such dis-
junctions are commonly referred to as clauses. We denote the set of clauses of a CNF
formula β by C(β).

Every propositional formula can be converted to CNF. The naive approach is to
repeatedly apply the usual boolean transformation rules on the initial non-CNF
formula until a CNF formula is obtained. Despite the guaranteed success of this
approach, its downside is that it can result in an exponential increase in the number
of clauses. Hence, more efficient methods have been proposed in the literature. One
of them is the Tseitin transformation [Tse68], which results in a CNF formula that is
equisatisfiable to the initial formula with an only linear increase in the number of
clauses (linear in the size of the original formula). The Tseitin transformation approach
creates new auxiliary variables, which are part of the resulting CNF formula. The
number of these newly introduced variables is also linear in the size of the original
formula.

In this paper, a belief is represented by a propositional formula and an arbitrary
set of beliefs, also called a belief base, conforms to the logical conjunction of its members.

In contrast to belief bases, a belief set or belief theory A in a propositional logic

5

language L is a deductively closed set of beliefs, i.e. A = Cn(A), where Cn() is a
consequence operator defined in the following way: Cn(X) = {α ∈ L | X |= α}

2.2 Belief change

Belief change is concerned with the incorporation of new beliefs or information into a
rational agent’s existing belief state. While originally studied from a normative point
of view in the philosophical community, the subject has been addressed by researchers
from several distinct academic fields. Throughout the last decades belief change has re-
ceived particular attention from researchers in the field of computer science. Examples
of contexts, where insights gained from the study of belief change are of high relevance
to computer scientists, are database updating and cognitive robotics [DLRT05].

Perhaps the most famous contribution to the subject is the AGM framework estab-
lished in several papers by Carlos Alchourrón, Peter Gärdenfors and David Makinson
[AGM85] [Gä88] [GM88]. The AGM framework, which was named after its authors,
is based on the concept of belief sets and defines three distinct change operations ex-
ecutable on such sets - expansion, revision and contraction. It should be noted, that
the framework assumes any kind of Tarskian logic language and was hence not in-
tended specifically for the propositional logic case. However, since this paper is target-
ing propositional logic, the following description of the framework’s concepts is based
on the assumption of a propositional context.

Expansion is defined as the addition of a new belief to the existing belief set, which
is then closed under logical consequence.

Definition 2.1. Let K be a consistent belief set and µ a satisfiable proposition. If K+µ denotes
the expansion of K by µ, then K + µ = Cn(K ∪ {µ}) [AGM85].

Contraction, on the other hand, is the removal of a specific belief from the belief set.
It corresponds to switching from believing in a certain proposition to taking a neutral
stance on the same - neither believing it nor its negation.

Definition 2.2. A contraction operator −̇ is a function mapping a set of beliefs K to a subset of
K, that no longer entails the belief µ, that is to be removed [Han91]: (K−̇µ) ⊆ Kand(K−̇µ) ̸|=
µ

Revision ∔ extends expansion + by requiring the updated belief set to be logically
consistent and can be defined in terms of contraction via the Levi Identity.

Definition 2.3. Let K be a consistent belief set and µ a satisfiable proposition. If K∔µ denotes
the revision of K by µ, then K ∔ µ = Cn((K−̇¬µ) ∪ {µ}) [AGM85].

Along with definitions, the AGM framework also provides an axiomatic character-
ization for each proposed type of operation, one of the guiding principles being the
notion of minimal change, which describes the attempt to keep as many of the previous
beliefs as possible. The AGM postulates for belief revision are as follows, where K
denotes a belief set and µ and ϕ are propositions [AGM85]:

6

(∔1) K ∔ µ is a belief set (closure)
(∔2) µ ∈ K ∔ µ (success)
(∔3) K ∔ µ ⊆ K + µ (inclusion)
(∔4) If ¬µ ̸∈ K, then K ∔ µ = K + µ (vacuity)
(∔5) K ∔ µ is inconsistent only if µ is inconsistent (consistency)
(∔6) If µ ≡ ϕ, then K ∔ µ = K ∔ ϕ (preservation)
(∔7) K ∔ (µ ∧ ϕ) ⊆ (K ∔ µ) + ϕ
(∔8) If ¬ϕ ̸∈ K ∔ µ, then (K ∔ µ) + ϕ ⊆ K ∔ (µ ∧ ϕ)

For belief contraction, the AGM postulates are the following [AGM85]:

(−̇1) K −̇ µ is a belief set (closure)
(−̇2) K −̇ µ ⊆ K (inclusion)
(−̇3) If µ ̸∈ K, then K −̇ µ = K (vacuity)
(−̇4) If ̸|= µ, then µ ̸∈ K −̇ µ (success)
(−̇5) If µ ≡ ϕ, then K −̇ µ = K −̇ ϕ (preservation)
(−̇6) If µ ∈ K, then K ⊆ (K −̇ µ) + µ (recovery)
(−̇7) (K −̇ µ) ∩ (K −̇ ϕ) ⊆ K −̇ (µ ∧ ϕ)
(−̇8) If µ ̸∈ K −̇ (µ ∧ ϕ), then K −̇ (µ ∧ ϕ) ⊆ K −̇ µ

(∔1) - (∔6) and (−̇1) - (−̇6) are called basic revision postulates and basic contraction postu-
lates, respectively, whereas (∔7) and (∔8), as well as (−̇7) and (−̇8), are supplementary
postulates, regulating the behaviour of belief change operators with regards to conjunc-
tions [AGM85]. By defining postulates for belief change operations, the AGM frame-
work has essentially laid out the benchmarks for evaluating change operators.

In addition to the AGM framework, many alternate approaches to belief change -
some of them as a direct consequence of criticism towards AGM concepts - have been
proposed, including alternate representations of belief states (belief bases), postulates
for operations on those [KM91] [CKM17], and new types of change operations, such as
update [KM92] or iterated change [DP97].

2.3 Belief bases

A common criticism of the AGM framework is its reliance on belief sets and the cor-
responding assumption, that the agent is a perfect logical reasoner. Belief sets do not
distinguish between actually held beliefs and those that were merely derived [Neb89].
If an agent has the beliefs ’Earth is spherical’ and ’If earth is spherical, the equator is hotter
than the poles’, then, due to the consequence operator, it also believes that ’The equator
is hotter than the poles’. If at a later point, the agent becomes undecided with regards to
the shape of the earth and thus relinquishes the former belief that ’Earth is spherical’ -
corresponding to the operation of contraction - the derived belief ’The equator is hotter
than the poles’ might nevertheless remain in the belief set. Intuitively, this implicit be-
lief should have no standing of its own and should be discarded once the belief it was

7

derived from is removed.
Apart from failing to make the important distinction between explicit and implicit

beliefs, belief sets are a mathematical idealisation useful to the theoretical study of belief
change, but turn out to be a hindrance in computational approaches. The reason for this
lies in the difficulty of computing the logical closure of a set of propositions, combined
with time and memory limitations of real-world agents.

Part of the criticism of belief sets was the introduction of belief bases. Belief bases
contain an agent’s explicit beliefs and are not closed under logical consequence. While
the agent is still logically committed to all propositions that can be derived from its
explicit beliefs, change operations are conducted on the belief base. As a consequence,
implicit beliefs are relinquished as soon as they lose their support in the belief base
[Han99]. A further advantage of representing beliefs as belief bases, especially finite
ones, is that they allow for a computational implementation of belief change by no
longer requiring the computation of logical closure.

Because of the AGM postulates’ restriction to operations on belief sets, Katsuno and
Mendelzon [KM91] have elaborated postulates for belief base revision and described,
how these can be translated into the corresponding AGM postulates. Let κ and λ be
consistent belief bases (note that κ and λ each correspond to a conjunction of their
set members) and µ and ϕ be satisfiable propositional formulae representing normal
statements. The belief base revision postulates proposed by Katsuno and Mendelzon
can then be characterized as:

(R1) κ∔ µ implies µ
(R2) If κ ∧ µ is satisfiable, then κ∔ µ ≡ κ ∧ µ
(R3) If µ is satisfiable, then κ∔ µ is also satisfiable
(R4) If κ ≡ λ and µ ≡ ϕ, then κ∔ µ ≡ λ∔ ϕ
(R5) (κ∔ µ) ∧ ϕ implies κ∔ (µ ∧ ϕ)
(R6) If (κ∔ µ) ∧ ϕ is satisfiable, then κ∔ (µ ∧ ϕ) implies (κ∔ µ) ∧ ϕ

The authors have shown that, whenever a revision operator satisfies postulates (R1) -
(R4) on belief bases, then its corresponding revision operator on belief sets satisfies the
AGM postulates (∔1) - (∔6), with the condition being both necessary and sufficient.
Furthermore, (R5) and (R6) correspond to (∔7) and (∔8) respectively [KM91].

Caridroit et al. [CKM17] have further extended the work of Katsuno and Mendelzon
by proposing the following postulates for belief base contraction:

(C1) κ |= κ −̇ µ
(C2) If κ ̸|= µ, then κ −̇ µ |= κ
(C3) If κ −̇ µ |= µ, then µ is a tautology
(C4) (κ −̇ µ) ∧ µ |= κ
(C5) If κ ≡ λ and µ ≡ ϕ, then κ −̇ µ ≡ λ −̇ ϕ
(C6) κ −̇ (µ ∧ ϕ) |= (κ −̇ µ) ∨ (κ −̇ ϕ)
(C7) If κ −̇ (µ ∧ ϕ) ̸|= µ, then κ −̇ µ |= κ −̇ (µ ∧ ϕ)

8

In their work they have demonstrated that the satisfaction of (C1) - (C7) by a contraction
operator on belief bases is a necessary and sufficient condition for the satisfaction of
AGM postulates (−̇1) - (−̇8) by its corresponding contraction operator on belief sets
[CKM17].

2.4 Syntax-based vs. model-theoretic change operators

When analyzing belief base oriented change operators proposed in the literature,
two main categories can be identified: syntax-based and model-theoretic operators.
Whereas the former operate directly on the belief base’s formulae, the latter consider
its possible worlds, i.e. its models [HV91a]. Specific syntax-based operators were,
among others, proposed by Fagin et al. [FUV83], Nebel [Neb89] and Ginsberg [Gin86].
Common to all of them is that each describes some kind of selection mechanism for
choosing those sentences of the original belief base, that should be discarded, in order
to obtain a consistent belief change result. An often-emphasized downside of syntax-
based operators is the fact that conducting the same belief change operation on logically
equivalent, yet syntactically different, belief bases does not necessarily lead to logically
equivalent results. This phenomenon is commonly referred to as syntax-dependence
and regarded as an undesirable property by several researchers in the belief change
field, such as Dalal [Dal88], Winslett [Win88] and Katsuno and Mendelzon [KM89]. By
contrast, model-theoretic operators examine the models of the belief base and of the
new information and suggest a method for selecting those models, that will ultimately
represent the updated belief state. They were proposed as part of an initiative to follow
Dalal’s principle of ’Irrelevance of Syntax’, which states that, given two belief bases κ
and λ, that are logically equivalent (κ ≡ λ), and given two logically equivalent incom-
ing pieces of information α and β (α ≡ β), the following has to hold: κ ∔ α ≡ λ ∔ β
[Dal88].

Let κ = {p, q} and λ = {p, p ←→ q} be two consistent belief bases. Even though
syntactically distinct, they have the same logical meaning since Mod(κ) = Mod(λ).
Let us assume that a new belief α = ¬p has to be incorporated into both κ and λ,
while maintaining consistency, which corresponds to the operation of revision. After
applying a syntax-based revision operator, the resulting belief bases κ ∔ α and λ ∔ α
might be distinct, as will be shown in the following. Consider an arbitrary syntax-based
revision operator, that selects beliefs that are contradictory to the incoming belief and
that should hence be given up, aiming to keep as many old beliefs as possible. Applying
this operator results in the revised belief bases κ∔α = {¬p, q} and λ∔α = {¬p, p←→ q}
with Mod(κ ∔ α) ̸= Mod(λ ∔ α). On the other hand, applying any kind of model-
theoretic operator results in Mod(κ ∔ α) = Mod(λ ∔ α) due to Mod(κ) = Mod(λ).
In the subsequent two sections, two specific model-theoretic approaches - the revision
operators proposed by Dalal [Dal88] and Satoh [Sat88] - are introduced.

9

2.5 Dalal’s revision operator

One of the most well-known revision operators for belief bases is the model-based op-
erator proposed by Dalal in his 1988 paper ’Investigations Into a Theory of Knowl-
edge Base Revision’ [Dal88]. Apart from following the principle of Irrelevance of Syntax,
Dalal’s operator also abides by his principle of Persistence of Prior Knowledge, which con-
forms to the idea of minimal change in the old knowledge base. In order to quantify
change, the Hamming distance, which is a metric for comparing bit vectors of equal
size, is used. According to this distance, the less bits differ between two vectors, the
closer the vectors are to each other. Dalal uses the Hamming metric for quantifying dis-
tance between propositional interpretations, which can be represented by bit vectors as
already stated in Section 2.1.

Definition 2.4. Given two interpretations X and Y for a given propositional signature, the
number of atoms, that differ in terms of their truth assignments in X and Y, is called the Dalal
distance between X and Y and is denoted by dD(X,Y) [Dal88].

As an example, given a signature {p, q}, the models of the belief base κ = {p ∨ q} can
be represented by the bit vectors 10, 01 and 11, hence Mod(κ) = {10, 01, 11}. The Dalal
distance between models 10 and 01 is then 2, whereas the models 01 and 11 have a Dalal
distance of 1. Analogously, the Dalal distance between two identical interpretations is
0.

The revision operator proposed by Dalal first determines the Dalal distance between
each model of the belief base formula and each model of the revision formula. The
smallest of all determined Dalal distance values is then called minimum Dalal distance
and is denoted by dmin(α, β) for a belief base formula α and a revision formula β.
Dalal’s operator finally selects exactly those models of the revision formula as the mod-
els of the new belief base, that have the determined minimum Dalal distance to at least
one model of the belief base formula. Definition 2.5 shows a formal characterization of
the operator.

Definition 2.5. Given a belief base κ and a revision formula µ, Dalal’s revision operator ∔D

selects the models of the belief base obtained from a revision operation as follows [Dal88]

Mod(κ∔D µ) = {M |M ∈Mod(µ), ∃Mκ ∈Mod(κ)

s.t. dD(Mκ,M) = dmin(κ, µ)}

where dmin(κ, µ) = min{dD(Mκ,Mµ) |Mκ ∈Mod(κ) and Mµ ∈Mod(µ)}.

The operator satisfies all of Katsuno and Mendelzon’s belief base revision postulates
and accordingly all AGM revision postulates [KM91]. The below example shows its
execution on specific belief base and revision formulae.

Example 2.1. Let κ = a∧(a∨d)∧b∧(¬b∨c) be a belief base formula and µ = ¬a∧¬c a revision
formula. We obtain Mod(κ) = {1110, 1111} and Mod(µ) = {0100, 0101, 0000, 0001} for sig-
nature {a, b, c, d}. After comparing each model of κ to each model of µ we get the following set of

10

Dalal distance values: {2, 3, 4} Since min{2, 3, 4} = 2, we obtain dmin(κ, µ) = 2. Finally, as
the only model comparisons with a Dalal distance of 2 are dD(1110, 0100) and dD(1111, 0101),
we obtain Mod(κ∔D µ) = {0100, 0101}.

In the trivial case, where κ and µ are consistent (Mod(κ) ∩Mod(µ) ̸= ∅), the min-
imum Dalal distance dmin(κ, µ) is of value 0 and as a consequence Mod(κ ∔D µ) =
Mod(κ) ∩Mod(µ). For a syntactic representation of the resulting belief base, one can
choose any arbitrary set of formulae, whose models are identical to the ones obtained
through Dalal’s operator.

Due to Dalal’s interpretation of minimal change as the closeness between models in
terms of the Hamming distance, his operator can be classified under the category of
cardinality-based operators. Another - quite similar - belief change operator of this
category was also suggested by Forbus [For89].

2.6 Satoh’s revision operator

In contrast to Dalal’s cardinality-based revision operator, Satoh [Sat88] uses set inclu-
sion as a means to quantify distance. His proposed revision operator, which he calls
Minimal Belief Revision, can therefore be categorized as a set-inclusion- or set-contain-
ment-based operator. The operator suggested by Winslett in [Win88] can also be allo-
cated to this category. Whereas Satoh originally defined his revision operator for the
first-order case, it is approached from within a propositional context in the following.
Before defining Satoh’s operator, we first need to introduce the terms difference set and
minimal set via the below formal definitions and examples.

Definition 2.6. Given two interpretations X and Y of a signature, the set of propositional
atoms, that have distinct truth assignments in X and Y, is called the difference set of X and Y,
denoted by dS(X,Y) [Sat88].

Example 2.2. Let V be a signature with V = {p, q} and A, B and C interpretations of V with
A = 10, B = 00 and C = 11. Then dS(A,B) = {p}, dS(B,C) = {p, q} and dS(B,B) = ∅.

Definition 2.7. A member set m of a set A of sets is called a minimal set, if A contains no
proper subset of m. The set containing all minimal sets of A is denoted by minS(A).

Note that a set B is a proper subset of a set A, if A and B are not equal and B does
not contain any elements, that are not in A. The empty set ∅ is a proper subset of every
non-empty set.

Example 2.3. Let A = {{p}, {q}, {p, q, r}, {q, r}} be a set of sets, then minS(A) =
{{p}, {q}}. Further, let B = {{p}, {q}, {p, q, r}, {q, r}, ∅}, then minS(B) = {∅}.

For Satoh the models of a revised belief base are precisely those models of the revision
formula, for which there exists a model of the old belief base, such that the difference
set between both models is a minimal set of the set of all difference sets. Formally, his
operator can be defined as shown below.

11

Definition 2.8. Given a belief base κ and a revision formula µ, Satoh’s revision operator ∔S

selects the models of the belief base obtained from a revision operation as follows [Sat88] [KM91]

Mod(κ∔S µ) = {M |M ∈Mod(µ), ∃Mκ ∈Mod(κ)

s.t. dS(Mκ,M) ∈ minS(DS)}

where DS = {dS(Mκ,Mµ) |Mκ ∈Mod(κ), Mµ ∈Mod(µ)}.

Satoh’s revision operator satisfies the belief base revision postulates (R1) - (R5), but
not (R6) [KM91]. Accordingly, it’s corresponding belief set revision operator satisfies
AGM postulates (∔1) - (∔7), but not (∔8). Example 2.4 demonstrates the application of
Satoh’s revision operator on a specific belief revision instance.

Example 2.4. Let κ = a ∧ b ∧ (¬b ∨ c) ∧ (c ∨ d) ∧ c be a belief base formula and
µ = ¬c a revision formula. We obtain Mod(κ) = {1110, 1111} and Mod(µ) =
{1100, 1101, 1000, 1001, 0100, 0101, 0000, 0001} for signature {a, b, c, d}. Further, the set
of difference sets obtained from comparing each model of κ to each model of µ is DS =
{{c}, {c, d}, {b, c}, {b, c, d}, {a, c}, {a, c, d}, {a, b, c}, {a, b, c, d}} and minS(DS) = {{c}}.
Since dS(1110, 1100) = {c} and dS(1111, 1101) = {c} are the only difference sets {c}, we
obtain Mod(κ∔S µ) = {1100, 1101}.

It follows from Definition 2.5 and Definition 2.8, that both Dalal and Satoh select
models of the change formula, that are closest to models of the belief base, with the
difference between the two approaches being their interpretation of distance. Note that
in the case that κ and µ are consistent, i.e. Mod(κ) ∩Mod(µ) ̸= ∅, Dalal’s and Satoh’s
revision operators lead to the same result. This is because in the case of consistency, the
minimum Dalal distance is 0, hence Mod(κ∔D µ) = Mod(κ)∩Mod(µ), and Satoh’s set
of minimal sets contains only the empty set ∅, thus Mod(κ∔S µ) = Mod(κ) ∩Mod(µ).

2.7 Harper Identity

Analogous to the Levi Identity, which was suggested by Levi [Lev77] in 1977 and which
defines belief revision in terms of belief contraction, Harper [Har76] proposed a con-
struction of contraction in terms of revision, referred to as Harper Identity. According to
Harper, a belief q should be a member of a contraction B−̇p (B denoting a set of beliefs
and p a belief) only if q ∈ B and q ∈ B ∔ ¬p hold.

Definition 2.9. For each revision operator ∔, there is an associated contraction operator −̇,
defined as follows

B −̇ p = B ∩B ∔ ¬p

where B a set of beliefs and p a belief [Har76].

Applying the Harper Identity to the propositional logic case and belief bases, the sub-
sequent relation between contraction and revision is obtained

κ −̇ µ = κ ∨ (κ∔ ¬µ) (1)

12

where κ is a belief base (a conjunction of its member formulae) and µ a propositional
formula. In terms of models Equation 1 can be translated to

Mod(κ −̇ µ) = Mod(κ) ∪Mod(κ∔ ¬µ) (2)

From equations 1 and 2 the nature of contractions becomes evident, namely the adop-
tion of a neutral position towards a previously believed proposition.

The Harper Identity allows for the definition of the belief base contraction operators
−̇D and −̇S from Dalal’s and Satoh’s revision operators.

Definition 2.10. The contraction operator −̇D obtained from Dalal’s revision operator via the
Harper identity is called Dalal’s contraction operator and is defined as

κ −̇D µ = κ ∨ (κ∔D ¬µ)

and
Mod(κ −̇D µ) = Mod(κ) ∪Mod(κ∔D ¬µ)

Definition 2.11. The contraction operator −̇S obtained from Satoh’s revision operator via the
Harper Identity is called Satoh’s contraction operator and is defined as

κ −̇S µ = κ ∨ (κ∔S ¬µ)

and
Mod(κ −̇S µ) = Mod(κ) ∪Mod(κ∔S ¬µ)

Caridroit et al. [CKM17] have elaborated, that a contraction operator, that was con-
structed from a revision operator via the Harper Identity, satisfies postulates (C1)-(C5)
if the underlying revision operator satisfies postulates (R1)-(R4); and further, that (C6)
is satisfied if (R5) is and (C7) is satisfied if (R6) is. Correspondingly, −̇D fulfills contrac-
tion postulates (C1)-(C7) since (R1)-(R6) hold for ∔D and −̇S satisfies (C1)-(C6) since
∔S abides by (R1)-(R5).

2.8 Technologies

Each of the subsequent three sections provides an introduction to one of the following
technologies: SAT, ILP, and ASP.

2.8.1 Boolean satisfiability solving (SAT)

A SAT solver is a program, that is able to solve instances of the NP-complete Boolean
satisfiability problem. [BHvMW09] Given a propositional formula, the Boolean satisfiabil-
ity problem consists of determining whether there is a truth assignment to the contained
variables (a model), so that the formula evaluates to true. Most SAT solvers do not
only output, whether a formula is satisfiable, but also provide a possible solution, i.e.
a model of the formula, in the case of satisfiability. A common input format to SAT

13

solvers is the DIMACS format, where variables are represented by consecutive natural
numbers and the formula is in CNF (Conjunctive Normal Form). In each clause of the
formula the logical connective ∨ between literals is removed and a ’0’ is attached to
the end to mark the end of the clause. Usually, each line contains exactly one clause.
Negation is represented by −. Further, comment lines begin with a ’c’ and there is a
so-called problem line of the form

p cnf variables clauses

at the top of each DIMACS instance, where variables is the number of distinct variables
(i.e. the highest variable) occurring within the encoding and clauses specifies the total
number of clauses.

Example 2.5. The DIMACS instance of formula (¬α ∨ β) ∧ (β ∨ ¬γ) looks as follows:

p cnf 3 2
-1 2 0
2 -3 0

The given SAT instance is satisfiable, with one solution being the model ’-1 -2 -3’.

Apart from regular SAT solvers, as described above, there are a few special kinds of
SAT solvers, such as MaxSAT and partial MaxSAT solvers. A MaxSAT solver solves
instances of the Maximum Satisfiability Problem, which is a generalization of the Boolean
satisfiability problem. It corresponds to finding the maximum number of clauses, that can
be satisfied by any truth assignment, given a CNF formula. By contrast, a Partial Max-
imum Satisfiability Problem, solvable by a partial MaxSAT solver, makes a distinction
between hard clauses, that need to be satisfied always, and soft clauses, whose satis-
fiability is optional and which are thus the target of maximization. A common format
used for such encodings is the WDIMACS format. The format is similar to the DIMACS
format, but the first number of each line indicates the clause’s weight, followed by the
actual clause and - as usual - a closing 0. To distinguish hard clauses from soft clauses,
all hard clauses are assigned the same weight, which must be greater than the sum of
all soft clauses’ weights. The problem line in WDIMACS is of the form

p wcnf variables clauses maxWeight

with variables and clauses defined as in the DIMACS format and maxWeight being the
weight assigned to the hard clauses.

Example 2.6. Assuming that the first conjunct is a hard clause and the second one a soft clause,
the WDIMACS instance of (¬α ∨ β) ∧ (β ∨ ¬γ) looks as follows:

p wcnf 3 2 2
2 -1 2 0
1 2 -3 0

An optimal solution is ’-1 -2 -3’, as it satisfies both the soft and the hard clause.

14

Further information on the WDIMACS format can be found e.g. in the MaxHS solver’s
online documentation 1.

2.8.2 Integer linear programming (ILP)

Integer Linear Programming (ILP) deals with the solving of integer linear programs - pro-
grams where all unknowns are integers and which consist of linear constraints and an
(optional) linear objective function. [Sch86] A solution to an ILP program is a value
assignment to all its variables. While the exact syntax of an ILP program depends on
the used ILP solver, a simple example of such a program is

minimize x+ y + z

subject to x, y, z ∈ N0

x+ z ≥ 5

with one solution being x = 5, y = 0 and z = 0. The first line is a linear objective
function, aiming at minimizing the sum of variables, whereas the second line defines
the type of variables and the third one constitutes a linear constraint. The special case,
where all unknowns are binary, is referred to as 0-1 Integer Linear Programming. All
ILP encodings suggested in this work are 0-1 ILP problems. Throughout this paper we
denote the definition of ILP binary variables by the expression defb(x), where x is either
a variable or set of variables.

Every propositional CNF formula α can be translated into a corresponding ILP pro-
gram by applying the following rules [LZD04]:

• For every atom ai in α, with 1 ≤ i ≤ |V ar(α)|, a corresponding ILP binary variable
bi is defined. Values 0 and 1 represent the truth values false and true, respectively.

• Every clause γ of α is translated into an ILP constraint. Translation happens by
creating an inequality equation of the form ≥where the left side is a sum and the
right side is 1. The sum on the equation’s left is the sum of all variables bi whose
corresponding variables ai occur in γ as positive literals and the expressions (1−
bi) for those variables bi whose corresponding variables ai occur in γ as negative
literals. In case the clause consists of exactly one literal, an equality equation can
be used instead, setting the corresponding variable bi either equal to 0 (in case of
a negative literal) or equal to 1 (in case of a positive literal). We denote the set of
ILP constraints representing a CNF formula α by con(α,X), where X is the set of
ILP binary variables, that represent the atoms in α.

Example 2.7. The CNF formula µ = (a∨¬b∨ c)∧ b∧ (¬b∨¬c) can be translated into below
ILP encoding, after creating the corresponding ILP binary variables b1, b2 and b3:

constraint 1: b1 + (1 - b2) + b3 ≥ 1
constraint 2: b2 = 1
constraint 3: (1 - b2) + (1 - b3) ≥ 1

1http://www.maxhs.org/docs/wdimacs.html

15

After applying the usual transformation rules for inequality equations, we alternatively obtain:

constraint 1: b1 - b2 + b3 ≥ 0
constraint 2: b2 = 1
constraint 3: -b2 - b3 ≥ −1

The set of solutions to a formula’s ILP program corresponds to the formula’s set of
models.

2.8.3 Answer set programming (ASP)

Answer Set Programming (ASP) addresses the solution of complex combinatorial prob-
lems, taking a declarative approach to problem solving. [Lif19] Instead of writing an al-
gorithm for finding correct solutions (imperative programming), solutions to a problem
instance are described by an ASP program, using a declarative modeling language. The
basic building blocks of ASP logic programs are rules, facts and integrity constraints.
Rules are of the form

head :− body.

and always end with a dot. The head consists of an atom, whereas the body is of
the form l1, ...ln, where each li (1 ≤ i ≤ n) is a literal and commas are read as and.
While ASP programs do support classical negation (−), they also support the concept
of default negation, which is expressed by placing a not in front of an atom. The symbol
:− can be interpreted as an if. Accordingly, a rule states that if the body is fulfilled,
then the head must also be true; one also says that the head is derived. As an example,
consider the following rule, which states that atom a3 must be fulfilled, if atoms a0 and
a2 are fulfilled and a1 is not.

a3 :− a0, not a1, a2.

A rule without a body is called a fact, where the symbol :− is omitted. As the name
suggests, a fact describes something that must always be true. The below fact states
that atom a4 must be fulfilled.

a4.

In contrast, a rule without a head is an integrity constraint, as it describes a situation that
cannot occur. Below integrity constraint expresses that it cannot be the case that atom
a6 is fulfilled and a5 is not.

:− not a5, a6.

In this work we make use of first-order ASP concepts and all our atoms are there-
fore predicate atoms. A predicate atom is of the form p(t1, ..., tn) where p is a string
starting with a lowercase letter and is essentially the name of the predicate. Inside the
brackets, there are one or more terms as arguments. A term can be e.g. a constant (start-
ing with lowercase letter), an integer, a string (enclosed in double quotes), a variable
(starting with uppercase letter) or another predicate atom. Whereas constants, integers

16

and strings represent themselves, variables are placeholders for all variable-free terms
within the logic program. As an example, consider below logic program.

bird(tweety).

dog(snoopy).

f ly(X) :− bird(X).

The program consists of two facts and a rule. There are three distinct predicates, namely
bird/1, dog/1 and fly/1 (/ followed by a number indicates the arity of a predicate), as
well as two constants tweety and snoopy and the variable X . As mentioned above, a
variable is a placeholder for all variable-free terms within the program. Thus, for this
specific example, X is a placeholder for tweety, snoopy, bird(tweety) and dog(snoopy).
Since the body of the rule is only fulfilled for X = tweety, the solution to the program
contains the atom fly(tweety) (in addition to bird(tweety) and dog(snoopy)), but not
fly(snoopy), fly(bird(tweety)) or fly(dog(snoopy)).

Computer programs that are able to solve ASP logic programs are called answer set
solvers. An answer set solver returns one or more so-called answer sets (also referred to
as stable models) to a given logic program, which are essentially sets of atoms, whose
satisfaction can be acyclically derived from the programs’s rules, facts and integrity
constraints. An atom is thus considered to be true if it is contained in the answer set and
false otherwise. A logic program containing any kind of contradiction, e.g. derivation
that an atom is satisfied and unsatisfied at the same time, does not have any answer
sets.

Apart from the so far defined concepts, there are further expressions that can be used
in logic programs. The list of all syntax constructs supported within an ASP program
varies with different answer set solvers and their supported ASP dialects. In the follow-
ing we limit ourselves to introducing those additional constructs, that are used within
the ASP encodings proposed in Chapter 3. Choice rules are of the form

{l1; ...; ln}.

and tell an answer set solver to choose arbitrarily, which of the contained literals should
be fulfilled by an answer set. Such a rule allows for a solution that satisfies none, some
or all of the literals. As an example, a program consisting solely of the choice rule

{bird(tweety); dog(snoopy)}.

has four different answer sets: the empty set, the set containing only bird(tweety), the
set containing only dog(snoopy) and the set containing both literals. Choice rules can
also be turned into cardinality constraints, that set a lower (l) or upper (u) limit to the
number of satisfied literals:

l {l1; ...; ln} u.
Lower and upper limits can either be used in combination or alone. An example for a
cardinality constraint, that uses both, is

1{bird(tweety); dog(snoopy); dog(daisy)}2.

17

which states that at least 1 and at most 2 of the literals within the curly brackets are
allowed to be satisfied at the same time. Interval operators (..) can be used to create
several instances of a predicate in just one line. E.g. the line

isInteger(1..3).

is automatically expanded by an answer set solver to

isInteger(1).

isInteger(2).

isInteger(3).

Further, the aggregate #count can be used to count the number of elements in a given
set. The aggregate is of the form

#count{t1, ..., tn : l1, ..., ln}

where ti (1 ≤ i ≤ n) are terms and lj (1 ≤ j ≤ n) literals. The operator : can be
interpreted as | in the context of set definitions, i.e. the set to be counted contains those
terms ti, for which the literals lj are satisfied. Aggregates are often used along with
comparisons (=, ! =, <, >, ≤, ≥). Consider below logic program

{bird(tweety); bird(charlie)}.
dog(snoopy).

:− #count{X : bird(X)} = 1.

with answer sets {dog(snoopy)} and {dog(snoopy), bird(tweety), bird(charlie)}. The
first line states that the solver can choose arbitrarily which of bird(tweety) and
bird(charlie) are in the answer set. Line 2 is a fact and line 3 an integrity constraint,
which states that the number of terms, for which bird(X) is satisfied cannot be 1. Ac-
cordingly, the only two options are to either conclude that neither tweety nor charlie
are birds or to conclude that both are birds. Similarly to ILP programs, there are opti-
mization constructs, such as #minimize, that tell the answer set solver to look for an
optimal answer set. In our ASP encodings we only make use of minimization, which
has the format

#minimize{w, t1, ..., tn : l1, ..., ln}.

where w is a numerical value (a weight) assigned to each pair t1, ..., tn, for which the lit-
erals l1, ..., ln hold. This statement makes the answer set solver determine an answer set,
in which the sum of all weights is smallest. As can be seen, the minimization construct
is very similar to the aggregate construct explained above, with the only difference
being the additional weight specification. Finally, we introduce the #show construct.
Oftentimes, only a subset of the atoms of an answer set are relevant as a solution to a
given logic problem, while the remaining ones can be ignored. By using a #show con-
struct an answer set solver’s output can be restricted to only a specific type of atoms to

18

improve readability. When adding the expression #show bird/1. to the logic program
used above

{bird(tweety); bird(charlie)}.
dog(snoopy).

:− #count{X : bird(X)} = 1.

