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Chapter 1

Introduction

Strongly continuous (operator) semigroups have been an object of mathematical research
for several decades now and their application to differential equations have led to new
insights about the existence and structure of solutions especially of partial differential
equations. The approach used is to rewrite a problem of a given partial differential equa-
tion as an abstract Cauchy problem. The strategy which is then followed is to show that a
given differential operator is the generator of a strongly continuous semigroup. Without
knowing the exact semigroup that is generated, which is possible only in some cases, one
is able to derive statements based on the properties of the generator of the semigroup.

An interesting question with regard to solutions of partial differential equation is if the
solution is stable as t — oo. This can be translated to the question of stability of the
generated semigroup. The heat equation in one dimension

vi(x,t) = dvxx (X, 1), d>0

on an interval (0,1) with Dirichlet boundary conditions is an example of an equation with
a stable solution. The generated semigroup converges uniformly to 0. In contrast, the
equation

U (X, 1) = auex (X, 1) + buy (x, t) + cu(x, t)
u(0,t) =0fort >0
u(x,0) =f(x) forx > 0,f € X

is (Devaney- or topologically) chaotic for suitable a,b, and c. We will later on define
exactly what we understand by a chaotic semigroup.

In this thesis we prove that two modified versions of the heat semigroup on an interval
are indeed stable and that the second equation above is chaotic. To show this we will
need a number of preliminaries. In chapter 2 we will give an introduction to semigroup
theory. Two highlights of this chapter will be the well-known Hille-Yosida theorem and
the Lumer-Phillips theorem, both stating conditions under which a given operator will
generate a strongly continuous semigroup.

In chapter 3 we will introduce criteria for stability, hypercyclicity and chaoticity of semi-
groups. This chapter will close with the spectral conditions for chaotic semigroups,
derived by Desch, Schappacher and Webb.

In the fourth and final chapter we will see the application of semigroup to partial differ-
ential equations, especially looking at stability or chaoticity of its solutions. We will close
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this chapter with an outlook on how to approach a coupled system of stable and chaotic
solutions.

We assume that the reader has knowledge about elementary functional analysis and is
familiar with elementary facts about partial differential equations. In the annex we have
summarized needed definitions and theorems from functional analysis, complex analysis
and operator theory, with references to proofs in the literature.

Note: This file is the corrected version of the original theses. Minor typos have been
eliminated and mistakes have been corrected. Corrected parts are in red.



Chapter 2

Introduction to Cy-semigroups

In this chapter we will introduce strongly continuous semigroups of operators and some
of their properties. We will look at operators which generate such semigroups and answer
the question under which circumstances will an operator generate a semigroup. In the
second half of this chapter, we will introduce some special type of semigroups and look
at what happens if generators of semigroups are perturbed by another operator.

2.1 Elementary properties of Cy-semigroups

Definition 2.1. We call a family (T(t))¢>0 of bounded linear operators on a Banach space X a
strongly continuous (or Co-) semigroup if it satisfies the following semigroup properties:
Tt+s)=T(t)T(s) forallt,s >0

T(0) =1

Furthermore, we require that the orbit maps & : t — &x(t) := T(t)x are continuous from R to
X forall x € X.

(SP)

If the semigroup properties also hold for t € R then (T(t))¢cr is called a strongly con-
tinuous group on X. In the following we will assume that T(t) is a semigroup, unless
otherwise stated, omit the index t > 0, and use the short notation T(t).

The following proposition establishes equivalences to the strong continuity property of
semigroups following [ENOO, p. 38]:

Proposition 2.2. The following assertions are equivalent for a semigroup T(t) on a Banach
space X.

(a) T(t) is strongly continuous.

(b) limy o T(t)x =x forall x € X.

(c) Thereexist 5 > 0,M > 1, and a dense subset D € X such that the following properties hold

(i) ||T(t)]] < Mforall t € [0,3],
(ii) limy o T(t)x = x forall x € D.

Proof: The implication (a) = (c.ii) follows immediately from the semigroup properties.
Next, we prove (a) = (c.i) by contradiction. Assume there exists a sequence (8n )Jnen inR™
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which converges to zero such that || T(6r,)|| — co asn — oco. By the uniform boundedness
principle (see annex there also exists an x € X such that (|| T(dn)x||)nen is unbounded
which is impossible since the semigroup is continuous at t=0.
To show that (c) = (b), we define K := {t, : n € N} U {0} for an arbitrary sequence
(tn)nen C [0, 00) converging tot = 0. Then K € [0, c0) is sequentially compact and hence
compact. With (c) we see that T(-)x is bounded and that T(-)xx is continuous for all
x € D. These conditions allow us to apply annex 5(b) and we obtain

lim T(tn)x =x

n—oo
forall x € X.
Finally, we show that (b) = (a). Let tp > 0 and x € X. By the semigroup properties and
properties of the operator norm we see

. el < (T o
lim [ Tlto + h)x — Tlto)x|| < |[T(to)]] - im | T(h)x —x]|

proving right continuity. Now let h < 0. The estimate
IT(to +h)x = T(to)x|| < [IT(to +h)[| - [x = T(=h)x|

implies left continuity as long as ||T(t)|| is uniformly bounded for t € [0, to]. This holds for
some small interval [0, ] by the uniform boundedness principle and also on each compact
interval thanks to the semigroup properties. O
Strongly continuous semigroups are exponentially bounded on compact interval as the
following proposition shows [EN00, p. 39]:

Proposition 2.3. For every strongly continuous semigroup T(t) there exist constants w € R and
M 2> 1 such that
IT(t)] < Me™t

forallt >0

Proof: We writet = s+nforn € Nand 0 < s < 1. We choose an M > 1 such that
[IT(s)|l < M. Then we can estimate

TN < ITE)I- TN < M
— MenlogM

< Mewt

with w :=1log M and forall t > 0. O

For a strongly continuous semigroup T(t) we call
wo = wo(T(t)) =inflw € R: IM,,, > Ts.t. [[T(t)]| < My eVt forall t > 0}

its growth bound. A semigroup is called bounded if w =0 and M > 1, and contractive (or a
contraction semigroup) if w = 0 and M = 1 is possible.

