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Abstract

Many industry domains benefit from machine learning models, which help recog-
nize user, machine, or customer data patterns. In this work, we investigate the pos-
sibilities of using machine learning-based classification to predict critical hard- and
software issues of on-site equipment of service stations based on the equipment
logs. The data is available through cooperation with MADIC and was collected
over the last two years on more than 2,000 service stations in France. We apply
different classification methods such as K-nearest neighbors, Random Forest, Fully
Convolutional Networks, and Residual Networks and compare their performance
on test data from the same period as the training data and on entirely unseen data
collected afterward. Furthermore, we investigate the impact of different sample se-
lection approaches, data encoding methods, data imbalance, and the upsampling
method SMOTE on the model performance.
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1 Introduction

Intelligent solutions using machine learning approaches are increasingly present in
our everyday lives. The probably most famous examples are voice assistants and
smart home solutions that guide us, especially in our private lives and are acces-
sible to a broad range of users. However, professional environments also increas-
ingly integrate such concepts into their business processes. The industrial sectors
could benefit from those solutions as they would lead to more stability, faster pro-
cesses, higher precision, and more comfortable work conditions for employees. This
project focuses on integrating machine learning, more precisely classification meth-
ods, into maintenance processes at service stations. As an essential part of human
transportation, service stations carry a big responsibility and must always be oper-
ational. Therefore, the maintenance of such stations is a sensitive topic as it needs to
be as fast as possible to keep down periods short and economic loss low.

This thesis examines how machine learning approaches are suitable for making
predictions based on data created by on-site equipment of service stations. While
predictions are usually made based on sensor data, the available data for this thesis
comes in the form of discrete log lines with predefined error codes, which is why the
principal problem is interpreted as a classification task. The main objective of this
project is to compare different classification approaches, apply them to the given
data set, and evaluate their performance to decide whether one of the created pre-
dictive models is suitable for integration into the maintenance process of MADIC.

After a short introduction, Section 2 describes the project context and the avail-
able data from actual on-site equipment thanks to a collaboration with the French
company MADIC group. The chapter briefly explains common maintenance strate-
gies, why predictive maintenance has powerful advantages, the different equipment
producing the data, and this thesis project’s goals and future perspective.

Section 3 shows a detailed overview of the theoretical background, including ap-
proaches used in related works. Furthermore, the section describes the selected
algorithms of the project: Random Forest, K-nearest neighbors (KNN), and the
deep learning approaches Fully Convolutional Neural Networks (FCN) and Resid-
ual Neural Networks (ResNet).

Section 4 explains the methodology of the project, including an overview of the
technical environment of the development, the Python libraries used, and the exper-
imental setup. Furthermore, it describes the different steps of data preprocessing.
The codebase for this thesis can be found on GitHub1. The data and trained models
are available in a Google Drive folder2.

In Section 5, we evaluate each classification method, each within a train-test-split
and with entirely new and unseen data. Further on, the evaluation results are dis-
cussed in Section 6 before the thesis finishes with a conclusion and outlook in Section
7.

1https://github.com/jkaszyda/FailurePredictionServiceStations
2https://drive.google.com/drive/folders/1pePHq78y5BpTlUaORQy_C7dtRnEZReXo?usp=sharing
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2 Project Context

The following section explains the project context and background, including a
small overview of standard industrial maintenance methods, a description of the
available data, the equipment creating this data, and the project’s primary goals.

2.1 Maintenance Strategies

As the number of automation processes and mechanization in industrial companies
increases, the need for maintenance activities also increases. Technological compo-
nents can fail over time and need regular surveillance to enhance their lifetime and
to keep downtimes short. When it comes to maintenance, the classic approach is
corrective maintenance, in which technological units are monitored and repaired in
case of malfunctions and signs of wear. However, as stated by Basri et al. [EIB17],
those processes are often long, from the failure detection and the intervention sched-
ule to the final repair. Furthermore, it causes more system failures and high re-
pair costs as problems can occur anytime, and spontaneous planning is expensive.
Therefore, modern industry often applies more efficient maintenance strategies like
preventive maintenance and predictive maintenance. Such strategies lower the ef-
fects of unplanned failure and can also enhance the lifetime of technological com-
ponents.

2.1.1 Preventive Maintenance

According to Basri et al. [EIB17], preventive maintenance unites routine mainte-
nance activities on machines and facilities. Its principal objectives are to ensure
technical functionality, the risk reduction of unplanned downtime, and to schedule
maintenance activities before problems occur. Maintenance is usually performed
during production time.

Based on tests and experiences with the equipment, this recommendation often
concerns age-related problems and has a time-based schedule.

Even if preventive maintenance should be integral to all maintenance strategies,
especially in domains where human security is critical, Edwards et al. [EHH98]
explained that there are more optimal strategies than this. Furthermore, preventive
maintenance is based on eventualities with which problems may occur in a specific
period, which makes it a very cost-intensive maintenance method. It can also mean
that spare parts in perfect condition get replaced because they have reached their
average lifetime. Therefore, it cannot be the only maintenance strategy within a
company.

2.1.2 Predictive Maintenance

Predictive maintenance is a more efficient alternative to compensate for those typ-
ical uncertainties of preventive maintenance. This maintenance approach aims to
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predict how long a currently operational machine or equipment will still work cor-
rectly and when it will degrade. Its goals are reducing downtimes, determining
when exactly a problem will occur, avoiding unnecessary, expensive, and ecologi-
cally problematic maintenance activities, and keeping maintenance activities as low
as possible.

Its goals are the following: As described by Sipos et al. [SFMW14], predictive
maintenance is based mainly on data analysis of the concerned equipment. This
analysis determines which factors and patterns are possible indicators for imminent
failures and allows for planning maintenance actions at the right time and before a
potential breakdown occurs. Data often comes in the form of sensor information of
physical components and gives a clear picture of what happens inside them. Having
available sensor data also means that the concerned equipment is connected, allow-
ing real-time monitoring. Thanks to modern solutions, companies can supervise all
their production processes in detail to initiate planned maintenance activities when
the data shows a previously identified pattern leading to a disorder.

2.2 MADIC group

This thesis project takes place in cooperation with the 1971-founded company
MADIC group, one of the leaders in France in the energy industry. Among other
activities, MADIC primarily focuses on the conception, construction, and mainte-
nance of service stations and car wash.

The headquarters are in Nantes, France, but the company has several locations in
Europe and other parts of the world, each with specialization. In total, the company
employs around 1300 employees at 36 sites.

The most significant part of the present components, such as fuel tanks, fuel dis-
pensers, payment machines, and pumps in a typical service station of MADIC, are
self-produced. Therefore, the company offers many products and services related
to this domain.

2.3 On-site Equipment

Typically, service stations in France are self-service stations without on-site employ-
ees. The client chooses one of the available terminals at which they validate their
payment by card or by cash before the fuel dispenser gets unlocked, and the client
can refuel their car.

Within the scope of this thesis project, the connected equipment of the service
stations is of interest as it creates the data on which we will test different machine
learning algorithms. Currently, this equipment range consists of the three following
equipment types:

• Payment machines

• Fuel dispensers
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• Fuel tanks

2.3.1 Payment Machines

As most French service stations are self-service stations, specific payment machines
are installed on each fuel dispenser to allow the client to validate a secure payment
transaction. The latest model is the APL 3.5. The payment takes place by card, but
some stations offer cash payments. In this case, customers pay at another machine
that prints the payment confirmation as a QR code. This code will be scanned by
the APL 3.5 to unlock the fuel dispenser.

A small screen allows the interaction between the client and the payment ma-
chines. The client validates a card payment on this screen and chooses the fuel type.
Even though the GUI of the machine is simple and easy to understand, the user au-
tomatically receives assistance from a computer voice explaining what to do in each
step.

An APL 3.5 has, among others, two modular and separately exchangeable com-
ponents. These are the card reader and the terminal. The card reader reads the bank
card information, and the terminal guides the user through the transaction valida-
tion process, including the payment validation and the selection of the fuel type.

Each payment machine follows specific laws and regulations as it contains sensi-
tive data and is a popular target of vandalism and data theft. Only authorized engi-
neers can realize manipulations and maintenance on these machines under specific
safety measures. Figure 1 shows a typical payment machine MADIC produces.

Examples of event log messages of these machines are:

• Paper low

• No paper

• Printer error

• Machine inactive

• Reader intrusion

2.3.2 Fuel Tanks

Fuel tanks are an essential equipment type of a service station as they contain the
fuel stock. They are usually installed underground and connected to the fuel dis-
tribution system. They resist violent impacts such as extreme weather and have a
leakage detector.

Examples of event logs related to fuel tanks are:

• Tank empty

• Low level

• High level
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Figure 1: MADIC group payment machine of type APL 3.5

2.3.3 Fuel Dispensers

Fuel dispensers interface fuel tanks and the client who fuels their car. They come
in different sizes and can dispense only one or several fuel types. On self-service
stations, the fuel dispenser also contains the payment machines.

Examples of event logs related to dispensers:

• Low flow rate

• Alert in pump

• Pumps disconnected

2.4 MagView

As a big part of the service stations in France are self-service stations, the tracking
of disorders is more difficult as there is no one to notice and to report possible mal-
functions on site. If issues are detected too late, it is a problem for people possibly
left without the ability to fuel their car, and providers face economic loss.

To overcome this difficulty, MADIC has developed a surveillance system,
"MagView", which gives a real-time overview of all client service stations. It comes
as a web portal and allows the selection of each service station to have a more de-
tailed view in which it shows all elements on site and their status.

The points on the map (as shown in Figure 2) mark different service stations in
the area, and their color indicates the overall status of the station:
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Figure 2: A typical map shown in MagView

• Green: no disorder

• Yellow: information

• Orange: minor problem

• Red: major problem

• Purple: critical problem

By selecting a service station, an event log of the on-site equipment becomes vis-
ible, and a statistic of each event during a period defined by the user as shown in
Figure 3.

2.5 Available Data

The available data for this thesis project comes from alarm logs created by the con-
nected on-site equipment. The on-site point of sales system (POS) called ELYS tracks
each component of the service station and receives statistics and data from each of
them. ELYS monitors, for example, sensor data and, according to previously de-
fined rules, triggers the different alarm sent via the cloud service ELYSONLINE to
the systems of MADIC.

The log lines contain, among others, the following information:

6



Figure 3: Extract of the MagView event log

7



• The kind of malfunction/problem represented by an integer ID

• Severity, e.g., "Major" or "Minor"

• Date and time of the event

• Concerned equipment

• Concerned service station and brand

The data is finally stored in an SQL server database, by default accessible from
the IT perimeter of MADIC.

2.6 Project Goals

Due to surveillance systems like MagView and the high connectivity of service sta-
tions, maintenance providers such as MADIC already have a detailed overview of
each station. However, there is room for improvement as not all components and
equipment are connected. This thesis project is part of a more significant ongoing
project in the company, called The service station of the future, whose intention is to
increase the connectivity of each service station to have more information and pos-
sibilities of action from a distance.

MagView currently collects much data about connected devices and already facil-
itates the maintenance organization. However, MADIC uses this data only to detect
problems when they already exist, which is always an organizational challenge, es-
pecially when many service stations need assistance simultaneously or have specific
contracts that limit the maximum processing time. To shorten the downtime and
the maintenance process, we will look closer at the possibilities of creating a failure
forecasting mechanism that recognizes typical patterns leading to critical errors to
avoid critical dysfunctions before they occur. Different machine learning and deep
learning algorithms will be applied to achieve reliable failure forecasting.