#show bird/1.

the printed answer sets are now {} and {bird(tweety), bird(charlie)}. Note that #show
only influences which atoms are printed by the answer set solver, not the actual content
of the answer sets.

Now that we have defined all ASP constructs, that are required for the later intro-
duced ASP encodings, we have a short look at how a model of a propositional CNF for-
mula α can be determined via an ASP logic program. Let us assume that α = (a∨¬b)∧a.
Firstly, we need to establish how to represent the atoms a and b in the logic program.
While there are many different options, we represent them by integers. Hence, let a be
represented by 1 and let b be represented by 2. Next, we define a predicate t/1, which
denotes that the predicate’s argument (here always an integer representing a proposi-
tional atom) is true. The first line of our logic program then looks as follows:

{t(1..2)}.

This choice rule, that uses the interval operator, tells the program that either none,
one or all of the predicate atoms t(1) and t(2) can be in the answer set. We can then
express the first clause of α by negating all literals and translating them into an integrity
constraint:

:− not t(1), t(2).

This constraint ensures that it cannot be the case that t(2) is in the answer set (i.e. b is
true) whereas t(1) is not (i.e. a is false), which is exactly what the clause a ∨ ¬b states.
Analogously, we can translate the second clause of α into

:− not t(1).

The final logic program then has the answer sets {t(1)} and {t(1), t(2)}, which corre-
spond to the models of α.

2.9 Related work

As has become evident in the preceding sections, belief change has been studied
widely from a theoretical perspective, including the proposition of several specific be-
lief change operators and their axiomatic analysis. By contrast, there exists only a quite
limited number of contributions targeting actual implementations of such operators.
This might be, to a great extent, due to the computational intractability of the proposed
belief change operators. In 1992, Eiter and Gottlob [EG92] conducted a study of the

19

computational costs of several distinct revision and update operators in the context
of propositional logic, concluding that complexion-wise most of the operators are lo-
cated on the second level of the polynomial hierarchy. Precisely, the authors analyzed
the complexity of conducting inference checks, which correspond to the problem of
deciding whether K ∔ µ |= ϕ holds, with K being a belief base and µ and ϕ being
propositional sentences. It was determined, that an inference check for Dalal’s revi-
sion operator is complete for the complexity class ∆P

2 [log n] = PNP [O(log n)], which is
a subclass of ∆P

2 = PNP , and can hence be executed in polynomial time by a loga-
rithmic number of calls to an NP-oracle. By contrast, an inference check using Satoh’s
revision operator is computationally even more complex. It is ΠP

2 -complete and there-
fore located on the second level of the polynomial hierarchy [EG92]. With regards to
model checking, i.e. deciding whether M |= K∔µ holds for an interpretation M , it was
shown by Liberatore and Schaerf [LS01] that Dalal’s revision operator is of complexity
PNP [O(log n)]-complete, whereas Satoh’s operator is ΣP

2 -complete.
To address the high computational complexity of inference checks for the family

of so-called topic-decomposable distance-based revision operators, with Dalal’s revi-
sion operator ∔D being a member of the same, Konieczny et al. [KLM17] suggested
a compilation-based approach to belief revision. The concept of compilation was first
proposed and analyzed by Liberatore [Lib98] and consists in dividing intractable prob-
lems into two parts, of which one is known beforehand (fixed part) and the other at
execution time (varying part). As part of the compilation process, the fixed part is then
preprocessed and compiled into a data structure, that can later be leveraged for the
solving of the varying part. As an example, let the examination of whether K ∔ µ |= α
and K ∔ µ |= β hold, be two intractable problems. Each problem can be divided into
a fixed part - the revision - and a varying part - the inference check. Applying the idea
of compilation, the revision can be preprocessed and then compiled into an encoding,
that facilitates the subsequent inference check. Since both problems have a common
fixed part (K∔µ), the compilation needs to be carried out only once. Konieczny et al.’s
proposal is based on first determining the minimum Dalal distance (preprocessing), us-
ing a partial MaxSAT optimization encoding and a call to a partial MaxSAT solver, and
thereafter generating a SAT encoding of the new belief base, incorporating the obtained
minimum Dalal distance, that is query-equivalent to the revised belief base and thus re-
duces the complexity of inference checks to coNP-completeness. Their main motivation
lies in leveraging the power of SAT solvers, which have in recent years become a pow-
erful tool for solving feasibility problems. Whereas the authors conducted a thorough
performance analysis of the compilation process, the biggest downside of their work is
the lack of an investigation into the performance of the suggested encodings with re-
gards to inference and model checks. Furthermore, Konieczny et al. do neither address
belief contraction in their work, nor do they consider alternate kinds of operators, such
as e.g. set-containment-based ones.

While there are further contributions, that leverage SAT and ASP technologies for
implementing belief change operators, examples being the works by Aravanis [Ara22],
Delgrande et al. [DLST07], Grégoire et al. [GLM14], Hunter and Agapeyev [HA19],

20

and Sérayet et al. [SDP09], to the best of our knowledge, none of them applies the idea
of compilation. The work by Hunter and Agapeyev can be further critizised because of
its reliance on parallelization to speed up an essentially naive implementation of belief
revision. Further, existing implementations usually focus on either belief revision or
contraction (see e.g. [Ara22], [GLM14], [HA19], [KLM17], [SDP09]), or they consider
operators of only one specific family (see e.g. [Ara22], [DLST07], [HA19], [KLM17]),
with AGM and cardinality-based operators, such as Dalal’s, being the most popular
ones. Besides, there seems to be, as of now, no work targeting an implementation of
Satoh’s operator.

Taking into account the described research situation, our thesis constitutes an impor-
tant contribution to the field of practical belief change in two main ways. The first one
is regarding the application of the concept of compilation to belief change implementa-
tions, which is a so far largely neglected approach. Considering that the only currently
existing compilation-based approach to belief change, namely the one by Konieczny et
al., focuses entirely on the encoding process as such, our application, which also im-
plements inference and model checks on the generated encodings, is the first complete,
compilation-founded implementation of belief change. Moreover, our work comple-
ments the one by Konieczny et al. by conducting a thorough evaluation of the belief
bases’ encodings in inference and model checks, allowing us to collect some insights
into how efficient the proposed compilation-based approach actually is. The second
one concerns the fact that both belief revision and contraction, as well as operators
from two distinct families (cardinality- and set-containment-based operators) are con-
sidered. The last point is important in that a belief change application, suitable for
real-world problems, should support as many different kinds of operations as possible.
Even though our application targets only 4 specific operators (∔D, ∔S , −̇D, −̇S), rather
than an entire family of operators, as some existing contributions do (e.g. [Ara22],
[KLM17] etc.), the fact that the operators are from distinct categories (cardinality- and
set-containment-based) and for distinct kinds of operations (revision and contraction),
is crucial. It is evident that extending an existing application by a new operator, that
is of the same family as an already implemented operator, will be in most - if not all -
cases less demanding than adding support for an operator of an entirely distinct family.

21

3 Implementation

In this chapter we provide a thorough description of the implementation details of
our compilation-based belief change application. In particular we describe the applica-
tion’s architecture, its main algorithm schemes and propose SAT, ILP, and ASP encod-
ing schemes for the four supported belief change operators. Note that in the course of
the current and following chapters, we sometimes simplify the discussion by referring
to our proposed encoding schemes as ’encodings’.

Throughout this chapter let κ be a CNF formula representing a consistent belief base,
let µ be a satisfiable CNF formula representing a belief that is to be added to κ and let ϕ
be a non-tautological CNF formula representing a belief that is to be contracted from κ.
Further, let V ar(κ)∪V ar(µ) = {x1, ..., xn} = X for a given change operation involving
µ or V ar(κ) ∪ V ar(ϕ) = {x1, ..., xn} = X for a given change operation involving ϕ.
Consequently, let n be the total number of atoms subject to the given change operation.
Moreover, let γ be a satisfiable, non-tautological CNF formula with V ar(γ) ⊆ V ar(κ)∪
V ar(µ) for a given change operation involving µ or V ar(γ) ⊆ V ar(κ) ∪ V ar(ϕ) for
a given change operation involving ϕ. Finally, let N be an interpretation of V ar(κ) ∪
V ar(µ) for a given change operation involving µ or an interpretation of V ar(κ)∪V ar(ϕ)
for a given change operation involving ϕ.

3.1 Application architecture

Our application for compilation-based belief change is implemented in Java 17 and calls
the partial MaxSat solver MaxHS, the SAT solver CaDiCal, the ILP solver glpsol, which is
the LP/MIP stand-alone solver contained in the GLPK (GNU Linear Programming Kit)
package, and the ASP solver clingo. The installation of these solvers is a pre-requisite
for the application to run on a given system. For conducting the Tseitin transformation,
the LogicNG Java library 2 is used. The application’s source code is publicly available
on GitHub 3. Links to the download pages of the required solvers can be found in the
repository’s README file.

The application is started with a set of mandatory and optional input parameters
and supports three distinct run modes: a compilation mode (flag -C), in which the
belief change encoding for a provided revision or contraction instance is generated,
and inference and model check modes, for executing inference (flag -I) and model
(flag -M) checks on a previously generated encoding.

Input for the compilation mode consists of the following:

• A file containing a finite belief base CNF formula and a change CNF formula in an
application-specific format specified via -f <file path>. The application-spe-
cific format is based on the well-known DIMACS format, with the only difference
being an additional line of the form n ---, that works as a separator between
belief base clauses (above the line) and change formula clauses (below the line).

2https://github.com/logic-ng/LogicNG
3https://github.com/aig-hagen/msc_2023_julia_hayat

22

• Specification of the intended operation: -o <revision;contraction>

• Specification of the intended operator: -d <dalal;satoh>

• The desired preprocessing algorithm: -a <maxsat;asp;ilp>

• The desired type of encoding: -t <sat;asp;ilp>

• Optional flag to skip the input validation step: -s

The inference and model check modes require below inputs:

• A previously generated encoding, provided via -e <file path>

• A file containing a formula for an inference check or an interpretation for a model
check, provided via -f <file path>. The inference formula must be in DI-
MACS format without a problem line and must contain only variables of the
original belief change instance’s signature. The interpretation, on the other hand,
must be an interpretation of the original belief change instance’s signature. Since
the original belief change instance was specified in DIMACS format, its signature
consists of consecutive natural numbers, starting from 1. The interpretation must
be a one-liner, containing all these numbers in ascending order with a single space
as delimiter and specifying negativity of atoms via the minus symbol.

• Optional flag to skip the input validation step: -s

Figure 3.1 shows an architectural overview of the application. In the subsequent two
sections each run mode is described in more detail.

3.1.1 Compilation mode

The compilation mode consists of an input validation step, followed by the prepro-
cessing, that makes one or more calls to an external solver, depending on the selected
change operator, and finally the generation of the belief change encoding, which is then
written to a file. The validation step ensures that the provided belief base formula is
satisfiable and that the change formula is both satisfiable and non-tautological. More-
over, in the case of revision it is ensured that the change formula is not yet believed in
the belief base, whereas in the case of contraction it is ensured that the change formula
is believed in the belief base. If any of the mentioned checks fails, the application is
aborted immediately with a dedicated message. Note that using the flag -s allows for
skipping the validation step, even though this should only be used when the correct-
ness of a belief change instance has been ensured by other means, since otherwise the
correctness of the application output cannot be guaranteed. Furthermore, the applica-
tion always carries out a short file format validation, which cannot be skipped, not even
by the flag -s.

23

Figure 3.1: Application architecture

3.1.2 Inference and model check modes

The inference and model check modes both consist of an input validation step, the
preparation of an encoding for the subsequent inference or model check and finally, the
execution of the specified check by making a single call to an external solver and deliv-
ering a Yes or No answer based on the solver’s output. The validation step ensures that
the provided encoding is satisfiable and that the inference formula is both satisfiable
and non-tautological. Again, the described validation can be skipped by using the flag
-s, whereas the file format validation cannot.

3.2 Algorithms

In this section let α = µ in case of a revision operation and α = ϕ in case of a contrac-
tion operation. In the following the algorithm schemes used within our belief change
application are introduced.

3.2.1 Compilation algorithm schemes

Algorithms 3.1 and 3.2 show our compilation algorithm schemes for Dalal’s and Satoh’s
operators, respectively. The algorithm scheme for Dalal’s operators is based on the ap-
proach first suggested by Konieczny et al. [KLM17], which consists of creating an opti-
mization encoding (in their case partial MaxSAT) for determining the minimum Dalal

24

distance (lines 3 and 5) , followed by a single call to a corresponding solver (line 7),
the extraction of the minimum Dalal distance value from the obtained solution (line
8), and finally the creation of an encoding (in their case SAT) of the new belief base
that incorporates the determined minimum Dalal distance (lines 10 and 12). Note that
whereas Konieczny et al. limited their work to belief revision, our algorithm scheme
also addresses belief contraction. Further, Algorithm 3.1 depicts an algorithm scheme
rather than a proper algorithm because, depending on the selected encoding type, ev-
ery mentioned encoding function can return three different encodings. We denote
the encoding generated by function createOptimizationEncodingRevision()
by SO

∔D
(κ, α), IO∔D

(κ, α), or AO
∔D

(κ, α) for partial MaxSAT, ILP, and ASP, respectively.
Analogously, function createOptimizationEncodingContraction() generates
encoding SO

−̇D
(κ, α), IO−̇D

(κ, α), or AO
−̇D

(κ, α). Further, createEncodingRevision()
generates encoding S∔D

(κ, α), I∔D
(κ, α), or A∔D

(κ, α) for SAT, ILP, and ASP, re-
spectively, and createEncodingContraction() encoding S−̇D

(κ, α), I−̇D
(κ, α), or

A−̇D
(κ, α).

Algorithm 3.1 Compilation algorithm scheme - Dalal

1: function COMPILEDALAL(κ, α, operation)
2: if operation == revision then
3: o← CREATEOPTIMIZATIONENCODINGREVISION(κ, α)
4: else if operation == contraction then
5: o← CREATEOPTIMIZATIONENCODINGCONTRACTION(κ, α)
6: end if
7: solutionModel← CALLSOLVER(o)
8: minDistance← EXTRACTMINDISTANCE(solutionModel)
9: if operation == revision then

10: return CREATEENCODINGREVISION(κ, α,minDistance)
11: else if operation == contraction then
12: return CREATEENCODINGCONTRACTION(κ, α,minDistance)
13: end if
14: end function

For Satoh’s encodings it is sufficient to identify only those minimal sets of the set
of all difference sets, that are at the same time proper subsets of some difference set.
This is described in more detail in the upcoming sections and for now it is enough to
point out that when referring to the determination of minimal sets, we actually refer
to the determination of this special kind of minimal sets. Similar to the scheme for
Dalal’s operators, the algorithm scheme for Satoh’s operators starts with the genera-
tion of an optimization encoding to determine the minimal sets (lines 3 and 5). How-
ever, whereas in Dalal’s case only one solver call is required, in Satoh’s there is a loop
consisting of solver calls (line 16), extraction of the minimal set information from the
solver’s output (line 10) and continuous adjustments of the optimization encoding (line
15). The loop is only aborted once the encoding has turned unsatisfiable, i.e. all min-

25

imal sets have been identified. The final step is similar to Dalal’s in that it consists of
the generation of an encoding of the new belief base that incorporates the identified
minimal sets (lines 19 and 21). Two special cases are conceivable. The first one oc-
curs when the generated optimization encoding is unsatisfiable right away, i.e. there
exists no minimal set. In this case the empty set is passed to the function, that gen-
erates the final encoding. The second special case is that the minimal set extracted
from the solver output is the empty set. This can occur only in the first iteration of the
loop since the empty set being a minimal set entails that there can be no other min-
imal set. In this case the loop is terminated immediately (line 13). We denote the
encoding generated in function createOptimizationEncodingRevision() by
SO
∔S

(κ, α), IO∔S
(κ, α), or AO

∔S
(κ, α) for partial MaxSAT, ILP, and ASP, respectively. Analo-

gously, function createOptimizationEncodingContraction() generates the en-
coding SO

−̇S
(κ, α), IO−̇S

(κ, α), or AO
−̇S

(κ, α). Further, createEncodingRevision()
generates encoding S∔S

(κ, α), I∔S
(κ, α), or A∔S

(κ, α) for SAT, ILP, and ASP, respec-
tively, and createEncodingContraction() outputs encoding S−̇S

(κ, α), I−̇S
(κ, α),

or A−̇S
(κ, α).

Algorithm 3.2 Compilation algorithm scheme - Satoh

1: function COMPILESATOH(κ, α, operation)
2: if operation == revision then
3: o← CREATEOPTIMIZATIONENCODINGREVISION(κ, α)
4: else if operation == contraction then
5: o← CREATEOPTIMIZATIONENCODINGCONTRACTION(κ, α)
6: end if
7: solutionModel← CALLSOLVER(o)
8: minSets← empty set
9: while solutionModel is not empty do

10: minSet← EXTRACTMINIMALSET(solutionModel)
11: minSets← minSets ∪minSet
12: if minSet is the empty set then
13: break
14: end if
15: o← ADJUSTOPTIMIZATIONENCODING(o,minSet)
16: solutionModel← CALLSOLVER(o)
17: end while
18: if operation == revision then
19: return CREATEENCODINGREVISION(κ, α,minSets)
20: else if operation == contraction then
21: return CREATEENCODINGCONTRACTION(κ, α,minSets)
22: end if
23: end function

From the above descriptions we obtain that our application implements 3 ∗ 3 = 9

26

different instances of each of the two algorithm schemes by supporting the creation of
partial MaxSAT, ASP, and ILP optimization encodings for the preprocessing, as well as
the compilation of the new belief state into SAT, ASP, and ILP encodings. Note that
using the same technology for both the preprocessing and the actual encoding gener-
ation has the slight advantage that certain parts of the optimization encoding can be
reused within the final encoding, allowing to skip some generation steps. The subse-
quent three sections 3.3, 3.4, and 3.5 each address one technology (SAT, ILP, ASP) and
contain subsections for each of the four belief change operators, where the encoding
schemes are defined and their correctness is proven.

3.2.2 Inference and model check algorithm schemes

Algorithms 3.3 and 3.4 demonstrate how the application carries out inference (model)
checks, when provided a previously generated encoding and a formula for an inference
check (interpretation for a model check). SI(x, y), II(x, y), and AI(x, y) are inference
check encoding schemes, that are unsatisfiable if and only if a given formula can be
inferred from the belief base represented by the provided encoding. Encoding schemes
SM (x, y), IM (x, y), and AM (x, y), on the other hand, are model check encodings, that
are satisfiable if and only if a given interpretation is a model of the belief base repre-
sented by the provided encoding. The inference check encoding schemes are defined
and proven in sections 3.3.6, 3.4.5 and 3.5.5, whereas the definitions of the model check
encoding schemes, along with their proofs, can be found in sections 3.3.7, 3.4.6 and
3.5.6.

Algorithm 3.3 Algorithm scheme for inference checks

1: function CHECKFORINFERENCE(encoding, γ)
2: if encoding is SAT encoding then
3: inferenceEncoding ← SI(encoding, γ)
4: solutionModel← CALLCADICAL(inferenceEncoding)
5: else if encoding is ILP encoding then
6: inferenceEncoding ← II(encoding, γ)
7: solutionModel← CALLGLPSOL(inferenceEncoding)
8: else if encoding is ASP encoding then
9: inferenceEncoding ← AI(encoding, γ)

10: solutionModel← CALLCLINGO(inferenceEncoding)
11: end if
12: if solutionModel is null then
13: return true
14: else
15: return false
16: end if
17: end function

27

Algorithm 3.4 Algorithm scheme for model checks

1: function CHECKFORMODEL(encoding, N)
2: if encoding is SAT encoding then
3: modelEncoding ← SM (encoding,N)
4: solutionModel← CALLCADICAL(modelEncoding)
5: else if encoding is ILP encoding then
6: modelEncoding ← IM (encoding,N)
7: solutionModel← CALLGLPSOL(modelEncoding)
8: else if encoding is ASP encoding then
9: modelEncoding ← AM (encoding,N)

10: solutionModel← CALLCLINGO(modelEncoding)
11: end if
12: if solutionModel is null then
13: return false
14: else
15: return true
16: end if
17: end function

3.3 SAT encodings

In this section we propose the SAT encoding schemes SO
∔D

(κ, µ), S∔D
(κ, µ), SO

−̇D
(κ, ϕ),

S−̇D
(κ, ϕ), SO

∔S
(κ, µ), S∔S

(κ, µ), SO
−̇S

(κ, ϕ), and S−̇S
(κ, ϕ) generated and used by algo-

rithms 3.1 and 3.2 as well as the SAT inference and model check encodings SI(x, y) and
SM (x, y) generated and used by algorithms 3.3 and 3.4. The proofs of all lemata and
theorems established in this section are provided in Appendix A.

3.3.1 Boolean cardinality constraint encoding

For the belief change SAT encodings that are proposed in the upcoming sections, we
require a scheme to encode boolean cardinality constraints as SAT programs. A boolean
cardinality constraint is a constraint stating that out of a set of propositional atoms, less
than, more than, at least, at most or exactly k atoms are allowed to be true at the same
time [ANORC13]. Formally, such a constraint can be described by

n∑
i=1

value(Vi) # k

where k ∈ N0 and # one of {<,>,≤, ≥, =}. Further, value(Vi) represents the truth value
of a boolean variable Vi ∈ V and V = {V1, ..., Vn} denotes a set of boolean variables
subject to the cardinality constraint. In the following, we limit ourselves to only one
type of boolean cardinality constraint, namely that where # equals ’=’, and refer to
constraints of this kind as exactly-k constraints.

28

In order to create a SAT encoding for a given exactly-k constraint, we differentiate
between the cases k = 0 and k > 0. In the first case, the SAT encoding is quite simple,
consisting of only one clause per variable of the set of variables, that is to be counted,
with each clause requiring the corresponding variable to take the value 0. Regarding
the second case, the main idea is to first create a binary counter CNF formula, that
counts the number c of true variables of the given set of variables subject to the cardi-
nality constraint. This formula contains several new variables, among them dedicated
variables, that each represent a bit of the binary representation of c, and is then ex-
panded by adding a clause for each such bit variable, setting the variable equal to 0 or
1, such that for all of its models c = k holds. Following the work by Konieczny et al.
we use a binary counter CNF encoding, that was suggested by Sinz in [Sin05] and that
is based on a parallel counter circuit designed by Muller and Preparata [MP75].

For describing the functioning of the parallel counter circuit by Muller and Preparata,
we assume that there is a set of propositional variables {x1, ..., xn}, wherein the number
of true variables is to be counted. As can be seen in Figure 3.2, the set of variables is
recursively split into two halves x1...x2m−1 and x2m ...xn−1, as well as a separate variable
xn, by setting m = log2(n). The two halves are each handed to sub-counters, where
they are again split into halves and so on. Depending on the value of n, the second
half can be smaller than the first, or even entirely empty, and the second sub-counter
can hence have less inputs than the first sub-counter. The results of both sub-counters,
represented by two binary numbers, consisting of bits ym−1, ..., y0 and zm−1, ..., z0 (in
the case that the first and second half are of equal length), respectively, are then added
using an m-bit adder. For the m-bit adder m 1-bit adders are required, which can be
either full-adders (adding three bits) or half-adders (adding two bits). Whenever the
first and second half input bits are of equal number, which is the case when n is equal to
2m+1−1, all 1-bit adders of the m-bit adder are full-adders. This is the case in Figure 3.2.
In the opposite case, some of them will be half-adders as the binary number resulting
from the second sub-counter will have less bits than the binary number resulting from
the first sub-counter. As stated by Sinz, a parallel binary counter implemented in the
described way, requires n− log2(n)− 1 full-adders and at most log2(n) half-adders.

Each full- and half-adder outputs a two-bit binary number. In the following, the right
bit will be called sum, denoted by sout, and the left bit carry, denoted by cout.

Definition 3.1. A half-adder encoding for adding two binary variables a and b can be imple-
mented by the following CNF formula [Sin05]:

AH(a, b, cout, sout) = (a ∨ ¬b ∨ sout) ∧ (¬a ∨ b ∨ sout) ∧ (¬a ∨ ¬b ∨ cout)

Definition 3.2. A full-adder encoding for adding three binary variables a, b and c can be im-
plemented by the following CNF formula [Sin05]:

AF (a, b, c, cout, sout) = (a ∨ b ∨ ¬c ∨ sout) ∧ (a ∨ ¬b ∨ c ∨ sout) ∧ (¬a ∨ b ∨ c ∨ sout)

∧(¬a ∨ ¬b ∨ ¬c ∨ sout) ∧ (¬a ∨ ¬b ∨ cout) ∧ (¬a ∨ ¬c ∨ cout) ∧ (¬b ∨ ¬c ∨ cout)

Note that in both presented encodings (Definition 3.1 and 3.2) cout and sout do not nec-
essarily correspond to the binary representation of the sum of a and b (a, b and c), since

29

Note. From [Sin05], page 830. Reproduced with permission from Springer Nature.

Figure 3.2: Parallel counter circuit designed by Muller and Preparata [MP75]

both variables are only forced to take the value 1, but not the value 0, i.e. if the sum
is 2 (binary representation: 10) cout is forced to have the value 1, whereas sout can still
be either 0 or 1. Accordingly, the binary number represented by bits cout and sout is at
least as great as the sum of variables, that are to be counted. However, for our purposes
this inaccuracy can be neglected, as we intend to use the proposed counter SAT encod-
ing for the implementation of an exactly-k constraint where k equals Dalal’s minimum
distance dmin, i.e. for a case where we are certain that the number of true variables of a
given set of variables cannot be smaller than k.

Example 3.1. Let variables a and b be 1. Then the addition of a and b should equal 2, whose
binary representation is 10. Accordingly, the following should hold: sout = 0 and cout = 1.
Looking at the formula (a ∨ ¬b ∨ sout) ∧ (¬a ∨ b ∨ sout) ∧ (¬a ∨ ¬b ∨ cout) we can see, that
indeed for the given truth assignments the formula is satisfied only, when cout = 1.

Using the parallel counter circuit depicted in Figure 3.2 and the introduced formulae
for full- and half-adders, a binary counter encoding, that counts the number of variables
set to true in a set of binary variables, can be created. Algorithm 3.5 shows how such
an encoding is generated by our belief change application. It takes as input a list v of
propositional variables denoted by natural numbers and an initially empty set clauses.
During the execution of the algorithm, the set is filled with the clauses of the binary
counter encoding. The algorithm finally returns a list resultBits of those new variables,
that represent - in reversed order - the bits of the binary number, that indicates the
amount of true variables in v.

Algorithm 3.6 eventually shows the generation of the final exactly-k constraint en-
coding. As mentioned above, the case k = 0 is taken care of by adding one clause per
variable, consisting of the negation of that variable. In contrast, the more complex case
k > 0 is addressed by first calling Algorithm 3.5 and then adding additional clauses,
that set the binary number bits in such a way, that the binary number is equal to k. We
denote the exactly-k constraint encoding obtained by calling Algorithm 3.6 on a set v of

30

Algorithm 3.5 Creation of binary counter encoding for list of binary variables v

1: function COUNT(v, clauses)
2: if |v| ≤ 1 then
3: return v
4: end if
5: n← |v|
6: m← (int) log2(n)
7: sort v in ascending order
8: numMax← last element of v
9: h1← sublist of v from index 0 to index 2m − 2 (incl.)

10: if n == 2m then
11: h2← empty list
12: else
13: h2← sublist of v from index 2m − 1 to index n− 2 (incl.)
14: end if
15: result1← COUNT(h1, clauses)
16: result2← COUNT(h2, clauses)
17: carry ←last element of v
18: resultBits← empty list
19: for i = 0 to i = (last index of result1) do
20: bit1← element of result1 at index i
21: newCarry ← numMax+ 1
22: newSum← numMax+ 2
23: numMax← newSum
24: if result2 has index i then
25: bit2← element of result2 at index i
26: clauses← clauses ∪AF (bit1, bit2, carry, newCarry, newSum)
27: else
28: clauses← clauses ∪AH(bit1, carry, newCarry, newSum)
29: end if
30: resultBits← resultBits ∪ newSum
31: carry ← newCarry
32: end for
33: resultBits← resultBits ∪ carry
34: return resultBits
35: end function

31

propositional variables and k ∈ N0 by E(v, k). The binary counter encoding requires at
most 7n−4(log2(n))−7 clauses and at most 2∗(n−1) new variables [Sin05], whereas the
second part of the encoding consists of m+ 1 clauses (one per bit of the binary number
output). Consequently, in total, our exactly-k constraint encoding consists of at most
7n − 4(log2(n)) − 7 + (m + 1) = 7n − 3(log2(n)) − 6 clauses and at most 2n − 2 new
variables. Note that if k = 0, no new variables are needed and the number of clauses
corresponds exactly to n.

Algorithm 3.6 Creation of exactly-k constraint encoding for list v and k ∈ N0

1: function CREATECONSTRAINTENCODING(v,k)
2: clauses← empty set
3: if k == 0 then
4: for var in v do
5: newClause← ’¬counterBit’
6: clauses← clauses ∪ newClause
7: end for
8: return clauses
9: end if

10: counterBits← COUNT(v, clauses)
11: kBinary ← binary representation of k
12: kBinary ← reverse sequence of kBinary
13: for i = 0 to i = (last index of counterBits) do
14: counterBit← element of counterBits at index i
15: if kBinary has index i then
16: kBit← element of kBinary at index i
17: if kBit == 0 then
18: newClause← ’¬counterBit’
19: clauses← clauses ∪ newClause
20: else
21: newClause← ’counterBit’
22: clauses← clauses ∪ newClause
23: end if
24: else
25: newClause← ’¬counterBit’
26: clauses← clauses ∪ newClause
27: end if
28: end for
29: return clauses
30: end function

32

3.3.2 Dalal’s revision (SAT)

In the following, we first present the partial MaxSAT optimization encoding SO
∔D

(κ, µ),
whose solution indicates the minimum Dalal distance dmin(κ, µ), followed by the in-
troduction of the SAT encoding S∔D

(κ, µ), that is query-equivalent to the belief base
resulting from the execution of Dalal’s revision on κ and µ.

The first part of SO
∔D

(κ, µ) consists of the belief base formula κ, wherein we replace
each variable xj ∈ X (1 ≤ j ≤ n) with a variable yj ∈ Y , with Y = {y1, ..., yn} being
a set of newly created variables. We denote the adjusted belief base formula by κy. To
this first part we then add the unchanged revision formula µ. As a result we obtain

κy ∧ µ (3)

Lemma 1. For each model M of κy ∧µ the following holds: proj(M, {y1, ..., yn}) = Mκ, with
Mκ ∈Mod(κ), and proj(M, {x1, ..., xn}) = Mµ, with Mµ ∈Mod(µ). Further, each possible
combination of members of Mod(κ) and Mod(µ) is covered by a model of κy ∧ µ.

Next, in order to determine the Dalal distance between a model Mκ and a model Mµ we
need to count the number of atoms with differing truth assignments in Mκ and Mµ. For
this purpose we introduce for every xj a so-called discrepancy variable dj ∈ {d1, ..., dn}
and extend Formula 3 by adding the following formula for each xj :

(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) (4)

Lemma 2. Formula 4 ensures that dj = 1, whenever xj ̸= yj .

Thus far, our optimization encoding is identical to the one suggested by Konieczny et al.
[KLM17]. However, the remaining part of our encoding deviates from theirs. Whereas
they use a parallel binary counter formula and soft clauses with differing weights for
obtaining dmin(κ, µ), we apply a simpler approach, using only soft clauses with identi-
cal weights and not requiring any further hard clauses. The reasons for this deviation
are twofold. First, Konieczny et al. presented a rather vague description of this partic-
ular part of their optimization encoding, therefore not allowing for an exact reproduc-
tion. Second, their work targets the entire family of topic-decomposable distance-based
revision operators, rather than Dalal’s revision operator in particular. When consider-
ing solely Dalal’s revision operator, a simpler encoding is sufficient, which is described
in Definition 3.3.

Definition 3.3. The partial MaxSAT optimization encoding SO
∔D

(κ, µ) is defined as

SO
∔D

(κ, µ) =
(
κy ∧ µ ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

))
w=n+1

∧
(∧
1≤j≤n

(
¬dj

))
w=1

where
()

w=x indicates that all clauses contained within are assigned a weight of x.

33

All clauses of SO
∔D

(κ, µ) with a weight of n + 1 are hard clauses, thus mandatory to be
satisfied, whereas the clauses with a weight of 1 are soft clauses. Theorem 1 establishes
how dmin(κ, µ) can be computed from the solution to the introduced encoding.

Theorem 1. From the optimal solution S to the partial MaxSAT encoding SO
∔D

(κ, µ) the min-

imum Dalal distance dmin(κ, µ) can be obtained by dmin(κ, µ) =
n∑

j=1
value(S, dj).

The following example demonstrates the encoding SO
∔D

(κ, µ) for a specific belief revi-
sion instance.

Example 3.2. Let κ = x1 ∧ (¬x1 ∨ x2) and µ = ¬x2. Then

SO
∔D

(κ, µ) =
(
y1 ∧ (¬y1 ∨ y2) ∧ ¬x2 ∧ (d1 ∨ ¬x1 ∨ y1) ∧ (d1 ∨ x1 ∨ ¬y1)

∧(d2 ∨ ¬x2 ∨ y2) ∧ (d2 ∨ x2 ∨ ¬y2)
)
w=3 ∧

(
¬d1 ∧ ¬d2

)
w=1

When passing the encoding to a partial MaxSAT solver, the identified solution satisfying the
highest possible number of soft clauses satisfies exactly one soft clause, thus dmin(κ, µ) = 1.

After determining dmin(κ, µ), the SAT encoding S∔D
(κ, µ) of the belief base resulting

from Dalal’s revision can be generated. This encoding is defined in Definition 3.4.

Definition 3.4. The SAT encoding S∔D
(κ, µ) is defined as

S∔D
(κ, µ) = κy ∧ µ ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

)
∧ E({d1, ..., dn}, dmin(κ, µ))

The first part of the encoding is identical to the hard clauses of the partial MaxSAT
encoding proposed above, whereas the second part consists of the exactly-k constraint
encoding described in Section 3.3.1. This constraint ensures that the number of true
discrepancy variables {d1, ..., dn} is equal to dmin(κ, µ).