Before concluding this section, we will introduce the useful construction of rescaling a
semigroup, that will allow us to e.g. lower the growth bound of a semigroup to zero (by
setting 1L = —wp and « = 1 in the definition below) [ENOO, p. 43].
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Definition 2.4. Let T(t) be a Cy-semigroup on a Banach space X. For any n € Cand « > 0, we
can define a rescaled semigroup S(t) by

S(t) := e"' T (at)

forallt > 0.

2.2 Generators of Cy-semigroups and their resolvents

2.21 Generators of semigroups

Definition 2.5. Let T(t) be a (Co)-semigroup on X. The (infinitesimal) generator A of T is
defined by

 Tt)x—x d
Ax = J}l_l’)l’(l) f = ET(t)XH:O

The domain D(A) of A is the set of all x € X for which the limit exists. Note that D(A) is a linear
subspace of X.

The following lemma, based on [ENO00, p. 50], will prove some useful properties of
generators of semigroups. We will make frequent use of these properties throughout the
text.

Lemma 2.6. A generator (A, D(A)) of a (Co)-semigroup (T(t))t>0 has the following properties

(1) A:D(A) C X — Xis a linear operator.
(2) Ifx € D(A) then T(t)x € D(A) and

%T(t)x =T(t)Ax =AT(t)x forallt > 0

(3) For every t > 0 one has

t

T(t)x—x:AJ T(s)x ds ifx e X
0

= JtT(s)Ax ds ifx € D(A)
0

Proof: Statement (1) is proved by the linearity of the limit. Let x,y € X, A € C then

T(t)x

ANx4y)) = lim ATV ZAXTY) g ———+Alim Tty -y
—}

t—0 t t—0

= Mx+MAY.

For assertion (2) let x € D(A). We know that %(T(t + h)x —T(t)x) converges to T(t)Ax as

h | 0. Hence
lim LTT(0x ~ T(1)x)
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exists and therefore also T(t)x € D(A). We conclude AT(t)x = T(t)Ax. Finally, to prove
assertion (3) let x € X and t > 0. We obtain

1 t t 1 t 1 t
n (T(h) L T(s)x ds — Jo T(s)x ds) =4 L T(s+h)xds— H Jo T(s)x ds
1 t+h 1 t
t+h h
= ;J';r T(s)x ds—L T(s)x ds

which converges to T(t)x —x as h | 0. This proves the first part of the statement. If

x € D(A) then the functions s T(S)L}:‘*X converge uniformly on [0,t] to T(s)Ax.
Hence we obtain

. 1 t - t 1 t
1}5% E(T(h) —1) L T(s)xds = llgr& L T(s)}—I(T(h) —Ixds = L T(s)Ax ds.

This proves the second part of assertion (3). O

Based on the lemma above, one can prove the following theorem about the properties of
generators [ENOO, p. 51].

Theorem 2.7. The generator of a strongly continuous semigroup is a closed and densely defined
linear operator that determines the semigroup uniquely.

Proof: We first show that A is closed. We consider a sequence (xn)neny C D(A)
for which lim, ;o xn = xand limp 0o AXn = y. By the lemma we know that
T(t)xn — xXn = fé T(s)Axn ds for t > 0. The uniform convergence of T(-)Ax,, on [0, t]
for n — oo implies that T(t)x —x = fé T(s)y ds. If we multiply both sides by 1/t and
take the limit t | 0 we see that x € D(A) and Ax = y. Hence, A is closed. The previous
lemma implies that elements of 1/t fé T(s)x ds belong to D(A). The strong continuity of
T(t) implies lim¢ o 1/t jg T(s)x ds = x for every x € X. Therefore D(A) is dense in X.

For the uniqueness, we assume that there is a second strongly continuous semigroup
S(t) with the same generator (A, D(A)). We define the function u : [0, t] — X by u(s) :=
T(t —s)S(s)x. This function is differentiable and we can obtain its derivative by the prod-
uct rule:

d

iu(s) = ((iT(t - s)) S(s)x+T(t— S)E(S(S)X)

=—AT(t—5s)S(s)x+ T(t —s)AS(s)x = 0.

O
We will briefly return to rescaled semigroups and a practical lemma which will need
again later.

Lemma 2.8. A rescaled semigroup S(t) := e**T(oct) with u € C and o > 0 has the generator
B = A + ul with D(B) = D(A).
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Proof: We derive the rescaled semigroup:

%S(t)x = %e“tT(oct)x = et T(oct)x + oeM AT (oxt)x

With t — 0 we obtain Bx = (uI+ aA)x. We see thatx € D(B) ifand onlyof x € D(A). O

Lemma 2.9. Let (A, D(A)) be the generator of a Co-semigroup T(t). Then the following identities
hold [ENOO, p. 55]:

t
e MT(t)x —x = (A —A) J e MT(s)x ds ifx €X,
0

:Jt e’}‘sT(s)(A—A)x ds ifx € D(A).
0

Proof: If A = 0 then the identity follows immediately from 2.6(3). Now let A # 0. We
rescale the semigroup and define T(t) = e MT(t). With lemma the semigroup T has
the generator B = A — A. Applying[2.6(3) will now deliver the desired identity. O

2.2.2 Resolvents of generators

Generators of semigroups are closely linked to their resolvents. We recap that a resolvent
is defined as
RIAA)=A—A) N

Further we define the resolvent set
p(A):={A e C: A - A :D(A) — Xis bijective}.

We denote the complement o(A) := C\p(A) as the spectrum of A.The following theorem
provides some properties of resolvents [ENOO, p. 55].

Theorem 2.10. Let T(t) be a strongly continuous semigroup on a Banach space X. Let the
constants w € R, M > 1 be such that || T(t)|| < Me™* for all t > 0. For the generator (A, D(A))
of T(t) the following properties hold.

(1) If A € C such that RQA)x == [ e T (s)x ds exists for all x € X then X € p(A) and
R(A,A) = R(A).
(2) If Re A > w then A € p(A), and the resolvent R(A, A) = R(A) as in (1).
(3) Forall Re A > w we have |[R(A, A)|| < M/(Re A —w).
Note: The following formula for R(A, A) is called the integral representation of the resol-
vent: .
R(A,A)x = lim J e T (s)x ds forall x € X

t—oo Jo
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Proof: (1) By rescaling the semigroup we may assume that A = 0. Forany x € Xand h > 0
we have

T(h)—1

R(0)x = " J:o T(s)x ds

J T(s+h)xds1j T(s)x ds
0 h Jo

Joo T(s)x ds — }]—1 Joo T(s)x ds

0

h
=y Jo T(s)x ds

Letting h | 0 we receive AxR(0) = —x, or AR(0) = —I and ranR(0) C D(A). At the same
time we have for x € D(A).

t
lim J T(s)x ds = R(0)x
t—o0 0

and . .
lim AJ T(s)x ds = lim J T(s)Ax ds = R(0)Ax
t—o0 0 t—o0 0
Since A is a closed operator we know that R(0)Ax = AR(0)x and therefore R(0) = (—A)~ .