The goals of the project are the following:

• Exploration of different machine learning-based classification methods and
their evaluation for the specific use case

• Forecasting critical alarm types based on less serious alarm types that typically
occur in advance

2.7 Project Schedule

The project takes place in different phases:

• Data Preparation

• Development of a predictive model for each selected classification algorithm

• Evaluation
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Data Preparation An essential prerequisite of a reliable predictive model is data
preparation. The given data comes in the form of event logs of different compo-
nents, so it tends to be noisy. Therefore, logs need to be sorted and separated to
account for only those events that concern the equipment in question.

Development of Predictive Models Different classification methods will be ap-
plied to the same data set to find a method that suits the specific use case of the
thesis. As the main goal of the project is to forecast critical error types for a specific
component or machine, the task is interpreted as a classification problem, which
suggests the use of the following classification methods:

• K-nearest neighbors (KNN)

• Random Forest

• Fully Convolutional Neural Network (FCN)

• Residual Neural Network (ResNet)

Evaluation Evaluating the different models allows us to see which achieves the
best results regarding reliability and accuracy.

The evaluation process is composed of two parts:

1. Train-Test-Split: Not all available data will be part of the training. 30 percent
will serve as test data. This allows a first and immediate evaluation of the
model. The company collected the initial data set for over two years.

2. Test on new data: We further evaluate the different models with entirely new
data. The company collected this data for around nine months after the initial
data collection. This data set is not part of the train-test-split, and the model
performance on this test data will show if they can achieve good results on
data from another period than the training data.

The evaluation takes place using classic metrics for classification models (Accuracy,
Precision, Recall, F1-Score) as explained by Kelleher [JDK20].

3 Theoretical Background

The following section starts with an overview of standard machine learning and
data mining methods on discrete data used in previous works. Furthermore, it ex-
plains the techniques chosen for this project.
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3.1 Methods used in Related Work

Pattern recognition and creating predictive machine learning models based on event
logs is a less familiar task. Nonetheless, several methods were already part of pre-
vious scientific work. Standard techniques are pattern mining, time series analysis
[DWP+22], and natural language processing [DLZS17]. The three exemplary meth-
ods Sequential Pattern Mining [AS], Frequent Chronicle Mining [SST18], and Change
Point Detection in time series [AC16] are explained in the following.

3.1.1 Sequential Pattern Mining

An essential approach in mining discrete data is Sequential Pattern Mining. Initially
introduced by Agrawal et al.[AS] for analyzing customers’ purchase histories, an
adapted version could be suitable for analyzing event logs of industrial machines.
Sequential pattern mining aims to find statistically relevant and recurrent patterns
in data. It allows us to find relationships between different data items that would
not be visible when manually analyzed as the amount of data needed to give reliable
results is too large.

Another related mining method introduced by Agrawal et al. [AIS93] detects
intra-transaction patterns, a common e-commerce technique. When selecting arti-
cles, online shops display a section of other articles that previous customers have
often bought in combination with the currently selected article. Sequential pattern
mining does not only consider which combination of events or transactions has oc-
curred but also in which specific order. The order delivers essential additional in-
formation on the behavior of users or machines.

The Algorithm in Detail The first algorithm for sequential pattern mining was
AprioriAll, introduced by Agrawal et al. [AS] to find relevant database patterns. The
following paragraph explains the algorithm in detail.

To understand the procedure of the algorithm, Item and Sequence are two essential
terms. An item represents a discrete piece of data. In the work of Agrawal et al.,
[AS], one item corresponds to one purchased article by a customer and is part of an
item set corresponding to the list of articles a customer has purchased. A sequence
corresponds to a list that includes one or more item sets. The given example rep-
resents an ordered list containing all the lists of articles by purchase. For example,
if a customer buys first article a and article f first, in a second order article g, and
in a third order articles c, e, and m, the sequence looks like the following: {{a,f}, {g},
{c,e,m}}. The user defines whether a found pattern is relevant, as they need to input
a minimal support threshold in percent. For example, if the threshold is 30%, the
candidate sequence must appear in the transactions of at least 30% of the customers
to be considered a relevant pattern. Table 1 shows an example database.

The algorithm follows five different work steps. The shown examples are based
on the examples of Agrawal et al. [AS].
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Customer ID Date Items
2345 March 2 2022 A
2348 February 1 2022 B
2348 February 23 2022 A
2350 February 27 2022 B
2350 February 28 2022 D, F
2350 March 1 2022 A
2355 March 5 2022 G, C
2355 March 7 2022 B
2355 March 9 2022 D, E, F
2378 February 28 2022 B, H, F

Table 1: Table with sample data

1. Sort Phase: A sequence database as shown in table 2 is created. The database
entries are sorted by client ID for a better overview of the transactions and
their items.

2. Large Item Set Phase: In this phase, the algorithm searches item sets that fulfill
the minimal support. These item sets are called large item sets. As each item
in a large item set needs minimal support, this algorithm phase also identifies
single items with minimal support.

3. Transformation Phase: To make It easier to compare item sets and sequences,
each large item set is mapped. Agrawal et al. have chosen to map them to
simple integers, but other values, such as the article number, are also possi-
ble. Afterward, the algorithm transforms the sorted database in the following
way: All transactions that correspond to a large item set get replaced by their
matching mapped value. If an item or an item set does not fit to any large
item set, it gets removed from the database. Customers whose transactions
do not contain large item sets are also removed but still counted regarding the
support calculation. Table 3 shows the transformed database after this phase.

4. Maximal Sequence Phase: This phase applies the actual sequential pattern
mining algorithm, which initially was AprioriAll. However, other algorithms
with the same input type are possible as well. The goal of this phase is to
identify maximal sequences. These sequences fulfill the minimal support and
are not part of any other longer sequence with minimal support. AprioriAll
is a level-wise algorithm that starts with the sequences of length 1, continues
with sequences of length 2, and so forth until no other sequences with minimal
support are left. All maximal sequences found in this phase form the output
of the algorithm. Table 4 shows the output of the algorithm on the data set of
table 1

11



ID Sequences

2345 {A}
2348 {B},{A}
2350 {B}, {D,F}, {A}
2355 {G,C}, {B}, {D,E,F}
2378 {B,H,F}

Table 2: A sequence database after phase 1.

Customer ID Transformed Sequence

2345 {(A)}
2348 {(B)} {(A)}
2350 {(B)} {D,F} {A}
2355 {B} {(D), (F), (D,F)} {(B)}}
2378 {B,F}

Table 3: The transformed database after phase 3.

Found Sequential Patterns

{(B) (A)}
{(B) (D,F)}

Table 4: The result of the algorithm on the data set shown in 1 and with a minimal
support of 25%.

Evolution and Variants of the Algorithm Since the first proposition of the Aprio-
riAll algorithm, many other algorithms for sequential pattern mining such as GSP
(introduced by Srikant et al. [RS96] as an improvement of AprioriAll), Spade
[Zak01], Spam [AFGY02] and CM-Spam [PFV14] where proposed. Fournier et al.
[PFV17] gives an informative overview of the most important algorithms of the do-
main. When running an algorithm for sequential pattern mining, it finds all se-
quences corresponding to the minimum support the user gives. That means that
only one single result is possible when the algorithm runs on the same data set with
the same minimal support given. Therefore, all algorithms will find the same se-
quence patterns and only differ regarding computational resources, runtime, and
how they identify relevant patterns. The four significant points of distinction are:

• Search algorithm - whether Breadth-first search or Depth-first search

• Database representation

• Selection of the next pattern to explore

• Count method of the pattern support

12



Shortcomings One major shortcoming of sequential pattern mining, in general,
is that it only considers the specific order in which the events occur. The approach
does not consider the time that has passed between the occurrence of the events in
a frequent sequence.

Application on Service Station Error Logs Sequential Pattern Mining has nu-
merous fields of application. Besides the analysis of the shopping behavior of cus-
tomers, it is, among others, also a successful method for predictive maintenance use
cases, as shown by Kahraman et al. [KKKK21] who used it to predict failures of
trucks, and in the field of health care like in the work of Garg et al. [GMMM08],
who applied the method on patient data. As sequential pattern mining operates on
categorical data, the above-described method can easily be applied to our use case
of alarm logs of service stations as well because each log contains a categorical alarm
ID that represents an alarm type. An item would correspond to an alarm type, and
a sequence would represent a sequence of occurring alarms. Similar to the analysis
of customer transactions, sequential pattern mining can give an insight into which
disorder types occur together regularly in the same service station and find patterns
among them.

3.1.2 Frequent Chronicle Mining

Another data-driven mining approach is Frequent Chronicle Mining. It is similar to
sequential pattern mining but overcomes one of its critical problems: it considers
a temporal aspect between the events. Dousson et al. [CD99] first established the
term chronicle and described it as a pair of events in the order in which they have
occurred and a set of temporal constraints displayable as a graph.

SID Sequence

1 (A,1), (B,7), (C,9)
2 (A,2),(B,6),(C,7)
3 (A,1),(D,5)
4 (A,2),(D,3)

Table 5: Sample set of four sequences with time constraints.

Table 5 shows an example data set, including four sample sequences. Each se-
quence consists of the event (e.g., A) and the number of time units (e.g., hours,
days) after which the event has occurred in this specific sequence. When looking at
sequence 1, the notation means the following:

• Event A occurs one time unit after the beginning of the sequence.

• Event B occurs seven time units after event A.
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• Event C occurs nine time units after event B.

The temporal constraints must be defined to transform the given sequences into
a chronicle with time constraints, as shown in Figure 4.

Temporal Constraint Sellami et al. [SST18] described a temporal constraint be-
tween two events as a quadruple (e1, e2, t�, t+), where e1 represents the first event,
e2 the second event, t� the minimal number of time units and t+ the maximal num-
ber of time units which pass between these two events.

Given the sample chronicle in 4, the following temporal constraints are included:

• (e1, e2, t�, t+) = (A,B, 4, 6) - Event B occurs four to six time units after A.

• (e1, e2, t�, t+) = (B,C, 1, 2) - Event C occurs one to two time units after B.

• (e1, e2, t�, t+) = (A,D, 1, 4) - Event D occurs one to four time units after A.

A

B

C

D

[4,6] [1,2]

[1,4]

Figure 4: A chronicle based on table 5

Sellami et al. [SST18] have introduced the approach used in predictive mainte-
nance to predict the time of a failure of industrial machines, given a set of event-
time-pairs. Their approach consists of five steps:

1. Preprocessing of the data set: This includes transforming the database entries
into sequences of events, feature selection, and discretization.

2. Sequential failure pattern mining: Finding relevant and frequent patterns
in the given data set as described in section 3.1.1. This phase only considers
sequence patterns leading to a failure or breakdown of the machines. The
algorithm CloSpan introduced by Yan et al. [YHA03] was applied.
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3. Time constraints extraction: Identification of temporal constraints for the oc-
currence of each event in the failure sequence patterns.

4. Failure Chronicle Generation: Generation of chronicles from the found se-
quential failure patterns and their belonging temporal constraints. A failure
chronicle is a chronicle whose last event is an event that indicates a failure or
breakdown.

5. Failure detection: Detection of failure patterns in new, incoming data using
previously found failure chronicles. A sequence is recognized as a failure-
leading sequence if it covers a chronicle containing the same events and time
constraints as a given and known failure chronicle.

Overall, the introduced algorithm shows results between 83% and 90% for the ac-
tual positive rate, the precision, and the f-measure. These results make the proposed
approach a potential candidate for further application in the predictive maintenance
domain on the basis of discrete event logs.