Theorem 2. For the SAT encoding S∔D
(κ, µ) following relation holds:

proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}) = Mod(κ∔D µ)

From Theorem 2 we learn that our encoding scheme S∔D
(κ, µ) is query-equivalent to

the belief base resulting from Dalal’s revision and can thus be leveraged for inference
and model checks on the same. The exact nature of such checks is the subject of sections
3.3.6 and 3.3.7. We assume that our encoding scheme is identical or at least highly simi-
lar to the belief change SAT encoding scheme proposed by Konieczny et al [KLM17], as
we followed their suggestion of implementing the exactly-k constraint with a parallel
binary counter encoding. Due to the vague nature of their encoding description, the
exact degree of similarity between the two encoding schemes cannot be stated.

34

3.3.3 Dalal’s contraction (SAT)

In this section we first present a partial MaxSAT optimization encoding SO
−̇D

(κ, ϕ),
whose solution indicates the minimum Dalal distance dmin(κ,¬ϕ), followed by the in-
troduction of the SAT encoding S−̇D

(κ, ϕ), that is query-equivalent to the belief base
resulting from the execution of Dalal’s contraction on κ and ϕ.

We recall from definition 2.10 that Dalal’s contraction operator −̇D is defined in terms
of the revision operator ∔D as follows:

Mod(κ −̇D ϕ) = Mod(κ) ∪Mod(κ∔D ¬ϕ)

The models of the contraction result are hence the union of the belief base models and
the models of the corresponding revision result after negating the contraction formula
ϕ. Accordingly, the first step towards our aim of defining a SAT encoding for Dalal’s
contraction operator, is to determine the minimum Dalal distance dmin(κ,¬ϕ).
Intuitively, one might immediately think of using the encoding SO

∔D
(κ, µ) of Definition

3.3 for identifying dmin(κ,¬ϕ). However, Definition 3.3 restricts µ to be a CNF formula,
which ¬ϕ is not. To be precise, ¬ϕ is the negation of a CNF formula. To resolve this,
we need to convert ¬ϕ into CNF. As already stated in Section 2.1, every propositional
formula can be transformed to CNF, e.g. by applying the Tseitin transformation. In the
following we denote the CNF formula obtained by applying the Tseitin transformation
on a non-CNF formula α by t(α) and the set of auxiliary variables, that is newly created
in the Tseitin transformation process, by V t

α = V ar(t(α)) \ V ar(α). Definition 3.5 and
Theorem 3 introduce the partial MaxSAT encoding for determining dmin(κ,¬ϕ).

Definition 3.5. We define the partial MaxSAT optimization encoding SO
−̇D

(κ, ϕ), based on
definition 3.3, as:

SO
−̇D

(κ, ϕ) =
(
κy ∧ t(¬ϕ) ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

))
w=n+1

∧
(∧
1≤j≤n

(
¬dj

))
w=1

Theorem 3. From the optimal solution S to the partial MaxSAT encoding SO
−̇D

(κ, ϕ) the min-

imum Dalal distance dmin(κ,¬ϕ) can be obtained by dmin(κ,¬ϕ) =
n∑

j=1
value(S, dj).

The following example demonstrates the encoding for a specific belief contraction in-
stance.

Example 3.3. Let κ = x1 ∧ (¬x1 ∨ x2) and ϕ = (¬x1 ∨ x2) ∧ x2. Then

SO
−̇D

(κ, ϕ) =
(
y1 ∧ (¬y1 ∨ y2) ∧ ((¬a1 ∨ x1) ∧ (¬a1 ∨ ¬x2) ∧ (a1 ∨ ¬x1 ∨ x2)

∧(a1 ∨ ¬x2)) ∧ (d1 ∨ ¬x1 ∨ y1) ∧ (d1 ∨ x1 ∨ ¬y1)

∧(d2 ∨ ¬x2 ∨ y2) ∧ (d2 ∨ x2 ∨ ¬y2)
)
w=3 ∧

(
¬d1 ∧ ¬d2

)
w=1

35

where a1 is an auxiliary variable introduced by the Tseitin transformation. Note that the Tseitin
transformation often does not pay off for small formulae such as ϕ in this example - without the
Tseitin transformation, we could have turned ¬ϕ = ¬((¬x1 ∨ x2) ∧ x2) into the simple CNF
formula ¬x2 by applying the usual boolean transformation rules. When passing the encoding
in WDIMACS format to a partial MaxSAT solver, the solution satisfying the highest possible
number of soft clauses satisfies exactly one soft clause, indicating dmin(κ,¬ϕ) = 1.

Again recalling that Mod(κ −̇D ϕ) = Mod(κ) ∪ Mod(κ ∔ ¬ϕ) and now given
dmin(κ,¬ϕ), we proceed with defining the belief change SAT encoding S−̇D

(κ, ϕ). For
this purpose we first establish the following lemma.

Lemma 3. For the SAT encoding

D = κy ∧ t(¬ϕ) ∧
∧

1≤j≤n

(
(dj ∨¬xj ∨ yj)∧ (dj ∨xj ∨¬yj)

)
∧ E({d1, ..., dn}, dmin(κ,¬ϕ))

the following holds:

proj(Mod(D), {x1, ..., xn}) = Mod(κ∔ ¬ϕ)

For the encoding S−̇D
(κ, ϕ) to represent the belief base resulting from Dalal’s con-

traction the relation proj(Mod(S−̇D
(κ, ϕ)), {x1, ..., xn}) = Mod(κ −̇D ϕ) = Mod(κ) ∪

Mod(κ ∔D ¬ϕ) must hold. This means that in S−̇D
(κ, ϕ) the variables {x1, ..., xn} need

to represent the models of κ as well as the models of κ∔D¬ϕ. To this end we undertake
the below steps:

• We create two sets of new variables W = {w1, ..., wn} and Z = {z1, ..., zn}.

• We take encoding D from Lemma 3 and replace all variables {x1, ..., xn} with the
corresponding new variable in Z, resulting in

D′ = κy ∧ t(¬ϕ)z ∧
∧

1≤j≤n

(
(dj ∨ ¬zj ∨ yj) ∧ (dj ∨ zj ∨ ¬yj)

)
∧ E({d1, ..., dn}, dmin(κ,¬ϕ))

Note that t(¬ϕ)z denotes t(¬ϕ) after replacing all xj ∈ {x1, ..., xn} with zj ∈ Z,
whereas the auxiliary variables within t(¬ϕ) remain unchanged.

• To D′ we add another copy (κw) of the belief base CNF formula κ, in which we
replace each variable xj ∈ {x1, ..., xn}with the corresponding variable wj ∈W :

D′′ = D′ ∧ κw = κy ∧ t(¬ϕ)z ∧
∧

1≤j≤n

(
(dj ∨ ¬zj ∨ yj) ∧ (dj ∨ zj ∨ ¬yj)

)
∧ E({d1, ..., dn}, dmin(κ,¬ϕ)) ∧ κw

36

• Finally, we add another constraint to D′′, that reintroduces the original variables
{x1, ..., xn} and ensures that they either adopt the same truth assignments as
variables {w1, ..., wn} or as variables {z1, ..., zn}. We denote this constraint by
F (X,Z,W, n) and it is the subject of Lemma 4.

F (X,Z,W, n) =
∧

1≤j≤n

(∧
1≤i≤n
i ̸=j

(
(xi ∨ ¬zi ∨ xj ∨ ¬wj) ∧ (¬xi ∨ zi ∨ xj ∨ ¬wj)

∧ (xi ∨ ¬zi ∨ ¬xj ∨ wj) ∧ (¬xi ∨ zi ∨ ¬xj ∨ wj)
)

∧ (xj ∨ ¬zj ∨ ¬wj) ∧ (¬xj ∨ zj ∨ wj)
)

Lemma 4. For the SAT encoding F (X,Z,W, n) the following holds:

proj(Mod(F (X,Z,W, n)), X) = proj(Mod(F (X,Z,W, n)), Z)

∪ proj(Mod(F (X,Z,W, n)),W)

By combining the above introduced formulae we can now establish the formal defini-
tion of S−̇D

(κ, ϕ).

Definition 3.6. The SAT encoding S−̇D
(κ, ϕ) is defined as

S−̇D
(κ, ϕ) = κy ∧ t(¬ϕ)z ∧

∧
1≤j≤n

(
(dj ∨ ¬zj ∨ yj) ∧ (dj ∨ zj ∨ ¬yj)

)
∧ E({d1, ..., dn}, dmin(κ,¬ϕ)) ∧ κw ∧ F (X,Z,W, n)

Theorem 4 finally establishes, that S−̇D
(κ, ϕ) can be used for inference and model

checks on belief bases resulting from the Dalal contraction operator.

Theorem 4. For the SAT encoding S−̇D
(κ, ϕ) following relation holds:

proj(Mod(S−̇D
(κ, ϕ)), {x1, ..., xn}) = Mod(κ −̇D ϕ)

3.3.4 Satoh’s revision (SAT)

In the following, we first present a partial MaxSAT optimization encoding SO
∔S

(κ, µ),
followed by the introduction of the SAT encoding S∔S

(κ, µ), that is query-equivalent to
the belief base resulting from the execution of Satoh’s revision on κ and µ.

Firstly, let us recall from Section 2.6 that Satoh’s revision operator is based on deter-
mining the minimal sets of the set of all difference sets between all models of κ and
all models of µ. The models of Satoh’s revision result are those models of µ, for which
there exists at least one model of κ, such that the difference set of these two models
is a minimal set. Analogous to the encoding generation for Dalal’s operators, which
required the determination of the minimum Dalal distance, in order to compile Satoh’s
revision into an encoding we need information on the minimal sets. As will be demon-
strated below it is enough to identify those difference sets, that are minimal sets AND

37

proper subsets of at least one difference set - note that being a minimal set does not
entail being a proper subset of some set. To identify precisely those sets, we propose
the partial MaxSAT encoding SO

∔S
(κ, µ).

For the upcoming definitions we require an alternative representation of difference
sets. Definition 2.6 defined a difference set between two interpretations X and Y of a
signature as the set containing those atoms, whose truth assignments differ between
the two models. Apart from depicting a difference set as a set containing atoms, we can
alternatively depict it as a bit vector as in the following example:

Example 3.4. Let {p, q, r} be a signature and let X = {111} and Y = {010} be interpretations
of the signature. The difference set is then ds(X,Y) = {p, r} and can be alternatively depicted
by a bit vector: dvs(X,Y) = {101}.

From now on we denote the bit vector representation of the difference set of interpreta-
tions X and Y by dvs(X,Y).

The first step in building the encoding SO
∔S

(κ, µ) consists in creating a formula, that
allows for obtaining all difference sets between Mod(κ) and Mod(µ). Lemma 5 de-
scribes such a formula.

Lemma 5. For the formula

G = κy ∧ µ ∧
∧

1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)
) (5)

where κy is a copy of κ, wherein each variable xj ∈ {x1, ..., xn} is replaced by a new variable
yj ∈ {y1, ..., yn} and {d1, ..., dn} are discrepancy variables, the following holds:

proj(Mod(G), {d1, ..., dn}) = Dv
S(κ, µ)

where Dv
S(κ, µ) is the set of bit vector representations of all difference sets between Mod(κ) and

Mod(µ).

For determining a difference set, that is a proper subset of another difference set, we
require a way to compare all difference sets to each other. For this purpose we add to
the above defined formula G of Equation 5 a formula G′, defined as

G′ = κz ∧ µw ∧
∧

1≤j≤n

(
(d′j ∨ ¬wj ∨ zj) ∧ (d′j ∨ wj ∨ ¬zj)

∧ (¬d′j ∨ ¬wj ∨ ¬zj) ∧ (¬d′j ∨ wj ∨ zj)
) (6)

where κz is a copy of κ, wherein each variable xj ∈ {x1, ..., xn} is replaced by a new
variable zj ∈ {z1, ..., zn}, µw is a copy of µ, wherein each variable xj ∈ {x1, ..., xn} is
replaced by a new variable wj ∈ {w1, ..., wn} and {d′1, ..., d′n} are discrepancy variables
analogous to the discrepancy variables {d1, ..., dn} in Equation 5 above.

38

Lemma 6. Each model M of the formula G ∧ G′, with G and G′ as in equations 5 and 6,
contains bit vector representations of two difference sets: proj(M, {d1, ..., dn}) ∈ Dv

S(κ, µ) and
proj(M, {d′1, ..., d′n}) ∈ Dv

S(κ, µ). Furthermore, each possible combination of two difference
sets of Dv

S(κ, µ) is addressed by a model of G ∧G′.

From Lemma 6 we learn that formula G∧G′ can be leveraged for comparing the differ-
ence sets in Dv

S(κ, µ) to each other. However, we do not want to compare two identical
difference sets, since a set cannot be a proper subset of itself. As a consequence, we need
to add a constraint to G∧G′, which ensures that the difference sets proj(M, {d1, ..., dn})
and proj(M, {d′1, ..., d′n}) are distinct. This can be accomplished by introducing another
set of discrepancy variables {d′′1, ..., d′′n}with d′′j = 0 whenever dj = d′j and d′′j = 1 when-
ever dj ̸= d′j , and ensuring that at least one of these new discrepancy variables has the
value 1. The corresponding formula and its characteristics is addressed by Lemma 7.

Lemma 7. Each model M of the formula

H = G ∧G′ ∧
∧

1≤j≤n

(
(d′′j ∨ ¬dj ∨ d′j) ∧ (d′′j ∨ dj ∨ ¬d′j)

∧ (¬d′′j ∨ ¬dj ∨ ¬d′j) ∧ (¬d′′j ∨ dj ∨ d′j)
)
∧

∨
1≤j≤n

d′′j

(7)

contains bit vector representations of two difference sets: proj(M, {d1, ..., dn}) ∈ Dv
S(κ, µ)

and proj(M, {d′1, ..., d′n}) ∈ Dv
S(κ, µ) with proj(M, {d1, ..., dn}) ̸= proj(M, {d′1, ..., d′n}).

Furthermore, each possible combination of two distinct difference sets of Dv
S(κ, µ) is addressed

by a model of H .

Next, we adjust formula H in such a way that, given a model M of the adjusted
formula, the difference set represented by proj(M, {d′1, ..., d′n}) is a proper subset of
the difference set represented by proj(M, {d1, ..., dn}). The implementation of this re-
quirement is based on the following observation: the difference set represented by
proj(M, {d′1, ..., d′n}) can only be a proper subset of the difference set represented by
proj(M, {d1, ..., dn}) if

1. both are distinct, which is already taken care of in formula H , and

2. all elements contained in the difference set represented by proj(M, {d′1, ..., d′n})
are also contained in the difference set represented by proj(M, {d1, ..., dn}).

The last requirement can be addressed by adding to H a constraint dj ∨ ¬d′j for every
dj ∈ {d1, ..., dn}, as is established in Lemma 8.

Lemma 8. Each model M of the formula

I = H ∧
∧

1≤j≤n

(
dj ∨ ¬d′j

)
(8)

contains bit vector representations of two difference sets proj(M, {d1, ..., dn}) ∈ Dv
S(κ, µ) and

proj(M, {d′1, ..., d′n}) ∈ Dv
S(κ, µ) with the second one being a proper subset of the first one.

39

Furthermore, the set proj(Mod(I), {d′1, ..., d′n}) corresponds to the complete set of difference
sets in Dv

S(κ, µ), that are proper subsets of some difference set.

Now that we have defined a formula I , whose models allow for determining all sets in
Dv

S(κ, µ), that are proper subsets, we create the partial MaxSAT encoding SO
∔S

(κ, µ) by
turning all clauses belonging to I into hard clauses and adding for each d′j ∈ {d′1, ..., d′n}
a soft clause, that requires d′j to be false.

Definition 3.7. The partial MaxSAT optimization encoding SO
∔S

(κ, µ) is defined as

SO
∔S

(κ, µ) =
(
I
)
w=n+1 ∧

(∧
1≤j≤n

(
¬d′j

))
w=1

=
(
κy ∧ µ ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)
)

∧ κz ∧ µw ∧
∧

1≤j≤n

(
(d′j ∨ ¬wj ∨ zj) ∧ (d′j ∨ wj ∨ ¬zj)

∧ (¬d′j ∨ ¬wj ∨ ¬zj) ∧ (¬d′j ∨ wj ∨ zj)
)

∧
∧

1≤j≤n

(
(d′′j ∨ ¬dj ∨ d′j) ∧ (d′′j ∨ dj ∨ ¬d′j)

∧ (¬d′′j ∨ ¬dj ∨ ¬d′j) ∧ (¬d′′j ∨ dj ∨ d′j)
)
∧

∨
1≤j≤n

d′′j

∧
∧

1≤j≤n

(
dj ∨ ¬d′j

))
w=n+1 ∧

(∧
1≤j≤n

(
¬d′j

))
w=1

where
()

w=x indicate that all clauses contained within are assigned a weight of x.

Theorem 5 finally establishes how a minimal set, that is a proper subset of some differ-
ence set, can be determined with the help of encoding SO

∔S
(κ, µ).

Theorem 5. For the optimal solution S to the partial MaxSat encoding SO
∔S

(κ, µ) the bit vector
proj(S, {d′1, ..., d′n}) corresponds to the bit vector representation of a minimal set of the set of
all difference sets DS(κ, µ), that is also a proper subset of some set in DS(κ, µ).

Example 3.5 shows the just described partial MaxSAT encoding for a specific belief
revision instance.

Example 3.5. Let κ = x1 ∧ (¬x1 ∨ x2) and µ = ¬x2. Then

SO
∔S

(κ, µ) =
(
y1 ∧ (¬y1 ∨ y2) ∧ ¬x2 ∧ (d1 ∨ ¬x1 ∨ y1) ∧ (d1 ∨ x1 ∨ ¬y1)

∧ (¬d1 ∨ ¬x1 ∨ ¬y1) ∧ (¬d1 ∨ x1 ∨ y1) ∧ (d2 ∨ ¬x2 ∨ y2)

40

∧ (d2 ∨ x2 ∨ ¬y2) ∧ (¬d2 ∨ ¬x2 ∨ ¬y2) ∧ (¬d2 ∨ x2 ∨ y2)

∧ z1 ∧ (¬z1 ∨ z2) ∧ ¬w2 ∧ (d′1 ∨ ¬w1 ∨ z1) ∧ (d′1 ∨ w1 ∨ ¬z1)
∧ (¬d′1 ∨ ¬w1 ∨ ¬z1) ∧ (¬d′1 ∨ w1 ∨ z1) ∧ (d′2 ∨ ¬w2 ∨ z2)

∧ (d′2 ∨ w2 ∨ ¬z2) ∧ (¬d′2 ∨ ¬w2 ∨ ¬z2) ∧ (¬d′2 ∨ w2 ∨ z2)

∧ (d′′1 ∨ ¬d1 ∨ d′1) ∧ (d′′1 ∨ d1 ∨ ¬d′1) ∧ (¬d′′1 ∨ ¬d1 ∨ ¬d′1)
∧ (¬d′′1 ∨ d1 ∨ d′1) ∧ (d′′2 ∨ ¬d2 ∨ d′2) ∧ (d′′2 ∨ d2 ∨ ¬d′2)
∧ (¬d′′2 ∨ ¬d2 ∨ ¬d′2) ∧ (¬d′′2 ∨ d2 ∨ d′2) ∧ (d′′1 ∨ d′′2)

∧ (d1 ∨ ¬d′1) ∧ (d2 ∨ ¬d′2)
)
w=3 ∧

(
¬d′1 ∧ ¬d′2

)
w=1

When passing the encoding in WDIMACS format to a partial MaxSAT solver, the solution
satisfying the highest possible number of soft clauses is x1 = 0, x2 = 0, y1 = 1, y2 = 1, d1 = 1,
d2 = 1, z1 = 1, z2 = 1, w1 = 1, w2 = 0, d′1 = 0, d′2 = 1, d′′1 = 1 and d′′2 = 0, which indicates
that the set {x2} is a minimal set (due to bit vector 01 represented by variables d′1 and d′2).

As described by Algorithm 3.2, the optimization encoding is adjusted after every suc-
cessful solver call. Denoting the obtained solution model by S, the adjustment con-
sists of adding a new hard clause, that is a disjunction of negated atoms d′j , for which
value(S, d′j) = 1. The goal of this new clause is to ensure that the proper subset p to be
detected by the subsequent solver call is also a minimal set. It does so by excluding all
those sets, that are proper supersets of the already determined minimal set and there-
fore cannot be minimal sets, as well as excluding the determined minimal set itself. Set
p is then another minimal set, because there exists only one more set (the already deter-
mined one), that is a proper subset of some set and that potentially has fewer elements
than p, and that set cannot be a proper subset of p due to the newly added hard clause.

Example 3.6. In Example 3.5 we have determined the minimal set {x2}, represented by
proj(S, {d′1, d′2}) = 01 after making one call to a partial MaxSat solver. Following Algorithm
3.2, the next step consists of adjusting the encoding by adding the new hard clause

¬ d′2

The next solver call returns no solution model because the adjusted encoding is unsatisfiable.
Accordingly, we can conclude that DS(κ, µ) contains exactly one set, that is a minimal set and
proper subset at the same time, and that is precisely the set {x2}.

For creating the belief change encoding S∔S
(κ, µ), we require the previously deter-

mined minimal sets of DS(κ, µ). In the following we denote this set of minimal sets by
minp

S(κ, µ). Let us first consider the two simpler cases: If minp
S(κ, µ)

1. contains only one element and that element is the empty set, then the empty set is
the only minimal set of DS(κ, µ). In this case, the encoding S∔S

(κ, µ) is identical
to the encoding S∔D

(κ, µ) of Dalal’s revision, with a minimum Dalal distance of
0.

41

2. is the empty set, then there exists no set in DS(κ, µ), that is a proper subset of
some other set in DS(κ, µ) and therefore all sets in DS(κ, µ) are minimal sets.
Recalling Definition 2.8 of Satoh’s revision operator, this entails that the models
of the revised belief base are precisely the models of the revision formula µ. Thus,
S∔S

(κ, µ) = µ

Let us now address the more complex case, that minp
S(κ, µ) contains at least one mini-

mal set, that is not the empty set. We start off with the formula G of Equation 5 above.

G = κy ∧ µ ∧
∧

1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)
)

From Lemma 5 we know that proj(Mod(G), {d1, ..., dn}) = Dv
S(κ, µ). The next

step consists in ensuring that for each model M , the difference set represented by
proj(M, {d1, ..., dn}) is a minimal set of DS(κ, µ). Note that it is not conceivable to sim-
ply add a constraint to G stating that proj(M, {d1, ..., dn}) must be equal to one of the
minimal sets in minp

S(κ, µ). The reason for this lies in the fact that minp
S(κ, µ) might not

be a complete set of all minimal sets of DS(κ, µ) as it contains only those minimal sets,
that are also proper subsets. Hence, we apply a different approach, based on the follow-
ing idea: the set of non-minimal sets of DS(κ, µ) contains exactly those sets of DS(κ, µ),
that contain all elements of a set, that is a proper subset and a minimal set, and contain
more elements than that set. Accordingly, we can ensure that for each model M , the dif-
ference set represented by proj(M, {d1, ..., dn}) is a minimal set of DS(κ, µ) by adding a
constraint L({d1, ..., dn},minp

S(κ, µ)) to G, that ensures that for every determined min-
imal set m ∈ minp

S(κ, µ), the difference set represented by variables {d1, ..., dn} does
not contain all elements of m AND more elements than m at the same time. The last
part is important since otherwise the difference set cannot be the set m. Algorithm 3.7
demonstrates the creation of constraint L({d1, ..., dn},minp

S(κ, µ)).
In order to count the number of elements in the difference set proj(M, {d1, ..., dn}),
Algorithm 3.5 of Section 3.3.1 is called in line 3, which creates a set of clauses, that
implement a binary counter. Subsequently, for every minimal set m ∈ minp

S(κ, µ) a
formula is created. The formula states that it cannot be the case that a difference set,
represented by the variables {d1, ..., dn}, contains all elements of m AND a different
number of elements than m. Once the formula is complete, it is stored in a set called
conjunction. After generating formulae for every determined minimal set, in line 33 the
set conjunction is passed to a function, that creates a conjunction of the set’s elements
and transforms it into CNF. Finally, the union of the obtained clauses and the already
determined binary counter clauses is returned. Note that the returned clauses contain
new auxiliary variables due to the binary counter encoding and the Tseitin transforma-
tion.
After having discussed all necessary parts of the final encoding, we can now establish
a formal definition of encoding S∔S

(κ, µ).

42

Algorithm 3.7 Creation of minimal set constraint L({d1, ..., dn},minp
S(κ, µ))

1: function CREATECONSTRAINT({d1, ..., dn},minimalSets)
2: clauses← empty set
3: counterBits← COUNT({d1, ..., dn}, clauses)
4: for minimalSet in minimalSets do
5: e← |minimalSet|
6: formula← "¬(¬("
7: eBinary ← binary representation of e
8: eBinary ← reverse sequence of eBinary
9: conjunction← empty set

10: for i = 0 to i = (last index of counterBits) do
11: counterBit← element of counterBits at index i
12: if i ! = 0 then
13: formula← formula + "∧"
14: end if
15: if eBinary has index i then
16: eBit← element of eBinary at index i
17: if eBit == 0 then
18: formula← formula + "¬counterBit"
19: else
20: formula← formula + "counterBit"
21: end if
22: else
23: formula← formula + "¬counterBit"
24: end if
25: end for
26: formula← ")"
27: for mj in minimalSet do
28: formula← formula + "∧ dj"
29: end for
30: formula← formula + ")"
31: conjunction← conjunction ∪ formula
32: end for
33: return clauses ∪ TSEITINTRANSFORMATION(conjunction)
34: end function

43

Definition 3.8. The SAT encoding S∔S
(κ, µ) is defined as follows:

for minp
S(κ, µ) = ∅:

S∔S
(κ, µ) = µ

for minp
S(κ, µ) = {∅}:

S∔S
(κ, µ) = S∔D

(κ, µ) with dmin(κ, µ) = 0

for all other cases:

S∔S
(κ, µ) = κy ∧ µ ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) ∧ (¬dj ∨ ¬xj ∨ ¬yj)

∧ (¬dj ∨ xj ∨ yj)
)
∧ L({d1, ..., dn},minp

S(κ, µ))

Theorem 6 establishes that our presented encoding is query-equivalent to the belief
base resulting from Satoh’s revision.

Theorem 6. For the SAT encoding S∔S
(κ, µ) following relation holds:

proj(Mod(S∔S
(κ, µ)), {x1, ..., xn}) = Mod(κ∔S µ)

Example 3.7 shows our proposed encoding for a specific belief revision instance.

Example 3.7. Considering again the belief revision instance of examples 3.5 and 3.6, for which
we have determined minp

S(κ, µ) = {{x2}}, the encoding S∔S
(κ, µ) then looks as follows:

S∔S
(κ, µ) =y1 ∧ (¬y1 ∨ y2) ∧ ¬x2 ∧ (d1 ∨ ¬x1 ∨ y1) ∧ (d1 ∨ x1 ∨ ¬y1)

∧ (¬d1 ∨ ¬x1 ∨ ¬y1) ∧ (¬d1 ∨ x1 ∨ y1) ∧ (d2 ∨ ¬x2 ∨ y2)

∧ (d2 ∨ x2 ∨ ¬y2) ∧ (¬d2 ∨ ¬x2 ∨ ¬y2) ∧ (¬d2 ∨ x2 ∨ y2)

∧ (¬d1 ∨ ¬d2 ∨ a1) ∧ (d1 ∨ ¬d2 ∨ a2) ∧ (¬d1 ∨ d2 ∨ a2)

∧ (¬a3 ∨ a2) ∧ (¬a3 ∨ ¬a1) ∧ (a3 ∨ ¬a2 ∨ a1) ∧ (¬d2 ∨ a3)

where variables a1 and a2 are new auxiliary variables part of the binary counter and a3 is a new
auxiliary variable introduced by the Tseitin transformation.

3.3.5 Satoh’s contraction (SAT)

In this section we first present the partial MaxSAT optimization encoding SO
−̇S

(κ, ϕ) for
determining the minimal sets minp

S(κ,¬ϕ), followed by the introduction of the SAT en-
coding S−̇S

(κ, ϕ), that is query-equivalent to the belief base resulting from the execution
of Satoh’s contraction on κ and ϕ.

Definition 2.11 defined Satoh’s contraction result models as the union of the belief
base models and the models of the revision of the belief base with the negation of the
contraction formula, i.e.

Mod(κ −̇S ϕ) = Mod(κ) ∪Mod(κ∔S ¬ϕ)

44

Accordingly, in order to create the encoding S−̇S
(κ, ϕ) of Satoh’s contraction, we first

need to determine the minimal sets minp
S(κ,¬ϕ). For the identification of minp

S(κ,¬ϕ)
we can use the optimization encoding SO

−̇S
(κ, ϕ) defined in Definition 3.9 below, which

is based on our optimization encoding SO
∔S

(κ, ϕ) for Satoh’s revision operator.

Definition 3.9. The partial MaxSAT encoding SO
−̇S

(κ, ϕ) is defined as

SO
−̇S

(κ, ϕ) =
(
I ′
)
w=n+1 ∧

(∧
1≤j≤n

(
¬d′j

))
w=1

=
(
κy ∧ t(¬ϕ) ∧

∧
1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)
)

∧ κz ∧ t(¬ϕ)w ∧
∧

1≤j≤n

(
(d′j ∨ ¬wj ∨ zj) ∧ (d′j ∨ wj ∨ ¬zj)

∧ (¬d′j ∨ ¬wj ∨ ¬zj) ∧ (¬d′j ∨ wj ∨ zj)
)

∧
∧

1≤j≤n

(
(d′′j ∨ ¬dj ∨ d′j) ∧ (d′′j ∨ dj ∨ ¬d′j)

∧ (¬d′′j ∨ ¬dj ∨ ¬d′j) ∧ (¬d′′j ∨ dj ∨ d′j)
)
∧

∨
1≤j≤n

d′′j

∧
∧

1≤j≤n

(
dj ∨ ¬d′j

))
w=n+1 ∧

(∧
1≤j≤n

(
¬d′j

))
w=1

where I ′ like I defined in Lemma 8 with the adjustment that each occurrence of formula µ is
replaced by t(¬ϕ) (the Tseitin transformation of formula ¬ϕ) and

()
w=x as usual indicate that

all clauses contained within are assigned a weight of x.

Analogous to Theorem 5 for Satoh’s revision Theorem 7 establishes how SO
−̇S

(κ, ϕ) can
be used for identifying the minimal sets minp

S(κ,¬ϕ).

Theorem 7. For the optimal solution S to the partial MaxSat optimization encoding SO
−̇S

(κ, ϕ),
the bit vector proj(S, {d′1, ..., d′n}) corresponds to the bit vector representation of a minimal set
of the set of all difference sets DS(κ,¬ϕ), that is a proper subset of some set in DS(κ,¬ϕ).

The adjustment of the optimization encoding after every solver call (see Algorithm 3.2)
is identical to the one described in Section 3.3.4 on Satoh’s revision operator.

Next, we propose the encoding S−̇S
(κ, ϕ) of Satoh’s contraction, which incorporates

the minimal sets minp
S(κ,¬ϕ) determined via Algorithm 3.2, as well as a theorem (The-

orem 8) constituting the foundation for using this encoding for inference and model
checks on belief bases resulting from Satoh’s contraction.

45

Definition 3.10. The SAT encoding S−̇S
(κ, ϕ) is defined as follows:

for minp
S(κ,¬ϕ) = ∅:

S−̇S
(κ, ϕ) = κy ∧ t(¬ϕ)z ∧ F (X,Y, Z, n)

for minp
S(κ,¬ϕ) = {∅}:

S−̇S
(κ, ϕ) = S−̇D

(κ, ϕ) with dmin(κ,¬ϕ) = 0

for all other cases:

S−̇S
(κ, ϕ) = κy ∧ t(¬ϕ)z ∧

∧
1≤j≤n

(
(dj ∨ ¬zj ∨ yj) ∧ (dj ∨ zj ∨ ¬yj)

∧ (¬dj ∨ ¬zj ∨ ¬yj) ∧ (¬dj ∨ zj ∨ yj)
)
∧ L({d1, ..., dn},minp

S(κ,¬ϕ))

∧ κw ∧ F (X,Z,W, n)

Theorem 8. For the SAT encoding S−̇S
(κ, ϕ) following relation holds:

proj(Mod(S−̇S
(κ, ϕ)), {x1, ..., xn}) = Mod(κ −̇S ϕ)

3.3.6 SAT inference checks

In this section we demonstrate how the above defined belief change SAT encodings
can be leveraged to determine, whether the following expression evaluates to true for a
given belief change operation B:

B |= γ

As already noted in Section 2.1, whenever α |= β holds, Mod(α) ⊆ Mod(β) holds and
vice versa. The second expression can be interpreted as follows: For every model of for-
mula α, the formula β evaluates to true. From this follows that if there is at least one model
of α, for which ¬β evaluates to true, then α ̸|= β. If there is no such model, then α |= β.
Based on this insight into the nature of inference, it is possible to create a SAT instance,
that consists of one of the above defined encodings and a few additional clauses, whose
satisfiability/unsatisfiability indicates whether formula γ can be inferred from the be-
lief base resulting from a belief change operation. Definition 3.11 presents the scheme
of such a SAT instance for the different belief change operators addressed in this paper
and Theorem 9 establishes, how it can be used for inference checks.

Definition 3.11. The inference check SAT encoding SI(B, γ) is defined as follows:

SI(B, γ) = S ∧ t(¬γ)

where t(¬γ) denotes the CNF formula, that is obtained from carrying out a Tseitin transforma-
tion on ¬γ and that contains a few new auxiliary variables V t

¬γ = V ar(t(¬γ)) \ V ar(γ) not
already contained in the SAT encoding and

S = S∔D
(κ, µ) for B = (κ∔D µ)

46

S = S∔S
(κ, µ) for B = (κ∔S µ)

S = S−̇D
(κ, ϕ) for B = (κ −̇D ϕ)

S = S−̇S
(κ, ϕ) for B = (κ −̇S ϕ)

Theorem 9. The inference check SAT encoding SI(B, γ) is unsatisfiable if and only if B |= γ.