Hence, A is part of the resolvent set of A.
(2) and (3) follow from the following norm estimate:

t
< MJ e(W—Re ?\)sds.
0

t
J e T(s)ds
0

If Re A > w then the exponent on the right-hand side is negative and the term on the right
converges to M/(Re A—w) as t — oo. O

Corollary 2.11. The spectrum o(A) of the generator of a strongly continuous semigroup is located
in some left half plane.

Proof: From (2) immediately follows that A < w for all A € o(A). O

Before closing this section, we will introduce the series expansion of the resolvent which
we will need later [ENOO, p. 240].

Proposition 2.12. For a closed operator A : D(A) C X — Xand for u € p(A) we have
Z "w— }\ TLR u A)Tl+1
n=0

forall A € C with |u— Al < 1/|IR(i,A)

Proof: For a A € C we can write
A=A=p—A+A—p=[I—(L=ANR(kA)(r—A).

The term [I — (u — A)R(, A)] is invertible whenever (1 — A) < ||[R(i, A)[|~". In that case,
the operator is bijective. We can then obtain the resolvent as

R(A, A) = R, A)I— (= ARk, A)]™ =Z = AR, A)
n=0
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2.3 Hille-Yosida generation theorem

In the 1940s, Einar Hille and Kosaku Yosida worked in parallel on the question which linear
operators can generate a Cp-semigroup. Both came up with an answer independently
from each other of what is today know as the Hille-Yosida theorem.

The idea of proving that an operator will generate a semigroup is a very powerful one.
Even without knowing the explicit semigroup that the operator generates, one can make
use of special properties of the semigroup and its generating operator. We will see an
application of this later on in the text in the context of partial differential equations. Before
stating the theorem, we will introduce Yosida approximants which will be needed in the
proof.

Definition 2.13. The operators
An i=nAR(n, A) = n?R(n,A) — nl
are called the Yosida approximants. The equation holds by the definition of the resolvent.

For the Hille-Yosida theorem we will also need a small technical lemma, which we will
not prove here, see [ENO0O, p. 73] for details.

Lemma 2.14. Let (A, D(A)) be a closed and densely defined operator. We assume that w € R and
M > 0 such that [w, 00) C p(A) and |AR(A, A)|| < M for all X > w. Then following statements
hold:

(1) limp_, AR(A,A)x =x forall x € X.

(2) im0 AAR(A, A)x = limp_, oo AR(A, A)Ax = Ax for all x € D(A).

Now we have all the definitions and tools to prove the actual Hille-Yosida generation
theorem. Theorem and proof follow [ENOO, p. 73].

Theorem 2.15 (Hille-Yosida). Fora linear operator (A, D(A)) on a Banach space X, the following
properties are all equivalent.
(1) (A,

D
(2) (A,D(A)) is closed, densely defined, and for every A > 0 one has A € p(A) and
IAR(A A< 1.

(3) (A,D(A)) is closed, densely defined, and for every A € C with ReA > 0 one has A € p(A)
and [[R(A, A)|| < 1/ReA.

(A)) generates a strongly continuous contraction semigroup.

Proof: (1) = (2)and (1) = (3) : Bywe know that the generator of a strongly continuous
semigroup is closed and densely defined. By theorem (3) with M = 1 (contraction
semigroup!) and w = 0 we know that A € p(A) and furthermore
1
R(A < —
which proofs (3). For (2) we multiply with A which does not change the direction of the
inequality.

(2) = (1) We begin by considering the continuous semigroups
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Since the A, converge pointwise on D(A) by lemma it is reasonable to assume that
the limit of these semigroups with n — oo exists for each x € X and that the limit is a
strongly continuous semigroup on X, too, with the generator (A, D(A)). We will prove
these assumptions one by one.

Each T, (t) is a contraction semigroup since

I Ta(t)]| < e Mtelm?RIVANIE  gntont _

The second inequality holds due to the condition in (2). Pointwise convergence for a
densely defined operator implies uniform convergence (see annex . We know that the
generator of a semigroup is densely defined by theorem 2.7/ hence it is sufficient to prove
convergence of T, (t) on D(A).

Using the fundamental theorem of calculus applied to the functions

s T (t —s) T (s)x, se[0,t,xe D(A),m,neN

we find that

Due to the contractivity we see that
T (t)x — T (t)x]| < t|Anx — Amx]|.

By Lemma(2) the sequence (A, )xis a Cauchy sequence for each x € D(A). Therefore,
Tn (t)x converges also uniformly on finite intervals [0, to].
The limit T(t)x := limy 0 Tn(t)x exists for all x € X, it satisfies the semigroup property
and consists of contractions. For each x € D(A) the orbit map & : t — T(t)x,0 < t < to
is continuous which is sufficient by 2.2|so that T(t) is strongly continuous. It remains to
show that this semigroup has the generator (A, D(A).
We denote (B, D(B)) the generator of T(t) and fix an x € D(A). On each compact interval
[0, to] the functions

En it Th(t)x

converges uniformly to &(-) as shown above while its derivatives
En it Tn(t)Anx

converges uniformly to
n:t— T(t)Ax.

Therefore, £ is differentiable with Ax = n(0) = £(0) = Bx for x € D(A), which implies
that D(A) C D(B).

We now selecta A > 0 with A € p(A) by assumption. Then Al — A is a bijection from D(A)
onto X by definition of the resolvent set. Similarly, we have established above that B is the
generator of a contraction semigroup and thus by A € p(B). Therefore AI — B is also
a bijection from D(B) onto X. Since AI — A and Al — B coincide on D(A) we conclude that
D(B) = D(A) and hence B = A.