Sellami et al. [SMS+19] enhanced this approach and expanded the failure pre-
diction by how much time is left until a machine breaks down given the incoming
events. Cao et al. [CSZM+20] proposed another approach for predictive mainte-
nance using frequent chronicle mining, where it was combined with semantics to
make the generated knowledge more understandable for human stakeholders.

3.1.3 Change Point Detection

Sequential pattern mining and chronicle pattern mining are two approaches to an-
alyzing discrete event data. Change point detection is an entirely different approach
that works on data sets containing time series. According to Aminikhanghahi et al.
[AC16], change point detection identifies points of a sudden change in a machine’s
or a process’ behavior. This can be, for example, a physical phenomenon like the
abrupt modification of the temperature or an increasing vibration of a machine.

Until today, researchers have introduced various change point detection methods.
Van den Burg et al. [BW20] gives an interesting overview of existing algorithms and
their performance. Accordingly, the existing methods can be distinguished based
on the following criteria:

• Online/Offline: Online methods identify change points in real time. These
methods include a tolerance to avoid false alarms. Offline models identify
change points after having received the entire amount of data.

• Univariate/Multivariate: Different methods can deal with univariate time se-
ries, others with multivariate time series.

According to Van den Burg, the change point detection algorithms with the best
performance are the following:
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• Binary Segmentation (BINSEG), introduced by Scott and Knott [SK74]

• At Most One Change (AMOC), introduced by Hinkley et al. [Hin70]

• Pruned Exact Linear Time (PELT), introduced by Killick et al. [KFE12]

• Bayesian Online Change Point Detection (BOCPD), introduced by Adams and
MacKay [AM07]

• BOCPD with Model Selection (BOCPDMS), introduced by Knoblauch and
Damoulas [KD18]

The probably most established change point detection algorithm is the binary seg-
mentation introduced by Scott and Knott [SK74]. The basic idea of this algorithm
is to calculate a cost function of a sequence of events or measures. The cost of a
sequence is lower if it contains a change point. At the beginning of the algorithm,
it looks for a change point in the entire time series. The algorithm stops here if no
change point exists and no further analysis is necessary. If a change point exists,
the time series gets separated into two sequences: before and after the change point.
When looking for a change point, the algorithm tries to find a position at which the
current sequence gets separated and where the cost of both sequences in a sum is
smaller than the cost of the original sequence. When a sequence gets divided, the al-
gorithm applies the same procedure to the subsequences and separates them again
if it finds another change point. This procedure continues until no other sequence
contains change points.

When change points represent a modification in the behavior of a machine, they
can also mark the change from a normal working behavior to an abnormal behav-
ior. Therefore, this approach can be of interest when predicting malfunctions and
disorders. When recording sensor data of a machine, such as temperature, vibra-
tion, and volume, upcoming breakdowns might be predictable based on abnormal
changes in this sensor data. Early identification of such behavioral patterns could
help optimize the schedule of maintenance activities and reduce the downtime of
the machine in question.

Research by Guillaume et al. [GVW20] used change point detection to forecast
automated teller machines (ATM) malfunctions. The available data set of this re-
search are discrete event logs that contain transaction events such as withdrawals,
but also warnings and errors of the machine. Each record comes with a time stamp
as well as an event code. In total, 284 unique event codes exist, and the data was
collected over more than two years from around 150 different ATMs in France. The
research aimed to develop a method that predicts the probability of upcoming dis-
orders of the machine while analyzing sequences of events. A predictive padding
was defined to avoid false alerts. A predictive padding is the time that indicates
how long beforehand the future error should be signaled to prevent the schedule
of possibly unnecessary maintenance actions due to a false alarm. The time series

16



were separated into life cycles to process the data, representing the period from the
last maintenance until the following raised error from which the machine cannot
recover. As the data set consists of an event log and change point detection usually
takes a time series as input, a transformation of the event log into a time series is
necessary.

To find a suitable change point detection method for this individual use case, five
different methods have been tested and compared on the same data set:

• Low-cost Unipotent Semantic Segmentation (FLUSS)

• Kernel Change Point Detection (KCPD)

• Linearly Penalized Segmentation (Pelt)

• Binary Segmentation (Binseg)

• Bottom-Up Segmentation (BottomUp)

At the end of the research, none of these methods achieved satisfying results on
the data set. Guillaume et al. give several explanations for this outcome. The condi-
tion that a prediction is considered a true positive is rather strict, as the error must
be predicted before it appears but necessarily during the padding period. Further-
more, the collected data has shown that changes in the machine behavior often only
happen right before it raises the error event, leaving no time for actions to avoid the
error itself.

3.2 Supervised Learning and Classification

The project aims to predict critical alarm types based on a sequence of occurred
alarms with lower severity. As the number of alarm types is limited, we interpret
the project task as a classification task, where critical alarm types represent possible
classes. Furthermore, each alarm type has a unique ID, which is why the input
data is categorical. Therefore, it is unnecessary to interpret time series (which is
especially suitable for continuous data such as measurements or sensor data) nor to
analyze the text of the different log lines. This opens the possibility to investigate
the efficiency of classification methods that deal with categorical data.

Classification Classification is a learning task that takes labeled data samples as
input and tries to find patterns that allow one to make predictions on future data.
The goal is to map the input samples to different categories (classes) based on their
features. Based on the number of different available classes, a classification can be:

• Binary: Only two distinct classes are possible. Two use case examples of bi-
nary classification models are fraud detection (fraud/not fraud) and spam de-
tection of e-mails (spam/not spam).
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• Multiclass: More than two classes are possible. The possible use cases of a
multiclass classification are very diverse. Models are used, for example, to
categorize animals into different species (e.g., bird, cat, dog), for the recogni-
tion of handwritten text (detection of different letters, numbers, and symbols),
or to recognize different objects in images (e.g., house, car, flower).

Supervised Learning Classification belongs to the supervised learning methods.
According to Liu et al. [Liu11], supervised learning is a learning paradigm that
maps input labels to an output label based on the features of the input data. Its
main task is to find a rule that correctly maps all input labels to their corresponding
output labels. The opposite approach is the unsupervised learning paradigm, which
handles non-labeled input data.

Figure 5 shows the typical steps when developing a supervised learning model as
described by Ouadah et al. [OZGS22]:

The project follows similar steps, which we will apply as follows:

1. Data collection and exploration: The available data is collected, and its char-
acteristics are explored.

2. Data Preprocessing: In this step, we clean the data and reduce noise. After-
ward, we separate the data into samples with their corresponding label.

3. Algorithm Selection: The learning algorithm for the individual learning task
is selected. For this project, we have chosen K-nearest neighbors, Random Forest,
Fully Convolutional Neural Network, and ResNet.

4. Model Training: We train the model with the training data. Training data is
around 70% of the entire data set.

5. Evaluation: We evaluate the model using the remaining 30% of the data set,
which serves as test data. In addition to the train-test split, we evaluate the
models with entirely new and unseen data collected after creating the initial
training data set.

6. Parameter Tuning: Each algorithm or learning method has parameters to de-
fine before training. Every parameter can influence the model performance
significantly and, therefore, needs to be defined carefully. There is no general
recommendation for setting each parameter as it depends on the individual
learning task and the available data.

The development process is not linear but contains iterations. Each of the de-
scribed steps can be repeated if the model performs poorly after training. Some-
times, it needs more data, parameter tuning, or a completely different algorithm to
achieve better results on the learning task.
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Figure 5: Development Process of Supervised Learning Models
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Figure 6: KNN working principle

3.3 Selected Algorithms

The following section describes the selected classification algorithms in detail.

3.3.1 K-nearest Neighbors

K-nearest neighbors (KNN) is an algorithm that makes predictions of a data sample
based on the distance to other similar data points known to the model. As stated by
Kelleher et al. [JDK20], the algorithm is based on the assumption that similar data
points are close. The algorithm evolved from different pattern recognition meth-
ods and is suitable for classification and regression tasks and is considered a lazy
learning technique as the training samples are only registered during the training
process and need to be loaded into the memory when the model is used to make
predictions. Figure 6 shows a simplified visualization of the working principle.

The prediction process of KNN consists of three steps:

1. Identification of the k nearest neighbors based on a distance metric

2. Determination to which classes the k nearest neighbors belong to
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Figure 7: Manhattan Distance

3. Majority voting between these classes to define the predicted class of the un-
known data point

Parameters The algorithm has a few parameters to define before the training pro-
cess. The parameter k is the number of closest neighbors taken into account for a
prediction and is a hyperparameter as it can significantly affect the performance of
the classification model. The selection of k is very complex. A too-small k can create
noise as it only considers a few data points. A too-big k, on the other hand, can de-
crease the prediction quality, as it also considers data points with longer distances
from the new data point. The definition of k always depends on the number of
training samples and the individual use case and needs experimentation with dif-
ferent values. Furthermore, it is possible to define whether the calculated distances
to the k neighbors should be weighted. Weighted distances give greater importance
to those nearest neighbors closer to the data point than others. The last parameter is
the distance metric that defines how to calculate the distance between the new and
the other data points to select the nearest neighbors. The following distance metrics
are the most common:

• Manhattan Distance: The Manhattan distance is also known as city block dis-
tance and calculates the shortest distance between two data points as shown
in Figure 7.

Manhattan =
nX

i=1

|xi � yi|

• Euclidean Distance: The Euclidean distance is the straight-line distance be-
tween two data points as shown in Figure 8.

Euclidean =

vuut
2X

i=1

(xi � yi)2
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Figure 8: Euclidean Distance

3.3.2 Random Forest

Random Forest is an ensemble learning technique and an extension of the classic de-
cision tree algorithm. A decision tree model creates a tree-like structure that splits
data into data subsets step by step. Each decision tree has one root node and several
internal and leaf nodes. The decision of how to divide the data is made based on
the most significant feature of the current step and is represented by an internal (or
decision) node. Leaf nodes represent the possible classes. Figure 9 shows a sample
decision tree. Bramer [Bra] explained that decision trees tend to overfit, especially
when they become deeper. Random Forest can overcome this problem because the
prediction is not based on only one single decision tree but on several. Each tree
is constructed based on a different selection of features and gives its prediction,
which prevents single features from becoming too dominant in the prediction pro-
cess. Figure 10 shows a visualization of the working principle of a random forest.
The prediction process contains the following steps:

1. The data sample is passed individually through all available decision trees.

2. A majority voting between the predictions of each decision tree is done.

Parameters The number of decision trees a model will create is a parameter to
choose carefully. The more estimators the algorithm creates, the better the perfor-
mance, but an increasing number of estimators also increases the need for computa-
tional resources. Another important parameter is the criterion, which indicates how
to select the next feature, on which the current data subset gets split into further
subsets. The most common criteria are:

• Entropy: The feature with the highest information gain is selected
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Figure 9: A simple decision tree

• Gini Impurity: The feature that creates the purest subset of data labels is se-
lected. This criterion is common for binary classification rather than multiclass
classification.

Other parameters of random forest are the maximum depth, which limits the depth
of each decision tree to a maximum value, how many samples are at least necessary
to split an internal node, how many samples are at least needed to be in a leaf node,
and how many features need to be taken into consideration when making a split.