3.3.7 SAT model checks

The aim of this section is to define a SAT encoding scheme SM (B,N), similar to the
scheme proposed in the previous section for inference checks, that can be used to de-
cide whether the interpretation N is a model of the belief base represented by a belief
change operation B. To be precise, the encoding scheme must be usable for determining
whether below expression holds:

N |= B

In order to create such an encoding SM (B,N), we take one of the above defined
SAT encodings, i.e. the one that corresponds to B, and add one additional clause per
xj ∈ X , that consists of only one literal, namely the atom xj (if value(N, xj) = true)
or its negation (if value(N, xj) = false). We denote the conjunction of such a set of
additional clauses by m(N,X). Using this expression, we can establish the following
formal definition of SM (B,N) and its corresponding theorem.

Definition 3.12. The model check SAT encoding SM (B,N) is defined as follows:

SM (B,N) = S ∧m(N,X)

with S as in Definition 3.11.

Theorem 10. The model check SAT encoding SM (B,N) is satisfiable if and only if N ∈
Mod(B).

3.4 ILP encodings

Analogously to Section 3.3, this section contains the definition of the ILP encoding
schemes IO∔D

(κ, µ), I∔D
(κ, µ), IO−̇D

(κ, ϕ), I−̇D
(κ, ϕ), IO∔S

(κ, µ), I∔S
(κ, µ), IO−̇S

(κ, ϕ) and
I−̇S

(κ, ϕ) generated and used by algorithms 3.1 and 3.2 as well as the ILP inference and
model check encodings II(x, y) and IM (x, y) generated and used by algorithms 3.3 and
3.4. All proofs for this section can be found in Appendix A.

3.4.1 Dalal’s revision (ILP)

In the following we first present the ILP optimization encoding IO∔D
(κ, µ), whose solu-

tion indicates the minimum Dalal distance dmin(κ, µ), followed by the proposal of the
ILP belief change encoding I∔D

(κ, µ) for Dalal’s revision.

47

Analogous to the partial MaxSAT encoding proposed in Section 3.3.2, three sets of
variables are required for the encoding IO∔D

(κ, µ). We denote the first set of ILP vari-
ables, that represent the original variables X by XI = {xI1, ..., xIn}, the second one by
Y I = {yI1 , ..., yIn} and analogously the third set, the set of discrepancy variables, by
DI = {dI1, ..., dIn}. The first part of IO∔D

(κ, µ) thus consists of definitions of these bi-
nary variables: defb(X

I), defb(Y I) and defb(D
I). The variable definition is followed

by constraints representing the belief base formula κ, wherein the variables Y I repre-
sent variables X (con(κ, Y I)) and by constraints, that implement the revision formula
µ with the variables XI (con(µ,XI)). The constraints are generated as described in Sec-
tion 2.8.2 above. Further, we add two constraints per discrepancy variable dIj ∈ DI , that
ensure that the variable has a value of 1, whenever its corresponding variables xIj and
yIj differ in their values. This last set of constraints is translated from the SAT encoding
schemes (dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) of Section 3.3.2 as follows:

constraint 1: dIj + (1 - xIj) + yIj ≥ 1

constraint 2: dIj + xIj + (1 - yIj) ≥ 1

After applying the usual transformation rules of inequality equations we obtain:

constraint 1: xIj - yIj - dIj ≤ 0

constraint 2: yIj - xIj - dIj ≤ 0

We denote the complete set of these discrepancy constraints by conD(D
I , XI , Y I). Note

that conD(D
I , XI , Y I) = conD(D

I , Y I , XI). The final part of IO∔D
(κ, µ) is an optimiza-

tion constraint to minimize the sum of all discrepancy variables:

minimize
n∑

j=1

(
dIj

)
Now that we have addressed the individual parts of the ILP optimization encoding for
Dalal’s revision, we can establish a formal definition.

Definition 3.13. The ILP encoding IO∔D
(κ, µ) is defined as

defb(X
I)

defb(Y
I)

defb(D
I)

con(κ, Y I)
con(µ,XI)

conD(D
I , XI , Y I)

minimize
n∑

j=1

(
dIj

)
Note that IO∔D

(κ, µ) is essentially a translation of the partial MaxSAT encoding SO
∔D

(κ, µ)
of Section 3.3.2 into an ILP program. The encoding can be used to determine dmin(κ, µ)
as described by Theorem 11 below.

48

Theorem 11. The optimal value of the optimal solution to IO∔D
(κ, µ) corresponds to the mini-

mum Dalal distance dmin(κ, µ).

Example 3.8 demonstrates the generation of IO∔D
(κ, µ) for a specific belief revision in-

stance, using the encoding language supported by the solver glpsol.

Example 3.8. Let κ = (a ∨ ¬b) ∧ b, µ = ¬a and thus V ar(κ) ∪ V ar(µ) = {a, b}. For
determining dmin(κ, µ) using a glpsol encoding, we define the required binary ILP variables as
follows: variables x1 and x2 represent variables a and b, respectively, in the belief revision for-
mula constraints; y1 and y2 represent variables a and b, respectively, in the belief base formula
constraints; and d1 and d2 are the discrepancy variables used for indicating whether x1 and y1
as well as x2 and y2, have differing truth assignments. The final glpsol encoding then looks as
follows:

var x1 binary;
var x2 binary;
var y1 binary;
var y2 binary;
var d1 binary;
var d2 binary;
s.t. baseConstraint1:

y1 - y2 >= 0;
s.t. baseConstraint2:

y2 = 1;
s.t. changeConstraint1:

x1 = 0;
s.t. discrepancyVarsConstraint1:

y1 - x1 - d1 <= 0;
s.t. discrepancyVarsConstraint2:

x1 - y1 - d1 <= 0;
s.t. discrepancyVarsConstraint3:

y2 - x2 - d2 <= 0;
s.t. discrepancyVarsConstraint4:

x2 - y2 - d2 <= 0;
minimize distance: d1 + d2;
end;

When passing the encoding to the glpsol solver, we obtain 1 as optimal value for the minimiza-
tion constraint, hence dmin(κ, µ) = 1.

For the creation of the belief change ILP encoding I∔D
(κ, µ), we use encoding

IO∔D
(κ, µ) and replace the minimization objective with a new constraint, that requires

the sum of all discrepancy variables DI to be equal to the determined minimum dis-
tance dmin(κ, µ):

n∑
j=1

(
dIj

)
= dmin(κ, µ)

49

This leads us to the below formal definition of I∔D
(κ, µ) and its accompanying theorem

(Theorem 12).

Definition 3.14. The ILP encoding I∔D
(κ, µ) is defined as

defb(X
I)

defb(Y
I)

defb(D
I)

con(κ, Y I)
con(µ,XI)

conD(D
I , XI , Y I)

n∑
j=1

(
dIj

)
= dmin(κ, µ)

Again, encoding I∔D
(κ, µ) is essentially an ILP translation of the SAT encoding

S∔D
(κ, µ) suggested in Section 3.3.2.

Theorem 12. For the set S of bit vector representations of all solutions to I∔D
(κ, µ) the follow-

ing relation holds:
proj(S,XI) = Mod(κ∔D µ)

Example 3.9 shows how the belief change ILP encoding for the Dalal revision of Exam-
ple 3.8 looks like.

Example 3.9. Assuming the same belief revision instance as in Example 3.8 and having deter-
mined dmin(κ, µ) = 1, the ILP encoding of the resulting belief base looks as follows:

var x1 binary;
var x2 binary;
var y1 binary;
var y2 binary;
var d1 binary;
var d2 binary;
s.t. baseConstraint1:

y1 - y2 >= 0;
s.t. baseConstraint2:

y2 = 1;
s.t. changeConstraint1:

x1 = 0;
s.t. discrepancyVarsConstraint1:

y1 - x1 - d1 <= 0;
s.t. discrepancyVarsConstraint2:

x1 - y1 - d1 <= 0;
s.t. discrepancyVarsConstraint3:

y2 - x2 - d2 <= 0;

50

s.t. discrepancyVarsConstraint4:
x2 - y2 - d2 <= 0;

s.t. distanceConstraint:
d1 + d2 = 1;

end;

3.4.2 Dalal’s contraction (ILP)

In this section we introduce the ILP optimization encoding scheme IO−̇D
(κ, ϕ) for deter-

mining the minimum Dalal distance for Dalal’s contraction, as well as the ILP belief
change encoding scheme I−̇D

(κ, ϕ).
Again we point to the fact that the models of Dalal’s contraction result are defined by

Mod(κ −̇D ϕ) = Mod(κ) ∪Mod(κ ∔D ¬ϕ). Consequently, the first step consists of de-
termining dmin(κ,¬ϕ) via the encoding IO−̇D

(κ, ϕ). For creating this encoding we need
a way to translate a negated CNF formula (in this case ¬ϕ) into a set of ILP constraints.
One possible solution is to do a Tseitin transformation on ¬ϕ and translate the resulting
formula into ILP constraints. However, in order to avoid the call of a Tseitin transfor-
mation function, we suggest a different approach, that is based on the following idea:
by definition, a CNF formula α is a conjunction of disjunctions, whose disjuncts are
literals. For ¬α to evaluate to true, at least one of the disjunctions (clauses) in α must
evaluate to false. Based on this idea, we propose the below approach for transforming
the negation of a CNF formula α into a set of ILP constraints:

1. Firstly, we create a binary ILP variable for each variable in V ar(α) as well as one
auxiliary binary ILP variable per clause in C(α).

2. Per clause in C(α) we create an ILP constraint as follows: a sum of the clause’s
literals is created, wherein each positive literal is then replaced by the correspond-
ing newly created ILP variable bi and each negative literal is replaced by (1− bi).
The resulting expression is then enclosed in brackets. Finally, we add the expres-
sion ÷m ≤ ba, where ba denotes the newly created auxiliary ILP variable for the
currently addressed clause and m the number of literals in the clause.

3. Finally, we add a constraint, that ensures that the sum of all auxiliary ILP variables
is smaller than or equal to |C(α)|−1.

Example 3.10 demonstrates the just described constraint generation process.

Example 3.10. Let α = (a ∨ ¬b) ∧ (¬a ∨ ¬b ∨ c) and let a be represented by the ILP variable
b1, b by b2 and c by b3. Since α contains 2 clauses, we create the auxiliary ILP variables ba1 and
ba2. The set of ILP constraints representing ¬α is then as follows:

constraint 1: (b1 + (1− b2))÷ 2 ≤ ba1
constraint 2: ((1− b1) + (1− b2) + b3)÷ 3 ≤ ba2
constraint 3: ba1 + ba2 ≤ 1

51

In the following we denote the set of constraints, that is obtained by applying the above
transformation rules on a CNF formula α and that thus corresponds to the negation
of α, by conN (α, P,Q), where P is the set of binary ILP variables that represent the
variables of α within the constraints and Q is the set of auxiliary ILP variables. The
below lemma establishes the correctness of the suggested approach.

Lemma 9. Given a CNF formula α and two sets of binary ILP variables P and Q with |P |=
|V ar(α)|, |Q|= |C(α)| and P ∩Q = ∅, for the set S of bit vector representations of all solutions
to conN (α,X,A) the following holds: proj(S, P) = Mod(¬α)

We can now combine the above results and those from Section 3.4.1 to define IO−̇D
(κ, ϕ).

Definition 3.15. The ILP encoding IO−̇D
(κ, ϕ) is defined as

defb(A
I)

defb(Z
I)

defb(Y
I)

defb(D
I)

con(κ, Y I)
conN (ϕ,ZI , AI)
conD(D

I , ZI , Y I)

minimize
n∑

j=1

(
dIj

)
Note that AI denotes the set of auxiliary variables needed for the negation of ϕ and
ZI = {zi1, ..., zin} the set of variables, that represent the variables X in ϕ. Theorem 13
states that dmin(κ,¬ϕ) can be determined from the optimal solution to IO−̇D

(κ, ϕ) in the
same way as dmin(κ, µ) can be determined from the revision optimization encoding
IO∔D

(κ, µ) of the previous section.

Theorem 13. The optimal value of the optimal solution to IO−̇D
(κ, ϕ) corresponds to

dmin(κ,¬ϕ).

Example 3.11 shows the ILP program IO−̇D
(κ, ϕ) for a specific belief contraction instance.

Example 3.11. Let κ = (a ∨ ¬b) ∧ c ∧ (b ∨ ¬c) and ϕ = (a ∨ ¬b) ∧ (b ∨ ¬c). The encoding
IO−̇D

(κ, ϕ) then looks as follows in the syntax of the glpsol solver

var a1 binary;
var a2 binary;
var y1 binary;
var y2 binary;
var y3 binary;
var z1 binary;

52

var z2 binary;
var z3 binary;
var d1 binary;
var d2 binary;
var d3 binary;
s.t. baseConstraint1:

y1 - y2 >= 0;
s.t. baseConstraint2:

y3 = 1;
s.t. baseConstraint3:

y2 - y3 >= 0;
s.t. changeConstraint1:

(z1 + (1-z2)) / 2 <= a1;
s.t. changeConstraint2:

(z2 + (1-z3)) / 2 <= a2;
s.t. changeConstraint3:

a1 + a2 <= 1;
s.t. discrepancyVarsConstraint1:

y1 - z1 - d1 <= 0;
s.t. discrepancyVarsConstraint2:

z1 - y1 - d1 <= 0;
s.t. discrepancyVarsConstraint3:

y2 - z2 - d2 <= 0;
s.t. discrepancyVarsConstraint4:

z2 - y2 - d2 <= 0;
s.t. discrepancyVarsConstraint5:

y3 - z3 - d3 <= 0;
s.t. discrepancyVarsConstraint6:

z3 - y3 - d3 <= 0;
minimize distance: d1 + d2 + d3;
end;

Next, we introduce I−̇D
(κ, ϕ). For creating I−̇D

(κ, ϕ) we start off with IO−̇D
(κ, ϕ), but

replace the minimization constraint by a constraint ensuring that the sum of all discrep-
ancy variables in DI is equal to dmin(κ,¬ϕ). This is analogous to how the final encoding
I∔D

(κ, ϕ) for Dalal’s revision is created in the previous section. Since Dalal’s contrac-
tion operator is defined by Mod(κ −̇D ϕ) = Mod(κ) ∪ Mod(κ ∔D ¬ϕ), we introduce
additional binary ILP variables XI , BI , EI and F I with |XI |= |BI |= |EI |= |F I |= |X|,
as well as two more binary ILP variables gI1 and gI2 . To the existing constraints we add
con(κ,BI), conD(E

I , XI , BI) and conD(F
I , XI , ZI), as well as below constraints:

(n∑
j=1

(
eIj

))
÷ n ≤ gI1

53

(n∑
j=1

(
f I
j

))
÷ n ≤ gI2

gI1 + gI2 ≤ 1

This leads to the below formal definition of I−̇D
(κ, ϕ) and its accompanying theorem.

Definition 3.16. The ILP encoding I−̇D
(κ, ϕ) is defined as

defb(A
I)

defb(Y
I)

defb(Z
I)

defb(D
I)

defb(X
I)

defb(B
I)

defb(E
I)

defb(F
I)

defb(g
I
1)

defb(g
I
2)

con(κ, Y I)
conN (ϕ,ZI , AI)
conD(D

I , Y I , ZI)
con(κ,BI)

conD(E
I , XI , BI)

conD(F
I , XI , ZI)

n∑
j=1

(
dIj

)
= dmin(κ,¬ϕ)(n∑

j=1

(
eIj

))
÷ n ≤ gI1(n∑

j=1

(
f I
j

))
÷ n ≤ gI2

gI1 + gI2 ≤ 1

Theorem 14. For the set S of bit vector representations of all solutions to I−̇D
(κ, ϕ) the follow-

ing relation holds:
proj(S,XI) = Mod(κ −̇D ϕ)

3.4.3 Satoh’s revision (ILP)

This section introduces the encoding schemes IO∔S
(κ, µ) and I∔S

(κ, µ) for Satoh’s revi-
sion, which are translations of the already defined SAT encoding schemes SO

∔S
(κ, µ)

and S∔S
(κ, µ) into ILP. Before starting with the description of these encoding schemes,

we firstly translate below SAT encoding scheme of Section 3.3.4

(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) ∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)

54

into ILP constraints. After following the translation rules introduced in Section 2.8.2
and applying the usual transformation rules of inequality equations we obtain:

constraint 1: dIj - xIj + yIj ≥ 0

constraint 2: dIj + xIj - yIj ≥ 0

constraint 3: dIj + xIj + yIj ≤ 2

constraint 4: −dIj + xIj + yIj ≥ 0

These constraints ensure that dIj = 0 whenever xIj = yIj and dIj = 1 whenever xIj ̸= yIj .
We denote the complete set of discrepancy constraints for all variables dIj ∈ DI by
conE

D(D
I , XI , Y I).

IO∔S
(κ, µ) starts with a definition of the following sets of binary ILP variables:

XI , Y I , DI , Y SI , ZSI , DSI and DDSI with |XI |= |Y I |= |DI |= |Y SI |=
|ZSI |= |DSI |= |DDSI |= n. The variable definition is followed by the con-
straints con(κ, Y I), con(µ,XI) and conE

D(D
I , XI , Y I). Next, we add the constraints

con(κ, Y SI), con(µ,ZSI) and conE
D(DSI , ZSI , Y SI). As a result variables DI and

DSI each represent a difference set of DS(κ, µ). These constraints are followed by

conE
D(DDSI , DI , DSI) and the constraint

n∑
j=1

(
ddsIj

)
≥ 1, which ensures that DI and

DSI do not represent the same difference set. Analogously to the partial MaxSAT op-
timization encoding for Satoh’s revision in Section 3.3.4 we further add for every dis-
crepancy variable dIj ∈ DI a constraint of the form

dIj − dsIj ≥ 0

and denote the obtained set of constraints by conPS(D
I , DSI). These constraints ensure

that the difference set represented by variables DSI is a proper subset of the difference
set that is represented by variables DI . Finally, the optimization constraint

minimize
n∑

j=1

(
dsIj

)
is added, resulting in the below formal definition of IO∔S

(κ, µ).

Definition 3.17. The ILP encoding IO∔S
(κ, µ) is defined as

defb(X
I)

defb(Y
I)

defb(D
I)

defb(Y SI)
defb(ZSI)
defb(DSI)
defb(DDSI)

55

con(κ, Y I)
con(µ,XI)

conE
D(D

I , XI , Y I)
con(κ, Y SI)
con(µ,ZSI)

conE
D(DSI , ZSI , Y SI)

conE
D(DDSI , DI , DSI)
n∑

j=1

(
ddsIj

)
≥ 1

conPS(D
I , DSI)

minimize
n∑

j=1

(
dsIj

)
Theorem 15. Given the bit vector representation S of the optimal solution to IO∔S

(κ, µ) the bit
vector proj(S, {dsI1, ..., dsIn}) represents a minimal set of the set of all difference sets DS(κ, µ),
that is also a proper subset of some set in DS(κ, µ).

The adjustment, that is needed after every solver call to prepare the encoding for the
subsequent call, consists in adding one more constraint to the ILP encoding, that ex-
cludes all proper supersets of the just determined minimal set as well as the min-
imal set itself. Let S be the optimal solution obtained by the last solver call and
m = proj(S, {dsI1, ..., dsIn}) the bit vector representation of the determined minimal
set. The new constraint is then an inequality equation stating that the sum of all
dsIj ∈ {dsI1, ..., dsIn} for which value(m, dsIj) = 1 must be smaller than or equal to n− 1.
Note that this adjustment corresponds exactly to the adjustment to the SAT encoding
scheme SO

∔S
(κ, µ) described in Section 3.3.4. We denote the final set of bit vector repre-

sentations of the determined minimal sets by minp
S(κ, µ).

Analogous to the definition of SAT encoding scheme S∔S
(κ, µ), for the definition

of I∔S
(κ, µ) we distinguish between three distinct cases, depending on the content of

minp
S(κ, µ). If minp

S(κ, µ) contains only the bit vector representing the empty set, then
the empty set is the only minimal set of DS(κ, µ) and I∔S

(κ, µ) is equal to I∔D
(κ, µ) with

a minimum Dalal distance of 0. If minp
S(κ, µ) is the empty set, then all sets in DS(κ, µ)

are minimal sets and the models of the revised belief base are the models of formula
µ. In all other cases encoding I∔S

(κ, µ) is as described in the following. We require,
apart from the variables XI , Y I and DI with |XI |= |Y I |= |DI |= n two auxiliary ILP
variables per m ∈ minp

S(κ, µ) and denote the set of these variables by SI . Further, we
need the constraints con(κ, Y I), con(µ,XI) and conE

D(D
I , XI , Y I). So far the variables

DI represent the difference sets between κ and µ. As already described in Section 3.3.4
when defining S∔S

(κ, µ), it is not sufficient to ensure that the difference set represented
by variables DI corresponds to a set in minp

S(κ, µ). Instead, we need to ensure that for
every m ∈ minp

S(κ, µ) the difference set represented by variables DI does not contain
all elements of the set represented by m AND more elements than the set represented
by m at the same time. This can be accomplished by adding the below three constraints

56

for every m ∈ minp
S(κ, µ):

constraint 1:
∑

dIj∈DI , value(m,dIj)=1

(
dIj

)
- (o - 1) ≤ sI1

constraint 2:
(∑
dIj∈DI

(
dIj

)
- o

)
÷ (n - o) ≤ sI2

constraint 3: sI1 + sI2 ≤ 1

where sI1 and sI2 the auxiliary variables and o the number of 1-bits in m. In
the following we denote the set of such constraints for all m ∈ minp

S(κ, µ) by
conMS(minp

S(κ, µ), D
I , SI).

Lemma 10. Constraints conMS(minp
S(κ, µ), D

I , SI) ensure that the set represented by vari-
ables DI is not a proper superset of any of the sets represented by the bit vectors minp

S(κ, µ).

Now that all parts of I∔S
(κ, µ) have been described, we continue with its formal

definition and corresponding theorem.

Definition 3.18. The ILP encoding I∔S
(κ, µ) is defined as follows:

for minp
S(κ, µ) = ∅:

defb(X
I)

con(µ,XI)

for minp
S(κ, µ) = {∅}:

I∔D
(κ, µ) with dmin(κ, µ) = 0

for all other cases:

defb(X
I)

defb(Y
I)

defb(D
I)

defb(S
I)

con(κ, Y I)
con(µ,XI)

conE
D(D

I , XI , Y I)
conMS(minp

S(κ, µ), D
I , SI)

Theorem 16. For the set S of bit vector representations of all solutions to I∔S
(κ, µ) the follow-

ing relation holds: proj(S,XI) = Mod(κ∔S µ)

57

3.4.4 Satoh’s contraction (ILP)

The ILP encoding IO−̇S
(κ, ϕ) is identical to encoding IO∔S

(κ, µ) apart from the newly in-
troduced sets of variables AI and ASI , the replacement of XI by ZI and the replace-
ments of con(µ,XI) and con(µ,ZSI) by conN (ϕ,ZI , AI) and conN (ϕ,ZSI , ASI).

Definition 3.19. The ILP encoding IO−̇S
(κ, ϕ) is defined as

defb(A
I)

defb(Y
I)

defb(Z
I)

defb(D
I)

defb(AS
I)

defb(Y SI)
defb(ZSI)
defb(DSI)
defb(DDSI)

con(κ, Y I)
conN (ϕ,ZI , AI)
conE

D(D
I , ZI , Y I)

con(κ, Y SI)
conN (ϕ,ZSI , ASI)

conE
D(DSI , ZSI , Y SI)

conE
D(DDSI , DI , DSI)
n∑

j=1

(
ddsIj

)
≥ 1

conPS(D
I , DSI)

minimize
n∑

j=1

(
dsIj

)
Theorem 17. For the bit vector representation S of the optimal solution to IO−̇S

(κ, ϕ) the bit
vector proj(S, {dsI1, ..., dsIn}) corresponds to the bit vector representation of a minimal set of
the set of all difference sets DS(κ,¬ϕ), that is also a proper subset of some set in DS(κ,¬ϕ).

The adjustment of IO−̇S
(κ, ϕ) after every solver call is identical to the adjustment of

IO∔S
(κ, µ) described in the previous section. Definition 3.20 formally defines encod-

ing I−̇S
(κ, ϕ) and Theorem 18 describes how the same can be used for determining

Mod(κ−̇Sϕ).

Definition 3.20. The ILP encoding I−̇S
(κ, ϕ) is defined as follows:

for minp
S(κ,¬ϕ) = ∅:

58

defb(Z
I)

defb(A
I)

defb(X
I)

defb(B
I)

defb(E
I)

defb(F
I)

defb(g
I
1)

defb(g
I
2)

conN (ϕ,ZI , AI)
con(κ,BI)

conD(E
I , XI , BI)

conD(F
I , XI , ZI)(n∑

j=1

(
eIj

))
÷ n ≤ gI1(n∑

j=1

(
f I
j

))
÷ n ≤ gI2

gI1 + gI2 ≤ 1

for minp
S(κ,¬ϕ) = {∅}:

I−̇D
(κ, ϕ) with dmin(κ,¬ϕ) = 0

for all other cases:

defb(A
I)

defb(Y
I)

defb(Z
I)

defb(D
I)

defb(S
I)

defb(X
I)

defb(B
I)

defb(E
I)

defb(F
I)

defb(g
I
1)

defb(g
I
2)

con(κ, Y I)
conN (ϕ,ZI , AI)
conD(D

I , Y I , ZI)
con(κ,BI)

conD(E
I , XI , BI)

conD(F
I , XI , ZI)

conMS(minp
S(κ,¬ϕ), DI , SI)

59

(n∑
j=1

(
eIj

))
÷ n ≤ gI1(n∑

j=1

(
f I
j

))
÷ n ≤ gI2

gI1 + gI2 ≤ 1

Theorem 18. For the set S of bit vector representations of all solutions to I−̇S
(κ, ϕ) the follow-

ing relation holds: proj(S,XI) = Mod(κ−̇Sϕ)

3.4.5 ILP inference checks

This section aims to demonstrate how the ILP belief change encodings of the previous
sections can be leveraged to determine whether for a given belief change operation B
the below expression evaluates to true:

B |= γ

In order to do so, we start with the ILP belief change encoding, that corresponds to B,
and combine it with constraints implementing the negation of formula γ, as can be seen
in below formal definition.

Definition 3.21. The inference check ILP encoding II(B, γ) is defined as follows:

I

defb(A
I
2)

conN (γ,XI , AI
2)

where AI
2 the set of auxiliary variables required for the negation of γ and

I = I∔D
(κ, µ) for B = (κ∔D µ)

I = I∔S
(κ, µ) for B = (κ∔S µ)

I = I−̇D
(κ, ϕ) for B = (κ −̇D ϕ)

I = I−̇S
(κ, ϕ) for B = (κ −̇S ϕ)

As established by Theorem 19 the determination of whether γ can be inferred from the
belief change result, then consists in making a single call to an ILP solver.

Theorem 19. The inference check ILP encoding II(B, γ) has no solution if and only if B |= γ.

3.4.6 ILP model checks

In the following we propose the ILP encoding IM (B,N) for determining whether the
interpretation N is a model of the belief base resulting from a belief change operation
B, i.e. whether the below expression evaluates to true:

N |= B

60

To obtain the encoding IM (B,N) we start with the ILP belief change encoding, that
corresponds to B, and add one additional constraint per xj ∈ X , consisting of xIj = 1 (if
value(N, xj) = true) and xIj = 0 (if value(N, xj) = false), where xIj is the ILP variable
representing variable xj in the ILP encoding. We denote the set of these constraints by
conM (N,XI).

Definition 3.22. The model check ILP encoding IM (B,N) is defined as follows:

I

conM (N,XI)

with I as in Definition 3.21.

Theorem 20. The model check ILP encoding IM (B,N) has a solution if and only if N ∈
Mod(B).

3.5 ASP encodings

Analogously to sections 3.3 and 3.4, this section introduces the ASP encoding schemes
AO

∔D
(κ, µ), A∔D

(κ, µ), AO
−̇D

(κ, ϕ), A−̇D
(κ, ϕ), AO

∔S
(κ, µ), A∔S

(κ, µ), AO
−̇S

(κ, ϕ) and
A−̇S

(κ, ϕ) generated and used by algorithms 3.1 and 3.2 as well as the ASP inference
and model check encodings AI(x, y) and AM (x, y) generated and used by algorithms
3.3 and 3.4. As usual, Appendix A contains all proofs of the following lemata and the-
orems.

Before proposing our ASP encodings we firstly define a few notations required for
the subsequent sections. Given an answer set a, a set I = {i1, ...ii, ...in} of positive in-
tegers and a predicate p with arity 1, we define the expression interpretation(a, I, p)
to denote the bit vector obtained from applying the following rule: for every
ii ∈ I , if p(ii) ∈ a, we set the bit 1, otherwise bit 0. As an example, let
a′ = {t(1)} and a′′ = {t(1), t(2)}, then interpretation(a′, {1, 2}, t/1) = 10 and
interpretation(a′′, {1, 2}, t/1) = 11. Further, let A = {a1, ..., am} be a set of answer sets,
then interpretation(A, I, p) = {interpretation(a1, I, p), ..., interpretation(am, I, p)}
(note that since interpretation(A, I, p) is a set, it does not contain any duplicates). In
case of A = ∅, we obtain interpretation(A, I, p) = ∅.

3.5.1 Dalal’s revision (ASP)

In this section we define the ASP encoding AO
∔D

(κ, µ), that can be used for determining
the minimum Dalal distance dmin(κ, µ), and the belief change ASP encoding A∔D

(κ, µ),
which encodes the belief base emerging from the operation κ∔D µ.

Within the ASP logic program we use positive integers to represent propositional
atoms. In the same fashion as in the already suggested SAT and ILP encodings, we use
two distinct sets of integers when translating κ and µ into ASP language. Accordingly,
we first allocate to each atom xi ∈ X an integer x of the range 1 ≤ x ≤ |X| such that each
atom is represented by exactly one integer within the range and each integer within the

61

range represents exactly one propositional atom. We denote the integer representing
the propositional atom xi by xIi and the set of these integers by XI . In the same fashion
we allocate to each atom xi an integer y of the range (|X|+1) ≤ y ≤ (2∗|X|) and denote
the set of these integers by Y I .
The first line of the encoding AO

∔D
(κ, µ) consists of a choice rule, that uses the interval

operator:
{t(1..intMax)}.

intMax is the highest allocated integer, i.e. intMax = 2∗|X|, and, as already mentioned
in Section 2.8.3, the predicate t/1 has the meaning that the propositional atom, that is
represented by its integer argument, has the truth value true.
Next, we introduce a new predicate r/2, which states that its arguments represent the
same propositional atom, and add for each pair (xIi , y

I
i) a fact of the form

r(xIi , y
I
i).

to the encoding. In the remaining part of the paper we denote the entire set of such
representation facts by rFacts[XI , Y I].
Now that the representation of propositional atoms within the logic program has been
addressed, the formulae κ and µ can be translated into ASP constructs. Accordingly, the
next part of the encoding consists of the set of integrity constraints, needed to represent
CNF formula κ as described in Section 2.8.3. Within these integrity constraints, we
use the integers Y I to represent the propositional atoms X . We denote the resulting
set of integrity constraints by constraints[κ, Y I]. These are followed by the integrity
constraints for formula µ, wherein we use the integers XI and which are denoted by
constraints[µ,XI].
Next, we introduce the predicate d/1 by adding the below two static rules:

d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

This predicate indicates that the truth assignment to M differs from the truth assign-
ment to N , and that M and N represent the same propositional atom x.
Finally, a minimization construct is added, which tells the answer set solver to look for
the answer set with the smallest amount of atoms of the predicate d/1:

#minimize{1, P : d(P)}.

Definition 3.23 formally defines the just described ASP optimization encoding
AO

∔D
(κ, µ).

Definition 3.23. The ASP encoding AO
∔D

(κ, µ) is defined as

62

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
constraints[µ,XI]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

#minimize{1, P : d(P)}.

where intMax = 2 ∗ |X|.

Note that white marks the dynamic part of the encoding, that changes with different
κ and µ, whereas grey marks the static part. Theorem 21 establishes that the encoding
can be used to determine dmin(κ, µ).

Theorem 21. The optimal value of the optimal answer set to the ASP logic program AO
∔D

(κ, µ)
corresponds to the minimum Dalal distance dmin(κ, µ).

Example 3.12 shows a sample AO
∔D

(κ, µ) encoding.

Example 3.12. Let κ = (a∨¬b)∧ b and µ = ¬a. Then X = V ar(κ)∪V ar(µ) = {x1, x2} =
{a, b} and we define xI1 = 1, xI2 = 2, yI1 = 3 and yI2 = 4. The encoding AO

∔D
(κ, µ) then looks

as follows:

{t(1..4)}.
r(1, 3).

r(2, 4).

:− not t(3), t(4).

:− not t(4).

:− t(1).

d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

#minimize{1, P : d(P)}.

When passing the encoding to an answer set solver, an optimal value of 1 is determined, thus
dmin(κ, µ) = 1.

For generating encoding A∔D
(κ, µ) we replace the minimization expression in

AO
∔D

(κ, µ) by
:− #count{P : d(P)} ! = dmin(κ, µ).

63

Definition 3.24. The ASP encoding A∔D
(κ, µ) is defined as

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
constraints[µ,XI]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

:− #count{P : d(P)} ! = dmin(κ, µ).

where intMax = 2 ∗ |X|.

As formally stated in Theorem 22, the encoding represents the new belief base ema-
nating from κ ∔D µ in that Mod(κ ∔D µ) can be extracted from the encoding’s answer
sets.

Theorem 22. For the set A of all answer sets to the ASP logic program A∔D
(κ, µ) the following

relation holds:
interpretation(A,XI , t/1) = Mod(κ∔D µ)

Example 3.13 shows a sample A∔D
(κ, µ) encoding for a given belief revision instance.

Example 3.13. Let κ and µ be as in example 3.12. From the same example we know that
dmin(κ, µ) = 1 and thus obtain the following A∔D

(κ, µ) encoding:

{t(1..4)}.
r(1, 3).

r(2, 4).

:− not t(3), t(4).

:− not t(4).

:− t(1).

d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

:− #count{P : d(P)} ! = 1.