(3) = (1) The proof is identical to (2) = (1) except that for the last step we select a
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A = Re A > 0 with A € C. Hence we have bijections Al — A from D(A) onto X and Al — B
from D(B) onto X so that again B = A. O

The Hille-Yosida theorem describes the prerequisites of operators to generate a contrac-
tion semigroup. By making use of the fact that we can rescale semigroups, we can apply
the Hille-Yosida theorem to obtain prerequisites to obtain quasi-contractive semigroups,
ie. [|T(t)] < e™* for somew € Rand t > 0.

Let now T(t) be a quasi-contractive semigroup. We can rescale this semigroup to obtain
a contraction semigroup S(t) := e ™'T(t) for t > 0. The generator of the rescaled semi-
group is B = A —w. We can now formulate the generation theorem for quasi-contractive
semigroups:

Corollary 2.16. Let w € R. For a linear operator (A, D(A)) on a Banach space X, the following
properties are all equivalent.

(1) (A,D(A)) generates a strongly continuous quasi-contractive semigroup, i.e | T(t)|| < e™*
fort > 0.

(2) (A,D(A)) is closed, densely defined, and for every A > w one has A € p(A) and
I(A—=w)R(AA) <1

(3) (A,D(A)) is closed, densely defined, and for every A € C with Re A > w one has A € p(A)
and |[R(AA)| < T/Re A —w.

The Hille-Yosida theorem has later on been generalised by Feller, Miyadera and Phillips
in 1952, eliminating the requirement of having a generator that generates a contraction
semigroup. This comes at the cost of working with growth estimates of the n-th powers
of the resolvents which can be hard to check. Since we will usually be able to reduce the
problem to the case of contraction semigroups, we will state the generalisation below, but
we will not prove it. For a detailed proof see [ENOO, p. 77].

Theorem 2.17 (Generation theorem by Feller, Miyadera, Phillips). For a linear operator
(A, D(A)) on a Banach space X and the constants w € R, M > 1 the following properties are all
equivalent.

(1) (A,D(A

)) generates a strongly continuous semigroup satisfying ||T(t)|| < Me™* for t >

(2) (A,D(A)) is closed, densely defined, and for every A > w one has A € p(A) and ||(A
)

)

) (AAY < M foralln € N.
(3) (A,D(A)) is closed, densely defined, and for every A € C with Re A > w one has A € p(A)

and |IR IR(A, A)™MI < M/ (ReA —w)™.
2.4 Dissipative operators and contraction Cy-semigroups
Definition 2.18. A linear operator (A, D(A)) on a Banach space X is called dissipative if
[(AL—=A)x[| = Alx|
forall A > 0 and x € D(A).

Definition 2.19. A dissipative operator A for which R(I — A) = X holds is called m-dissipative.
[Paz83|]
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Remark: Alternatively we can define an operator as m-dissipative if R(AI — A) = X holds
for all A > 0. This can be seen as follows: If A is a dissipative operator, then so is pA for all
p > 0. This allows multiplying the left side of the equation in the definition above with
anA > 0.

We will now introduce properties of dissipative operators ([ENOO, p. 98])

Proposition 2.20. Let (A, D(A)) be a dissipative operator. Then the following properties hold:
(1) A — A is injective for all A > 0 and

1
| = A) 2] < 5 2]

forall zin ran(A — A) := (A — A)D(A).
(2) N — A is surjective for some A > 0 if and only if it is surjective for each A > 0. In that case,
one has (0,00) C p(A).
(3) A is closed if and only if ran(A — A) is closed for some (hence all) A > 0.
(4) Ifran(A) C D(A), then A is closable. The closure A is dissipative as well and ran(A — A) =
ran(A — A)
Proof: (1) follows from the definition [2.18]
For (2) we will assume that (Ag —A) is surjective foran A > 0. By (1) we see that A € p(A)
and ||[R(Ao, A)|| < 1/A.. The conditions of the series expansion of the resolvent (see [2.12)
are fulfilled for the interval (0, 2A¢ ), hence the series expansion yields that (0,2A¢) C p(A).

The dissipativity of A yields that ||[R(A, A)|| < /A for 0 < A < 2A¢. By the same argument,
we see that A — A is surjective for all A > 0, hence (0,00) C p(A).

For (3), we see that A is closed if and only if A — A is closed for some and thus all A > 0.
This is equivalent to (A — A)~! : ran(A — A) — D(A) being closed. By (1) we know that
(A—A)~! isbounded and by the closed graph theorem (see annex we know that it is
closed if and only if its domain, i.e. ran(A — A), is closed.

(4) An operator is closable if and only if for each sequence (xn)neny C D(A) with xy — 0
we have y = 0 for Ax,, — y. The definition of the dissipative operator (2.18) implies

AN = A)xn + (A = A)w|| = Al|Axn +W||
ifw e D(A) and for all A > 0. Letting n — oo and dividing both sides by A we obtain
=y +w—TAAwW| > |w]|
Letting A — oo the inequality yields
=y +w[ > [jw].

We can now chose a w € D(A) arbitrarily close to y € ran(A) so that 0 > ||y|| and hence
y=0.

It remains to show that also A is dissipative. For a closed operator there exists a sequence
(*n)nen C D(A) with x,, — x € D(A) and Ax, — Ax when n — oco. The dissipativity
of A and continuity of the norm imply that ||(A — A)x|| > A||x|| for all A > 0. Thus, A is
dissipative. Finally, ran(A — A) is dense in ran(A — A) and thus by (3) we know that also
ran(A — A) is closed in X which proves (4). O

We will now characterize dissipative operators via duality sets which will facilitate the
work in LP-spaces:
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Definition 2.21 (Duality set). Let X be a Banach space and X’ its dual space. For every x € X
we call
3x) = {x" e X"+ (x,x') = [Ix||* = |1}

its duality set [ENOO, p. 87].
Duality sets allow us to characterize a dissipative operator in an another way.

Proposition 2.22. A linear operator A is dissipative if for each x € D(A) there existsanx’ € J(x)
such that (Ax,x") < 0or Re(Ax,x") < 0 if the underlying space is complex.

Proof: See [ENOO, p. 88].

Remark: If X is a Hilbert space, then we find by the Riesz-Fréchet representation theorem
(see that J = {x} for each x € H. Proof see [Hun+13, p. 33]. Using this fact, we find
that the condition in proposition [2.22]simplifies to Re(Ax, x) < 0.