3.3.3 Fully Convolutional Network

A Fully Convolutional Network (FCN) is a deep learning approach and a variant of
convolutional neural networks. Long et al. [LSD15] initially proposed this powerful
architecture, especially for semantic segmentation for image classification. How-
ever, as there are convolutional layers for 1-dimensional input existing, it can also
be used in a modified version for non-image input. Convolutional neural networks
differ from other neural network architectures in having particular convolutional
layers that perform, as the name suggests, an operation called Convolution. Convo-
lutional layers contain kernels that serve as a kind of filter and which can recognize
patterns. A filter is shaped like a grid or a matrix and has a smaller dimension than
the input data. Each pattern has its filter. Each kernel loops through the image data
block by block, while each block has the exact dimensions as the kernel itself. For
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Figure 10: A simple random forest model consisting of three estimators, each giving
its prediction, followed by a majority voting to make the final prediction.
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Figure 11: Visualization of a convolution example. The algorithm loops through the
data in blocks of 3x3, and the output dimensions represent the number of
possible 3x3 blocks in the input data’s horizontal and vertical direction.

Figure 12: The deeper the convolutional layer, the more sophisticated the patterns
recognized by the kernels.

example, if the filter is of dimension 3x3, the convolution will pass through the in-
put data block by block of size 3x3. Figure 11 shows a visualization of a sample
convolution.

In the example of an image classification, the first convolutional layers recognize
more basic shapes like vertical or horizontal lines. But the deeper the layers, the
more sophisticated the patterns the kernels can detect. When analyzing an image
of a house, the first layers will likely recognize different lines and angles. Later,
they can recognize smaller objects like windows, doors, and roofs until they can
recognize the entire house as a complex object like in Figure 12.

Contrary to classic convolutional neural network architectures, fully convolu-
tional networks contain especially convolutional layers with a different number of
filters on each layer. An important characteristic is that they do not have fully con-
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Figure 13: Similar to 2-dimensional data, the convolution can also be performed on
1-dimensional data. A 1D kernel with a length of 3 steps through the
input data block by block.

nected layers, except in some architectures designed for classification tasks where
dense layers follow the convolutional part. Many FCNs have an Encoder-Decoder-
Architecture:

• Encoder: The encoder downsamples the input to recognize features and spa-
tial relations between the objects in the image.

• Decoder: The decoder upsamples the data to make predictions with the same
dimensions as the original input data.

Even if the FCN architecture was designed for image recognition, the architecture is
also suitable for 1-dimensional data. Specific 1D kernels perform the convolution,
as shown in Figure 13.

3.3.4 ResNet

A Residual Neural Network (ResNet) is a specific architecture for deep neural networks
and was initially proposed by He et al. [HZRS16]. The architecture was originally
invented for image classification and tried to overcome the vanishing gradient prob-
lem, a recurrent problem of deep neural networks.

Aggarwal et al. [Agg18] described the vanishing gradient problem as a problem
that affects the stability of weight updates during the training process. In classic
neural network architectures, the output of a layer is also the input of its underlying
layer. Therefore, the data passes through the network layer by layer, and the weights
of the layer connections are updated using backpropagation. A vanishing gradient
manifests itself when the gradient of the loss function during the training process
becomes extremely small. Therefore, the training process is very slow, which can,
among others, slow down the update of layer weights, extend the training process
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Figure 14: Sample of a residual block with skip connections as shown by He et al.
[HZRS16].

as many epochs are needed, and prevent the neural network from learning essential
patterns in the data.

He et al. proposed the ResNet architecture as a possible solution to reduce the
vanishing gradient problem. It has a crucial difference to other neural networks as
it allows Skip connections. Contrary to classic neural network architectures in which
each layer is connected only to its next layer, ResNets use specific connections to
bypass the following layers in the network. Residual blocks common to the archi-
tecture make this possible.

A residual block in a ResNet contains two or more convolutional layers, each
with an activation function. A skip connection transfers the input data directly to
the output of the block without performing any convolutions on the data. Figure 14
illustrates the structure of a sample residual block as shown by He et al. [HZRS16].

The network calculates the output of a residual block as follows:

y = F (x) + x

F(x) represents the output of the convolutional layers of the current residual block,
and x is the input of the block. The network architecture is created by stacking resid-
ual blocks onto each other, as visible in Figure 15. The significant advantage is that
adding residual blocks to a neural network architecture does not harm its perfor-
mance. A block can be skipped if it is not helpful or would negatively affect the
model performance. On the contrary, if the residual block turns out to be beneficial,
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Figure 15: Extract of a ResNet architecture created by stacking several residual
blocks.

the model performance will increase. With that, the learning process focuses on cru-
cial features and reduces the flow of less critical layer connections. Furthermore, the
number of layers does not need to be tuned like a hyperparameter, as more blocks
can only increase the model performance or leave it unaffected. Skip connections
can also lead to better generalization and faster convergence.

Similarly to FCNs, ResNets are initially designed for 2-dimensional input, but the
architecture can also be adapted to process 1-dimensional input.

4 Methodology

The following section describes the methodology of the investigation, including the
technical environment of the model development, data preprocessing, data encod-
ing methods, and hyperparameter tuning.
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4.1 Technical Environment of the Development

The data preprocessing and the different machine learning models have been de-
veloped under Python version 3.9.2 in the IDE DataSpell version 2023.1 using Jupyter
Notebook. We used the following libraries:

• Data preprocessing, data encoding and sample selection: Pandas version
1.4.2

• Development of the Random Forest and KNN models: Scikit Learn version
1.0.2

• Model export: Joblib version 1.1.0

• Upsampling: Imblearn version 0.11.0

• Development of FCN and ResNet: Keras version 2.12.0, Tensorflow version
2.12.0

• Data access: Microsoft SQL server

4.2 Experimental Setup

This thesis project compares different classification approaches to determine
whether they are suitable for predictions about the given data set. We have tested
each algorithm on the same data set for a reliable comparison. The experiment con-
tained the following steps:

1. Data preparation: In the first step, we cleaned the data and removed incom-
plete sequences. The encoding of the data samples brought them into a shape
that the classification algorithms can process. We applied two encoding ap-
proaches to compare their impact on the model performance.

2. Sample selection: Three different sample selection approaches were tested.

3. Training: We have trained one model by data encoding approach and classifi-
cation method.

4. Evaluation on test data: The models’ evaluation using the train-test split test
data gave a first overview of their performance.

5. Evaluation on new data: We tested those models with the best performance
in the train-test split on new data.

6. Upsampling: As the data set is imbalanced, we did an upsampling of the
minority classes to enhance the prediction performance of those classes and
analyze the impact on the overall model performance.
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4.3 Data Preparation

The following section describes the available data set in more detail and closely
examines its characteristics and the handling of its imbalanced nature.

4.3.1 Overview and Characteristics of the available Data

The overall data set is an alarm log of over 30 million lines of more than 2700 service
stations. MADIC collected this data for around two years. Each log line represents
an alarm type raised at a specific time. In total, 109 different alarm types exist, mean-
ing each log line can contain only one out of the 109 given alarm types. Furthermore,
each alarm type has a severity level, which can be Anomaly, Minor, Major, or Critical.
Table 6 shows an extract of the possible types. The alarms are raised thanks to an
on-site surveillance system that monitors different indicators, providing informa-
tion about the current condition of each equipment or machine. Typical indicators
are, for example, machine logs, the flow rate of the fuel dispensers, and different
sensor data like temperature, volume, and vibration. The error events are raised
and logged according to specific rules implemented for each error type within the
surveillance system.

Example: If a specific fuel dispenser usually has a flow rate of around 70 liters per
minute, but its actual flow rate is 90 liters per minute, the surveillance system raises
an alarm that states that the flow rate of this specific fuel dispenser is higher than
usual.

As different service stations do not have the same size and facilities, the installed
hardware on-site varies enormously from service station to service station. There-
fore, each rule is defined individually according to the machine type and adapts to
the specific technical characteristics of the equipment. The fact that future machine
learning models must operate on error logs is both an advantage and a disadvan-
tage. The advantage is that no sensor data needs to be analyzed. Therefore, the
models do not need to differ between machine types and their various characteris-
tics because the on-site surveillance system translates the result of its analysis into
discrete events that apply to all stations, no matter which machines are available
there. For instance, different types of fuel dispensers exist. Therefore, their regular
average flow rate can differ. Nevertheless, the event in case of a derogation of this
average flow rate is the same, which means that the predictive models work on a
higher level. A disadvantage is that the log only contains alarms and no other event
types, such as information, warnings, or transaction details, which could be pre-
cursors for future breakdowns. The available data on what happens in a machine
during its life cycle is quite limited.

The log which contains the alarms is transferred from each service station to a
cloud service until it reaches the database. Each log line includes, among others,
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Alarm ID Alarm Description Severity

5 The payment machine does not read
payment cards anymore. Major

37
The printer cannot deliver payment

receipts anymore due to an error or a
lack of paper.

Minor

40 The fuel stock of a tank is lower than the
authorized minimum. Major

32
A pistol is in use for longer than normal.

This can indicate a problem with a
contact.

Major

34
The distributed fuel volume of a pump is

higher than the maximum authorized
volume.

Critical

56 The card reader is no longer accessible. Critical

Table 6: Extract of possible alarm types.

the alarm ID, the date and time of its occurrence and transmission, the concerned
service station, the equipment in question, and its equipment ID. After treating and
closing an alarm, its database record moves to a history table. The content of this
table serves as the base to create the data set for this thesis project. Table 7 shows a
small extract of the alarm history table.

The severity level of each log line is not directly part of the history table. However,
it is available due to the mapping with another table that contains the ID, descrip-
tion, and severity level for each disorder type.

4.3.2 Data Preprocessing

Before the data encoding can take place, the data set needs to be cleaned up and pre-
pared. The log will be grouped by service station and ordered by the date and time
of the alarm occurrence to achieve a chronological order of the log lines by service
station. As the project concentrates on predicting critical alarms using a sequence
of occurring alarms with a lower severity (anomaly, minor, or major), the logs are
separated into these sequences whenever a critical alarm type occurs. Given the
example of Table 8, the input X for this example would correspond to the sequences

• X = [62,2,22,48] with label y = 33

• X = [43,5,37] with label y = 39.
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Date and Time Alarm
Type ID Site

2018-12-20 06:24:39.517 67 106000002078567
2019-01-01 03:03:22.860 48 0106000000001372
2019-01-01 03:06:04.787 48 0106000002058181
2019-01-02 03:03:36.283 48 0106000002042329
2019-01-02 03:06:29.353 37 0106000002042329
2019-01-03 03:03:20.803 48 0106000002042329
2019-01-03 03:05:26.030 56 106000002078567
2019-01-04 03:03:26.377 9 0106000002058181
2019-01-04 03:05:24.087 72 0106000002009726
2019-01-05 00:38:59.323 48 0106000002009726
2019-01-05 03:03:33.340 48 0106000002059720
2019-01-05 03:05:25.240 48 0106000002058092
2019-01-06 03:03:20.690 37 0106000002058042
2019-01-06 03:05:36.940 48 0106000002058042
2019-01-07 03:03:44.583 48 0106000002058181
2019-01-07 03:05:48.473 65 0106000002078052
2019-01-08 03:03:34.477 56 0106000002078052
2019-01-08 03:05:52.987 95 0106000002009726
2019-01-08 15:01:44.050 95 0106000002042329

Table 7: Short and simplified extract of the alarm history.

In total, 109 different alarm types are possible, of which 32 are critical alarm types
and 77 alarm types with a lower severity. After investigating the critical alarm types,
five do not have any occurrence in the data. We removed 15 more as they correspond
to manual actions or events that technically cannot correlate with possible disorders
of the on-site equipment. Examples of such sorted-out alarm types are:

• An intrusion of a payment machine has been detected.