3.5.2 Dalal’s contraction (ASP)

In this section we define the ASP encodings AO
−̇D

(κ, ϕ) and A−̇D
(κ, ϕ) for Dalal’s con-

traction operator.
As Dalal’s contraction operator is defined by Mod(κ−̇Dϕ) = Mod(κ)∪Mod(κ∔D¬ϕ),

the first step towards encoding Dalal’s contraction into ASP is as usual to create an ASP
encoding AO

−̇D
(κ, ϕ) for determining the minimum Dalal distance dmin(κ,¬ϕ). To do so,

we first present the following steps to translate a negated CNF formula ¬ϕ into ASP:

64

1. We translate every clause of ϕ into a cardinality constraint, with a lower limit of
1. As an example, assume ϕ = (a ∨ ¬b) ∧ (¬b ∨ c), then we obtain the constraints

1{t(1); not t(2)}.

and
1{not t(2); t(3)}.

where a is represented by integer 1, b by 2 and c by 3. Each cardinality constraint
corresponds to a disjunction, since it states that at least one of the literals need to
be satisfied.

2. Next, we create an integrity constraint using the cardinality constraints of step
1, which ensures that not all of them can be satisfied at the same time. For this
purpose we first concatenate the cardinality constraints of step 1, using a comma
as separator, and denote the resulting concatenation by cConstraints[ϕ, I], where
I represents the set of integers used as arguments for predicate t/1 to represent
propositional atoms in ϕ. The integrity constraint then looks as follows:

:− cConstraints[ϕ, I].

This implements the negation, since in the case that at least one cardinality con-
straint is not satisfied, ϕ is also not satisfied, hence ¬ϕ. Assuming the same exam-
ple as in step 1, we obtain as integrity constraint:

:− 1{t(1); not t(2)}, 1{not t(2); t(3)}.

Encoding AO
−̇D

(κ, ϕ) is then obtained by replacing in encoding AO
∔D

(κ, µ) the constraints
constraints[µ,XI] with the integrity constraint :− cConstraints[ϕ,XI]. as is summa-
rized in Definition 3.25.

Definition 3.25. The ASP encoding AO
−̇D

(κ, ϕ) is defined as

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
:− cConstraints[ϕ,XI].

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

#minimize{1, P : d(P)}.

where intMax = 2 ∗ |X|.

Theorem 23 states that the determination of dmin(κ,¬ϕ) from the optimal answer set
of AO

−̇D
(κ, ϕ) is analogous to that of the corresponding revision optimization encoding

AO
∔D

(κ, ϕ) of Section 3.5.1.

65

Theorem 23. The optimal value of the optimal answer set to the ASP logic program AO
−̇D

(κ, ϕ)

corresponds to the minimum Dalal distance dmin(κ,¬ϕ).

Example 3.14 shows AO
−̇D

(κ, ϕ) for a given belief contraction instance.

Example 3.14. Let κ = (a∨¬b)∧b and ϕ = a∨b. Then X = V ar(κ)∪V ar(ϕ) = {x1, x2} =
{a, b} and we define xI1 = 1, xI2 = 2, yI1 = 3 and yI2 = 4. The encoding AO

−̇D
(κ, ϕ) then looks

as follows

{t(1..4)}.
r(1, 3).

r(2, 4).

:− not t(3), t(4).

:− not t(4).

:− 1{t(1); t(2)}.
d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

#minimize{1, P : d(P)}.

with the only answer set {r(1,3), r(2,4), d(1,3), d(2,4), t(3), t(4)}, thus dmin(κ,¬ϕ) = 2.

Next, we proceed with proposing encoding A−̇D
(κ, ϕ). Recalling once again, that

Mod(κ −̇D ϕ) = Mod(κ) ∪Mod(κ ∔D ¬ϕ) we introduce the constant isRevisionModel
and turn the integrity constraint

:− cConstraints[ϕ,XI].

in encoding AO
−̇D

(κ, ϕ) into the following rule:

not isRevisionModel :− cConstraints[ϕ,XI].

Furthermore, we replace the minimization statement in encoding AO
−̇D

(κ, ϕ) by the fol-
lowing two rules:

isRevisionModel :− #count{P : d(P)} ! = 0.

not isRevisionModel :− #count{S : d(S)} ! = dmin(κ,¬ϕ).

The resulting encoding A−̇D
(κ, ϕ) is described in Definition 3.26 below. Theorem 24

further constitutes the contraction counterpart of the above Theorem 22 of Dalal’s revi-
sion.

66

Definition 3.26. The ASP encoding A−̇D
(κ, ϕ) is defined as

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

isRevisionModel :− #count{P : d(P)} ! = 0.

not isRevisionModel :− cConstraints[ϕ,XI].
not isRevisionModel :− #count{S : d(S)} ! = dmin(κ,¬ϕ).

where intMax = 2 ∗ |X|.

Theorem 24. For the set A of all answer sets to the ASP logic program A−̇D
(κ, ϕ) the following

relation holds:
interpretation(A,XI , t/1) = Mod(κ −̇D ϕ)

.

Example 3.15 shows a sample A−̇D
(κ, ϕ) ASP encoding.

Example 3.15. Let κ and ϕ be as in Example 3.14 with dmin(κ,¬ϕ) = 2, then A−̇D
(κ, ϕ) looks

as follows:

{t(1..4)}.
r(1, 3).

r(2, 4).

:− not t(3), t(4).

:− not t(4).

d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

isRevisionModel :− #count{P : d(P)} ! = 0.

not isRevisionModel :− 1{t(1); t(2)}.
not isRevisionModel :− #count{S : d(S)} ! = 2.

3.5.3 Satoh’s revision (ASP)

This section introduces the ASP encodings AO
∔S

(κ, µ) and A∔S
(κ, µ) for Satoh’s revision.

In the same fashion as with the previously suggested SAT and ILP Satoh encodings, we
first propose the encoding AO

∔S
(κ, µ), that allows for identifying those difference sets of

DS(κ, µ), that are both minimal sets and proper subsets, followed by the introduction
of the ASP encoding A∔S

(κ, µ) of the belief base resulting from Satoh’s revision on κ
and µ.

67

For the encoding AO
∔S

(κ, µ) we once again require sets of integers, that represent
the propositional atoms in |X|. We allocate to each atom xi ∈ X an integer x of the
range 1 ≤ x ≤ |X| such that each atom is represented by exactly one integer and
each integer represents exactly one atom. Again, we denote the integer representing
the propositional atom xi by xIi and the set of these integers by XI . In the same way
we allocate to each atom xi ∈ X an integer y of the range (|X|+1) ≤ y ≤ (2 ∗ |X|),
an integer w of the range (2 ∗ |X|+1) ≤ w ≤ (3 ∗ |X|) and an integer z of the range
(3 ∗ |X|+1) ≤ z ≤ (4 ∗ |X|), denoting the sets by Y I , W I and ZI , respectively. The
beginning of encoding AO

∔S
(κ, µ) is identical to the one of AO

∔D
(κ, µ)

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]

constraints[µ,XI]

d(M) :− r(M,N), t(M), not t(N).

d(M) :− r(M,N), not t(M), t(N).

except for intMax = 4 ∗ |X|. We introduce predicates r2/2 and r3/2, which work
analogously to predicate r/2, i.e. they state that their integer arguments represent the
same propositional atom. Further, we introduce predicates d2/1 and d3/1 and use them
analogously to predicate d/1 as becomes evident in the second part of AO

∔S
(κ, µ):

r2Facts[ZI ,W I]

constraints[κ,W I]

constraints[µ,ZI]

d2(M) :− r2(M,N), t(M), not t(N).

d2(M) :− r2(M,N), not t(M), t(N).

r3Facts[XI , ZI]

d3(A) :− r3(A,B), d(A), not d2(B).

d3(A) :− r3(A,B), not d(A), d2(B).

The so far introduced components of AO
∔S

(κ, µ) allow for comparing two difference sets
in DS(κ, µ) to each other, since the presence of d/1 and d2/1 predicate atoms in a given
answer set each indicate one difference set in DS(κ, µ). To ensure that the d/1 and d2/1
predicate atoms do not both indicate the same difference set, we add the following
integrity constraint:

:− #count{A : d3(A)} = 0.

Finally, to ensure that the difference set indicated by predicate atoms d2/1 is both a

68

proper subset of some other difference set and a minimal set of DS(κ, µ), we add

not d2(B) :− r3(A,B), not d(A).

#minimize{1, P : d2(P)}.
#show d2/1.

The show construct allows for easier readability of the encoding’s answer sets. Defini-
tion 3.27 formally summarizes the just described composition of AO

∔S
(κ, µ) and The-

orem 25 establishes, how the encoding can be used to determine a minimal set of
DS(κ, µ).

Definition 3.27. The ASP encoding AO
∔S

(κ, µ) is defined as

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
constraints[µ,XI]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

r2Facts[ZI ,W I]
constraints[κ,W I]
constraints[µ,ZI]

d2(M) :− r2(M,N), t(M), not t(N).
d2(M) :− r2(M,N), not t(M), t(N).

r3Facts[XI , ZI]

d3(A) :− r3(A,B), d(A), not d2(B).
d3(A) :− r3(A,B), not d(A), d2(B).

:− #count{A : d3(A)} = 0.
not d2(B) :− r3(A,B), not d(A).

#minimize{1, P : d2(P)}.
#show d2/1.

where intMax = 4 ∗ |X|.

Theorem 25. For the optimal answer set a to the ASP logic program AO
∔S

(κ, µ), the bit vector
interpretation(a, ZI , d2/1) corresponds to the bit vector representation of a minimal set of the
set of all difference sets DS(κ, µ), that is a proper subset of some set in DS(κ, µ).

The adjustment, that is carried out on AO
∔S

(κ, µ) after every solver call in preparation
for the next one, consists of adding an integrity constraint, which states that all predi-
cate atoms of d2/1, which were in the answer set a, cannot be contained all together in
the new answer set. As an example, assuming that the answer set a of the first solver
call contained the predicate atoms d2(11) and d2(13), then the integrity constraint that
is added to the encoding AO

∔S
(κ, µ) for the subsequent solver call is :− d2(11), d2(13).

By doing so, it is ensured that the already determined minimal set and all of its proper

69

supersets are excluded from the subsequent solver calls. Accordingly, the proper sub-
set p that is to be determined by the next solver call, is also a minimal set since the
only other set, that is a proper subset of some set and that potentially contains fewer
elements than p, is the already determined minimal set and that set cannot be a proper
subset of p due to the newly added integrity constraint. The described adjustment is
analogous to the adjustments to the corresponding SAT and ILP encodings of sections
3.3.4, 3.3.5, 3.4.3 and 3.4.4.

Again we denote the final set of determined minimal sets, that are proper subsets
of some set, by minp

S(κ, µ). With regards to the encoding A∔S
(κ, µ) we distinguish be-

tween three different cases, as we did with the SAT and ILP Satoh encodings described
above.

1. In case of minp
S(κ, µ) = ∅, no set in DS(κ, µ) is a proper subset and hence all

of them are minimal sets. Accordingly, the models of the revised belief base are
exactly the models of the revision formula µ and A∔S

(κ, µ) looks as follows

{t(1..intMax)}.
constraints[µ,XI]

with intMax = |X|.

2. In case of minp
S(κ, µ) = {∅} on the other hand, encoding A∔S

(κ, µ) is identical to
encoding A∔D

(κ, µ) with a minimum Dalal distance of 0.

3. In all other cases A∔S
(κ, µ) is almost identical to A∔D

(κ, µ) with the only differ-
ence being the replacement of the integrity constraint by a set of integrity con-
straints, which we denote by minSetConstraints[minp

S(κ, µ), X
I] and explain in

the following. The set minSetConstraints[minp
S(κ, µ), X

I] of integrity constraints
contains one integrity constraint per minimal set m ∈ minp

S(κ, µ). Every integrity
constraint consists of d/1 predicate atoms for every element in m, that take as
argument the integer xI ∈ XI , that represents the corresponding propositional
atom x ∈ X , combined with an aggregate #count{P : d(P)}! = |m|. As an exam-
ple, let X = {a, b, c} be represented by integers XI = {1, 2, 3} in the given order.
Given a minimal set m = {a, c}, the corresponding integrity constraint looks as
follows:

:− d(1), d(3), #count{P : d(P)} ! = 2.

Definition 3.28 constitutes the formal definition of encoding A∔S
(κ, µ) and Theorem 26

describes how it can be leveraged for the determination of Mod(κ∔S µ).

Definition 3.28. The ASP encoding A∔S
(κ, µ) is defined as follows:

for minp
S(κ, µ) = ∅:

70

{t(1..intMax)}.
constraints[µ,XI]

where intMax = |X|.

for minp
S(κ, µ) = {∅}:

A∔D
(κ, µ) with dmin(κ, µ) = 0

for all other cases:

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
constraints[µ,XI]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

minSetConstraints[minp
S(κ, µ), X

I]

where intMax = 2 ∗ |X|.

Theorem 26. For the set A of all answer sets to the ASP logic program A∔S
(κ, µ), the following

relation holds:
interpretation(A,XI , t/1) = Mod(κ∔S µ)

3.5.4 Satoh’s contraction (ASP)

This section closes the definition of our belief change encodings by defining and prov-
ing the last two remaining belief change encodings: AO

−̇S
(κ, ϕ) and A−̇S

(κ, ϕ)

Encoding AO
−̇S

(κ, ϕ) is the same as AO
∔S

(κ, µ), except that constraints[µ,XI]

are replaced by :− cConstraints[ϕ,XI]. and constraints[µ,ZI] replaced by
:− cConstraints[ϕ,ZI]. as can be seen in Definition 3.29.

Definition 3.29. The ASP encoding AO
−̇S

(κ, ϕ) is defined as

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]
:− cConstraints[ϕ,XI].

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

71

r2Facts[ZI ,W I]
constraints[κ,W I]

:− cConstraints[ϕ,ZI].

d2(M) :− r2(M,N), t(M), not t(N).
d2(M) :− r2(M,N), not t(M), t(N).

r3Facts[XI , ZI]

d3(A) :− r3(A,B), d(A), not d2(B).
d3(A) :− r3(A,B), not d(A), d2(B).

:− #count{A : d3(A)} = 0.
not d2(B) :− r3(A,B), not d(A).

#minimize{1, P : d2(P)}.
#show d2/1.

where intMax = 4 ∗ |X|.

Theorem 27 further establishes that AO
−̇S

(κ, ϕ) can be used in the same way as AO
∔S

(κ, µ)

for determining a minimal set of DS(κ,¬ϕ).

Theorem 27. For the optimal answer set a to the ASP logic program AO
−̇S

(κ, ϕ), the bit vector
interpretation(a, ZI , d2/1) corresponds to the bit vector representation of a minimal set of the
set of all difference sets DS(κ,¬ϕ), that is a proper subset of some set in DS(κ,¬ϕ).

The adjustment of AO
−̇S

(κ, ϕ) after every ASP solver call is identical to the one de-
scribed in Section 3.5.3. After the successful determination of minp

S(κ,¬ϕ) the encod-
ing A−̇S

(κ, ϕ) can be generated as described by Definition 3.30. Note that the definition
is simply the contraction counterpart to that of A∔S

(κ, µ) (Definition 3.28). The set
of rules denoted by minSetRules[minp

S(κ,¬ϕ), XI] contains one rule per minimal set
m ∈ minp

S(κ,¬ϕ). Every rule’s right side consists of d/1 predicate atoms for every ele-
ment in m, that take as argument the integer xI ∈ XI , that represents the corresponding
propositional atom x ∈ X , combined with an aggregate #count{P : d(P)}! = |m|. The
rules’ left side always contains the same expression: not isRevisionModel. As an ex-
ample, let X = {a, b, c} be represented by integers XI = {1, 2, 3} in the given order.
Given a minimal set m = {a, c}, the corresponding rule looks as follows:

not isRevisionModel :− d(1), d(3), #count{P : d(P)} ! = 2.

Definition 3.30. The ASP encoding A−̇S
(κ, ϕ) is defined as follows:

for minp
S(κ,¬ϕ) = ∅:

{t(1..intMax)}.
rFacts[XI , Y I]

72

constraints[κ, Y I]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

isRevisionModel :− #count{P : d(P)} ! = 0.

not isRevisionModel :− cConstraints[ϕ,XI].

where intMax = 2 ∗ |X|.

for minp
S(κ,¬ϕ) = {∅}:

A−̇D
(κ, ϕ) with dmin(κ,¬ϕ) = 0

for all other cases:

{t(1..intMax)}.
rFacts[XI , Y I]

constraints[κ, Y I]

d(M) :− r(M,N), t(M), not t(N).
d(M) :− r(M,N), not t(M), t(N).

isRevisionModel :− #count{P : d(P)} ! = 0.

not isRevisionModel :− cConstraints[ϕ,XI].
minSetRules[minp

S(κ,¬ϕ), XI]

where intMax = 2 ∗ |X|.

Finally, Theorem 28 states how Mod(κ −̇S ϕ) can be determined from A−̇S
(κ, ϕ).

Theorem 28. For the set A of all answer sets to the ASP logic program A−̇S
(κ, ϕ), the following

relation holds:
interpretation(A,XI , t/1) = Mod(κ −̇S ϕ)

3.5.5 ASP inference checks

In this section we demonstrate how to determine, using the ASP encodings defined in
the previous sections of this chapter, whether the following expression evaluates to true
for a given belief change operation B:

B |= γ

Analogous to the SAT inference checks of Section 3.3.6 and the ILP inference checks
of Section 3.4.5, we create the inference check ASP encodings by combining the cor-
responding ASP encoding of the previous sections with an additional constraint, that
implements the negation of formula γ.

73

Definition 3.31. The inference check ASP encoding AI(B, γ) is defined as follows:

A

:− cConstraints[γ,XI]

where cConstraints[...] as defined in Section 3.5.2, XI as defined in Section 3.5.1, namely the
set of integers used to represent the propositional atoms V ar(κ)∪V ar(µ) (or V ar(κ)∪V ar(ϕ))
within the first part of each above encoding, and

A = A∔D
(κ, µ) for B = (κ∔D µ)

A = A∔S
(κ, µ) for B = (κ∔S µ)

A = A−̇D
(κ, ϕ) for B = (κ −̇D ϕ)

A = A−̇S
(κ, ϕ) for B = (κ −̇S ϕ)

Theorem 29 states that once the encoding AI(B, γ) is generated, it can be determined
with a single call to an answer set solver, whether γ can be inferred from the given
compiled belief base.

Theorem 29. For the set A of answer sets to the inference check ASP encoding AI(B, γ)A = ∅
holds if and only if B |= γ.

3.5.6 ASP model checks

Analogous to the SAT and ILP model check encodings of Sections 3.3.7 and 3.4.6, in
this section we suggest an ASP encoding AM (B,N) for determining whether the in-
terpretation N is a model of the belief base resulting from the belief change operation
B. Precisely, the encoding AM (B,N) is intended to be usable for deciding whether the
following expression holds:

N |= B

For creating AM (B,N), we take from the above defined ASP encodings the encoding,
that corresponds to the operation B, and add one fact per xi ∈ X , stating either t(xIi)
(if value(N, xi) = true) or not t(xIi) (if value(N, xi) = false) where xIi ∈ XI is the
integer, that represents the propositional atom xi in the above defined ASP encodings.
The collection of these facts is denoted by modelFacts[N,XI]. We can then establish
below formal definition of AM (B,N).

Definition 3.32. The model check ASP encoding AM (B,N) is defined as follows:

A

modelFacts[N,XI]

with A as in Definition 3.31.

Theorem 30 establishes that given the encoding AM (B,N) it is possible to determine
with a single call to an answer set solver, whether the interpretation N is a model of the
compiled belief base.

74

Theorem 30. For the model check ASP encoding AM (B,N) the equation A ̸= ∅, with A
denoting the set of all answer sets to the encoding, holds if and only if N ∈Mod(B).

75

4 Evaluation

The experimental evaluation of our belief change application targets both the compi-
lation and the inference and model checks for each of the four supported change op-
erators. The aim is to determine, by runtime comparisons, which of the implemented
preprocessing algorithms and encoding schemes perform overall best with regards to
a specific change operator. Moreover, we compare our compilation-based approaches
to a naive baseline implementation for each supported operator. Even though we ex-
pect the naive approach to perform poorest for all operators, the analysis is worthwhile
as the results allow us to better quantify the superiority of our compilation-based ap-
proaches. In Section 4.1 we describe our experimental setup, followed by a description
of the naive baseline algorithms in 4.2. Finally, we present the results of our experimen-
tal analysis in Section 4.3.

4.1 Experimental setup

Due to the lack of official benchmark data for belief revision and contraction operations,
we had to create our own data sets 4. These include two distinct data sets per belief
operation, i.e. data sets R1 and R2 for belief revision and data sets C1 and C2 for belief
contraction. Every generated belief change instance originates from a SAT instance
available in the GBD online database 5, which was developed by Iser and Sinz [IS19]
and contains at the time of writing more than 30 000 SAT benchmark instances. In the
following each data set is described in terms of its generation and composition.

For data set C1 we firstly selected, using the GBD database’s filtering function, all sat-
isfiable SAT instances, that contain less than 5 000 variables and less than 5 000 clauses
and are solvable by the MiniSat solver within one minute. Furthermore, we removed
those instances, that were part of the 2022 and 2023 SAT competitions’ main tracks as
these instances are already included in data set C2, which is described below. After-
wards, there were 151 remaining SAT instances, which constituted our belief bases. In
order to create belief contraction instances, we wrote a small program, that selected for
each SAT instance (belief base) randomly (uniform distribution) 5%, 15%, 25% and 35%
of the clauses. Each set of clauses then constituted a contraction formula. By selecting
clauses of the belief base as contraction formula clauses, trivial cases where the contrac-
tion formula is not believed, were ruled out. We further ensured that each contraction
formula was non-tautological, to avoid cases, in which a contraction is not possible.
After applying this process to each selected SAT instance (belief base), we ended up
with 151 ∗ 4 = 604 belief contraction instances within data set C1. In order to obtain
formulae for inference checks we once more randomly selected 5% and 25% of each
SAT instance’s clauses, while ensuring that these were non-tautological. The conjunc-
tions of these clauses then constituted our inference formulae, which are guaranteed
to be satisfiable and non-tautological. Further, we randomly generated for each SAT

4Available at https://fernuni-hagen.sciebo.de/s/Ni5FHqP1V2OaQ7k
5https://benchmark-database.de/

76

instance two different interpretations of the instance’s signature. Accordingly, we ob-
tained 151 ∗ 2 = 302 inference formulae and 151 ∗ 2 = 302 interpretations for model
checks.

For creating data set C2 we selected those satisfiable SAT instances, that were part
of the main track benchmark data of the official 2022 and 2023 SAT competitions 6.
Next, we further narrowed down the selected instances by eliminating all those in-
stances, that were not solvable within 180s wall clock time by the partial MaxSAT solver
MaxHS. The intention was to remove the most difficult SAT instances. The elimination
resulted in 67 remaining, satisfiable SAT instances, which constituted our belief bases.
The subsequent generation steps were identical to those of data set C1 and resulted in
67 ∗ 4 = 268 belief contraction instances, 67 ∗ 2 = 134 satisfiable and non-tautological
inference formulae and 67 ∗ 2 = 134 interpretations for model checks within data set
C2.

Data set R1 was created in a similar way as data set C1. However, instead of selecting
satisfiable SAT instances, we selected all unsatisfiable SAT instances, that contain less
than 5 000 variables and less than 5 000 clauses and are solvable by the MiniSat solver
within one minute. Next, we removed those instances, that were part of the MUS track
benchmark data of the official 2011 SAT competition since these instances are already
included in data set R2, which is described below. This resulted in 134 unsatisfiable SAT
instances. In order to obtain belief revision instances from these SAT instances we ran-
domly divided each instance into two parts, such that the size of one part was exactly
5%, 15%, 25% and 35% of the size of the other part. The larger set of clauses then con-
stituted the belief base and the smaller set the revision formula. Again, this was carried
out with the help of a program, which further ensured that the resulting belief base and
revision formulae were both satisfiable. The major advantage of this approach is the
fact that trivial cases, in which the minimum Dalal distance is 0 or where the empty set
is the only minimal set within the set of difference sets, are ruled out as the conjunction
of the belief base and revision formulae corresponds to the unsatisfiable SAT instance.
Using the described method, we were able to generate revision instances for 132 of the
134 selected unsatisfiable SAT instances, thus resulting in 132 ∗ 4 = 528 belief revision
instances within data set R1. Analogously to the generation of data sets C1 and C2 we
further generated 132 ∗ 2 = 264 satisfiable, non-tautological inference formulae (this
time explicitly checking for satisfiability as well) and 132 ∗ 2 = 264 interpretations for
model checks.

Finally, data set R2 was created by selecting those unsatisfiable SAT instances, that
were part of the MUS track benchmark data of the official 2011 SAT competition. This
data set was also used as a starting point by Konieczny et al. in their evaluation
[KLM17]. After eliminating all those instances, that the partial MaxSAT solver MaxHS
was not able to solve within 180 s wall clock time, there were 241 remaining, unsatis-
fiable SAT instances. From these instances we selected at random 67 to obtain a data
set, that is of equal size as its contraction counterpart C2. The generation of belief
revision instances, inference formulae and interpretations from our 67 selected unsat-

6http://www.satcompetition.org/

77

isfiable SAT instances was analogous to that of data set R1. Eventually, we ended up
with 67 ∗ 4 = 268 belief revision instances, 67 ∗ 2 = 134 satisfiable, non-tautological
inference formulae and 67 ∗ 2 = 134 interpretations within data set R2.

Table 4.1 shows the composition of the SAT instances, that were used for the genera-
tion of our data sets. As can be seen, both the signature sizes, varying between 12 and
more than a million, and the clause numbers, which vary between 24 and more than 3
million, are quite distributed. The highest average number of disjuncts per clause, on
the other hand, is only 12, hence not exhibiting as much variation as the signature size
and the number of clauses.

Data
set

Min
S

Max
S

Avg
S

Min
C

Max
C

Avg
C

Min
∅D

Max
∅D

Avg
∅D

C1 15 1 885 389 24 4 983 2 154 2 12 3
C2 240 260 359 74 360 1 026 2 770 239 368 269 2 7 3
R1 12 1 800 245 32 4 200 905 2 6 3
R2 26 1 199 597 113 191 70 3 868 693 357 714 2 3 2

Table 4.1: Composition of SAT instances used for data set generation wrt. signature size
(S), clause number (C) and average disjuncts per clause (∅D)

Overall, we expect the belief change instances of data sets R2 and C2 to be harder to
compile than those of data sets R1 and C1 for three different reasons. The first one is
the restriction on the number of variables and clauses that we introduced by selecting
SAT instances with less than 5 000 variables and less than 5 000 clauses as bases for data
sets R1 and C1. The second reason is the fact that the SAT instances that served as a
basis for data sets R2 and C2 were part of official SAT competitions and are therefore
supposed to be non-trivial instances. The third and final reason for our assumption lies
in the fact that we selected the SAT instances for data sets R1 and C1 based on them
being solvable by the MiniSat solver within one minute, whereas the SAT instances of
data sets R2 and C2 had to be solvable within three minutes by the solver MaxHS.

All tests mentioned in this paper were run on five identical Google Cloud Compute
Engine virtual machines of the machine type c2-standard-8, hosting the operating sys-
tem Ubuntu 22.04. Each machine had 32 Gigabyte RAM available and was based on
the CPU platform Intel Cascade Lake with a clock frequency of 3.90 GHz. With regards
to the external solvers, we used version 4.0.0 of MaxHS, version 1.7.3 of CaDiCal, ver-
sion 5.0 of the GLPK package, containing glpsol, and version 5.6.2 of clingo. In each
test execution of our program we set the maximum available heap space for the JVM
to 10 Gigabyte. Furthermore, for each run we passed the flag -s to our application
in order to skip the validation phase. The application’s execution time on each given
benchmark instance was measured in wall clock time and a timeout of 600 seconds was
set. To reduce the impact of other processes on the measured runtime, the used vir-
tual machines had no GUI and it was ensured that only system-relevant processes were
running in parallel with the tests. Furthermore, execution time for each benchmark

78

instance was measured three times in a non-sequential manner to rule out possible in-
fluences of caching and each instance’s result presented in Section 4.3 constitutes the
mean value of all three executions. If for a given instance one or more of the three exe-
cutions resulted in a timeout or memory error, no mean value is given and the instance
is treated as a timeout or memory error, respectively.

4.2 Naive implementation

To gain a deeper understanding of how well our compilation-based approaches per-
form in comparison to a naive implementation of inference and model checks for the
targeted belief change operators, we implemented the following naive algorithms:

• Dalal’s revision: The algorithm first determines the belief base’s and change for-
mula’s models through iterative calls to the CaDiCal solver. Subsequently, the
algorithm compares each belief base model to each change formula model in or-
der to determine the minimum Dalal distance. Finally, it returns all those models
of the change formula, that have the determined minimum Dalal distance to at
least one belief base model.

• Dalal’s contraction: This algorithm is very similar to the algorithm for Dalal’s re-
vision, but the change formula is first negated, using the Tseitin transformation,
and the list of determined result models is expanded by the models of the belief
base.

• Satoh’s revision: The algorithm starts with determining the belief base’s and
change formula’s models using CaDiCal, as well as the difference sets between
each of them. Next, it checks for every determined difference set, whether there is
another difference set, that is a proper subset of it. That way, all minimal sets are
obtained. Finally, it once more compares each belief base model to each change
formula model and checks whether their difference set is one of the previously de-
termined minimal sets. If yes, the corresponding change formula model is added
to the list of result models, which is returned once all comparisons have been
carried out.

• Satoh’s contraction: This algorithm is very similar to the algorithm for Satoh’s re-
vision, but the change formula is first negated, using the Tseitin transformation,
and the list of determined result models is expanded by the models of the belief
base.

• Inference check: As the above naive belief change algorithms return the list of mod-
els of the new belief base, an inference check can be carried out by checking,
whether the inference formula holds for every model of the new belief base. For
this purpose, the algorithm carries out iterative calls to CaDiCal, with each call
checking whether the inference formula holds for a specific model. If the infer-
ence formula holds in all models, it is believed in the new belief base.

79

• Model check: This algorithm simply consists of a check, whether the provided
model is contained in the list of models of the new belief base, that was returned
by one of the above naive belief change algorithms.

4.3 Results and discussion

In this section we present and discuss the results of our experimental analysis. We be-
gin with the compilation results, followed by those of the inference and model checks.
Afterwards, we describe the further investigations that were carried out as a response
to the results of the previous sections. The section closes with a comparison of our
compilation-based approach to the naive implementation.

For visualizing and comparing runtime results, we sort for every evaluated algorithm
instance the runtimes measured for all belief change instances of a data set from low to
high and then plot them. Accordingly, the highest x-value of an algorithm instance’s
graph indicates the number of belief change instances that were solved without timeout
or error by the given algorithm instance. Such kind of plots are referred to as cactus plots.
Note that, as mentioned in Section 4.1 above, all plotted runtimes constitute the mean
value of three non-sequential runs.

4.3.1 Compilation

The first set of tests consisted of measuring for each data set and belief change operator
the compilation runtimes of the following compilation algorithm instances:

• MaxSAT-SAT - using MaxSAT for the preprocessing and compiling the instance
into a SAT encoding

• ASP-ASP - using ASP for the preprocessing and compiling the instance into an
ASP encoding

• ILP-ILP - using ILP for the preprocessing and compiling the instance into an ILP
encoding

• Naive - using the naive implementation, which generates the list of models of the
belief base emerging from the belief change operation

The reason for starting off with algorithm instances that use the same technology for
both preprocessing and compilation was the assumption that these instances might
yield shorter runtimes than the mixed-technology implementations due to the re-use of
parts of the preprocessing encoding in the final compilation result.

The instances of data sets R1 and C1 were tested for both Dalal’s and Satoh’s oper-
ators, whereas the instances of data sets R2 and C2 were tested for Dalal’s operators
only. Moreover, due to its poor performance in data sets R1 and C1, the naive imple-
mentation was no longer considered for data sets R2 and C2.

Figure 4.1 shows the mean compilation times for Dalal’s revision operator. It be-
comes immediately apparent that the naive approach, which attempts to determine

80

(a) Data set R1 (b) Data set R2

Figure 4.1: Compilation runtime for Dalal’s revision with a timeout of 600 s

the minimum Dalal distance by first determining and then comparing the belief base’s
and change formula’s models, performed poorest, successfully terminating in only six
out of 528 cases (data set R1). The algorithm instance MaxSAT-SAT on the other hand
clearly outperformed all other instances with regards to both data sets as it by far com-
piled the biggest number of belief change instances. To be precise, it successfully com-
piled 488 of 528 instances in data set R1 and 267 of 268 instances in data set R2 within
the allocated time of 600 seconds. Whereas both the ASP-ASP and ILP-ILP algorithm
instances achieved to compile a reasonable amount of instances of data set R1 (261 and
133 respectively), they showed an extremely poor performance with regards to data set
R2, compiling only a handful of instances without timing out or encountering an error.
However, it is interesting to note that both algorithm instances accomplished to compile
a few belief change instances in less time than the MaxSAT-SAT instance. Having a look
at Figure 4.2, which shows the results for Satoh’s revision on data set R1, we observe
that the naive method’s performance on Satoh’s revision is similar to that on Dalal’s re-
vision, with only four out of 528 successfully solved instances. The algorithm instance
ILP-ILP compiled 27 belief change instances, constituting a worse performance than
the one for Dalal’s revision on the same data set. The MaxSAT-SAT and ASP-ASP algo-
rithm instances were able to compile 328 and 344 belief change instances, respectively,
the ASP-ASP instance hence performing better than its MaxSAT-SAT counterpart. Fur-
ther, not only did the ASP-ASP instance compile more instances, but it also compiled
many of them in less time than the MaxSAT-SAT instance. It should be noted however,
that the runtime differences are only minor, and that it is not possible to identify the
exact number of instances for which ASP-ASP outperformed MaxSAT-SAT in the given
graphs due to the nature of cactus plots.