Example 2.23. Let X = L%(R) and the differential operator A defined as Au = v’ with D(A) =
W12(R). We obtain by integration by parts

/ uz
<A‘LL, 'LL>]_2(R) = JRU udx = 7
Unless we introduce additional boundary conditions, the operator A is generally not dissipative. If
we e.g. restrict the space to X = L([0, 1], R) and D(A) = W2 ([0, 1], R) and set (1) = 0 then
A is dissipative. The same holds for the half-line X = L?([0, 00), R) and D(A) = W"2([0, o), R)
ifu(0) = 0and u(t) — 0 for t — oo:

ee]

uwudx = (lim u(t) —u(O)) — Joo u/udx

t—o0 0

(AU W) 12((0,00)) = Jo
which simplifies to
2<Au, u>L2([O,oo)) = lim u(t) =0

t—o00

asu e L2,

We close this section with the important Lumer-Phillips theorem that shows dissipative
operators can generate contraction semigroups ([ENOO, p. 99]):

Theorem 2.24 (Lumer-Phillips). For a densely defined, dissipative operator (A, D(A)) on a
Banach space X the following statements are equivalent.

(1) The closure A of A generates a contraction semigroup.
(2) ran(Al — A) is dense in X for some (hence all) A > 0.

Proof: (1) = (2) From the Hille-Yosida generation theorem (2.15) we can conclude that
ran(A — A) = X for all A > 0. By proposition we have ran(A — A) = ran(A — A) and
thus obtain (2).

(2) = (1) Since ran(Al — A) is dense in X, we can conclude that (A — A) is surjective.
By proposition we know that (0,00) C p(A). Dissipativity of A implies the esti-
mate ||R(A,A)|| < 1/a for all A > 0 which is one of the requirements of the Hille-Yosida
generation theorem (2.15). O
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2.5 Analytic Cy-semigroups

In this section we will introduce analytic semigroups. This class of semigroups will be
helpful to make statements about the behaviour of semigroups e.g. when it comes to
perturbations of generators. As we will need only a few facts about analytic semigroups
later on, this introduction is cursory without proofs. We refer to [ENOO] chapter 1.4 - from
where definitions are taken - for proofs and more details. We will begin our overview
with sectorial operators which, as we will see, are closely linked to the notion of analytic
semigroups.

Definition 2.25 (Sectorial operator). A closed linear operator (A, D(A)) with dense domain
D(A) on a Banach space X is called sectorial (of angle d) if there exists 0 < & < 7/2 such that the
sector -

s = {)\ €C:largh < 7 +z‘>} \ {0}

is contained in the resolvent set p(A), and if for each € € (0, 8) there exists M > 1 such that

M _
[ROVAN < 57 forall 0 # A€ ooy .

We will see that sectorial operators can be generators of analytic semigroups. What we
understand exactly by an analytic semigroup will be defined next.

Definition 2.26 (Analytic semigroup). Let (A, D(A)) be a sectorial operator of angle 5. A
family of bounded, linear operators (T(z)) 5, g0y is called an analytic semigroup (of angle d) if

(1) T(0) =Tand T(z1 + z2) = T(z1)T(z2) forall z1,z, € Xs.
(2) The map z — T(z) is analytic in LZs.
(3) lims_,5, 0 T(z)x =x forall x € Xand 0 < 8" < d.

If in addition

(4) ||T(z)|| is bounded in Ls: for all 0 < &' < 8, then T(z) is called a bounded analytic
semigroup.

Proposition 2.27 (Representation of analytic semigroups). Let (A,D(A)) be a sectorial
operator of angle & and define T(0) := I and operators T(z) for z € Xs by

1
= — Hz
T(z): o= L eM*R(u, A)dp

where vy is a piecewise smooth curve in L./, s going from coe HW2H8) o ooet/2+8) for
some &' € (|argzl,8). Then the family of maps (T(z)) is an analytic semigroup and the operator
(A, D(A)) is its generator.

Proof. See [ENOO, p. 97 ff] O

Similar to the Hille-Yosida theorem, we can characterize those generators that generate
analytic semigroups by the following theorem.

Theorem 2.28. For an operator (A,D(A)) on a Banach space X, the following statements are
equivalent.
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(1) A generates a bounded analytic semigroup (T(z)),ex (0} 01 X.

(2) There exists © € (0,7/2) such that the operators e*'® A generate bounded strongly continu-
ous semigroups on X.

(3) A generates a bounded strongly continuous semigroup T(t))¢>0 on X such that ran(T(t)) C
D(A) forall t > 0, and M = sup, _, [[tAT(t)]| < oo.

(4) A generates a bounded strongly continuous semigroup T(t))¢>0 on X and there exists a
constant C > 0 such that |R(r +1is,A)|| < ¢/Is| forallr > 0and 0 # s € R.

(5) A is sectorial.
Proof. See [ENOO, p. 101] O

Corollary 2.29. If A is a normal operator on a Hilbert space H satisfying
o0(A) C{z e C:arg(—z) < &}
for & € [0,7/2), then A generates a bounded analytic semigroup. [[ENOO, p. 105]

A normal operator is an operator for which AA* = A*A holds. A self-adjoint operator is
obviously normal.

2.6 Perturbation of semigroups

In the previous sections we have - at least partially - answered the question under which
conditions operators generate a semigroup. In a next step, it seems only naturally to
ask what happens if we perturb a semigroup-generating operator A : D(A) C X — X
by another operator B : D(B) C X — X. In other words, does the sum of A + B again
generate a strongly continuous semigroup? We will see that the answer is yes, under
certain conditions.

We start our discussion with bounded operators and the bounded perturbation theorem
([ENOO, p. 158]):

Theorem 2.30 (Bounded Perturbation Theorem). Let (A, D(A)) be the generator of a strongly
continuous semigroup T(t) on a Banach space X satisfying ||T(t)|| < Me™* forallt > 0,w € R
and M > 1. Provided that B € L(X), the sum C := A 4+ B with D(C) := D(A) generates a
strongly continuous semigroup.