• Someone has manually restarted the ELYS application.

• The payment servers are not available.

Events such as intrusions happen suddenly, especially at night, and cannot be
predicted based on on-site disorders of other equipment. Manual actions such as
an application restart are non-predictable as well. The reasons for a restart are so
diverse and only sometimes linked to the equipment that we have excluded these
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Date and Time Disorder
ID Severity

2020-10-20 06:35:39.517 62 Major
2020-10-21 03:03:22.860 2 Anomaly
2020-10-21 03:06:04.787 22 Major
2020-10-21 06:22:36.283 48 Minor
2020-10-21 06:45:29.353 33 Critical
2020-10-25 06:35:39.517 43 Major
2020-10-26 03:03:22.860 5 Major
2020-10-27 06:22:36.283 37 Minor
2020-10-27 06:45:29.353 39 Critical

Table 8: Example of a chronologically ordered alarm history.

alarm types from the project scope. Furthermore, alarms such as the unavailability
of the payment servers are external events whose causes do not lie in the material on
site and, therefore, are unpredictable with prior on-site alarms. The 77 alarm types
with lower severity contain manual actions and events caused by reasons outside
the on-site system, but we did not remove them as their impact can correlate with
other disorders in the field. 68 out of 77 possible types occurred in the data.

Occasionally, some critical alarm types occurred in the data without any other
alarm of lower severity beforehand. These examples show that a possible correla-
tion between several critical alarm types can exist or that some critical alarms do
not have any harbingers or correlations with other alarm types. After investigat-
ing which critical alarm types occur alone, it became clear that no alert type always
occurred alone. Therefore, we have removed these log lines, but it is important to
investigate them further in future projects. Table 9 shows the final list of the critical
alarm types representing the model classes.

Not all sequences between two critical alarms have the same length. The shortest
sequence length is one, while other sequences can have up to 2500 elements. Tech-
nically, it is not likely that all the elements of such a long sequence are related to the
critical alarm at the end. Therefore, we only consider the last 20 incidents before the
critical incident occures.

4.3.3 Data Encoding

Given the result of the data preprocessing, the starting point of the data encoding are
sequences of length 20 as the input and the corresponding critical alarm type ID as
the label. We investigated two encoding approaches and compared them regarding
their impact on the performance of each created machine-learning model:
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Alarm ID Description

7 The limit of payment machines which are out of order has
been exceeded.

15 The service station is disconnected.
16 An incident prevents the station system from starting.
21 A measuring unit is out of service.
33 A fuel dispenser dispenses fuel for more money than al-

lowed.
34 The distribution volume of a pump is higher than allowed.

All payment transactions should be verified.
39 High water level in fuel tank.
56 The reader of the payment machine does not respond.
68 A transaction is blocked. A customer validated a payment

transaction, but the fueling process was never registered as
finished.

95 Several payment machines have the same terminal ID.
1000 The console of the station does not react anymore
1001 The payment machine is inactive

Table 9: List of possible classes and their meaning.

• Sequences of disorder IDs: This approach extracts the disorder IDs (integer)
from the log lines and transforms them into a sequence.

• Count-based approach: This approach counts the number of occurrences of
each disorder type in the given sequence.

Sequence Encoding When dealing with categorical data, encoding its features
can be challenging. However, in the given data set, each alarm type has its unique
integer ID, making the treatment easier. This encoding approach treats the samples
as sequences of integer IDs.

Example Given the data example of Table 8, this approach would transform the
log into the two following sequences:

• X = [62,2,22,48] with label y = 33

• X = [43,5,37] with label y = 39

Not all sequences have the same length. As we only consider the last 20 items of a
sequence, the maximum length is 20. Nevertheless, some sequences are shorter than
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that, and most classifiers only work on sequences of the same length. Therefore,
those with a length of less than 20 get fulfilled with 0 values.

The significant advantage of this encoding approach is its simplicity, as it does not
need much transformation work because all alarm types already have their unique
integer ID. A disadvantage is the difficulty in treating the sequences with different
lengths.

Count-based Approach The count-based approach is the simplest of the three
selected encoding approaches. In total, 77 different alarm types of lower severity
exist, and the idea is to go through each given sequence and count which alarm
types occurred and how often during this sequence. Therefore, the input X has a
dimension of 77, one for each possible alarm type, and each position contains an
integer value representing the number of occurrences of the corresponding alarm
type in the given sequence.

Example: To demonstrate the encoding approach, we assume a simpler data set
with ten different alarm types with the possible IDs 1,2,3,4,5,6,7,8,9,10. The follow-
ing three examples show each the base sequence s and the count-based encoded
result.

• s = [2,2,3,1,5,1,2] becomes s’ = [2,3,1,0,1,0,0,0,0,0], indicating that the alarm type
1 has occurred once, the alarm type 2 three times, and the alarm types 3 and 5
both once.

• s = [5,10,10] becomes s’ = [0,0,0,0,1,0,0,0,0,2], indicating that alarm type 5 has
occurred once and the alarm type 10 has occurred twice.

• s = [3,3,3,8,6,6,9,8,7,5] becomes s’ = [0,0,3,0,1,2,1,2,1,0], indicating that the
alarm type 3 has occurred three times, the alarm types 6 and 8 each twice
and the alarm types 5, 7 and 9 each once.

This count-based approach has the disadvantage that it does not show in which
order the different alarms have occurred, which means that some information that
may be important gets lost. Furthermore, it has a bigger dimension than the se-
quence data encoding. On the other hand, the length of each encoded sample is
automatically the same, making it easier to deal with the base sequences of different
lengths, as it is unnecessary to add NaN values to reach the same length for every
data sample.

4.3.4 Sample Selection

When training classification models, sample selection is a crucial step towards a re-
liable model with good performance. Even if more data is fundamentally beneficial,
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training models with the entire available data is not always necessary. Training pro-
cesses can be time-consuming and need lots of computational resources, so carefully
selecting training samples is essential. Table 10 shows how many samples for each
class are available in the data set.

Alarm ID Number of occurrences

7 49.959
15 517
16 276
21 118
33 14.168
34 2
39 32
56 7.068
68 342.485
95 274

1000 2.726
1001 177.830

Table 10: Number of occurrences for each critical alarm type

Since the representation of classes 34 and 39 is shallow, both classes have been
removed from the project scope because there is not enough available data. As this
thesis project is exploratory, different sample selection strategies are applied to com-
pare their impact on the model performance. These are the following:

• Training on all data: The models are trained on the entire data. This gives a
first overview of how the models perform on the original data and whether
the fact that some classes are represented more often in the data than others
causes problems.

• Training only on unique samples: Unique data set samples are selected for
training. This decreases the computational load while training without remov-
ing samples, which might be important.

• Random selection of samples: To further reduce the need for computational
resources while training, the classification models get trained with a random
selection of samples. To ensure that all possible classes are part of the training
data, we made the random sample selection not on the entire data set but by
class. We selected ten thousand samples from each class and added the data of
those classes less represented than this to the training set without limitation.
As a side-effect, this sample selection approach reduces the imbalance of the
training data.
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4.3.5 Dealing with Imbalanced Data

An essential characteristic of a data set is the distribution of the available samples
to the possible classes. In many cases, it is natural that some classes are represented
more often in the available data set than others. Depending on the individual data
set, those differences can cause performance issues, especially in predicting those
classes for which much fewer data samples are available. Table 10 shows that the
data set is imbalanced. The error types with the ID 7, 68, and 1001 are by far the
most represented classes, while the representation of error types with the ID 34 and
39 is vanishingly small.

To overcome problems caused by imbalanced training data sets, it can be bene-
ficial for each class to have the same representation in the training data. Several
common techniques are available:

• Undersampling of the majority classes: Not all available data samples of the
majority classes are part of the training data.

• Oversampling of the minority classes: More data samples are added to the
minority classes. These are whether duplicates or synthetic samples.

• Regroup minority classes: Regroup minority classes into a more general
group.

At first, the classification models get trained without any measures to reduce data
imbalance. Afterward, the majority classes are undersampled indirectly with the
random sample selection approach. Finally, those models with the best performance
get trained again after oversampling the minority classes using SMOTE.

SMOTE As an oversampling method, SMOTE has been chosen. SMOTE stands
for the Synthetic Minority Oversampling Technique and is a standard oversampling
method when dealing with imbalanced data sets. Chawla, Bowyer, Hall, and
Kegelmeyer [CBHK02] initially proposed SMOTE to overcome specific problems
of the classic random oversampling method, which duplicated random samples of
the minority classes. Although random oversampling led to better performance
scores of classification models, it can also promote overfitting, leading to poor gen-
eralization performance. As stated by Fernandez et al. [FGHC18], the proposition
of SMOTE considerably influenced the treatment of imbalanced data and became
the base of many different variants and further oversampling algorithms. The main
characteristic of this technique is that it does not duplicate data samples of the mi-
nority classes but creates new synthetic data points. It randomly chooses existing
data points and defines their k nearest neighbors to interpolate a new data point
between the original and selected sample. This creates new data samples to prevent
the model from being trained on repeating data and increases the diversity of the
training set.
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4.4 Parameter Tuning

We did a hyperparameter tuning to find the parameters leading to each model’s
best performance. We did a grid search to tune the KNN and the random forest al-
gorithm. A grid search is a common technique for hyperparameter tuning and tries
to explore all possible combinations of the different parameters in the given search
spaces and measures the model’s performance with each parameter combination.
At the end of the search, the grid search determines the parameter combination
with which the model has achieved the best score. Instead of accuracy, we have
used the F1-Score to measure the model performance as it is the harmonic mean of
precision and recall. It, therefore, gives a better idea about the overall performance.
Table 11 and Table 12 show the parameters that have worked best for the KNN and
the random forest models.

All Samples Unique Samples 10,000 Samples
Parameter Sequence Count-based Sequence Count-based Sequence Count-based

Metric manhattan euclidean manhattan euclidean manhattan manhattan
K 11 11 15 15 13 15

Table 11: The parameter values which lead to the best performance results of the
KNN model.

All Samples Unique Samples 10,000 Samples
Parameter Sequence Count-based Sequence Count-based Sequence Count-based

Criterion log_loss entropy log_loss entropy entropy log_loss
Max_features 7 7 7 9 7 7

Min_samples_leaf 3 2 3 2 3 2
Min_samples_split 3 2 3 2 4 2

Estimators 50 40 50 50 60 40

Table 12: The parameter values which lead to the best performance results of the
random forest model.

To tune the FCN and the ResNet models, we have chosen to experiment with dif-
ferent parameters, such as batch size and kernel size, and compare the performance
results. Furthermore, we have trained all models using early stopping to find the
optimal number of training epochs before the model starts to overfit. Table 13 and
Table 14 show the parameter values that have worked best.

5 Evaluation

The following section presents the performance results of each algorithm and each
data encoding and sample selection approach. The models are evaluated using a
train-test-split of the original data and a test of new unseen data.

38



All Samples Unique Samples 10,000 Samples
Parameter Sequence Count-based Sequence Count-based Sequence Count-based

Batch size 32 64 32 64 32 64
Kernel size 3 3 3 9 3 9

Table 13: The parameter values which lead to the best performance results of the
FCN model.

All Samples Unique Samples 10,000 Samples
Parameter Sequence Count-based Sequence Count-based Sequence Count-based

Batch size 32 32 32 32 32 32
Kernel size 3 9 3 9 3 9

Table 14: The parameter values which lead to the best performance results of the
ResNet model.