Overall, we can conclude from the above compilation results for belief revision, that
the algorithm instance MaxSAT-SAT was the overall best performer as it outperformed

81

Figure 4.2: Compilation runtime for Satoh’s revision with a timeout of 600 s. Data set
R1.

the other instances by far with regards to Dalal’s revision operator and performed
only slightly worse than the ASP-ASP algorithm instance on Satoh’s revision opera-
tor. Furthermore, we take note that regarding belief revision, the ASP-ASP algorithm
instance performed better for Satoh’s revision than it did for Dalal’s revision, whereas
the MaxSAT-SAT and ILP-ILP algorithm instances exhibited the opposite behaviour.
From comparing R1 and R2 results for Dalal’s revision we can further conclude that,
as expected, the instances of data set R2 were overall harder to compile for all three
algorithm instances than those of data set R1.

(a) Data set C1 (b) Data set C2

Figure 4.3: Compilation runtime for Dalal’s contraction with a timeout of 600 s

Figure 4.3 depicts the mean compilation times for Dalal’s contraction operator on
data sets C1 and C2. Once more, the algorithm instance MaxSAT-SAT clearly outper-

82

Figure 4.4: Compilation runtime for Satoh’s contraction with a timeout of 600 s. Data
set C1.

forms the other instances, with the degree of out-performance being even higher than
for Dalal’s revision. For data set C1 the MaxSAT-SAT instance successfully compiled
561 out of 604 belief change instances within the given time frame, whereas the ILP-
ILP and ASP-ASP algorithm instances accomplished the compilation of only 36 and 42
contraction instances, respectively. The naive implementation on the other hand was
successful for two contraction instances only. Regarding data set C2 only MaxSAT-SAT
was able to compile belief contraction instances without encountering an error or time-
out, precisely it compiled 45 out of 268 instances. The compilation results for Satoh’s
contraction on data set C1, depicted in Figure 4.4, are similar to those of Dalal’s contrac-
tion on the same data set, albeit with a better performance of the ASP-ASP instance and
a poorer performance of the MaxSAT-SAT algorithm instance. The former successfully
compiled 151 and the latter 290 out of the 604 belief contraction instances of data set
C1. The ILP-ILP instance and the naive implementation were once again the poorest
performers with five and two solved instances, respectively. As for Dalal’s and Satoh’s
revision on data set R1, it can be noted that for both Dalal’s and Satoh’s contraction on
data set C1 the ASP-ASP and ILP-ILP algorithm instances solved a few belief change in-
stances in less time than MaxSAT-SAT. Overall, we can confirm our above assumption
that the belief change instances of data sets R2 and C2 are harder to compile than those
of data sets R1 and C1 since all three algorithm instances performed better on data set
C1 than on data set C2. Further, it can be observed once again that the algorithm in-
stance ASP-ASP performs better for Satoh’s operator than it does for Dalal’s operator,
whereas for both MaxSAT-SAT and ILP-ILP the opposite applies.

From the described experimental results it can be concluded that for both belief revi-
sion and belief contraction the algorithm instance MaxSAT-SAT performs overall best.
It is important to stress however, that it was slightly outperformed by the ASP-ASP in-
stance with regards to Satoh’s revision. The naive approach performed poorest for both
revision and contraction as it solved only a very few instances and did not accomplish

83

to outperform any of our algorithm instances with the exception of one instance of data
set R1, where ILP-ILP was slowest for Satoh’s revision. The second best performer for
both belief revision and contraction was the ASP-ASP instance, followed by ILP-ILP.

In order to gain a deeper understanding of the reasons for compilation failure we fur-
ther analyzed for each evaluated algorithm instance the composition of timeouts and
errors. The results are summarized in the bar chart of Figure 4.5. The data show that for
all three algorithm instances preprocessing timeouts constituted the major reason for
compilation failure. In fact, most detected preprocessing timeouts were timeouts that
occurred during the solver calls, which generally raises the question of whether solver
calls also consume a huge part of the runtime of successfully compiled instances. For
the ILP-ILP algorithm instance the second largest reason were timeouts in the genera-
tion of the belief change encoding, followed by a very small number of preprocessing
errors that occurred during the glpsol solver calls. The second largest reason for failure
for the algorithm instance ASP-ASP were preprocessing errors, to be precise grounding
errors of clingo, followed by a very few encoding generation timeouts that are hardly
visible in the chart. Finally, for the MaxSAT-SAT instance encoding generation errors -
all of them out-of-memory errors - constituted the second largest reason for failure, fol-
lowed by encoding generation timeouts. Due to the significantly large amount of pre-
processing timeouts, it is evident that alternate algorithm instances (those constituting
mixtures of different technologies, such as ASP-SAT) cannot be expected to perform sig-
nificantly better than the evaluated algorithm instances with regards to the amount of
successfully compiled belief change instances. However, the question remains whether
they could perform significantly better with respect to compilation runtime. To answer
both this question and the above question of how much runtime the solver calls actu-
ally consume, we computed for each belief change operator and algorithm instance the
average ratio of solver time to total runtime. For Dalal’s operators the solver time corre-
sponds exactly to the time passed between the start and end of the solver call, whereas
for Satoh’s operators the solver time corresponds to the total time elapsed from the first
to the last solver call, including the time needed for evaluating the solver results and
adjusting the optimization encoding. Further, we differentiated between three different
cases:

1. Instances with a total runtime of 500 ms and less

2. Instances with a total runtime of 1 000 ms and less

3. Instances with a total runtime of more than 1 000 ms

Figure 4.6 and Figure 4.7 show the results for belief revision and belief contraction,
respectively. Data in both mentioned figures show that the higher the overall compi-
lation runtime of a belief change instance, the larger the share of the solver call time.
For belief change instances with a total runtime of more than 1 000 ms the percentage
of the solver call time is far above 90 percent, in most cases even close to or higher than
99 percent. The only exception to this observation is the solver call time of MaxSAT-
SAT for Dalal’s contraction, which constitutes 82 percent of the total runtime. From the

84

Figure 4.5: Composition of total compilation timeouts and errors per algorithm instance

Figure 4.6: Average solver time / total time ratio of revision instances

Figure 4.7: Average solver time / total time ratio of contraction instances

85

described observations it can be concluded that for belief change instances with a to-
tal compilation runtime of more than 1 000 ms alternate algorithm instances cannot be
expected to perform significantly better than the already evaluated ones with regards
to compilation runtime, the reason being the high percentage of the solver call time.
For belief change instances with a total compilation runtime of 1 000 ms and less, al-
ternate algorithm instances could potentially perform better. However, even if they do
so, the time improvements can only be fractions of a second due to the already short
compilation time.

Now that we have elaborated that the solver calls consume a considerable amount
of the total compilation runtime, a possible explanation for the extremely good perfor-
mance of the MaxSAT-SAT algorithm instance as opposed to its ASP and ILP counter-
parts might lie in the specific focus of the partial MaxSAT technology on optimization
problems. Even though both ASP and ILP solvers support the solving of optimization
problems, partial MaxSAT solvers were designed and optimized specifically for this
kind of problems.

Despite the above conclusions regarding the mixed-technology algorithm instances,
we decided to conduct another set of compilation tests, using the algorithm instance
MaxSAT-ASP, due to the following observation: despite being the best-performing al-
gorithm instance, MaxSAT-SAT failed for some instances in the encoding generation
(out-of-memory errors and timeouts) whereas almost none of the ASP-ASP instances
failed in this step (see Figure 4.5). This lead us to the question, whether MaxSAT-ASP
could compile more instances than MaxSAT-SAT by combining the speed of partial
MaxSAT in the preprocessing with the stability of ASP in the encoding generation. The
results of this analysis along with a few additional insights into the relative compila-
tion runtimes are presented and discussed in Section 4.3.4. Next, we continue with the
presentation of the inference check results.

4.3.2 Inference checks

For the inference and model check tests we selected for each data set and operator the
SAT encodings that were successfully generated by the algorithm instance MaxSAT-
SAT during the above described compilation tests. To ensure an equal number of SAT,
ASP, and ILP encodings, we generated the missing corresponding ASP and ILP en-
codings using the algoritm instances MaxSAT-ASP and MaxSAT-ILP, respectively. This
resulted in the following number of encodings for the inference and model checks: 488
per encoding type (SAT, ASP, ILP) from data set R1 for Dalal’s revision and 328 for
Satoh’s revision; 267 per encoding type from data set R2 for Dalal’s revision; 560 per
encoding type from data set C1 for Dalal’s revision and 290 for Satoh’s revision; and
finally 45 per encoding type from data set C2 for Dalal’s revision. Since - as described
in Section 4.1 - two inference formulae and two interpretations were generated for each
of the SAT instances used as a starting point for our data sets, two inference and two
model checks were run for each encoding. Note that for Dalal’s contraction on data set
C1 there were only 560 encodings per type, even though the MaxSAT-SAT algorithm

86

instance was able to compile 561 belief change instances during our compilation tests.
The reason for this is that we were unable to create ASP and ILP encodings for Dalal’s
contraction for one instance of data set C1 and as a result this instance was neglected in
the inference and model checks.

As the naive implementation performed very poorly in our compilation tests in that it
achieved to generate model lists for only a handful of belief change instances, the naive
inference and model check tests were limited to these few instances. As a consequence,
the inference and model check results for the naive implementation are not considered
in the current and subsequent section, but instead addressed in Section 4.3.5.

Before beginning the actual analysis of the obtained inference check results, it should
be noted that in contrast to the compilation tests, solely a negligibly small number of
inference check tests terminated with an error. Accordingly, almost all unsuccessful
inference checks encountered a timeout. Figure 4.8 shows the inference check results
for Dalal’s revision. For both data sets R1 and R2 the ILP encodings performed overall
worst as they succeeded in only 591 out of 976 inference checks for data set R1 and
in only 21 out of 534 inference checks for data set R2. The SAT and ASP encodings’
performances on data set R1 are both extremely positive with 972 and 911 solved in-
ference checks, respectively. Having a look at the results for data set R2 however, a
different behaviour is visible. Using the SAT encodings only 47 of 534 model checks
were solved, whereas the ASP model checks succeeded in 373 cases. The cactus plot
of Figure 4.9, which plots the results of Satoh’s revision on data set R1, is very similar
to that of Dalal’s revision on data set R1 (Figure 4.8) in that the ILP encoding inference
checks successfully terminated in about fifty percent of all cases, whereas the SAT and
ASP encodings allowed for solving all (ASP) or almost all (SAT) inference checks within
the given time of 600 seconds.

(a) Data set R1 (b) Data set R2

Figure 4.8: Inference check runtime for Dalal’s revision with a timeout of 600 s

With regards to Dalal’s contraction operator (see Figure 4.10), the ILP encodings once

87

Figure 4.9: Inference check runtime for Satoh’s revision with a timeout of 600 s. Data
set R1.

(a) Data set C1 (b) Data set C2

Figure 4.10: Inference check runtime for Dalal’s contraction with a timeout of 600 s

again performed poorest by solving only a few inference checks of data set C1 and none
of data set C2. The SAT and ASP encodings on the other hand performed fairly well
for data set C1, with the ASP encodings’ termination rate being a bit higher than that
of the SAT encodings. For data set C2 the ASP encodings again performed best with 62
out of 90 successful inference checks. Finally, Figure 4.11 visualizes the inference check
results of Satoh’s contraction on data set C1, which show similar behaviours of the
different encoding types as on the Dalal contraction counterpart. The ILP encodings
again performed poorest and the SAT and ASP encodings best, by solving almost all
(SAT) or all (ASP) of the inference checks.

It can be noted that the ILP encodings accomplish shorter runtimes for some in-
stances, than the SAT encodings. This phenomenon is identical to the one observed

88

Figure 4.11: Inference check runtime for Satoh’s contraction with a timeout of 600 s.
Data set C1.

in the compilation runtime analysis of the previous section. Furthermore, the ASP en-
codings were clearly the best-performer with respect to the number of solved inference
checks and it remains to be determined whether they were also the best-performers
with regards to runtime. Since cactus plots are not well-suited for obtaining infor-
mation on the number of test cases in which a given algorithm instance’s runtime is
shortest, Table 4.2 shows for every encoding approach, the number of inference check
instances, for which it accomplished the shortest runtime. Only inference check in-
stances that were solved by at least one approach (SAT, ASP, ILP) within the given time
of 600 seconds are considered. In case an instance was solved by only one approach,
this approach constitutes the best performer. In case two approaches’ runtimes were
identical, both are considered the best performer.

Data set Operator SAT ASP ILP
C1 Dalal 626 490 0
C2 Dalal 8 54 0
R1 Dalal 227 723 32
R2 Dalal 17 356 0
C1 Satoh 314 266 0
R1 Satoh 114 542 0

Table 4.2: Number of inference checks with shortest runtime per encoding type

Since with regards to all operators and data sets except for Dalal’s revision on R2 and
Dalal’s contraction on C2, the SAT and ASP approaches solved a similar number of in-
ference check instances, rows 1, 3, 5 and 6 are of special interest. From the contained
data it can be concluded that with regards to belief contraction the SAT encodings had
the shortest runtime for more inference check instances than the ASP encodings. With

89

regards to belief revision on the other hand, the ASP encodings had the shortest run-
time for far more inference check instances than the SAT encodings. Despite the SAT
encodings’ shorter runtimes in many belief contraction inference checks, the ASP en-
codings can be considered the overall best-performer with respect to inference checks
as they accomplished to solve more inference checks than their SAT counterparts, espe-
cially with regards to the more difficult data sets R2 and C2. The next section continues
our evaluation results analysis by having a look at the model check results.

4.3.3 Model checks

In the following we analyze the experimental results of our model check evaluation. As
described in the previous section, the SAT, ASP, and ILP encodings used in the model
check experiments are identical to those of the inference checks. For each encoding two
model checks were run, using the interpretations generated during the initial data set
creation, as described in Section 4.1.

Analogously to the inference checks, almost all of the unsuccessful model check tests
encountered a timeout rather than error. We begin our model check analysis by having
a look at the results for Dalal’s revision, depicted in Figure 4.12. It is apparent imme-
diately that all three encoding types performed fairly well on data set R1 with the SAT
and ASP approaches successfully terminating in less than a second for all 976 model
checks. The ILP approach succeeded for 738 model check instances with an almost
identical runtime behaviour as its SAT and ASP counterparts. With regards to data
set R2 the ILP approach performed significantly worse whereas the SAT and ASP ap-
proaches again successfully solved all model check instances without timing out nor
encountering an error. Looking at Figure 4.13, which contains the results for Satoh’s
revision operator, we observe a similar picture as with Dalal’s revision on data set R1:
the SAT and ASP approaches solved all model check instances, with almost all checks
taking far less than a second, whereas the ILP model checks successfully terminated for
478 out of 656 instances.

What stands out in the above belief revision results is the fact that all of the ILP
approach’s model check runtimes are below one second, even though this approach
encountered many timeouts, signifying that the model check instances were either ex-
tremely easy or extremely difficult to solve using the ILP encodings, with the interme-
diate range being empty.

Next, we analyze the model check results for Dalal’s and Satoh’s contraction opera-
tors. From the cactus plots of Figure 4.14 we obtain that for Dalal’s contraction, the ILP
encodings performed once again poorest, with only a few successfully solved model
checks of data set C1 and no solved model checks of data set C2. The SAT and ASP
encodings on the other hand exhibited a fairly well performance with regards to both
data sets. Both approaches terminated successfully for all 1 120 model checks of data
set C1. Out of the 90 model check instances of data set C2, the SAT approach solved
80 and the ASP approach 61 instances without timing out. Finally, Figure 4.15 depicts
the model check results for Satoh’s contraction on data set C1, which are very similar

90

(a) Data set R1 (b) Data set R2

Figure 4.12: Model check runtime for Dalal’s revision with a timeout of 600 s

Figure 4.13: Model check runtime for Satoh’s revision with a timeout of 600 s. Data set
R1.

to those of Dalal’s contraction, with the ILP approach performing poorest and the SAT
and ASP approaches both successfully solving all of the 580 model check instances. It
can be noted that the model check runtimes for belief contraction were significantly
higher than the ones for belief revision analyzed above.

Overall, it can be observed that the model checks’ runtimes were generally shorter
than that of the inference checks with a smaller number of timeouts and errors. Analo-
gously to the observations made in the compilation and inference check analyses above,
the ILP encodings once again reached smaller runtimes for some model check instances,
than the SAT encodings. With regards to the number of solved model check instances,
the SAT and ASP encodings showed an almost identical performance, the only excep-
tion being Dalal’s contraction on data set C2, where the SAT encodings performed

91

(a) Data set C1 (b) Data set C2

Figure 4.14: Model check runtime for Dalal’s contraction with a timeout of 600 s

Figure 4.15: Model check runtime for Satoh’s contraction with a timeout of 600 s. Data
set C1.

slightly better than the ASP ones. In order to gain some better insights into which
approach performed better with regards to runtime, we have a look at Table 4.3, which
shows for every encoding approach the number of model check instances, for which
it accomplished the shortest runtime. Only model check instances that were solved by
at least one approach (SAT, ASP, ILP) without timing out are considered. In case an
instance was solved by only one approach, this approach is determined the best per-
former. In case two approaches’ runtimes were identical, both methods are considered
the best performer. Looking at the table’s data, in four rows the SAT approach clearly
outperforms the ASP approach with regards to the number of model check instances
for which it had the shortest runtime. The results of the remaining two rows (Dalal’s
revision on data set R1 and Satoh’s revision on data set R1), in which the ASP and ILP

92

approaches outperform the SAT one, are of less relevance since for these two cases the
runtimes of all three encoding approaches were fairly similar. Conclusively, whereas
the ASP encodings performed best with regards to inference checks, the SAT encodings
are the overall best performers with regards to model checks.

Data set Operator SAT ASP ILP
C1 Dalal 649 464 8
C2 Dalal 66 19 0
R1 Dalal 177 264 637
R2 Dalal 510 14 20
C1 Satoh 297 282 2
R1 Satoh 186 375 114

Table 4.3: Number of model checks with shortest runtime per encoding type

4.3.4 Further analyses

We recall from Section 4.3.1 that out of the evaluated compilation algorithm instances,
MaxSAT-SAT performed best. Further, we concluded in the same section that it is
worthwile to run another set of compilation experiments on the algorithm instance
MaxSAT-ASP, due to MaxSAT-SAT having encountered several encoding generation er-
rors and timeouts whereas ASP-ASP had not. The need for such additional compilation
experiments on the MaxSAT-ASP instance is further underscored by the conclusion of
Section 4.3.2, i.e. the significantly better performance of the ASP encodings as opposed
to the SAT encodings with regards to inference checks. Conclusively, we carried out
another set of compilation tests, using the same belief change instances (data sets R1,
R2, C1 and C2) as in the first set described in Section 4.3.1, this time focusing on the
algorithm instance MaxSAT-ASP only. Figures 4.16, 4.17, 4.18, and 4.19 contain cac-
tus plots plotting the newly obtained runtimes of the algorithm instance MaxSAT-ASP
along with those of the instance MaxSAT-SAT measured in the first set of compilation
tests. Again, all plotted runtimes constitute the mean value of three non-sequential
runs. With regards to Dalal’s revision (Figure 4.16), the results for both algorithm in-
stances are highly similar, with the MaxSAT-ASP instance successfully compiling all
but four of the R1 belief change instances and all of the R2 belief change instances that
were compiled by MaxSAT-SAT. Further, the runtimes of the MaxSAT-ASP algorithm
instance seem to be slightly shorter than those of MaxSAT-SAT. The same observation
can be made in the cactus plot of Figure 4.17 on Satoh’s revision. Here, both instances
successfully compiled the exact same amount of belief revision instances. With regards
to Dalal’s contraction (Figure 4.18) larger performance differences are observed. For
data set C1 the instance MaxSAT-ASP successfully compiled all but eleven of the be-
lief change instances that were successfully compiled by MaxSAT-SAT. Again, the run-
times of MaxSAT-ASP seem to be shorter than those of MaxSAT-SAT. The most relevant
observation can be made for data set C2: whereas MaxSAT-SAT compiled only 45 be-

93

lief change instances, the algorithm instance MaxSAT-ASP accomplished to compile
95 instances. Lastly, with regards to Satoh’s contraction, the results of both algorithm
instances are almost identical.

(a) Data set R1 (b) Data set R2

Figure 4.16: Runtime comparison between MaxSAT-SAT and MaxSAT-ASP approaches
for Dalal’s revision with a timeout of 600 s

Figure 4.17: Runtime comparison between MaxSAT-SAT and MaxSAT-ASP approaches
for Satoh’s revision with a timeout of 600 s. Data set R1.

Table 4.4 shows for every algorithm instance (MaxSAT-SAT, MaxSAT-ASP, ASP-ASP,
ILP-ILP) the number of belief change instances, for which the algorithm instance per-
formed best with regards to runtime. Again, in case a belief change instance was com-
piled by only one algorithm instance, this algorithm instance is determined the best
performer. In case two runtimes were identical, both algorithm instances are consid-
ered the best performer. The provided data shows that for all operators and data sets

94

(a) Data set C1 (b) Data set C2

Figure 4.18: Runtime comparison between MaxSAT-SAT and MaxSAT-ASP approaches
for Dalal’s contraction with a timeout of 600 s

Figure 4.19: Runtime comparison between MaxSAT-SAT and MaxSAT-ASP approaches
for Satoh’s contraction with a timeout of 600 s. Data set C1.

Data set Operator MaxSAT-SAT ASP-ASP ILP-ILP MaxSAT-ASP
C1 Dalal 168 27 0 366
C2 Dalal 6 0 0 89
R1 Dalal 100 184 0 204
R2 Dalal 57 8 0 202
C1 Satoh 5 33 0 263
R1 Satoh 0 199 0 159

Table 4.4: Number of compilations with shortest runtime per algorithm instance

95

except for Satoh’s revision on data set R1, the algorithm instance MaxSAT-ASP clearly
outperformed the other algorithm instances in terms of the number of belief change
instances, for which it had the shortest runtime.

As a conclusion, our assumption that MaxSAT-ASP might potentially be able to solve
some belief change instances, for which MaxSAT-SAT encountered compilation time-
outs and errors, was confirmed by its fairly good performance for Dalal’s contraction
on data set C2, where the MaxSAT-SAT algorithm instance had run into several out-
of-memory errors. Moreover, not only did MaxSAT-ASP manage to solve these in-
stances, but also it accomplished overall shorter runtimes than MaxSAT-SAT. This vio-
lates our initial assumption of Section 4.3.1 that algorithm instances that use the same
technology for both the preprocessing and the encoding generation perform better than
mixed-technology instances. One possible explanation for MaxSAT-ASP outperform-
ing MaxSAT-SAT with regards to runtime might be the relatively huge size of the SAT
encodings compared to the ASP encodings. In fact, the huge size of the SAT encodings
was most probably the reason for the out-of-memory errors in the encoding generation
step.

The next section concludes our evaluation with the comparison of our compilation-
based approach to the naive baseline implementation.

4.3.5 Comparison with naive implementation

As mentioned above, the naive approach was neglected in the above sections on the
inference and model check results, with the reason being its poor performance with
regards to the model list generation (see Section 4.3.1). As only 14 model lists were suc-
cessfully generated within the timeout of 600 seconds, our naive inference and model
checks were limited to these few solved instances.

Out of the resulting naive inference and model checks all terminated successfully be-
fore the timeout of 600 seconds and for some of the few evaluated instances the naive
approach was even able to outperform some of the compilation-based approaches.
Given the naive approach’s extremely poor performance in the generation of the model
list and it occasionally outperforming the compilation-based approaches in the infer-
ence and model checks, the question arises, whether the naive approach could poten-
tially outperform the other approaches with regards to the total combined runtime of
compilation and inference/model checks if it was given more time for the model list
generation. In order to answer this question, we have a look at the average total com-
bined runtimes of our compilation-based approaches.

Figures 4.20 and 4.21 show the average total combined runtime for each data set and
operator, using the best performing compilation algorithm instances, namely MaxSAT-
ASP for inference checks and MaxSAT-SAT for model checks. From these figures it is
evident that our best-performing compilation-based approaches took on average well
less than three minutes for the compilation and the inference/model check combined.
With regards to model checks, the average total combined runtime was even far below
2 minutes for all data sets and operators. From these insights, combined with the in-

96

Figure 4.20: Average total runtime of inference checks (compilation time + inference
check time) per data set and operator using the compilation algorithm in-
stance MaxSAT-ASP

Figure 4.21: Average total runtime for model checks (compilation time + model check
time) per data set and operator using the compilation algorithm instance
MaxSAT-SAT

sights of Section 4.3.1 with regards to the poor performance of the naive approach, we
can conclude that, as expected, our compilation-based approaches clearly outperform
the naive implementation. From the available results we estimate the degree of out-
performance to be at least of the magnitude of several minutes. However, for obtaining
a more reliable and accurate number, further investigations into the performance of the
naive implementation are required.

97

5 Conclusion

In the course of this work we introduced and evaluated a compilation-founded applica-
tion for distance-based belief change that is able to compile belief change instances into
encodings and carry out inference and model checks using the same. The application
architecture, implemented algorithms as well as the encoding schemes used therein
were described and a thorough experimental analysis was conducted. The results con-
firmed that our compilation-based solution constitutes a viable and in fact promising
approach to belief change by not only clearly outperforming the implemented naive
implementation but also successfully solving a large amount of non-trivial inference
and model check instances within reasonable time. The data collected in the compi-
lation experiments confirm the observations made by Konieczny et al. [KLM17] that
partial MaxSAT encodings can be efficiently used for determining the minimum Dalal
distances of non-trivial belief revision instances and that SAT encodings of the revi-
sion results can be generated in reasonable time. Furthermore, our results demonstrate
that the same is possible for Dalal’s contraction, and Satoh’s revision and contraction
operators, as well as by employing ASP and ILP technologies instead of SAT. Most
importantly, however, the results obtained from our inference and model check exper-
iments show that the generated belief change encodings - especially the SAT and ASP
encodings - perform fairly well with regards to inference and model checks even in non-
trivial cases. Overall, our results demonstrate that the SAT encodings are better suited
for model checks, whereas the ASP encodings perform better in inference checks. With
regards to the preprocessing, i.e. the determination of the minimum Dalal distance and
Satoh’s minimal sets, the partial MaxSAT optimization encoding has proven to be the
best-performing encoding scheme, hence making our algorithm instances MaxSAT-SAT
and MaxSAT-ASP the first choice for model and inference checks, respectively.

Even though the evaluation results of the present work accomplished to prove the po-
tential of compilation-based approaches to belief change, there are several limitations
of the conducted evaluation that should be noted and addressed in future research ac-
tivities. One such limitation emanates from the absence of standard benchmark data
for belief change operations. The non-existence of such data generally complicates at-
tempts to conduct thorough comparisons of belief change implementations and the
additional unavailability of the evaluation data used by Konieczny et al. [KLM17], hin-
dered us from directly comparing their compilation results to ours.

Another limitation lies in the fact that our data sets might not have exhibited enough
variation with regards to the value of the minimum Dalal distance and the inference
and model check results. Table 5.1 shows the minimum Dalal distances of those belief
change instances of our data sets, that were compiled by at least one algorithm instance,
whereas Table 5.2 shows the minimum and maximum number of determined minimal
sets for the compiled belief change instances. While the number of minimal sets seems
to lie within a reasonably large range of values, the minimum Dalal distance is of value
one for the majority of belief change instances. Table 5.3 further shows the results of the
inference and model checks for those instances of the data sets, that were both compiled

98

Data set dmin = 1 dmin = 2 dmin = 3 dmin = 4 dmin = 5 dmin = 6

C1 561 - - - - -
C2 95 - - - - -
R1 457 27 1 3 - 1
R2 247 15 - 4 1 -

Table 5.1: Minimum dalal distances (dmin) of compiled belief change instances

Data set Min # Minimal sets Max # Minimal sets
C1 2 926
R1 2 2449

Table 5.2: Minimum and maximum number of determined Satoh minimal sets for com-
piled belief change instances

and passed the inference/model checks without timing out. Again, it can be observed
that the majority of both inference and model checks had the result FALSE. As the
mentioned tables contain information on the successfully solved data set instances only,
the question arises of whether our data sets were indeed unbalanced with regards to
the minimum Dalal distances and inference and model check results or whether the
missing cases were precisely those that failed in the evaluation tests. Since it might
very well be the case that aspects such as the minimum Dalal distance value and the
inference or model check result directly or indirectly influence the performance of the
suggested algorithms and encoding schemes, further research with a highly balanced
data set should be conducted.

Check Operator Data set TRUE FALSE

Inference Dalal C1 11 1105
Inference Dalal C2 29 33
Inference Dalal R1 28 948
Inference Dalal R2 223 150
Inference Satoh C1 6 574
Inference Satoh R1 12 644

Model Dalal C1 8 1112
Model Dalal C2 0 85
Model Dalal R1 0 976
Model Dalal R2 0 534
Model Satoh C1 8 572
Model Satoh R1 0 656

Table 5.3: Inference and model check results for non-timed-out belief change instances

An interesting observation that we made during the analysis of our experimental

99

results, is the apparent absence of a direct relation between runtime, and belief change
instances’ signature size and clause number. Instead, there seems to exist some hidden
factor, potentially the number of models, that directly influences runtime. Conclusively,
future research needs to ensure that data sets are not only balanced with regards to
signature size and clause number, but also in terms of the number of models of the belief
base and change formula. Besides, new research activities could focus on attempting to
gain an understanding of how different characteristics of belief change instances affect
runtime performance of the corresponding encodings.

Additionally, new research could focus on improving the encoding schemes and al-
gorithms presented in this work as well as propose new ones to support additional
belief change operators. Also, a more detailed analysis of eveluation results could be
conducted, to gain deeper insights into the reasons for one encoding outperforming the
other.

Finally, given our observation that solver calls comprise a substantial portion of the
overall compilation runtime, it is imperative for future research to explore the adoption
of alternate solvers.

100

References

[AGM85] Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic
of theory change: Partial meet contraction and revision functions. Journal
of Symbolic Logic, 50:510–530, 1985.

[ANORC13] Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-
Carbonell. A parametric approach for smaller and better encodings of
cardinality constraints. In Christian Schulte, editor, Principles and Practice
of Constraint Programming, pages 80–96. Springer Berlin Heidelberg, 2013.

[Ara22] Theofanis Aravanis. An ASP-based solver for parametrized-difference
revision. Journal of Logic and Computation, 32(3):630–666, 2022.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Tory Walsh. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009.

[CKM17] Thomas Caridroit, Sébastien Konieczny, and Pierre Marquis. Contrac-
tion in propositional logic. International Journal of Approximate Reasoning,
80:428–442, 2017.

[Dal88] Mukesh Dalal. Investigations into a theory of knowledge base revision:
Preliminary report. In AAAI-88 Proceedings, pages 475–479, 1988.

[DLRT05] James Delgrande, Jérôme Lang, Hans Rott, and Jean-Marc Tallon. 05321
Executive Summary – Belief Change in Rational Agents: Perspectives
from Artificial Intelligence, Philosophy, and Economics. In James Del-
grande, Jerome Lang, Hans Rott, and Jean-Marc Tallon, editors, Belief
Change in Rational Agents: Perspectives from Artificial Intelligence, Philoso-
phy, and Economics, volume 5321 of Dagstuhl Seminar Proceedings (DagSem-
Proc), pages 1–5. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2005.

[DLST07] James P. Delgrande, Daphne H. Liu, Torsten Schaub, and Sven Thiele.
Coba 2.0: A consistency-based belief change system. In Khaled Mellouli,
editor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 78–90. Springer-Verlag Berlin Heidelberg, 2007.

[DP97] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision.
Artificial Intelligence, 89:1–29, 1997.

[EG92] Thomas Eiter and Georg Gottlob. On the complexity of propositional
knowledge base revision, updates, and counterfactuals. Artificial Intelli-
gence, 57(2):227–270, 1992.

[FH18] Eduardo Fermé and Sven Ove Hansson. Belief change: introduction and
overview. Springer, 2018.

101

[For89] Kenneth D. Forbus. Introducing actions into qualitative simulation. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence, pages 1273–1278. Morgan Kaufmann, 1989.

[FUV83] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the semantics of
updates in databases. In PODS ’83: Proceedings of the 2nd ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 352–365, 1983.

[Gin86] Matthew L. Ginsberg. Counterfactuals. Artificial Intelligence, 30(1):35–79,
1986.

[GLM14] Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure. Multiple con-
traction through partial-Max-SAT. In 2014 IEEE 26th International Confer-
ence on Tools with Artificial Intelligence, pages 321–327, 2014.

[GM88] Peter Gärdenfors and David Makinson. Revisions of knowledge systems
using epistemic entrenchment. In Proceedings of the 2nd Conference on Theo-
retical Aspects of Reasoning about Knowledge, Pacific Grove, CA, pages 83–95,
1988.

[Gä88] Peter Gärdenfors. Knowledge in Flux. Modelling the Dynamics of Epistemic
States. MIT Press, 1988.

[HA19] Aaron Hunter and John Agapeyev. An efficient solver for parametrized
difference revision. In Jixue Liu and James Bailey, editors, AI 2019: Ad-
vances in Artificial Intelligence, 32nd Australasian Joint Conference Adelaide,
SA, Australia, December 2-5, 2019, Proceedings, Lecture Notes in Computer
Science, pages 143–152. Springer International Publishing, 2019.

[Han91] Sven Ove Hansson. Belief contraction without recovery. Studia Logica,
50:251–260, 1991.

[Han99] Sven Ove Hansson. A Textbook of Belief Dynamics: Theory Change and
Database Updating. Springer Science & Business Media, 1999.

[Har76] William L. Harper. Rational conceptual change. In PSA: Proceedings of the
Biennial Meeting of the Philosophy of Science Association, volume 1976, pages
462–494. University of Chicago Press, 1976.

[HV91a] Joseph Y. Halpern and Moshe Vardi. Belief revision and default reason-
ing: Syntax-based approaches. In J.A. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International Conference on the Principles
of Knowledge Representation and Reasoning (KR’91), pages 417–428. Morgan
Kaufmann, 1991.

[HV91b] Joseph Y. Halpern and Moshe Vardi. Model checking vs. theorem prov-
ing: A manifesto. In J.A. Allen, R. Fikes, and E. Sandewall, editors, Pro-
ceedings of the Second International Conference on the Principles of Knowledge

102

Representation and Reasoning (KR’91), pages 325–334. Morgan Kaufmann,
1991.