Proof. We first assume that w = 0 and M = 1, so that T(t) becomes a contraction semi-
group. The spectrum of the generator of a contraction semigroup is located in the left
half plane with o(A) < 0 (see e.g. corollary IV.2.4 [ENOO, p. 252]). Then A € p(A) for all
A > 0. We can decompose A — C as

A—C=A—A—B=(I—BRA,A))A—A)

We can conclude from the bijectivity of A— A that also A — C is bijective and hence A € p(C)
if and only if I — BR(A, A) is invertible in £(X). In that case we obtain

RA—C)=RA—A)I—BRA—A)]"'
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Next we choose Re A > ||B||. By the Hille-Yosida generation theorem (2.15(3)) we have
IBRON, A < B[RO, A < A2k < 3
’ ’ Re A
and conclude that A € p(C). By using the Neumann series we obtain

R(A,C) = iBRAA

We estimate, again by using the Hille-Yosida theorem for the resolvent of A

1 1 1

R(A, C) =
RO Q) < ReA 1_ 1Bl = ReA—|B]|
Re A

for all Re A > ||B||. By corollary[2.16 C generates a quasi-contractive strongly continuous
semigroup S(t).

We return to the general case of w € R and M > 1. By rescaling, we can assume that
w = 0. We introduce a new norm

[Pl = sup [ T(t)x]]

>0

on X. This new norm satisfies
[Ix]| < [l < MJx]]

and turns T(t) into a contraction semigroup. We find
IIBxIF < MBJ - [Ix]l < M[BI| - [[Ixl]
for all x € X. The sum C = A + B generates thus a strongly continuous semigroup. [

In the unbounded case, the situation is more complicated. Results can be found if the
unperturbed operator A is the generator of a analytic semigroup or if A is dissipative. In
both cases we need additional requirements for the perturbing semigroup B - it must be
A-bounded. The definition follows [ENOO, p. 169].

Definition 2.31. Let X be a Banach space and A : D(A) C X — X a linear operator on X. An
operator B : D(B) C X — X is called A-bounded if D(A) C D(B) and if there exist constants
a,b € R such that

IBx][ < af|Ax[| + bx| (2.1)

forall x € D(A). The A-bound of B is defined as
ao :=inf{a > 0:3b € R, s.t. [2.T|holds} (2.2)

The following two theorems give us particularly nice results for the perturbation of oper-
ators if the perturbed operator A generates either an analytic semigroup or a contraction
semigroup.

Theorem 2.32. Let the operator (A, D(A)) generate an analytic semigroup (T(z)) 5,0} 0N a
Banach space X. Then we can find a constant « > 0 such that (A +B, D(A)) generates an analytic
semigroup for every A-bounded operator B with the A-bounded ap < «.
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Proof. See [ENOO, p. 176] O

Theorem 2.33. Let the operator (A, D(A)) generate an contractive semigroup on a Banach space
X. If the operator (B, D(B)) is dissipative and A-bounded with ap < 1 then (A + B,D(A))
generates a contraction semigroup.

Proof. See [ENOO, p. 173] 0



Chapter 3

Stability of Cy-semigroups

In this chapter we will introduce the notions of stability, hypercyclicity and chaoticity
of semigroups. We will finally derive spectral conditions for a chaotic behaviour of
semigroups and apply these insights in the following chapter when we will look at
concrete applications to partial differential equations.

3.1 Stability

There are several notions of stability of a Cp-semigroup. We will limit this section to a
cursory overview the most relevant definitions and theorems for our purposes, based on
[ENOO, p. 296].

Definition 3.1. A strongly continuous semigroup T(t) is called

(1) uniformly exponentially stable if there exists an ¢ > 0 such that

lim e®Y||T(t)|| =0, (3.1)
t—o0
(2) uniformly stable if
lim [ T(t)] =0, (3.2)
t—o0
(3) strongly stable if
lim ||T(t)x|]| =0 forallx e X. (3.3)

t—o0

The question which conditions a generator of a semigroup must fulfil to be a stable has
been a question of relatively recent research. If the underlying space of the generator is a
Hilbert space, we are able to characterize the stability of a semigroup more easily than if
we operate on e.g. Banach space, which might even be non-reflexive which would require
to look at the dual of generators (theorem by Arendt-Batty-Lyubich-Vii). However, we
will limit ourselves to Hilbert spaces in this section.

Theorem 3.2. Let (A, D(A)) bea self-adjoint operator on a Hilbert space H such that (Ax,x) < 0
forall x € D(A). Then the following assertions are equivalent:

(1) The semigroup generated by A is strongly stable.

(2) 0is not an eigenvalue of A.

20
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Proof. See [ENOO, p. 324]. O

Theorem 3.3. Let A generate a strongly continuous semigroup T(t) on a Hilbert space H. Then
T(t) is uniformly exponentially stable if and only if there exists a constant M > 0 such that

IR\, A)|| <M for all X with Re A > 0.

Proof. See [Eis10, p. 97] O

3.2 Hypercyclic and chaotic semigroups

We start our considerations about hypercyclic and chaotic semigroups with some elemen-
tary definitions as they can be found e.g. in [GP11] or [DSW97]. In this section, X will
denote a Banach space, T(t) a strongly continuous semigroup on X, and A its infinitesimal
generator.

Definition 3.4. A periodic point is an x € X for which a t > 0 exists such that T(t)x = x. We
denote the set of all periodic points by Xp.

Definition 3.5. A semigroup T(t) : X — X is called topologically transitive if for any pair U, V
of non-empty open subsets of X there exists some t > 0 such that T(t)(U) NV # (.

Definition 3.6. A semigroup T(t) is called hypercyclic if there exists x € X such that the orbit
T(t)x is dense in X. We call x a hypercyclic vector. If additionally X, is dense in X then we call
the semigroup chaotic.

Furthermore we will introduce two notations which we will use later on [DSW97]:

X Will denote the set of all x € X such that for each ¢ > 0 there exist some w € X and
some t > 0 with ||w| < e and ||T(t)w —x|| < .

Xo will denote the set of all x € X such that lim{_, o T(t)x = 0.

As there are different notions of chaoticity, we would like to point out that this thesis refers
to the chaoticity as defined first by Devaney [Dev03, p. 50]. Devaney-chaos (also referred
to as topological chaos) requires that the semigroup T(t) is topologically transitive. In
definition (3.6| we have only required that T(t) is hypercyclic. The Birkhoff transitivity
theorem for semigroups shows that T(t) is hypercyclic if and only if it is transitive and
hence we may use the notion of Devaney-chaos. Before proving this theorem, we will
need one auxiliary theorem.

Theorem 3.7 (Conejero-Miiller-Peris). If T(t) is a hypercyclic semigroup on a Banach space X
foran x € X, then T(to) is a hypercyclic semigroup for every to > 0.