5.1 Train-Test Split

In the following section, the performance results of each classification algorithm
after a train-test split are presented. The class support of the training and test set is
shown for each sample selection method.

5.1.1 Training on All Data

Table 15 shows the support for each class, both in the training and test data set.

Class Training Test
7 49,959 16,479
15 517 186
16 276 84
21 118 40
33 14,168 4,535
56 7,068 2,301
68 342,485 113,157
95 274 90

1000 2,726 877
1001 177,830 58,740

Table 15: The support by class in training and test data

KNN The KNN model achieves an overall accuracy of 0.72 when trained on all the
data with sequence encoding and without a specific sample selection. The macro av-
erage of the precision is 0.52, the recall is 0.36, and the f1-score is 0.40. The weighted
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average of the precision is 0.70, the recall is 0.72, and the f1-score is 0.70. The model
achieves an accuracy of 0.71 when using the count-based encoding. The macro av-
erage of the precision is 0.52, the recall is 0.37, and the f1-score is 0.42. The weighted
average of the precision is 0.70, the recall is 0.71, and the f1-score is 0.70. See Table
16 for the results by class for both encoding methods.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.91 0.90 0.91 7 0.92 0.94 0.93
15 0.64 0.34 0.44 15 0.52 0.20 0.29
16 0.63 0.48 0.54 16 0.51 0.44 0.47
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.32 0.07 0.12 33 0.52 0.07 0.12
56 0.58 0.30 0.39 56 0.65 0.30 0.41
68 0.73 0.85 0.79 68 0.73 0.85 0.79
95 0.12 0.01 0.02 95 0.00 0.00 0.00

1000 0.68 0.32 0.44 1000 0.77 0.33 0.46
1001 0.60 0.46 0.52 1001 0.60 0.47 0.53

Table 16: Performance results of the KNN model trained on all data with count-
based and sequence data encoding.

Random Forest After being trained on 70% of the entire data set and using
the count-based encoding approach, the model achieves an accuracy of 0.72. The
weighted average of the precision is 0.72, the recall is 0.72, and the f1-score is 0.67.
The macro average of the precision is 0.64, the recall is 0.41, and the f1-score is
0.46. The model achieves an accuracy of 0.75 when using the sequence encoding
approach. The weighted average of the precision is 0.74, the recall is 0.75, and the
f1-score is 0.73. The macro average of the precision is 0.62, the recall is 0.41, and the
f1-score is 0.46. Table 17 shows the results by class.

FCN The FCN achieves an accuracy of 0.74 when trained on all data using the
sequences data encoding. The macro average of the precision is 0.56, the recall is
0.38, and the f1-score is 0.42. The weighted average of the precision is 0.73, the recall
is 0.74, and the f1-score is 0.72. When trained using the count-based encoded data,
the model has an accuracy of 0.66. The macro average of the precision is 0.43, the
recall is 0.29, and the f1-score is 0.32. The weighted average of the precision is 0.63,
the recall is 0.66, and the f1-score is 0.61. Table 18 shows the results by class.
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.94 0.98 0.96 7 0.93 0.98 0.95
15 0.85 0.40 0.55 15 0.77 0.32 0.45
16 0.90 0.68 0.78 16 0.83 0.74 0.78
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.72 0.07 0.13 33 0.66 0.08 0.14
56 0.69 0.28 0.40 56 0.68 0.30 0.42
68 0.69 0.95 0.80 68 0.76 0.87 0.81
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.94 0.38 0.54 1000 0.91 0.36 0.52
1001 0.71 0.26 0.38 1001 0.65 0.52 0.58

Table 17: Performance results of the random forest model trained on all data with
count-based and sequence data encoding.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.80 0.60 0.69 7 0.91 0.97 0.94
15 0.07 0.01 0.01 15 0.25 0.02 0.03
16 0.83 0.68 0.75 16 0.94 0.66 0.78
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.56 0.07 0.12 33 0.64 0.07 0.12
56 0.00 0.00 0.00 56 0.67 0.32 0.43
68 0.67 0.93 0.78 68 0.74 0.89 0.81
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.87 0.36 0.51 1000 0.80 0.40 0.54
1001 0.54 0.23 0.32 1001 0.65 0.46 0.54

Table 18: Performance results of the FCN model trained on all data with count-based
and sequence data encoding.

ResNet The ResNet model achieves an overall accuracy of 0.73 when trained on
all data using the count-based data encoding. The macro average of the precision is
0.60, the recall is 0.44, and the f1-score is 0.47. The weighted average of the precision
is 0.72, the recall is 0.73, and the f1-score is 0.70. Using the sequence data encoding,
the model reaches an accuracy of 0.75 with a macro average precision of 0.57, a
recall of 0.38, and a f1-score of 0.43. The weighted average of the precision is 0.73,
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the recall is 0.75, and the f1-score is 0.73. See Table 19 for details by class.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.94 0.98 0.96 7 0.91 0.97 0.94
15 0.70 0.56 0.62 15 0.31 0.09 0.13
16 0.74 0.75 0.75 16 0.86 0.65 0.74
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.70 0.07 0.12 33 0.64 0.07 0.12
56 0.65 0.30 0.41 56 0.65 0.32 0.43
68 0.72 0.90 0.80 68 0.76 0.87 0.81
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.92 0.39 0.55 1000 0.90 0.34 0.49
1001 0.65 0.41 0.50 1001 0.65 0.53 0.58

Table 19: Performance results of the ResNet model trained on all data with count-
based and sequence data encoding.

5.1.2 Training on Unique Samples

In the following, the performance results of the models are presented when training
only on unique data samples. Table 20 shows the sample support by class for the
training and test set.

Class Training Test
7 13,231 4,351
15 303 96
16 202 71
21 86 29
33 8,456 2,746
56 3,906 1,290
68 192,301 63,539
95 181 50

1000 1,359 427
1001 85,482 28,218

Table 20: The support by class in training and test data

KNN The KNN model achieves an overall accuracy of 0.66 when trained on unique
data samples only and with count-based encoding. The macro average of the preci-
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sion is 0.40, the recall is 0.33, and the f1-score is 0.35. The weighted average of the
precision is 0.62, the recall is 0.66, and the f1-score is 0.62. When using the sequence
encoding, the model has an accuracy of 0.68. The macro average of the precision is
0.37, the recall is 0.26, and the f1-score is 0.28. The weighted average of the precision
is 0.63, the recall is 0.68, and the f1-score is 0.63. See Table 21 for the results by class
for both encoding methods.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.89 0.94 0.91 7 0.83 0.85 0.84
15 0.46 0.22 0.30 15 0.00 0.00 0.00
16 0.61 0.56 0.58 16 0.60 0.30 0.40
21 0.10 0.03 0.05 21 0.00 0.00 0.00
33 0.17 0.06 0.09 33 0.41 0.04 0.07
56 0.08 0.02 0.03 56 0.06 0.00 0.00
68 0.70 0.88 0.78 68 0.70 0.91 0.79
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.55 0.35 0.43 1000 0.54 0.28 0.37
1001 0.46 0.24 0.32 1001 0.51 0.24 0.33

Table 21: Performance results of the KNN model trained on unique samples using
count-based and sequence data encoding.

Random Forest When trained only on unique samples of the data set, the random
forest algorithm achieves an accuracy of 0.70 with the sequence data encoding. The
macro average of the precision is 0.48, the recall is 0.32, and the f1-score is 0.34.
The weighted average of the precision is 0.67, the recall is 0.70, and the f1-score is
0.67. The model also achieves an accuracy of 0.70 when using the count-based data
encoding. The macro average of the precision is slightly better with 0.58, the recall
is 0.33, and the f1-score is 0.36. The weighted average of the precision is 0.67, the
recall is 0.70, and the f1-score is 0.63. Table 22 shows the results by class for both
encoding approaches.

FCN Trained on unique samples using the count-based data encoding, the FCN
model achieves an accuracy of 0.69. The macro average of the precision is 0.51, the
recall is 0.35, and the f1-score is 0.37. The weighted average of the precision is 0.67,
the recall is 0.69, and the f1-score is 0.62. With the sequence data encoding, the
model has an accuracy of 0.70. The macro average of the precision is 0.49, the recall
is 0.32, and the f1-score is 0.34. The weighted average of the precision is 0.67, the
recall is 0.70, and the f1-score is 0.65.
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.88 0.99 0.93 7 0.86 0.96 0.91
15 0.81 0.26 0.39 15 0.46 0.06 0.11
16 0.85 0.58 0.69 16 0.81 0.59 0.68
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.70 0.04 0.08 33 0.54 0.04 0.07
56 0.50 0.00 0.01 56 0.16 0.00 0.01
68 0.69 0.96 0.80 68 0.72 0.90 0.80
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.75 0.36 0.48 1000 0.69 0.27 0.38
1001 0.60 0.17 0.26 1001 0.56 0.34 0.42

Table 22: Performance results of the random forest model trained on unique samples
using count-based and sequence data encoding.

Table 23 shows the results by class.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.89 0.96 0.92 7 0.84 0.96 0.90
15 0.64 0.38 0.47 15 0.21 0.07 0.11
16 0.77 0.56 0.65 16 0.80 0.56 0.66
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.60 0.04 0.08 33 0.62 0.05 0.08
56 0.34 0.01 0.03 56 0.40 0.01 0.03
68 0.69 0.96 0.81 68 0.71 0.93 0.81
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.60 0.42 0.49 1000 0.72 0.34 0.47
1001 0.61 0.15 0.23 1001 0.58 0.27 0.36

Table 23: Performance results of the FCN model trained on unique samples using
count-based and sequence data encoding.

ResNet After training on unique samples using the count-based data encoding,
the ResNet has an accuracy of 0.70. It achieves a macro average of 0.55 for the
precision, 0.35 for the recall, and 0.38 for the f1-score. The weighted average of the
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precision is 0.67, the recall is 0.70, and the f1-score is 0.63. Using the sequence data
encoding, the model achieves an accuracy of 0.72 with a macro average of 0.46 for
the precision, 0.32 for the recall, and 0.34 for the f1-score. The weighted average of
the precision is 0.69, the recall is 0.72, and the f1-score is 0.69. Table 24 shows the
results by class for both encoding approaches.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.89 0.98 0.93 7 0.85 0.96 0.90
15 0.68 0.47 0.56 15 0.22 0.02 0.04
16 0.84 0.52 0.64 16 0.68 0.55 0.61
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.61 0.05 0.09 33 0.54 0.03 0.07
56 0.43 0.00 0.01 56 0.31 0.05 0.08
68 0.70 0.95 0.81 68 0.74 0.89 0.81
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.72 0.39 0.50 1000 0.68 0.29 0.40
1001 0.59 0.18 0.28 1001 0.58 0.40 0.47

Table 24: Performance results of the ResNet model trained on unique samples using
count-based and sequence data encoding.

5.1.3 Training on Randomly Selected Samples

The following section shows the results when the models get trained on a data set
that consists of 10,000 randomly selected samples by class or less if fewer samples
of the respective class are available. In total, 50,982 samples are available. Table 25
shows the support by class.

KNN Training the KNN model with 10,000 randomly selected samples and using
the sequence encoding results in a total accuracy of 0.52. The macro average of the
precision is 0.43, the recall is 0.39, and the f1-score is 0.40. The weighted average of
the precision is 0.53, the recall is 0.52, and the f1-score is 0.52. Combined with the
count-based data encoding, the KNN model has an accuracy of 0.53. The macro av-
erage of the precision is 0.52, the recall is 0.46, and the f1-score is 0.47. The weighted
average of the precision is 0.54, the recall is 0.53, and the f1-score is 0.53. Table 26
shows the results by class for both encoding methods.