[IS19] Markus Iser and Carsten Sinz. A problem meta-data library for research
in sat. In Daniel Le Berre and Matti Järvisalo, editors, Proceedings of Prag-
matics of SAT 2015 and 2018, volume 59 of EPiC Series in Computing, pages
144–152. EasyChair, 2019.

[KLM17] Sébastien Konieczny, Jean-Marie Lagniez, and Pierre Marquis. Boosting
distance-based revision using SAT encodings. In Logic, Rationality, and
Interaction, 6th International Workshop, LORI 2017, Sapporo, Japan, September
11-14, 2017, Proceedings, Lecture Notes in Computer Science, pages 480–
496. Springer Berlin, Heidelberg, 2017.

[KM89] Hirofumi Katsuno and Alberto O. Mendelzon. A unified view of proposi-
tional knowledge base updates. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pages 1413–1419. Morgan Kauf-
mann, 1989.

[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge
base revision and minimal change. Artificial Intelligence, 52(3):263–294,
1991.

[KM92] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between
updating a knowledge base and revising it. In P. Gärdenfors, editor, Belief
Revision, pages 183–203. Cambridge University Press, 1992.

[Lev77] Isaac Levi. Subjunctives, dispositions and chances. Synthese, 34:423–455,
1977.

[Lib98] Paolo Liberatore. Compilation of Intractable Problems and Its Application
to Artificial Intelligence. PhD thesis, Dipartimento di Informatica e Sis-
temistica, Università di Roma "La Sapienza", 1998.

[Lif19] Vladimir Lifschitz. Answer Set Programming. Springer International Pub-
lishing, 2019.

[LS01] Paolo Liberatore and Marco Schaerf. Belief revision and update: Com-
plexity of model checking. Journal of Computer and System Sciences, 62:43–
72, 2001.

[LZD04] Ruiming Li, Dian Zhou, and Donglei Du. Satisfiability and integer pro-
gramming as complementary tools. In Proceedings of the 2004 Conference
on Asia South Pacific Design Automation: Electronic Design and Solution Fair
2004, pages 879–882, 2004.

103

[MP75] David E. Muller and Franco P. Preparata. Bounds to complexities of net-
works for sorting and for switching. Journal of the Association for Comput-
ing Machinery, 22(2):195–201, 1975.

[Neb89] Bernhard Nebel. A knowledge level analysis of belief revision. In
R. Brachman, H. J. Levesque, and R. Reiter, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the 1st International Conference
(KR’89), pages 301–311. Morgan Kaufmann, 1989.

[Sat88] Ken Satoh. Nonmonotonic reasoning by minimal belief revision. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems,
pages 455–462, 1988.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. In Wiley-
Interscience series in discrete mathematics and optimization, 1986.

[SDP09] Mariette Sérayet, Pierre Drap, and Odile Papini. Encoding the revision
of partially preordered information in Answer Set Programming. In
Claudio Sossai and Gaetano Chemello, editors, Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages 421–433. Springer-Verlag
Berlin Heidelberg, 2009.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinal-
ity constraints. In Peter van Beek, editor, Principles and Practice of Con-
straint Programming - CP 2005, Lecture Notes in Computer Science, page
827–831. Springer Berlin Heidelberg, 2005.

[Tse68] Grigori S. Tseitin. On the complexity of derivation in propositional calcu-
lus. Structures in Constructive Mathematics and Mathematical Logic, pages
115–125, 1968.

[Win88] Marianne Winslett. Reasoning about action using a possible models ap-
proach. In AAAI-88 Proceedings, 1988.

104

A Proofs
Lemma 1. For each model M of κy ∧ µ the following holds: proj(M, {y1, ..., yn}) = Mκ, with Mκ ∈ Mod(κ), and
proj(M, {x1, ..., xn}) = Mµ, with Mµ ∈ Mod(µ). Further, each possible combination of members of Mod(κ) and Mod(µ)
is covered by a model of κy ∧ µ.

Proof. As κy is identical to κ with the only difference being the used variables, Mod(κy) = Mod(κ). Furthermore,
since V ar(κy) ∩ V ar(µ) = ∅, the two conjuncts κy and µ do not affect each other and thus for each model Mκ ∈
Mod(κ), there are |Mod(µ)| models M ∈ Mod(κy ∧ µ) that combine Mκ with a model of Mod(µ).

Lemma 2. Formula 4 ensures that dj = 1, whenever xj ̸= yj .

Proof. Lemma 2 can be proven by the corresponding truth table:

xj yj dj (dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Theorem 1. From the optimal solution S to the partial MaxSAT encoding SO
∔D

(κ, µ) the minimum Dalal distance dmin(κ, µ)

can be obtained by dmin(κ, µ) =
n∑

j=1

value(S, dj).

Proof. By looking at the truth table in the proof of Lemma 2, it becomes evident that Lemma 1 also applies to

formula H = κy ∧µ∧
∧

1≤j≤n

(
(dj ∨¬xj ∨ yj)∧ (dj ∨ xj ∨¬yj)

)
, since Formula 4 can evaluate to true, irrespective

of the truth assignments of xj and yj , as long as dj = 1 if xj ̸= yj . Accordingly, each model M of H represents the
comparison of a model Mκ to a model Mµ and due to Lemma 2 each variable dj , for which value(M,dj) = 0 holds,
indicates that xj = yj . Adding a soft clause of the form ¬dj for every dj ∈ {d1, ..., dn} and assigning the weight 1
to each soft clause, forces a partial MaxSAT solver to find a solution to the encoding, that corresponds to a model
of H with the highest possible number of dj , for which value(M,dj) = 0. Note that the fact that dj can be either 0
or 1 in the case of xj = yj does not interfere with the above establishment, since a partial MaxSAT solver will - in
its attempt to maximize the satisfied soft clauses - assign the value 0 to each dj , wherever possible. Maximizing the
number of variables dj with value 0 corresponds to minimizing the number of variables dj with value 1 and hence
the optimal solution to SO

∔D
(κ, µ) indicates the minimum Dalal distance dmin(κ, µ) through the total number of dj

variables with an assigned value of 1.

Theorem 2. For the SAT encoding S∔D
(κ, µ) following relation holds: proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) = Mod(κ∔D

µ)

Proof. Dalal’s revision operator ∔D is defined as selecting exactly those models of the revision formula µ, that have
the minimum Dalal distance dmin(κ, µ) to at least one of the belief base’s (κ) models. From the proof of Theorem 1

we already know that each model M of κy∧µ∧
∧

1≤j≤n

(
(dj∨¬xj∨yj)∧(dj∨xj∨¬yj)

)
represents the comparison of

a model Mκ to a model Mµ and each variable dj , for which value(M,dj) = 0, indicates that xj = yj . By adding the
exactly-k constraint E({d1, ..., dn}, dmin(κ, µ)) it is ensured that in all models of S∔D

(κ, µ) the number of positive
variables {d1, ..., dn} equals dmin(κ, µ). Again, it should be noted that the fact that each variable dj can be either 0 or
1 in case of xj = yj does not affect this behaviour as we know that dmin(κ, µ) is the smallest possible sum of positive
dj variables and setting the sum equal to dmin(κ, µ) ensures automatically that dj turns 0 whenever possible. The

105

exact same applies to the fact mentioned in Section 3.3.1 that the counter bit variables in E({d1, ..., dn}, dmin(κ, µ))
are not forced to take the value 0, but only forced to take the value 1, whenever their corresponding binary number
bit is 1. Now that we know that in each model of S∔D

(κ, µ) the number of positive variables in {d1, ..., dn} equals
dmin(κ, µ), we can state that the interpretations proj(Mod(S∔D

(κ, µ)), {y1, ..., yn}) are equal to those models of κ,
for which a model of µ exists such that the Dalal distance between the models is dmin(κ, µ). Moreover, we can state
that the interpretations proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) are equal to those models of µ, for which at least one
model of κ exists, such that the Dalal distance between the models is dmin(κ, µ). The last description corresponds
to the definition of Dalal’s revision operator, hence proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) = Mod(κ∔D µ).

Theorem 3. From the optimal solution S to the partial MaxSAT encoding SO
−̇D

(κ, ϕ) the minimum Dalal distance

dmin(κ,¬ϕ) can be obtained by dmin(κ,¬ϕ) =
n∑

j=1

value(S, dj).

Proof. The encoding SO
−̇D

(κ, ϕ) is almost identical to encoding SO
∔D

(κ, µ) of the corresponding revision Theorem 1
since t(¬ϕ) and µ are both CNF formulae, with the only difference being that t(¬ϕ) contains some additional auxil-
iary variables V t

¬ϕ, that were introduced by the Tseitin transformation. However, as proj(Mod(t(¬ϕ)), V ar(¬ϕ)) =
Mod(¬ϕ) due to CNF formulae resulting from Tseitin transformations being equisatisfiable to the initial formula,
and because the variables V t

¬ϕ only occur within t(¬ϕ), their presence can be neglected. The remaining proof is thus
identical to the proof of Theorem 1.

Lemma 3. For the SAT encoding

D = κy ∧ t(¬ϕ) ∧
∧

1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

)
∧ E({d1, ..., dn}, dmin(κ,¬ϕ))

the following holds:

proj(Mod(D), {x1, ..., xn}) = Mod(κ∔ ¬ϕ)

Proof. D is almost identical to encoding S∔D
(κ, µ) of the corresponding revision Theorem 2 since t(¬ϕ) and µ are

both CNF formulae, with the only difference being that t(¬ϕ) contains the auxiliary variables V t
¬ϕ introduced by the

Tseitin transformation. As proj(Mod(t(¬ϕ)), V ar(¬ϕ)) = Mod(¬ϕ) due to CNF formulae resulting from Tseitin
transformations being equisatisfiable to the initial formula, and because the variables V t

¬ϕ only occur within t(¬ϕ),
their presence can be neglected. The remaining proof is thus identical to the proof of Theorem 2.

Lemma 4. For the SAT encoding F (X,Z,W, n) the following holds:

proj(Mod(F (X,Z,W, n)), X) = proj(Mod(F (X,Z,W, n)), Z)

∪ proj(Mod(F (X,Z,W, n)),W)

Proof. To obtain F (X,Z,W, n), we start with formula

F ′ =
(∧
1≤i≤n

(
(xi ∨ ¬zi) ∧ (¬xi ∨ zi)

))
∨

(∧
1≤i≤n

(
(xi ∨ ¬wi) ∧ (¬xi ∨ wi)

))
Having a look at the first disjunct, in particular at (xi ∨ ¬zi) ∧ (¬xi ∨ zi) and below truth table, it is evident, that
this formula ensures that xi and zi have identical truth assignments.

xi zi (xi ∨ ¬zi) ∧ (¬xi ∨ zi)

T T T
T F F
F T F
F F T

By creating such a formula for each x ∈ X and connecting all resulting formulae by ∧, it is ensured that for all
zi ∈ Z the corresponding xi has the same truth assignment as zi. The same applies to the second disjunct and the
variables W . Thus, overall, formula F ′ ensures that

106

• all xi ∈ X have the same truth assignment as their corresponding zi ∈ Z

• OR all xi ∈ X have the same truth assignment as their corresponding wi ∈ W .

We can thus state that proj(Mod(F ′), X) = proj(Mod(F ′), Z) ∪ proj(Mod(F ′),W).
Moreover, after applying the boolean transformation rules to F ′ to convert it into CNF, we see that it is logically
equivalent to F (X,Z,W, n):

F ′ =
(∧
1≤i≤n

(
(xi ∨ ¬zi) ∧ (¬xi ∨ zi)

))
∨

(∧
1≤i≤n

(
(xi ∨ ¬wi) ∧ (¬xi ∨ wi)

))
=

∧
1≤j≤n

(((∧
1≤i≤n

(
(xi ∨ ¬zi) ∧ (¬xii ∨ zi)

))
∨ (xj ∨ ¬wj)

)
∧
((∧

1≤i≤n

(
(xi ∨ ¬zi) ∧ (¬xi ∨ zi)

))
∨ (¬xj ∨ wj)

))
=

∧
1≤j≤n

((∧
1≤i≤n

(
(xi ∨ ¬zi ∨ xj ∨ ¬wj) ∧ (¬xi ∨ zi ∨ xj ∨ ¬wj)

))
∧
(∧
1≤i≤n

(
(xi ∨ ¬zi ∨ ¬xj ∨ wj) ∧ (¬xi ∨ zi ∨ ¬xj ∨ wj)

)))
=

∧
1≤j≤n

((∧
1≤i≤n
i ̸=j

(
(xi ∨ ¬zi ∨ xj ∨ ¬wj) ∧ (¬xi ∨ zi ∨ xj ∨ ¬wj)

)

∧ (xj ∨ ¬zj ∨ xj ∨ ¬wj) ∧ (¬xj ∨ zj ∨ xj ∨ ¬wj)
)

∧
(∧
1≤i≤n
i ̸=j

(
(xi ∨ ¬zi ∨ ¬xj ∨ wj) ∧ (¬xi ∨ zi ∨ ¬xj ∨ wj)

)

∧ (xj ∨ ¬zj ∨ ¬xj ∨ wj) ∧ (¬xj ∨ zj ∨ ¬xj ∨ wj)
))

=
∧

1≤j≤n

((∧
1≤i≤n
i ̸=j

(
(xi ∨ ¬zi ∨ xj ∨ ¬wj) ∧ (¬xi ∨ zi ∨ xj ∨ ¬wj)

)

∧ (xj ∨ ¬zj ∨ ¬wj)
)

∧
(∧
1≤i≤n
i ̸=j

(
(xi ∨ ¬zi ∨ ¬xj ∨ wj) ∧ (¬xi ∨ zi ∨ ¬xj ∨ wj)

)

∧ (¬xj ∨ zj ∨ wj)
))

=
∧

1≤j≤n

(∧
1≤i≤n
i̸=j

(
(xi ∨ ¬zi ∨ xj ∨ ¬wj) ∧ (¬xi ∨ zi ∨ xj ∨ ¬wj)

∧ (xi ∨ ¬zi ∨ ¬xj ∨ wj) ∧ (¬xi ∨ zi ∨ ¬xj ∨ wj)
)

∧ (xj ∨ ¬zj ∨ ¬wj) ∧ (¬xj ∨ zj ∨ wj)
)

= F (X,Z,W, n)

Theorem 4. For the SAT encoding S−̇D
(κ, ϕ) following relation holds: proj(Mod(S−̇D

(κ, ϕ)), {x1, ..., xn}) =

Mod(κ −̇D ϕ)

Proof. S−̇D
(κ, ϕ) consists of the above mentioned encodings E′′ and F (X,Z,W, n):

S−̇D
(κ, ϕ) = E′′ ∧ F (X,Z,W, n) = E′ ∧ κw ∧ F (X,Z,W, n)

107

Due to Lemma 3 and because the only difference between E′ and E is that in the former the variables
{x1, ..., xn} have been replaced by new variables {z1, ..., zn}, we obtain proj(Mod(E′), {z1, ..., zn}) = Mod(κ ∔D

¬ϕ). Further, because of V ar(E′) ∩ V ar(κw) = ∅ also proj(Mod(E′′), {z1, ..., zn}) = Mod(κ ∔D ¬ϕ) and
proj(Mod(E′′), {w1, ..., wn}) = Mod(κ). Moreover, due to Lemma 4 and V ar(E′′) ∩ X = ∅ (i.e. F (X,Z,W, n)
does not place any restrictions on the variables Z and W in E′′), we obtain

proj(Mod(S−̇D
(κ, ϕ)), {z1, ..., zn}) = proj(Mod(E′′), {z1, ..., zn}) = Mod(κ∔D ¬ϕ)

and
proj(Mod(S−̇D

(κ, ϕ)), {w1, ..., wn}) = proj(Mod(E′′), {w1, ..., wn}) = Mod(κ)

from which we can finally conclude

proj(Mod(S−̇D
(κ, ϕ)), X) = proj(Mod(S−̇D

(κ, ϕ)), Z)

∪ proj(Mod(S−̇D
(κ, ϕ)),W)

= Mod(κ∔D ¬ϕ) ∪ Mod(κ)

= Mod(κ −̇D ϕ)

Lemma 5. For the formula

G = κy ∧ µ ∧
∧

1≤j≤n

(
(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj)

∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)
) (5)

where κy is a copy of κ, wherein each variable xj ∈ {x1, ..., xn} is replaced by a new variable yj ∈ {y1, ..., yn} and
{d1, ..., dn} are discrepancy variables, the following holds:

proj(Mod(G), {d1, ..., dn}) = Dv
S(κ, µ)

where Dv
S(κ, µ) is the set of bit vector representations of all difference sets between Mod(κ) and Mod(µ).

Proof. Due to Lemma 1 we know that each model of κy ∧ µ is a combination of a model of κ and a model of µ, with
every possible combination of models of κ and models of µ being covered. By looking at the truth table of

(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) ∧ (¬dj ∨ ¬xj ∨ ¬yj) ∧ (¬dj ∨ xj ∨ yj)

it is further evident, that this still holds even after adding this formula since this formula is satisfiable for any truth
assignments to xj and yj :

(dj ∨ ¬xj ∨ yj) ∧ (dj ∨ xj ∨ ¬yj) ∧ (¬dj ∨ ¬xj ∨ ¬yj)
xj yj dj ∧ (¬dj ∨ xj ∨ yj)

T T T F
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F T

From the truth table we can further see that dj = 0 whenever xj = yj and dj = 1 whenever xj ̸= yj . Accordingly,
given a model M ∈ Mod(G), the bit vector proj(M, {d1, ..., dn}) is the bit vector representation of the difference set
between the bit vector proj(M, {x1, ..., xn}), which is a model of µ, and the bit vector proj(M, {y1, ..., yn}), which
is a model of κ. Since as mentioned above each combination of models of κ and models of µ is covered by a model
of G, we can thus conclude that proj(Mod(G), {d1, ..., dn}) = Dv

S(κ, µ).

108

Lemma 6. Each model M of the formula G∧G′, with G and G′ as in equations 5 and 6, contains bit vector representations of
two difference sets: proj(M, {d1, ..., dn}) ∈ Dv

S(κ, µ) and proj(M, {d′1, ..., d′n}) ∈ Dv
S(κ, µ). Furthermore, each possible

combination of two difference sets of Dv
S(κ, µ) is addressed by a model of G ∧G′.

Proof. Lemma 6 is a direct consequence of Lemma 5 as V ar(G) ∩ V ar(G′) = ∅ and G′ is identical to G apart from
differing variables.

Lemma 7. Each model M of the formula

H = G ∧G′ ∧
∧

1≤j≤n

(
(d′′j ∨ ¬dj ∨ d′j) ∧ (d′′j ∨ dj ∨ ¬d′j)

∧ (¬d′′j ∨ ¬dj ∨ ¬d′j) ∧ (¬d′′j ∨ dj ∨ d′j)
)
∧

∨
1≤j≤n

d′′j

(7)

contains bit vector representations of two difference sets: proj(M, {d1, ..., dn}) ∈ Dv
S(κ, µ) and proj(M, {d′1, ..., d′n}) ∈

Dv
S(κ, µ) with proj(M, {d1, ..., dn}) ̸= proj(M, {d′1, ..., d′n}). Furthermore, each possible combination of two distinct

difference sets of Dv
S(κ, µ) is addressed by a model of H .

Proof. From the proof of Lemma 5 we know that the conjunction ensures that d′′j = 0 whenever dj = d′j and
d′′j = 1 whenever dj ̸= d′j . Furthermore, since this conjunction is satisfiable for all truth assigments to dj and
d′j , adding the conjunction to the formula G ∧ G′ does not impact on the insights from Lemma 6. By adding the
disjunction, however, the case that all variables {d′′1 , ..., d′′n} are false, which happens when proj(M, {d1, ..., dn}) =
proj(M, {d′1, ..., d′n}), is no longer possible. As a consequence, for each model M ∈ Mod(H) the following holds:
proj(M, {d1, ..., dn}) ̸= proj(M, {d′1, ..., d′n}). In addition, as demonstrated in Lemma 6, each possible combination
of two difference sets of Dv

S(κ, µ) is addressed by a model of H , with the new restriction that the two difference sets
are distinct.

Lemma 8. Each model M of the formula

I = H ∧
∧

1≤j≤n

(
dj ∨ ¬d′j

)
(8)

contains bit vector representations of two difference sets proj(M, {d1, ..., dn}) ∈ Dv
S(κ, µ) and proj(M, {d′1, ..., d′n}) ∈

Dv
S(κ, µ) with the second one being a proper subset of the first one. Furthermore, the set proj(Mod(I), {d′1, ..., d′n}) corre-

sponds to the complete set of difference sets in Dv
S(κ, µ), that are proper subsets of some difference set.

Proof. With regards to the first statement, the constraint dj ∨ ¬d′j ensures that dj = 1, whenever d′j = 1, since
otherwise dj ∨ ¬d′j evaluates to false. Combined with the insights from Lemma 7 on formula H , in particular the
fact that proj(M, {d1, ..., dn}) ̸= proj(M, {d′1, ..., d′n}), we obtain that the requirements for being a proper subset
are fulfilled for the difference set represented by proj(M, {d′1, ..., d′n}). The second statement can be derived from
the insight of Lemma 7 that each possible combination of two distinct difference sets of Dv

S(κ, µ) is addressed by a
model of H .

Theorem 5. For the optimal solution S to the partial MaxSat encoding SO
∔S

(κ, µ) the bit vector proj(S, {d′1, ..., d′n}) corre-
sponds to the bit vector representation of a minimal set of the set of all difference sets DS(κ, µ), that is also a proper subset of
some set in DS(κ, µ).

Proof. Since the encoding’s hard clauses are equal to the above defined formula I , we know from Lemma 8 that
proj(S, {d′1, ..., d′n}) is a bit vector representation of a set m ∈ DS(κ, µ), that is a proper subset of at least one set in
DS(κ, µ). The soft clauses attempt to minimize the number of variables in {d′1, ..., d′n}, that have a value of 1. As a
result, m is the smallest set in DS(κ, µ), that is a proper subset of some other set in DS(κ, µ), from which we can
conclude that m is a minimal set of DS(κ, µ) since we know that there is no other set in DS(κ, µ), that is a proper
subset of some set and that contains fewer elements than m.

Theorem 6. For the SAT encoding S∔S
(κ, µ) following relation holds: proj(Mod(S∔S

(κ, µ)), {x1, ..., xn}) = Mod(κ∔S

µ)

109

Proof. Let us first consider the case minp
S(κ, µ) = ∅, for which S∔S

(κ, µ) = µ. In this case we know that there
exists no set in DS(κ, µ), that is a proper subset of some set in DS(κ, µ). Hence, no set in DS(κ, µ) has a proper
subset and therefore each set in DS(κ, µ) is a minimal set. Looking at Definition 2.8 of Satoh’s revision operator, it
is evident, that in this case the models of the revision result are exactly the models of the revision formula µ, hence
Mod(κ∔S µ) = Mod(µ) = proj(Mod(S∔S

(κ, µ)), {x1, ..., xn}).
Next, we consider the case minp

S(κ, µ) = {∅}, i.e. the empty set is the only minimal set. The empty set
is then a difference set in DS(κ, µ) and therefore there exists at least one model in µ, that is also a model
of κ. As a consequence, the minimum Dalal distance dmin(κ, µ) = 0. Hence, we can define the encoding
S∔S

(κ, µ) as the encoding S∔D
(κ, µ) with a minimum Dalal distance of 0. As we know from Theorem 2, that

proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}) = Mod(κ ∔D µ), we can conclude that proj(Mod(S∔S

(κ, µ)), {x1, ..., xn}) =
Mod(κ∔S µ) for the case minp

S(κ, µ) = {∅}.
Finally, in all other cases the encoding is a conjunction of formula G from Lemma 5 and encoding
L({d1, ..., dn},minp

S(κ, µ)). From Lemma 5 we know that proj(Mod(G), {d1, ..., dn}) = Dv
S(κ, µ). Further, it is

known that proj(Mod(G), {x1, ..., xn}) = Mod(µ). As shown above, encoding L({d1, ..., dn},minp
S(κ, µ)) en-

sures that for every minimal set m ∈ minp
S(κ, µ) no difference set represented by variables {d1, ..., dn}, con-

tains more elements than m AND all elements of m at the same time. That way it is ensured that no differ-
ence set represented by variables {d1, ..., dn} is a non-minimal set and thus all these sets are minimal sets. As a
consequence, proj(Mod(S∔S

(κ, µ)), {x1, ..., xn}) contains only those models of µ, for which a model of κ exists,
such that dS(κ, µ) is a minimal set of DS(κ, µ), which is precisely the definition of Satoh’s revision, and hence
proj(Mod(S∔S

(κ, µ)), {x1, ..., xn}) = Mod(κ∔S µ).

Theorem 7. For the optimal solution S to the partial MaxSat optimization encoding SO
−̇S

(κ, ϕ), the bit vector
proj(S, {d′1, ..., d′n}) corresponds to the bit vector representation of a minimal set of the set of all difference sets DS(κ,¬ϕ),
that is a proper subset of some set in DS(κ,¬ϕ).

Proof. Encoding SO
−̇S

(κ, ϕ) is almost identical to encoding SO
∔S

(κ, ϕ) of the corresponding revision Theorem 5 since
t(¬ϕ) and µ are both CNF formulae, with the only difference being that t(¬ϕ) additionally contains some new aux-
iliary variables V t

¬ϕ, that are introduced by the Tseitin transformation. However, as proj(Mod(t(¬ϕ)), V ar(¬ϕ)) =
Mod(¬ϕ) (CNF formulae resulting from Tseitin transformations are equisatisfiable to the initial formulae) and since
these new variables occur only within t(¬ϕ), their presence can be neglected and the remaining proof is thus iden-
tical to the proof of Theorem 5.

Theorem 8. For the SAT encoding S−̇S
(κ, ϕ) following relation holds: proj(Mod(S−̇S

(κ, ϕ)), {x1, ..., xn}) =

Mod(κ −̇S ϕ)

Proof. For the case minp
S(κ,¬ϕ) = ∅ we can conclude, analogously to the proof of Theorem 6, that every

set in DS(κ,¬ϕ) is a minimal set and thus Mod(κ ∔S ¬ϕ) = Mod(¬ϕ). As a result, Mod(κ −̇S ϕ) =
Mod(κ) ∪ Mod(¬ϕ). Looking at the encoding S−̇S

(κ, ϕ), we can see that proj(Mod(S−̇S
(κ, ϕ)), Y) =

Mod(κ) and proj(Mod(S−̇S
(κ, ϕ)), Z) = Mod(¬ϕ). Further, due to Lemma 4 proj(Mod(F (X,Y, Z, n)), X) =

proj(Mod(F (X,Y, Z, n)), Y) ∪ proj(Mod(F (X,Y, Z, n)), Z). Accordingly, proj(Mod(S−̇S
(κ, ϕ)), X) = Mod(κ) ∪

Mod(¬ϕ) = Mod(κ −̇S ϕ).
For the case minp

S(κ,¬ϕ) = {∅}, we can conclude analogously to the proof of Theorem 6, that dmin(κ,¬ϕ) = 0 and
can also define the encoding as the encoding S−̇D

(κ, ϕ) with a minimum Dalal distance of 0. Due to Theorem 4,
then proj(Mod(S−̇S

(κ, ϕ)), {x1, ..., xn}) = Mod(κ) ∪Mod(κ∔D ¬ϕ) = Mod(κ −̇D ϕ).
Lastly, in all other cases the encoding S−̇S

(κ, ϕ) is similar to encoding S∔S
(κ, ϕ), with only a few adjustments. Let

us denote the part of the encoding before the conjunct κw as C. C corresponds to encoding S∔S
(κ, ϕ) after replacing

the formula µ with t(¬ϕ)z . Since Mod(t(¬ϕ)z) = Mod(¬ϕ) and as the contained auxiliary variables can be, as usual,
neglected, Theorem 6 allows us to state proj(Mod(C), {z1, ..., zn}) = Mod(κ ∔S ¬ϕ). Adding κw ∧ F (X,Z,W, n)
to C finally leads to proj(Mod(S−̇S

(κ, ϕ)),W) = Mod(κ). Since proj(Mod(S−̇S
(κ, ϕ)), Z) = Mod(κ ∔S ¬ϕ) still

holds and due to Lemma 4, we obtain proj(Mod(S−̇S
(κ, ϕ)), X) = Mod(κ) ∪Mod(κ∔S ¬ϕ) = Mod(κ −̇S ϕ).

Theorem 9. The inference check SAT encoding SI(B, γ) is unsatisfiable if and only if B |= γ.

110

Proof. We address solely the case B = (κ ∔D µ), since the other three cases can be proven analogously. From The-
orem 2 we know that proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) = Mod(κ∔D µ). Further, proj(Mod(t(¬γ)), V ar(¬γ)) =
Mod(¬γ) because the Tseitin transformation results in a formula, that is equisatisfiable to the initial formula. More-
over, V ar(γ) ⊆ {x1, ..., xn} by definition.

Let us first assume that S∔D
(κ, µ)∧t(¬γ) is unsatisfiable. As V t

¬γ∩V ar(S∔D
(κ, µ)) = ∅, there is only one conceiv-

able reason for the formula being unsatisfiable: proj(Mod(S∔D
(κ, µ)), V ar(¬γ))∩proj(Mod(t(¬γ)), V ar(¬γ)) = ∅.

From this we obtain Mod(κ ∔D µ) ∩ Mod(¬γ) = ∅, i.e. there is no model of B, that does not satisfy γ, or in other
words every model of B satisfies γ, hence B |= γ.

Let us now assume that B |= γ. This means that there is no model of κ ∔D µ, for which ¬γ evaluates to
true. We obtain proj(Mod(S∔D

(κ, µ)), V ar(γ)) ∩ proj(Mod(t(¬γ)), V ar(γ)) = ∅, which implies that SI(B, γ) =
S∔D

(κ, µ) ∧ t(¬γ) is unsatisfiable.

Theorem 10. The model check SAT encoding SM (B,N) is satisfiable if and only if N ∈ Mod(B).

Proof. We address solely the case B = (κ∔D µ), since the other three cases can be proven analogously.
Let us first assume that SM (B,N) is satisfiable. Each clause in the conjunction m(N,X) consists by

definition of exactly one literal xj (if value(N, xj) = true) or ¬xj (if value(N, xj) = false) with
xj ∈ X . From this we can conclude that Mod(m(N,X)) = {N}. From Theorem 2 we further
know that proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) = Mod(κ ∔D µ). As S∔D
(κ, µ) ∧ m(N,X) is satisfiable

(by assumption), we know that proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}) ∩ Mod(m(N,X)) ̸= ∅ and thus ob-

tain proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}) ∩ Mod(m(N,X)) = {N}. This last expression implies that N ∈

proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}), i.e. N ∈ Mod(B).

Let us now assume that N ∈ Mod(B), i.e. N ∈ Mod(κ ∔D µ). This means that N ∈
proj(Mod(S∔D

(κ, µ)), {x1, ..., xn}) and further proj(Mod(S∔D
(κ, µ)), {x1, ..., xn}) ∩ Mod(m(N,X)) = {N}.

Looking at the encoding SM (B,N) = S∔D
(κ, µ) ∧ m(N,X) it is evident that this last expression implies that

SM (B,N) is satisfiable.

Theorem 11. The optimal value of the optimal solution to IO∔D
(κ, µ) corresponds to the minimum Dalal distance dmin(κ, µ).

Proof. Encoding IO∔D
(κ, µ) is a direct translation of the SAT encoding scheme SO

∔D
(κ, µ) into ILP constraints, where

all parts of IO∔D
(κ, µ) without the final optimization constraint correspond to the hard clauses of SO

∔D
(κ, µ) and

the final optimization constraint corresponds exactly to the soft clauses of SO
∔D

(κ, µ). For this reason this theorem
follows from Theorem 1.

Theorem 12. For the set S of bit vector representations of all solutions to I∔D
(κ, µ) the following relation holds:

proj(S,XI) = Mod(κ∔D µ)

Proof. Encoding I∔D
(κ, µ) is a direct translation of the SAT encoding scheme S∔D

(κ, µ) into ILP constraints, where

the final constraint
n∑

j=1

(
dIj

)
= dmin(κ, µ) fulfills the same purpose as E({d1, ..., dn}, dmin(κ, µ)) in S∔D

(κ, µ). Con-

sequently, this theorem follows from Theorem 2.

Lemma 9. Given a CNF formula α and two sets of binary ILP variables P and Q with |P |= |V ar(α)|, |Q|= |C(α)| and
P ∩ Q = ∅, for the set S of bit vector representations of all solutions to conN (α,X,A) the following holds: proj(S, P) =
Mod(¬α)

Proof. Let us first have a look at how a clause is translated into a constraint in conN (α, P,Q): each positive literal is
replaced by a positive ILP expression (bi), that evaluates to 1, whenever bi = 1. Each negative literal is replaced by
a negative ILP expression (1 − bi), that evaluates to 1, when bi = 0. Thus far, this is the usual way of how a clause
is translated into an ILP constraint. However, while the usual translation rule would now ensure that the sum of
all ILP expressions is greater than or equal to 1 (which corresponds to a disjunction), instead the sum is divided
by the number of literals in the clause and it is ensured that the result is smaller than or equal to the value of the
auxiliary binary ILP variable, that was explicitly created for the clause. Hence, in the case that none of the addends
of the sum evaluate to 1 (the disjunction evaluates to false), the left part of the inequality equation evaluates to 0. In

111

case all of the addends evaluate to 1, it evaluates to 1, whereas in all other cases it evaluates to a value somewhere
between 0 and 1. As a consequence, the auxiliary variable on the right side of the inequality equation must have the
value 1 whenever at least one of the addends evaluates to 1 (i.e. the left side has a value > 0) since the relation is of
the type ‘≤‘. In the case that none of the addends evaluates to 1, the auxiliary variable can be 0 or 1. Given a value
assignment to the variables in P , we can conclude that if a clause’s auxiliary variable has the value 0, then the clause
evaluates to false, since otherwise the auxiliary variable would have the value 1. The last constraint of conN (α, P,Q)
implements the restriction that the sum of all auxiliary variables must be smaller than or equal to the number of
clauses minus 1. This constraint can only be fulfilled when at least one of the auxiliary variables has the value 0
due to |Q|= |C(α)|. Hence, all solutions to the given ILP program consist of value assignments to the variables in
P , that make at least one clause evaluate to false, which corresponds to ¬α; thus proj(S, P) = Mod(¬α).