Proof: See [CMPO7].

Theorem 3.8 (Birkhoff transitivity theorem for semigroups, [DSW97]). Let T(t) bea strongly
continuous semigroup on a separable Banach space X. Then the following assertions are equivalent:

(1) T(t) is hypercyclic.

(2) Forally,z € Xand all ¢ > 0 there exist some v € X and some t > 0 such that ||y —v|| < ¢
and ||z —T(t)v| < e.
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(3) For all € > 0 there exists a dense subset D C X such that for all z € D there exists a dense
subset D’ C X such that for all y € D’ there exist v € X and t > 0 such that ||y —v|| < ¢
and ||z —T(t)v| < e.

Proof: (1) = (2) Let the orbit of T(t)x is dense in X. By we see that for each s > 0,
T(t)x,t > s is also hypercyclic and thus dense. Take an y, z € X, there exists some s > 0
such that ||[y—T(s)x|| < e and someu > s such that ||z—T(u)x|| < e. Wenow putv = T(s)x
and u = s 4 t. By the semigroup properties T(u)x = T(s + t)x = T(t)T(s)x = T(t)v and
hence (2) is obtained.

(2)=(1): Let{z1, 22, 23, ...} be a dense sequence in X. We will now construct the sequences
{y1,y2,v3,...} € Xand {ty, t2,t3,...} C [0, 00) inductively: We put y; = z; and t;. Now
we find y, and t, for n > 1 such that

Z—TL

lyn —yn—1ll < y

”Zn - T(tn)ynH <27

The first inequality implies that ||yn —yn—1]| < 27 ™ which in turn means that the sequence
Yn has a limit x. We find that

lzn = T(ta)x|| < llzn = T(ta)ynll + [Tt lyn — x|

o0
<lzn =Ta)unl+ Y 1T s — yil ()
i=n+1
<2+ Y 2t=r =2 (%)

i=n+1

For (x) we use the inequality |[yn —x|| < 32,1 [lyi —yi—1]| and for (xx) we employ the
geometric series:

[09] e e] n n n
> ri=Y 2ty 2rit=2-)y2rt=1-) 27 =2
i=n+1 i=0 i=0 i=0 i=1

We can now find an arbitrarily large n such that for z € X and an ¢ > 0 so that we have
lzn — z|| < &/2. If we also choose 1 large enough so that 2~ "1 < ¢/2 we find

ITltn)x —z|| < ||z —znl|| + ||zn — Ttn)x| < e.
This shows that T(t)x is dense and by definition T(t) is hypercyclic.
(2)= (B)WeputD =D’ =X.

(3) = (2) Since D and D’ are dense subsets of X we can find elements close enough so that
(2) still holds. To show this we keep ¢ > 0 and z € X. We can find now a Z € D such that
llz—Z|| < ¢/2 and respectively a § € D’ with ||y — §|| < ¢/2. We now choose t and v as
in (3). Furthermore, instead of ¢ we employ ¢/2 and obtain with the help of the triangle
inequality

IT(t)v—z|
[v—yl

Tv—2z|| +||Z2—z[ <&,
v=il+Ig—yl <e.

O
We will close this section with a theorem that allows us to find sufficient conditions for
the hypercyclicity of a semigroup.
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Theorem 3.9 ([DSW97]). Let T(t) be a strongly continuous semigroup on a separable Banach
space X. If both X« and Xo are dense subsets, then T(t) is hypercyclic.

Proof. We apply 3.8[iii) with D = X and D’ = Xo. Let z € X and y € Xs. Due to the
density of X, there is a |[w]|| < € such that for each ¢ > 0 and arbitrarily large t > 0 we
have

€

5

For t large enough we have || T(t)y|| < e¢/2sincey € X. Setting v =y 4+ w we find that

ITtw —z| <

lz=Tv[| < [lz=TEw[ + [Tty < e/2
ly = vl = lwll <e.

O

Before we move on, we would briefly like to explain why hypercyclic and chaotic behaviour
of operators cannot occur in a finite dimensional setting. Every finite dimensional Banach
space is isomorphic to some C™. We know that every operator T on C™ must have one or
more eigenvalues A;. The adjoint operator T* must consequently also have one or more
eigenvalues A;. By the following lemma from [BMO09, p. 11], we see that no operator on
C™ can be hypercyclic (and thus also not chaotic).

Lemma 3.10. Let T be a hypercyclic operator. Then its adjoint T* has no eigenvalues.

Proof. Let T be hypercyclic for x € X. We assume by contradiction that its adjoint operator
T* has the eigenvalue A thus T*x* = Ax* for some eigenvalue x* € X*,x* # 0. For any
n > 0 we have

(T, x™) = (x, (T")™x™) = A™(x, x").

The hypercyclicity of T for x implies that the left-hand side is dense in K. However, the
set {A™(x,x*),n € N}is not dense in K, hence no x € X can be a hypercyclic vector.
O

3.3 Spectral conditions for chaotic semigroups

In 1997, Desch, Schappacher and Webb published an article in which they laid down
spectral conditions of the generators of chaotic semigroups ([DSW97]). These conditions
help to establish the chaoticity of semigroups as we will see in chapter 4. For our purposes,
it suffices to state the main theorem of their paper. The proof will follow the article by
Desch, Schappacher and Webb and add a few details left out in their paper.

Theorem 3.11 (Desch, Schappacher, Webb). Let X be a separable Banach space and let
(A,D(A)) be the infinitesimal generator of a strongly continuous semigroup T(t) on X. Let
U be an open subset of the point spectrum of A which intersects the imaginary axis. For each
eigenvalue A € U let x, be a non-zero eigenvector, i.e. Axp = Axy. We define for each functional
¢ € X' afunction Fg : U — Cby Fg,(A) = (d,xx). Ifforeach & € X’ the function Fy, is analytic
and if Fy, does not vanish identically on U unless ¢ = O, then T(t) is chaotic.

Proof: We will define a set Yy = span{x, |A € V}, where V C U is an arbitrary subset
admitting a cluster point in U. The idea of the proof is to show first that Yy is dense in
X. In a next step we will show that Yy is included in X, and Xy, hence these two must
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be dense in X and by [3.9 we know that T(t) must be hypercyclic. Last, we will show that
also X, is dense and thus T(t) is chaotic.