Random Forest After training the random forest model on 10,000 randomly se-
lected samples and using the count-based encoding approach, it achieves an accu-
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Class Training Test
7 10,000 3,376
15 517 173
16 276 83
21 118 37
33 10,000 3,303
56 7,068 2,284
68 10,000 3,279
95 274 76

1000 2,726 910
1001 10,000 3,303

Table 25: The support by class in training and test data

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.88 0.92 0.90 7 0.84 0.90 0.87
15 0.71 0.58 0.64 15 0.50 0.32 0.39
16 0.66 0.76 0.71 16 0.41 0.55 0.47
21 0.38 0.08 0.13 21 0.00 0.00 0.00
33 0.34 0.40 0.37 33 0.36 0.45 0.40
56 0.58 0.40 0.47 56 0.61 0.39 0.48
68 0.41 0.44 0.42 68 0.41 0.45 0.43
95 0.05 0.01 0.02 95 0.00 0.00 0.00

1000 0.82 0.52 0.64 1000 0.72 0.45 0.55
1001 0.41 0.45 0.43 1001 0.42 0.40 0.41

Table 26: Performance results of the KNN model trained on 10,000 selected samples
with count-based and sequence data encoding.

racy of 0.56. The macro average of the precision is 0.55, the recall is 0.46, and the
f1-score is 0.48. The weighted average of the precision is 0.60, the recall is 0.56, and
the f1-score is 0.55. When training using the sequence encoding approach, the model
has an accuracy of 0.57. The macro average of the precision is 0.53, the recall is 0.45,
and the f1-score is 0.47. The weighted average of the precision is 0.59, the recall is
0.57, and the f1-score is 0.56. Table 27 shows the results by class for both encoding
approaches.

FCN The FCN achieves an accuracy of 0.55 when trained on 10,000 selected sam-
ples using the sequences data encoding. The macro average of the precision is 0.48,
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.45 0.97 0.90 7 0.85 0.93 0.89
15 0.81 0.61 0.70 15 0.78 0.39 0.52
16 0.82 0.75 0.78 16 0.77 0.78 0.78
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.43 0.22 0.30 33 0.41 0.36 0.38
56 0.88 0.36 0.51 56 0.77 0.40 0.53
68 0.41 0.63 0.50 68 0.44 0.60 0.50
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.87 0.52 0.65 1000 0.83 0.50 0.62
1001 0.41 0.57 0.48 1001 0.46 0.54 0.50

Table 27: Performance results of the random forest model trained on 10,000 ran-
domly selected samples using the count-based and sequence data encod-
ing.

the recall is 0.43, and the f1-score is 0.44. The weighted average of the precision is
0.58, the recall is 0.55, and the f1-score is 0.55. When trained using the count-based
encoded data, the model has an accuracy of 0.56. The macro average of the preci-
sion is 0.53, the recall is 0.47, and the f1-score is 0.48. The weighted average of the
precision is 0.59, the recall is 0.56, and the f1-score is 0.55. Table 28 shows the results
by class.

ResNet The ResNet achieves an accuracy of 0.55 when trained on 10,000 selected
samples using the sequences data encoding. The macro average of the precision is
0.46, the recall is 0.44, and the f1-score is 0.44. The weighted average of the precision
is 0.55, the recall is 0.55, and the f1-score is 0.55. When trained using the count-
based encoded data, the model has an accuracy of 0.56. The macro average of the
precision is 0.54, the recall is 0.47, and the f1-score is 0.48. The weighted average of
the precision is 0.60, the recall is 0.56, and the f1-score is 0.56. Table 29 shows the
results by class.

The results show that those models trained on the entire data set perform bet-
ter in terms of accuracy and weighted average precision, recall, and f1-score. The
random forest and the ResNet model, both with sequence encoding, achieve the
highest results with an accuracy of 0.75. The models trained on 10,000 randomly
selected samples achieved the lowest performance with an accuracy between 0.52
and 0.55. Those models trained on unique data samples have mixed performance
results. Random forest, the FCN, and the ResNet models perform better than the
KNN models.
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.89 0.91 0.90 7 0.88 0.86 0.87
15 0.79 0.70 0.74 15 0.44 0.32 0.37
16 0.67 0.78 0.72 16 0.74 0.73 0.74
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.41 0.29 0.34 33 0.39 0.36 0.37
56 0.83 0.38 0.52 56 0.82 0.38 0.52
68 0.43 0.55 0.48 68 0.43 0.57 0.49
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.84 0.50 0.62 1000 0.64 0.56 0.60
1001 0.40 0.62 0.49 1001 0.43 0.53 0.48

Table 28: Performance results of the FCN model trained on 10,000 samples with
count-based and sequence data encoding.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.90 0.91 0.91 7 0.84 0.92 0.88
15 0.74 0.69 0.71 15 0.38 0.32 0.35
16 0.58 0.77 0.66 16 0.59 0.75 0.66
21 0.25 0.03 0.05 21 0.00 0.00 0.00
33 0.42 0.27 0.33 33 0.39 0.38 0.38
56 0.86 0.37 0.52 56 0.64 0.45 0.53
68 0.42 0.68 0.52 68 0.46 0.47 0.47
95 0.00 0.00 0.00 95 0.11 0.09 0.10

1000 0.78 0.49 0.60 1000 0.71 0.49 0.58
1001 0.44 0.54 0.48 1001 0.43 0.54 0.48

Table 29: Performance results of the ResNet trained on 10,000 samples with count-
based and sequence data encoding.

5.2 New Data

In the following we show the results of the models that achieved an accuracy of
more than 0.70 when testing them on new data. As the performance of those models
trained on 10,000 randomly selected data items was lower than this, they are not
considered anymore as it is not likely that they achieve satisfying results on unseen
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data. The same applies to the FCN model with count-based encoding trained on all
data and unique samples, as well as to the KNN model trained on unique data with
both encoding approaches. Table 30 shows the support for each class in the new test
set.

Class Test
7 3,287
15 28
16 1
21 7
33 3
56 1,658
68 44,424
95 44

1000 96
1001 30,917

Table 30: The support by class the test data set.

5.2.1 Models Trained on All Data

The following section shows the performance results for the models trained on all
data.

KNN When testing new data, the KNN model trained on all data achieves an ac-
curacy of 0.68 with count-based encoding. The macro average of the precision is
0.35, the recall is 0.27, and the f1-score is 0.29. The weighted average of the precision
is 0.63, the recall is 0.68, and the f1-score is 0.66. With the sequence encoding, the
model achieves an accuracy of 0.70 on the test data. The macro average of the pre-
cision is 0.32, the recall is 0.24, and the f1-score is 0.25. The weighted average of the
precision is 0.70, the recall is 0.70, and the f1-score is 0.68. Table 31 shows the results
by class.

Random Forest When testing new data, the random forest model trained on all
data achieves an accuracy of 0.68 with count-based encoding. The macro average
of the precision is 0.49, the recall is 0.31, and the f1-score is 0.32. The weighted
average of the precision is 0.70, the recall is 0.68, and the f1-score is 0.64. With the
sequence encoding, the model achieves an accuracy of 0.74 on the test data. The
macro average of the precision is 0.40, the recall is 0.27, and the f1-score is 0.30. The
weighted average of the precision is 0.75, the recall is 0.74, and the f1-score is 0.73.
Table 32 shows the results by class.
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.95 0.93 0.94 7 0.89 0.80 0.84
15 0.50 0.18 0.26 15 0.00 0.00 0.00
16 0.00 0.00 0.00 16 0.00 0.00 0.00
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.00 0.00 0.00 33 0.00 0.00 0.00
56 0.48 0.20 0.28 56 0.62 0.21 0.31
68 0.68 0.84 0.75 68 0.69 0.89 0.78
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.24 0.09 0.14 1000 0.33 0.03 0.06
1001 0.65 0.45 0.53 1001 0.71 0.46 0.56

Table 31: Performance results of the KNN model trained on all data with count-
based and sequence data encoding when tested with new unseen data.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.94 0.97 0.95 7 0.94 0.92 0.93
15 0.95 0.68 0.79 15 0.38 0.11 0.17
16 0.00 0.00 0.00 16 0.00 0.00 0.00
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.00 0.00 0.00 33 0.00 0.00 0.00
56 0.64 0.17 0.27 56 0.67 0.21 0.31
68 0.65 0.93 0.77 68 0.73 0.89 0.80
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 1.00 0.01 0.02 1000 0.50 0.06 0.11
1001 0.74 0.31 0.44 1001 0.76 0.54 0.63

Table 32: Performance results of the random forest model trained on all data with
count-based and sequence data encoding when tested with new unseen
data.

FCN With the sequence encoding, the FCN model achieves an accuracy of 0.73 on
the test data. The macro average of the precision is 0.35, the recall is 0.27, and the
f1-score is 0.28. The weighted average of the precision is 0.73, the recall is 0.73, and
the f1-score is 0.71. Table 33 shows the results by class.
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Sequences
Class Precision Recall F1-score

7 0.90 0.90 0.90
15 0.21 0.14 0.17
16 0.00 0.00 0.00
21 0.00 0.00 0.00
33 0.00 0.00 0.00
56 0.64 0.21 0.32
68 0.72 0.89 0.79
95 0.00 0.00 0.00

1000 0.33 0.03 0.06
1001 0.74 0.51 0.61

Table 33: Performance results of the FCN model trained on all data with sequence
data encoding and tested with new unseen data.

ResNet When testing new data, the ResNet model trained on all data achieves an
accuracy of 0.70 with count-based encoding. The macro average of the precision is
0.41, the recall is 0.33, and the f1-score is 0.34. The weighted average of the precision
is 0.71, the recall is 0.70, and the f1-score is 0.69. With the sequence encoding, the
model achieves an accuracy of 0.75 on the test data. The macro average of the pre-
cision is 0.33, the recall is 0.26, and the f1-score is 0.27. The weighted average of the
precision is 0.74, the recall is 0.75, and the f1-score is 0.74. Table 34 shows the results
by class.

5.2.2 Models Trained on Unique Samples

The following section presents the test results of the models trained on unique sam-
ples.

Random Forest When testing new data, the random forest model trained on
unique samples achieves an accuracy of 0.66 with count-based encoding. The macro
average of the precision is 0.39, the recall is 0.29, and the f1-score is 0.28. The
weighted average of the precision is 0.66, the recall is 0.66, and the f1-score is 0.60.
With the sequence encoding, the model achieves an accuracy of 0.63 on the test data.
The macro average of the precision is 0.25, the recall is 0.23, and the f1-score is 0.20.
The weighted average of the precision is 0.63, the recall is 0.63, and the f1-score is
0.62. Table 35 shows the results by class.

51



Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.96 0.96 0.96 7 0.90 0.90 0.90
15 0.61 0.71 0.66 15 0.00 0.00 0.00
16 0.00 0.00 0.00 16 0.00 0.00 0.00
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.00 0.00 0.00 33 0.00 0.00 0.00
56 0.64 0.22 0.32 56 0.62 0.22 0.33
68 0.69 0.88 0.77 68 0.75 0.86 0.80
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.54 0.07 0.13 1000 0.33 0.03 0.06
1001 0.71 0.45 0.55 1001 0.73 0.60 0.66

Table 34: Performance results of the ResNet model trained on all data with count-
based and sequence data encoding when tested with new unseen data.

Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.69 0.98 0.81 7 0.54 0.91 0.68
15 0.95 0.68 0.79 15 0.00 0.00 0.00
16 0.00 0.00 0.00 16 0.00 0.00 0.00
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.00 0.00 0.00 33 0.00 0.00 0.00
56 0.50 0.00 0.00 56 0.74 0.05 0.10
68 0.65 0.92 0.76 68 0.68 0.78 0.73
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.40 0.02 0.04 1000 0.01 0.09 0.01
1001 0.68 0.28 0.39 1001 0.58 0.42 0.49

Table 35: Performance results of the random forest model trained on unique sam-
ples with count-based and sequence data encoding when tested with new
unseen data.

FCN With the sequence encoding, the FCN model achieves an accuracy of 0.65 on
the test data. The macro average of the precision is 0.30, the recall is 0.22, and the
f1-score is 0.19. The weighted average of the precision is 0.68, the recall is 0.65, and
the f1-score is 0.61. Table 36 shows the results by class.
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Sequences
Class Precision Recall F1-score

7 0.40 0.94 0.56
15 0.33 0.04 0.06
16 0.00 0.00 0.00
21 0.00 0.00 0.00
33 0.00 0.00 0.00
56 0.60 0.03 0.06
68 0.67 0.90 0.77
95 0.00 0.00 0.00

1000 0.23 0.03 0.06
1001 0.72 0.28 0.40

Table 36: Performance results of the FCN model trained on unique samples with
sequence data encoding and tested with new unseen data.

ResNet When testing new data, the ResNet model trained on unique data sam-
ples achieves an accuracy of 0.63 with count-based encoding. The macro average of
the precision is 0.36, the recall is 0.29, and the f1-score is 0.27. The weighted average
of the precision is 0.62, the recall is 0.63, and the f1-score is 0.61. With the sequence
encoding, the model achieves an accuracy of 0.66 on the test data. The macro aver-
age of the precision is 0.22, the recall is 0.23, and the f1-score is 0.20. The weighted
average of the precision is 0.70, the recall is 0.66, and the f1-score is 0.67. Table 37
shows the results by class.

5.3 The Effects of SMOTE

On all tested models, SMOTE improved the model performance of the train-test
split but decreased the performance when testing with new and unseen data. The
following section shows the effect of SMOTE on some of our trained models.

The random forest model trained on all data with SMOTE achieves an accuracy
of 0.68 on the test data, compared to 0.74 when trained without SMOTE. Table 38
shows the results by class.

The FCN trained on all data with SMOTE achieves an accuracy of 0.60 on the test
data, compared to 0.73 when trained without SMOTE. Table 39 shows the results by
class.

The ResNet trained on all data with SMOTE achieves an accuracy of 0.62 on the
test data, compared to 0.75 when trained without SMOTE. Table 40 shows the results
by class.

SMOTE did not affect the weighted and macro average values of the precision,
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Count-based Sequences
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.55 0.97 0.70 7 0.41 0.88 0.56
15 0.71 0.61 0.65 15 0.00 0.00 0.00
16 0.00 0.00 0.00 16 0.00 0.00 0.00
21 0.00 0.00 0.00 21 0.00 0.00 0.00
33 0.00 0.00 0.00 33 0.00 0.00 0.00
56 0.54 0.01 0.02 56 0.05 0.14 0.08
68 0.67 0.80 0.73 68 0.74 0.77 0.75
95 0.00 0.00 0.00 95 0.00 0.00 0.00

1000 0.53 0.10 0.17 1000 0.25 0.03 0.05
1001 0.57 0.37 0.45 1001 0.70 0.51 0.59

Table 37: Performance results of the ResNet model trained on unique data with
count-based and sequence data encoding when tested with new unseen
data.

Train-Test Split New Data
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.95 0.92 0.93 7 0.93 0.82 0.87
15 0.91 0.96 0.93 15 0.06 0.61 0.11
16 0.99 0.98 0.98 16 0.00 0.00 0.00
21 0.88 0.97 0.93 21 0.01 0.14 0.01
33 0.76 0.69 0.72 33 0.00 0.00 0.00
56 0.95 0.84 0.89 56 0.28 0.27 0.28
68 0.66 0.75 0.70 68 0.75 0.81 0.78
95 0.79 0.94 0.86 95 0.00 0.30 0.01

1000 0.89 0.82 0.85 1000 0.07 0.28 0.11
1001 0.65 0.54 0.59 1001 0.72 0.49 0.58

Table 38: Performance results of the random forest model trained on all data with
sequence data encoding when tested with new unseen data using SMOTE.

recall, and f1-scores. The macro averages remain lower than the weighted averages.
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Train-Test Split New Data
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.88 0.88 0.88 7 0.80 0.78 0.79
15 0.89 0.93 0.91 15 0.03 0.29 0.05
16 0.97 0.97 0.97 16 0.00 0.00 0.00
21 0.88 0.95 0.91 21 0.00 0.00 0.00
33 0.58 0.41 0.48 33 0.00 0.00 0.00
56 0.75 0.70 0.72 56 0.14 0.35 0.20
68 0.57 0.72 0.64 68 0.73 0.72 0.72
95 0.76 0.93 0.84 95 0.00 0.34 0.01

1000 0.82 0.78 0.80 1000 0.05 0.36 0.09
1001 0.51 0.40 0.45 1001 0.61 0.43 0.50

Table 39: Performance results of the FCN trained on all data with sequence data
encoding when tested with new unseen data using SMOTE.

Train-Test Split New Data
Class Precision Recall F1-score Class Precision Recall F1-score

7 0.94 0.91 0.92 7 0.84 0.81 0.83
15 0.90 0.96 0.93 15 0.05 0.61 0.10
16 0.98 0.98 0.98 16 0.00 0.00 0.00
21 0.87 0.97 0.92 21 0.01 0.14 0.01
33 0.72 0.70 0.71 33 0.00 0.00 0.00
56 0.93 0.84 0.88 56 0.20 0.27 0.23
68 0.66 0.67 0.67 68 0.75 0.70 0.72
95 0.78 0.94 0.85 95 0.00 0.30 0.01

1000 0.86 0.82 0.84 1000 0.02 0.24 0.03
1001 0.62 0.52 0.57 1001 0.64 0.49 0.56

Table 40: Performance results of the ResNet model trained on all data with sequence
data encoding when tested with new unseen data using SMOTE.

6 Discussion

When evaluating each model’s performance to decide which achieves the best re-
sults, we focus on the performance with new and unseen test data because this
represents the purpose of integrating machine learning models into maintenance
processes. They must deal primarily with new incoming data, which was not part
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of the training process, and make reliable predictions.

The best performing models During our tests, the models with the best perfor-
mance on the test data are the FCN with an accuracy of 0.73, the ResNet with an
accuracy of 0.74, and the random forest model with an accuracy of 0.75, all trained
on the entire data set and with sequence encoding. The results have shown that
the models trained on the whole data set achieve better results than those trained
on unique samples and the models trained on 10,000 randomly selected samples.
Furthermore, the sequence encoding approach worked better than the count-based
approach.

Overall performance The accuracy between 0.73 and 0.75 shows that the predic-
tion works correctly for 73 to 75 % of the samples. However, the relatively low
macro average of the precision, recall, and f1-score shows that the prediction works
better for classes with many data samples than for those with few samples, which is
a typical problem of imbalanced data sets. The higher values of the weighted aver-
age of the precision, recall, and f1-score confirm this. The prediction works best for
the following alarm types:

• 7 - The limit of payment machines that are out of service has been exceeded.

• 68 - A transaction is blocked. A customer validated a payment transaction, but
the fueling process was never registered as finished.

• 1001 - A Payment machine is inactive.

Alarms such as unwanted restarts of the payment machine, refused transactions,
non-working fuel pumps, and the control unit’s automatic deactivation of a pay-
ment machine lead to these critical alarm types. The alarm types for which the
prediction does not work well are the following:

• 15 - The service station is disconnected.

• 16 - An incident prevents the service station from starting.

• 21 - A measuring unit is out of service.

• 33 - A fuel dispenser dispensed fuel for more money than authorized.

• 95 - Several payment machines have the same terminal ID.

The poor performance for these alarm types might not be representative, as it
concerns the minority classes for which the test data did not contain many samples.
For example, the prediction of alarm type 16 was better in the train-test split than in
the test with new unseen data.
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Possible reasons for the performance One primary reason for the mixed per-
formance is the imbalanced data set and the fact that we have many critical alarm
types for which we do not have enough data. This is visible in the classification re-
ports, which show that the prediction generally works better for classes with higher
support in the data than for those with few data samples. It would be possible to
regroup these minority classes into a more general class. However, in the context of
maintenance processes in which maintenance activities should be scheduled auto-
matically based on the prediction of a machine learning model, this measure would
not be helpful. The models trained on 10,000 randomly selected samples did not
perform well because the data set contains several hundreds of thousands of sam-
ples for some classes. Only selecting a low range of samples means a significant
loss of information. On the other hand, the upsampling of the minority classes with
SMOTE did not increase but even decreased the performance because the available
data of the minority class was so low that the models were trained with a significant
amount of synthetic samples. Those samples do not necessarily represent reality.
Furthermore, the fact that SMOTE increased the performance in the train-test split
but decreased the performance in the test with unseen data suggests an overfitting
of those models trained with SMOTE. The data itself could be more diverse as it
is already challenging to base machine learning models on log data. However, the
fact that the logs contain only alarms is hardening the conditions of making predic-
tions, and adding other log data of each machine could give a better insight into
what happens before the occurrence of critical problems. Furthermore, the service
stations from which we collected the data are very different in size and equipment.
Not every service station produces all possible alarm types. Even if most service
stations have the same technological standards, deviations are possible, as behind
every service station stands a client who makes economic decisions. Lastly, another
reason for a too-low performance with the test data is that many technological evo-
lutions occur throughout the year, both on-site and in the systems of MADIC. New
alarm types are created, and others disappear. This is a challenge because a machine
learning model constantly needs training on new data to ensure its reliability.

7 Conclusion

In this project, we analyzed whether machine learning-based classification can be
integrated into maintenance processes to predict critical equipment failures of ser-
vice stations. We explained and applied different classification methods to the same
data set using different data encoding and sample selection methods. The results
show that the prediction works best for those classes with many data samples and
that the data imbalance leads to its typical challenges.

In conclusion, this thesis project fully achieved its objective of applying and com-
paring different machine learning algorithms on alarm log data to make predictions
of critical alarm types. Furthermore, it partly accomplished the objective of devel-
oping a classification model that makes reliable predictions, as the prediction only
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works for some classes. The project gave an interesting insight into the supervised
learning process and is an excellent example of connecting science to real-life use
scenarios. Even if the results are not strong enough yet to be applied to actual main-
tenance processes, they form a base for future research and development in the field
of predictive maintenance. The low diversity of the data and the lack of data sam-
ples for certain classes are principal challenges to overcome to reduce the effects of
data imbalance and to increase the models’ reliability. Considering the thesis results
as the beginning of further projects, future work could explore the characteristics of
the given data more profoundly and enrich it with non-error-related information.
The increasing connectivity of the service stations, as planned by MADIC, will add
further informational content and variety to the base data as well. Furthermore,
a completely different approach to identifying failure-leading patterns in log data
is conceivable, such as Sequential Pattern Mining and Chronicle Pattern Mining as
described in Section 3.1.
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