Theorem 13. The optimal value of the optimal solution to IO−̇D
(κ, ϕ) corresponds to dmin(κ,¬ϕ).

Proof. IO∔D
(κ, µ) (defined in Section 3.4.1) and IO−̇D

(κ, ϕ) differ only in that IO−̇D
(κ, ϕ) contains additional definition

lines for the set of auxiliary variables AI and in that conN (ϕ,ZI , AI) is used instead of con(µ,ZI) and variables
ZI instead of XI . The objective of the set of constraints con(µ,ZI) is to ensure that the variables of ZI represent
the models of µ. Due to Lemma 9 we know that the constraints conN (ϕ,ZI , AI) do the same for the models of
¬ϕ. Further, the new variables AI do not occur in any other constraints, but in conN (ϕ,ZI , AI), and can thus be
neglected. From Theorem 11 and the above elaborations we can then conclude Theorem 13.

Theorem 14. For the set S of bit vector representations of all solutions to I−̇D
(κ, ϕ) the following relation holds:

proj(S,XI) = Mod(κ −̇D ϕ)

Proof. For an ILP program I1 consisting of the constraints con(κ, Y I), conN (ϕ,ZI , AI), conD(DI , Y I , ZI) and
n∑

j=1

(
dIj

)
= dmin(κ,¬ϕ) only, the following holds: proj(S1, ZI) = Mod(κ ∔ ¬ϕ), where S1 is the set of bit vec-

tor representations of all solutions to I1. This follows from Theorem 12. Let adding the constraint con(κ,BI)
to I1 result in the new interim encoding I2. For the set S2 of bit vector representations of all solutions to I2,
proj(S2, ZI) = Mod(κ ∔ ¬ϕ) still holds, since none of the variables in Y I ∪ ZI ∪ AI ∪DI occur in the new set of
constraints and the new variables BI do not occur in I1. Further, proj(S2, BI) = Mod(κ) due to the definition of
con(κ,BI).
Let us denote the interim encoding obtained by adding conD(EI , XI , BI) and conD(F I , XI , ZI) to I2 by I3. Then
for the set S3 of bit vector representations of all solutions to I3, proj(S3, ZI) = Mod(κ ∔ ¬ϕ) and proj(S3, BI) =
Mod(κ) still hold because the new constraints do not place any restrictions on the variables XI , ZI and BI , but
only on the variables EI and F I by forcing the variable eIj (fI

j) to take the value 1, whenever xI
j ̸= bIj (xI

j ̸= zIj).
Since variables EI and F I do not occur in any other constraints, they can satisfy these new constraints.

Let adding constraints
(n∑
j=1

(
eIj

))
÷ n ≤ gI1 and

(n∑
j=1

(
fI
j

))
÷ n ≤ gI2 to I3 result in interim encoding I4. For the

set S4 of bit vector representations of all solutions to I4, proj(S4, ZI) = Mod(κ∔ ¬ϕ) and proj(S4, BI) = Mod(κ)
still hold because the newly added constraints do not impact the value assignments of any variables apart from the
variables gI1 and gI2 , which do not occur in any other constraints. The variable gI1 (gI2) must have the value 1, when
the sum of the values of variables EI (F I) is greater than 0. In case the sum is equal to 0, gI1 (gI2) can be 0 or 1. From
this we can conclude that whenever value(s4, gI1) = 0 for a solution s4 ∈ S4, then proj(s4, XI) = proj(s4, BI) =
Mod(κ) and whenever value(s4, gI2) = 0, then proj(s4, XI) = proj(s4, ZI) = Mod(κ∔ ¬ϕ).

The final constraint gI1 + gI2 ≤ 1 ensures that at least one of the variables gI1 and gI2 is 0. This requirement
impacts the value assignment of the variables EI (F I), forcing them to take the value 0, whenever possible, and thus
indirectly that of the variables XI , since they are not bound by any further constraints, whereas the variables BI

(ZI) are. The need for gI1 or gI2 to have the value 0 signifies that in every solution s ∈ S to the ILP encoding I−̇D
(κ, ϕ)

one or both (in case dmin(κ,¬ϕ) = 0) of proj(s,XI) = proj(s,BI) = Mod(κ) and proj(s,XI) = proj(s, ZI) =
Mod(κ∔¬ϕ) need to hold. For the entire set S of solutions, this leads to proj(S,XI) = Mod(κ)∪Mod(κ∔D ¬ϕ) =
Mod(κ −̇D ϕ).

Theorem 15. Given the bit vector representation S of the optimal solution to IO∔S
(κ, µ) the bit vector proj(S, {dsI1, ..., dsIn})

represents a minimal set of the set of all difference sets DS(κ, µ), that is also a proper subset of some set in DS(κ, µ).

112

Proof. Encoding IO∔S
(κ, µ) is a direct translation of the SAT encoding scheme SO

∔S
(κ, µ) into ILP constraints, where

all parts of IO∔S
(κ, µ) without the final optimization constraint correspond to the hard clauses of SO

∔S
(κ, µ) and

the final optimization constraint corresponds exactly to the soft clauses of SO
∔S

(κ, µ). For this reason this theorem
follows from Theorem 5.

Lemma 10. Constraints conMS(minp
S(κ, µ), D

I , SI) ensure that the set represented by variables DI is not a proper superset
of any of the sets represented by the bit vectors minp

S(κ, µ).

Proof. For a set a to be a proper superset of a set b, it must contain all elements of b and more elements than b. The
first constraint for every m ∈ minp

S(κ, µ) in conMS(minp
S(κ, µ), D

I , SI) ensures that the auxiliary variable sI1 is 1
whenever the set represented by variables DI contains all elements of the minimal set represented by m since in
this case the left side of the inequality equation evaluates to 1. In all other cases sI1 can be both 0 and 1. The second
constraint guarantees that the auxiliary variable sI2 is 1 whenever the set represented by variables DI contains more
elements than the minimal set represented by m since in this case the left side of the inequality equation evaluates
to 1 or to a value between 0 and 1. In all other cases sI2 can be both 0 and 1. Finally, the third constraint implements
the restriction that the sum of sI1 and sI2 must be smaller than or equal to 1, ensuring that sI1 and sI2 cannot be 1 at
the same time. It follows that the set represented by variables DI cannot be a proper superset of any of the sets
represented by the bit vectors minp

S(κ, µ).

Theorem 16. For the set S of bit vector representations of all solutions to I∔S
(κ, µ) the following relation holds:

proj(S,XI) = Mod(κ∔S µ)

Proof. Encoding I∔S
(κ, µ) is a direct translation of the SAT encoding scheme S∔S

(κ, µ) into ILP constraints, where
constraints conMS(minp

S(κ, µ), D
I , SI) fulfill the same purpose as L({d1, ..., dn},minp

S(κ, µ)) in S∔S
(κ, µ) as estab-

lished by Lemma 10. Consequently, this theorem follows from Theorem 6.

Theorem 17. For the bit vector representation S of the optimal solution to IO−̇S
(κ, ϕ) the bit vector proj(S, {dsI1, ..., dsIn})

corresponds to the bit vector representation of a minimal set of the set of all difference sets DS(κ,¬ϕ), that is also a proper
subset of some set in DS(κ,¬ϕ).

Proof. IO∔S
(κ, µ) (defined in Section 3.4.3) and IO−̇S

(κ, ϕ) differ only in that IO−̇S
(κ, ϕ) contains additional defini-

tion lines for the sets of auxiliary variables AI and ASI and in that conN (ϕ,ZI , AI) replaces con(µ,XI) and
conN (ϕ,ZSI , ASI) replaces con(µ,ZSI). Moreover, variables ZI are used instead of variables XI . The objective
of the set of constraints con(µ,ZI) (con(µ,ZSI)) is to ensure that the variables of ZI (ZSI) represent the models of
µ. Due to Lemma 9 we know that the constraints conN (ϕ,ZI , AI) (conN (ϕ,ZSI , ASI)) do the same for the models
of ¬ϕ. Further, the new variables AI and ASI do not occur in any other constraints, but in conN (ϕ,ZI , AI) and
conN (ϕ,ZSI , ASI), and can thus be neglected. From Theorem 15 and the above elaborations we can then conclude
Theorem 17.

Theorem 18. For the set S of bit vector representations of all solutions to I−̇S
(κ, ϕ) the following relation holds:

proj(S,XI) = Mod(κ−̇Sϕ)

Proof. For the case minp
S(κ,¬ϕ) = ∅ the encoding I−̇S

(κ, ϕ) is similar to encoding I−̇D
(κ, ϕ) with the difference that

the parts con(κ, Y I), conD(DI , Y I , ZI) and
n∑

j=1

(
dIj

)
= dmin(κ,¬ϕ) as well as the variable sets Y I and DI are absent.

Accordingly, the only remaining restriction on the variable set ZI is that these variables must represent models of
the formula ¬ϕ. From this, combined with Theorem 14, we obtain that the variables XI represent models of κ and
models of ¬ϕ, i.e. proj(S,XI) = Mod(κ) ∪ Mod(¬ϕ)). Since the assumed case minp

S(κ,¬ϕ) = ∅ implies that all
sets in DS(κ,¬ϕ) are minimal sets we can conclude Mod(κ−̇Sϕ) = Mod(κ) ∪ Mod(¬ϕ)) and thus proj(S,XI) =
Mod(κ−̇Sϕ).
Next, we address the case minp

S(κ,¬ϕ) = {∅}, which implies that the empty set is the only minimal set of DS(κ,¬ϕ).
Accordingly, the empty set is a member of DS(κ,¬ϕ) and hence dmin(κ,¬ϕ) = 0. Hence, we can define the en-
coding I−̇S

(κ, ϕ) as encoding I−̇D
(κ, ϕ) with a minimum Dalal distance of 0. From Theorem 14 we then obtain

proj(S,XI) = Mod(κ−̇Sϕ).

113

Finally, we consider the remaining cases, for which encoding I−̇S
(κ, ϕ) is identical to encoding I−̇D

(κ, ϕ) except

for the replacement of
n∑

j=1

(
dIj

)
= dmin(κ,¬ϕ) with conMS(minp

S(κ,¬ϕ), D
I , SI) and the additional variable set SI .

From Lemma 10 we know that conMS(minp
S(κ,¬ϕ), D

I , SI) ensure that the set represented by variables DI is not
a proper superset of any of the sets represented by the bit vectors minp

S(κ,¬ϕ). Accordingly, the set represented
by variables DI is always a minimal set of DS(κ,¬ϕ). Analogously to the proof of Theorem 14 we then obtain
proj(S,XI) = Mod(κ)∪Mod(κ∔S¬ϕ) which is precisely the definition of Satoh’s contraction, hence proj(S,XI) =
Mod(κ−̇Sϕ).

Theorem 19. The inference check ILP encoding II(B, γ) has no solution if and only if B |= γ.

Proof. We address solely the case B = (κ ∔D µ) since the other three cases can be proven analogously. Due
to Theorem 12 and Lemma 9 proj(S,XI) = Mod(κ ∔D µ) for the set S of bit vector representations of all so-
lutions to I∔D

(κ, µ) and proj(S′, XI) = Mod(¬γ) for the set S′ of bit vector representations of all solutions to
conN (γ,XI , AI

2).
Let us first assume that encoding II((κ∔D µ), γ) has no solution. As I∔D

(κ, µ) does not contain any variables of
the set AI

2, and conN (γ,XI , AI
2) does not contain any further variables other than XI , the reason for there not being

any solution must be proj(S,XI) ∩ proj(S′, XI) = ∅ , i.e. Mod(κ ∔D µ) ∩ Mod(¬γ) = ∅. In other words, every
model of κ∔D µ (there exists at least one due to the restriction that B represents a consistent belief base) satisfies γ,
hence B |= γ.

Let us now assume that B |= γ, which means that there is no model of κ ∔D µ, for which ¬γ evaluates to true.
Accordingly, proj(S,XI) ∩ proj(S′, XI) = ∅, which results in II((κ∔D µ), γ) not having any solution.

Theorem 20. The model check ILP encoding IM (B,N) has a solution if and only if N ∈ Mod(B).

Proof. We address solely the case B = (κ ∔D µ), since the other three cases can be proven analogously. Let us
first assume that IM (B,N) has at least one solution. Theorem 12 states proj(S,XI) = Mod(κ ∔D µ) for the
set S of bit vector representations of all solutions to I∔D

(κ, µ). Moreover, constraints conM (N,XI) ensure that
proj(S′, XI) = {N} for the set S′ of bit vector representations of all solutions to conM (N,XI). As IM (B,N) by
assumption has at least one solution, Mod(κ∔D µ) ∩ {N} ≠ ∅ and thus N ∈ Mod(κ∔D µ), i.e. N ∈ Mod(B).

Let us now assume that N ∈ Mod(B), i.e. N ∈ Mod(κ ∔D µ) and thus N ∈ proj(S,XI). Since the con-
straints conM (N,XI) ensure that proj(S′, XI) = {N} for the set S′ of bit vector representations of all solutions to
conM (N,XI), the equation proj(S,XI)∩ proj(S′, XI) = {N} holds and accordingly IM (B,N) has a solution.

Theorem 21. The optimal value of the optimal answer set to the ASP logic program AO
∔D

(κ, µ) corresponds to the minimum
Dalal distance dmin(κ, µ).

Proof. Due to the choice rule the answer set solver is aware that any of the propositional atoms can potentially be
true. As described in Section 2.8.3, the integrity constraints constraints[κ, Y I] and constraints[µ,XI] thus lead
to interpretation(A, Y I , t/1) = Mod(κ) and interpretation(A,XI , t/1) = Mod(µ) (due to XI ∩ Y I = ∅), with A
denoting the set of all answer sets. Moreover, the encoding’s only two rules ensure that whenever two integers of XI

and Y I represent the same propositional atom, which is defined by the representation facts, and their corresponding
t/1 predicate atoms differ in their truth assignments, the d/1 predicate atom, that takes the XI integer as argument,
is derived to be true. Further, in case that two integers of XI and Y I represent the same propositional atom and
their corresponding t/1 predicate atoms have identical truth assignments, the predicate atom d/1, that takes the XI

integer as argument, cannot be derived and is thus false due to the concept of default negation. From this we can
conclude, that the number of such predicate atoms in an answer set a corresponds to the Dalal distance between
interpretation(a,XI , t/1) and interpretation(a, Y I , t/1), i.e. the Dalal distance between a model of κ and a model
of µ. In addition to that the minimize expression ensures that the answer set solver looks for an optimal answer
set, i.e. one in which the number of predicate atoms d/1 is smallest. The determined smallest number of predicate
atoms then corresponds exactly to the minimum Dalal distance dmin(κ, µ) as it is defined as the smallest possible
Dalal distance between a model of κ and a model of µ.

Theorem 22. For the set A of all answer sets to the ASP logic program A∔D
(κ, µ) the following relation holds:

interpretation(A,XI , t/1) = Mod(κ∔D µ)

114

Proof. From the proof of Theorem 21 we know that without the minimization expression
interpretation(A, Y I , t/1) = Mod(κ) and interpretation(A,XI , t/1) = Mod(µ). Moreover, we know
that the number of predicate atoms d/1 in an answer set a corresponds to the Dalal distance between
interpretation(a,XI , t/1) and interpretation(a, Y I , t/1), i.e. between a model of κ and a model of µ. Due to the
newly added integrity constraint, which ensures that in every answer set the number of predicate atoms d/1 is
equal to dmin(κ, µ), we can thus conclude that interpretation(A,XI , t/1) contains exactly those models of µ, that
have the Dalal distance dmin(κ, µ) to at least one model of κ. Since this is precisely the definition of Mod(κ ∔D µ),
we obtain interpretation(A,XI , t/1) = Mod(κ∔D µ).

Theorem 23. The optimal value of the optimal answer set to the ASP logic program AO
−̇D

(κ, ϕ) corresponds to the minimum
Dalal distance dmin(κ,¬ϕ).

Proof. Encoding AO
−̇D

(κ, ϕ) is almost identical to encoding AO
∔D

(κ, ϕ), with the only difference being the replace-
ment of constraints[µ,XI] by the integrity constraint :− cConstraints[ϕ,XI]. Hence, neglecting the minimization
constraint, we obtain interpretation(A,XI , t/1) = Mod(¬ϕ) instead of interpretation(A,XI , t/1) = Mod(µ) for
the set A of all answer sets. Combined with the proof of Theorem 21 we can then conclude that the number of predi-
cate atoms d/1 in any answer set a to AO

−̇D
(κ, ϕ) denotes the Dalal distance between interpretation(a,XI , t/1) and

interpretation(a, Y I , t/1), meaning the Dalal distance between a model of κ and a model of ¬ϕ. Analogously to
the proof of Theorem 21 we obtain that due to the minimization constraint, the optimal value of the optimal answer
set to AO

−̇D
(κ, ϕ) corresponds to the minimum Dalal distance dmin(κ,¬ϕ).

Theorem 24. For the set A of all answer sets to the ASP logic program A−̇D
(κ, ϕ) the following relation holds:

interpretation(A,XI , t/1) = Mod(κ −̇D ϕ)

.

Proof. Let us first consider lines 1-5 of the encoding in Definition 3.26 and let A′ denote the set of all answer sets
to an encoding comprising these lines. Due to the choice rule in line 1 the answer set solver is aware that any
of the propositional atoms can potentially be true. Further, as described in Section 2.8.3, the integrity constraints
constraints[κ, Y I] ensure that interpretation(A′, Y I , t/1) = Mod(κ). Moreover, the combination of lines 2, 4
and 5 ensures that whenever two integers of XI and Y I represent the same propositional atom, which is de-
fined by the representation facts, and their corresponding t/1 predicate atoms differ in their truth assignments,
the d/1 predicate atom, that takes as argument the XI integer, is derived to be true. From this we can conclude,
that the number of such predicate atoms in an answer set a′ ∈ A′ corresponds to the Dalal distance between
interpretation(a′, XI , t/1) and interpretation(a′, Y I , t/1). Note that so far there are no constraints involving the
atoms XI = 1, ..., n. As a consequence, interpretation(A′, XI , t/1) is equal to the set of all possible interpretations
of V ar(κ)∪V ar(ϕ), thus Mod(κ) ⊆ interpretation(A′, XI , t/1) and Mod(κ∔D¬ϕ) ⊆ interpretation(A′, XI , t/1).
Line 6 of encoding A−̇D

(κ, ϕ) ensures that the constant isRevisionModel is satisfied whenever there is at least one
predicate atom d/1 in the answer set, i.e. when for a given answer set a′′ to an encoding comprising lines 1-6 the
models interpretation(a′′, XI , t/1) and interpretation(a′′, Y I , t/1) are distinct, thus interpretation(a′′, XI , t/1) ̸∈
Mod(κ). Next, taking into account the definition of cConstraints[ϕ,XI] in Section 3.5.1, adding line 7 ensures
that whenever the models interpretation(a′′′, XI , t/1) and interpretation(a′′′, Y I , t/1) are distinct for a given an-
swer set a′′′ to an encoding comprising lines 1-7 and thus the constant isRevisionModel is derived to be true,
then interpretation(a′′′, XI , t/1) ∈ Mod(¬ϕ). In other words, given the set A′′′ of all answer sets to the en-
coding comprising lines 1-7, interpretation(A′′′, XI , t/1) = Mod(κ) ∪ Mod(¬ϕ). Finally, line 8 adds the addi-
tional constraint that whenever the models interpretation(a,XI , t/1) and interpretation(a, Y I , t/1) are distinct
for a given answer set a ∈ A, then model interpretation(a,XI , t/1) must additionally have the Dalal distance
dmin(κ,¬ϕ) to the model interpretation(a, Y I , t/1), thus interpretation(a,XI , t/1) ∈ Mod(κ ∔D ¬ϕ). Accord-
ingly, interpretation(A,XI , t/1) = Mod(κ) ∪Mod(κ∔D ¬ϕ) = Mod(κ −̇D ϕ).

Theorem 25. For the optimal answer set a to the ASP logic program AO
∔S

(κ, µ), the bit vector interpretation(a, ZI , d2/1)
corresponds to the bit vector representation of a minimal set of the set of all difference sets DS(κ, µ), that is a proper subset of
some set in DS(κ, µ).

115

Proof. Due to the choice rule the answer set solver is aware that any of the propositional atoms
can potentially be true. As described in Section 2.8.3, the integrity constraints constraints[κ, Y I],
constraints[κ,W I], constraints[µ,XI] and constraints[µ,ZI] lead to interpretation(A, Y I , t/1) = Mod(κ) and
interpretation(A,XI , t/1) = Mod(µ) (due to XI ∩ Y I = ∅) as well as to interpretation(A,W I , t/1) = Mod(κ)
and interpretation(A,ZI , t/1) = Mod(µ) (due to ZI ∩ W I = ∅), with A denoting the set of all answer sets. Fur-
ther, rFacts[XI , Y I] and the two rules defining predicate d/1, ensure that whenever two integers of XI and Y I

represent the same propositional atom, which is defined by the representation facts, and their corresponding t/1
predicate atoms differ in their truth assignments, the d/1 predicate atom, that takes the XI integer as argument,
is derived to be true. Further, in case that two integers of XI and Y I represent the same propositional atom and
their corresponding t/1 predicate atoms have identical truth assignments, the predicate atom d/1, that takes the
XI integer as argument, cannot be derived and is thus false due to the concept of default negation. The exact same
is ensured for the integers of W I and ZI by r2Facts[ZI ,W I] and the two rules defining predicate d2/1. Accord-
ingly, for a given answer set a, the presence of d/1 predicate atoms and d2/1 predicate atoms in a each describe a
difference set d ∈ DS(κ, µ) in the following way: for every d(xI

i) (d2(xI
i)), that is contained in the answer set a,

the corresponding propositional atom xi ∈ X is an element of d. Next, due to r3Facts[XI , ZI], combined with the
two rules defining predicate d3/1 and the integrity constraint :− #count{A : d3(A)} = 0., the two difference sets
represented by the presence of d/1 and d2/1 predicate atoms in a are ensured to be distinct, since a must contain at
least one d3/1 predicate atom. The rule not d2(B) :− r3(A,B), not d(A). accomplishes that whenever a does not
contain d(xI

i), then it also cannot contain d2(zIi) with xI
i and zIi representing the same propositional atom xi ∈ X .

From this we obtain that the difference set represented by the presence of d2/1 predicate atoms in a is a proper sub-
set of the difference set represented by the presence of d/1 predicate atoms since additionally both difference sets
cannot be identical. Lastly, the minimize statement #minimize{1, P : d2(P)}. attempts to minimize the number of
d2/1 predicate atoms in a. This ensures that the difference set represented by the presence of d2/1 predicate atoms
is not only a proper subset of some other set in DS(κ, µ), but also a minimal set of DS(κ, µ), since there is no other
difference set, that is a proper subset of some difference set and that contains fewer elements.

Theorem 26. For the set A of all answer sets to the ASP logic program A∔S
(κ, µ), the following relation holds:

interpretation(A,XI , t/1) = Mod(κ∔S µ)

Proof. Let us first consider the case minp
S(κ, µ) = ∅. In this case we know that there exists no set in DS(κ, µ), that

is a proper subset of some set in DS(κ, µ). Hence, no set in DS(κ, µ) has a proper subset and therefore each set in
DS(κ, µ) is a minimal set. Looking at Definition 2.8 of Satoh’s revision operator, it is evident, that in this case the
models of the revision result are exactly the models of the revision formula µ, i.e. Mod(κ ∔S µ) = Mod(µ). Since
the integrity constraints constraints(µ,XI) lead to interpretation(A,XI , t/1) = Mod(µ) as described in Section
2.8.3 we can conclude that interpretation(A,XI , t/1) = Mod(κ∔S µ) for the case minp

S(κ, µ) = ∅.
Next, we consider the case minp

S(κ, µ) = {∅}, i.e. the empty set is the only minimal set. The empty set is then
a difference set in DS(κ, µ) and therefore there exists at least one model in µ, that is also a model of κ. As a
consequence, dmin(κ, µ) = 0. Hence, we can define the encoding A∔S

(κ, µ) as the encoding A∔D
(κ, µ) with a

minimum Dalal distance of 0. Due to Theorem 22 we then obtain interpretation(A,XI , t/1) = Mod(κ ∔S µ) for
the case minp

S(κ, µ) = {∅}.
Finally, we address the remaining cases. Due to the choice rule the answer set solver is aware that any of the propo-
sitional atoms can potentially be true. As described in Section 2.8.3, the integrity constraints constraints[κ, Y I] and
constraints[µ,XI] thus lead to interpretation(A, Y I , t/1) = Mod(κ) and interpretation(A,XI , t/1) = Mod(µ)
(due to XI ∩ Y I = ∅). Moreover, the encoding’s only two rules ensure that whenever two integers of XI and
Y I represent the same propositional atom, which is defined by the representation facts, and their corresponding
t/1 predicate atoms differ in their truth assignments, the d/1 predicate atom, that takes the XI integer as argu-
ment, is derived to be true. Further, in case that two integers of XI and Y I represent the same propositional atom
and their corresponding t/1 predicate atoms have identical truth assignments, the predicate atom d/1, that takes
the XI integer as argument, cannot be derived and is thus false due to the concept of default negation. Accord-
ingly, for a given answer set a, the presence of d/1 predicate atoms in a describes a difference set d ∈ DS(κ, µ)
in the following way: for every d(xI

i), that is contained in the answer set a, the corresponding propositional atom
xi ∈ X is an element of d. The set minSetConstraints[minp

S(κ, µ), X
I] of integrity constraints ensures that for

every minimal set m ∈ minp
S(κ, µ) no difference set represented by the presence of d/1 predicate atoms contains

116

more elements than m AND all elements of m at the same time. That way it is ensured that no difference set
represented by the d/1 predicate atoms is a non-minimal set and thus all these sets are minimal sets. As a con-
sequence, interpretation(A,XI , t/1) contains only those models of µ, for which a model of κ exists, such that
dS(κ, µ) is a minimal set of DS(κ, µ), which is precisely the definition of Satoh’s revision. From this we can con-
clude interpretation(A,XI , t/1) = Mod(κ∔S µ).

Theorem 27. For the optimal answer set a to the ASP logic program AO
−̇S

(κ, ϕ), the bit vector interpretation(a, ZI , d2/1)

corresponds to the bit vector representation of a minimal set of the set of all difference sets DS(κ,¬ϕ), that is a proper subset
of some set in DS(κ,¬ϕ).

Proof. Encoding AO
−̇S

(κ, ϕ) is almost identical to encoding AO
∔S

(κ, ϕ) of the corresponding revision theorem
25 except that constraints[µ,XI] are replaced by :− cConstraints[ϕ,XI]. and constraints[µ,ZI] replaced by
:− cConstraints[ϕ,ZI]. As a result, interpretation(A,XI , t/1) = Mod(¬ϕ) and interpretation(A,ZI , t/1) =
Mod(¬ϕ), with A denoting the set of all answer sets. The remaining proof is analogous to the proof of Theorem
25.

Theorem 28. For the set A of all answer sets to the ASP logic program A−̇S
(κ, ϕ), the following relation holds:

interpretation(A,XI , t/1) = Mod(κ −̇S ϕ)

Proof. Let us first consider the case minp
S(κ,¬ϕ) = ∅. In this case we know that there exists no set in DS(κ,¬ϕ),

that is a proper subset of some set in DS(κ,¬ϕ). Hence, no set in DS(κ,¬ϕ) has a proper subset and therefore each
set in DS(κ,¬ϕ) is a minimal set. Taking into account Definition 2.11 of Satoh’s contraction operator, it is evident,
that in this case the models of the contraction result are exactly the union of the models of the negated contraction
formula ϕ and the models of κ, i.e. Mod(κ−̇Sϕ) = Mod(κ)∪Mod(¬ϕ). As has been shown in the proof of Theorem
24, interpretation(B,XI , t/1) = Mod(κ) ∪Mod(¬ϕ) given the set B of all answer sets to an encoding e consisting
of lines 1-7 of encoding A∔S

(κ, ϕ). Since for the case minp
S(κ,¬ϕ) = ∅ encoding A−̇S

(κ, ϕ) is defined to be identical
to e, we obtain interpretation(A,XI , t/1) = Mod(κ −̇S ϕ).
Next, we consider the case minp

S(κ,¬ϕ) = {∅}, i.e. the empty set is the only minimal set. The empty set is then
a difference set in DS(κ,¬ϕ) and therefore there exists at least one model of ¬ϕ, that is also a model of κ. As a
consequence, dmin(κ,¬ϕ) = 0. Hence, we can define the encoding A−̇S

(κ, ϕ) as the encoding A−̇D
(κ, ϕ) with a

minimum Dalal distance of 0. Due to Theorem 24 we then obtain interpretation(A,XI , t/1) = Mod(κ−̇Sϕ) for the
case minp

S(κ,¬ϕ) = {∅}.
Finally, for all other cases the encoding is almost identical to A−̇D

(κ, ϕ) with the exception that the last rule (line
8) of A−̇D

(κ, ϕ) is replaced by the set of rules minSetRules[minp
S(κ,¬ϕ), X

I]. From the proof of Theorem 24 we
know that interpretation(B,XI , t/1) = Mod(κ) ∪ Mod(¬ϕ) given the set B of all answer sets to an encoding e
consisting of lines 1-7 of encoding A∔S

(κ, ϕ). Further, we know that for a given answer set a, the presence of d/1
predicate atoms in a describes a difference set d ∈ DS(κ,¬ϕ) in the following way: for every d(xI

i), that is con-
tained in the answer set a, the corresponding propositional atom xi ∈ X is an element of d. In case there exists
at least one predicate atom d/1 in the answer set the rules minSetRules[minp

S(κ,¬ϕ), X
I] ensure that for every

minimal set m ∈ minp
S(κ,¬ϕ) no difference set represented by the presence of d/1 predicate atoms contains more

elements than m AND all elements of m at the same time. That way it is ensured that no difference set repre-
sented by the d/1 predicate atoms is a non-minimal set and thus all these sets are minimal sets. As a consequence,
interpretation(A,XI , t/1) contains only models of κ and those models of ¬ϕ, for which a model of κ exists, such
that dS(κ,¬ϕ) is a minimal set of DS(κ,¬ϕ), which is precisely the definition of Satoh’s contraction.

Theorem 29. For the set A of answer sets to the inference check ASP encoding AI(B, γ) A = ∅ holds if and only if B |= γ.

Proof. We address solely the case B = (κ ∔D µ) since the other three cases can be proven analogously. From
Theorem 22 we know that interpretation(A′, XI) = Mod(κ ∔D µ) for the set A′ of all answer sets to the encoding
A∔D

(κ, µ). Further, in Section 3.5.1 we have shown that adding the integrity constraint :− cConstraints[γ,XI]
ensures that Mod(γ) ∩ interpretation(A′, XI) = ∅, thus interpretation(A′, XI) ⊆ Mod(¬γ).

Let us first assume that encoding AI((κ ∔D µ), γ) has no answer sets, i.e. A = ∅. As cConstraints[γ,XI]
does not contain any other variables than XI , the reason for it not having any answer sets must then be due to

117

interpretation(A′, XI) ∩Mod(¬γ) = ∅, which can also be expressed by Mod(κ ∔D µ) ∩Mod(¬γ) = ∅, i.e. every
model of B satisfies γ, hence B |= γ. Note that this situation can also arise if γ is a tautology.

Let us now assume that B |= γ, which means that there is no model of κ ∔D µ, for which ¬γ evaluates to true.
Due to interpretation(A,XI) ⊆ Mod(¬γ), which is represented by the integrity constraint :−cConstraints[γ,XI],
encoding AI((κ∔D µ), γ) cannot have any answer sets, i.e. A = ∅.

Theorem 30. For the model check ASP encoding AM (B,N) the equation A ̸= ∅, with A denoting the set of all answer sets
to the encoding, holds if and only if N ∈ Mod(B).

Proof. We address solely the case B = (κ ∔D µ), since the other three cases can be proven analogously. Let
us first assume that AM (B,N) has at least one answer set, i.e. A ̸= ∅. From Theorem 22 we know that
interpretation(A′, XI) = Mod(κ ∔D µ), with A′ denoting the set of all answer sets to A∔D

(κ, µ). Further, the
facts modelFacts[N,XI] by definition ensure that interpretation(A,XI) = {N}. From this we can conclude that
Mod(κ∔D µ) ∩ {N} ̸= ∅ and thus N ∈ Mod(κ∔D µ) and N ∈ Mod(B).

Let us now assume that N ∈ Mod(B), i.e. N ∈ Mod(κ∔Dµ) and N ∈ interpretation(A′, XI). The second part of
the encoding (modelFacts[N,XI]) requires that for every answer set a, the statement interpretation(a,XI) = {N}
holds. The fulfillment of this requirement by N ∈ interpretation(A′, XI) implies that AM (B,N) has an answer
set, thus A ̸= ∅.

118

	Introduction
	Background
	Formal preliminaries
	Belief change
	Belief bases
	Syntax-based vs. model-theoretic change operators
	Dalal's revision operator
	Satoh's revision operator
	Harper Identity
	Technologies
	Boolean satisfiability solving (SAT)
	Integer linear programming (ILP)
	Answer set programming (ASP)

	Related work

	Implementation
	Application architecture
	Compilation mode
	Inference and model check modes

	Algorithms
	Compilation algorithm schemes
	Inference and model check algorithm schemes

	SAT encodings
	Boolean cardinality constraint encoding
	Dalal's revision (SAT)
	Dalal's contraction (SAT)
	Satoh's revision (SAT)
	Satoh's contraction (SAT)
	SAT inference checks
	SAT model checks

	ILP encodings
	Dalal's revision (ILP)
	Dalal's contraction (ILP)
	Satoh's revision (ILP)
	Satoh's contraction (ILP)
	ILP inference checks
	ILP model checks

	ASP encodings
	Dalal's revision (ASP)
	Dalal's contraction (ASP)
	Satoh's revision (ASP)
	Satoh's contraction (ASP)
	ASP inference checks
	ASP model checks

	Evaluation
	Experimental setup
	Naive implementation
	Results and discussion
	Compilation
	Inference checks
	Model checks
	Further analyses
	Comparison with naive implementation

	Conclusion
	References
	Proofs