We will prove that Yy is dense in X by contradiction. We assume that there exista ¢ # 0
and Fy = ($,x) = 0 for all x € Yy. Since Yy is a linear subspace, there exists an ¢ € X’
by the Hahn-Banach theorem (see vy, - By assumption, V has a cluster

point in U and Fy, is analytic, which implies by the identity theorem for analytic functions
(see A9) that Fg, = 0 on U. This contradicts the assumption.

Before showing that the inclusions Yy C X, Yv C X and Yy C X, hold, we will make
one observation. We multiply both sides of the identities|[2.9 with e** and obtain

t
T(t)x —eMx = (A — A)J Mt S)T(5)x ds if x € X,
0

t
:J MSIT(S)(A—A)xds  ifx € D(A).
0

If Ais an eigenvalue and x € D(A) it follows that (A — A)x = 0 and hence T(t)x = e*x
and T(t)e Mx = x.
We will now show that X, is dense. We choose V; to be a subset of {A € U|Re(A) < 0}
admitting a cluster point in U and Yy, = span{x, |A € Vi}. For any y, € Yy, with a fixed
A we find
lim T(t)yx = lim e My, =0
t—o0

t—o00

since Re(A) < 0. We conclude that Yy, C Xo. Since Yy, is dense in X, also X, must be
dense in X.

Next, we will show that X, is dense. We define the subset V, of {A € U|Re(A) > 0}, again
admitting a cluster point in U, and ax, € Yy, = span{x, |A € V,}. We find that

ZGJX)\ —T i At X)\

j=1

We define w = 3 ", (aje Mtxy, ;). Since Re(A) > 0 the individual terms converge to
zero when t — co. Hence, for t 20 large enough we find any ¢ > 0 such that |[w|| < .
Furthermore, we see that T(t)w = 3 ; (ajxa;) and therefore | T(t)w—3""; (ajxa;) [| <
¢. This shows that Yy, C X and by the same argumentation as above X, is dense in X.

Finally, we prove that X, is dense. Let V3 be the subset of {A € U[Re(A) = 0} where
each A has a rational imaginary part and such that the sequence {A;} has a cluster point.
We can now write each A; in the form i¥? with p; € Z and q € N\ {0}. Let now
axy € Yy, =span{x, |A € V3}. For all t = 2tq > 0 we have

itpj

n n n n
. — At — . — .
t) E ajxp; = E e"rajxy; = E e ajxy = E aj X,
=1 j=1 =1 =1

Hence Yy, C X, and thus X,, is dense in X. O

The article by Desch, Schappacher, Webb and their criteria for chaoticity has proven
to be helpful when verifying if semigroups are indeed chaotic or not. The criteria in
were later on generalised by Banasiak and Moszyriski who showed that if we remove the
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non-degeneracy conditions, the semigroup T(t) is still chaotic on a smaller, still infinite-
dimensio~nal S}lbspace of X, Yvhich is T(t)-invariant [BMO05]. By T(t)-invariance we mean
that T(t)X C Xfor all t > 0, X being a closed subspace of X.



Chapter 4

Application of semigroup theory to
differential equations

4.1 The abstract Cauchy problem

Definition 4.1. The following problem

d

—_ — >

(ACP) dtu(t) Au(t) fort>0
u(0) =x

is called the abstract Cauchy problem.

If we consider (A, D(A)) to be the generator of a Cp-semigroup T(t) on X, then
u(t,x) = T(t)x

is the unique solution of the ACP as long as x € D(A). This is easily seen by the properties
of the generator of a semigroup. We remember that %T(t)u(t) =T(t)Au(t) = AT(t)u(t).
If we allow any x € X, the unique solution of the corresponding integral equation is

t
u(t) = AJ u(s)ds +x, t > 0.

0
Deriving u(t) with respect to t and setting t = 0 respectively gives the ACP in the form
above and shows that the integral equation holds. This solution is called a classical
solution if x € D(A) and a mild solution if x € X. We call T(t) the solution semigroup of
the ACP.
We call the abstract Cauchy problem (ACP) well posed if the domain D(A) is dense and for
each x € D(A) there exists a unique classical solution that depends continuously on the
initial value x. The following theorem establishes that an operator is indeed a generator
of a Cp-semigroup if the ACP is well posed [BKR17, p. 124].

Theorem 4.2. A closed linear operator A on a Banach space X is the generator of a strongly
continuous semigroup (T(t))r>o if and only if the abstract Cauchy problem (ACP) is well posed.

Proof. Let A be a closed linear operator and the generator of a strongly continuous semi-
group (T(t))¢>o0. By theorem2.7]D(A) is dense and A determines the semigroup uniquely,
hence the ACP is well-posed.
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For the converse we assume the ACP to be well-posed. Then the ACP has a unique
classical solution
u(t,x) = T(t)x

with x € D(A) and t > 0. All T(t) are bounded operators on X and linear - due to the
linearity of A and the uniqueness of u. We see that the semigroup property holds as
follows:

T+ s)x =u(t+s,x)
u(t, u(s,x))
TH)T(s)x

for every x € D(A) and t, s > 0. Furthermore, we see that T(0)x = u(0,x) = x.

We observe that || T(t)]| is uniformly bounded on every compact interval [0, T]. To see why
that is, we assume that there exists a sequence (ty) C [0, T] with || T(ty)|| — co as k — oo.
We could choose an (xi) € D(A) converging to 0 such that

[u(tic i [ = 1T ()| > 1

which contradicts the assumptions on u.

The mapping t — T(t)x is continuous for every x in the dense set D(A) and proposition
2.2(c) implies that T(t) is a strongly continuous semigroup on X. Let B be the generator
of T(t). Since A and B are both closed, have dense domains and coincide on the T(t)
invariant set D(A) they are equal. O

4.2 An example of a stable solution: the heat equation
The simplified, n-dimensional heat equation is the partial differential equation
u(x,t)y = Au(x,t) on R™ x (0, c0),

where A is the Laplace operator with the domain D(A) = W2:2(R™).
It is a well known result that the closure of Laplace operator generates a strongly contin-
uous semigroup

2
T(t)f(s) == (4m)’z‘J e f(r)dr

on the domain X = LP(R"),T < p < o fort > 0,s € R™ and f € X. Proof see [ENOO,
p. 69].This semigroup is often referred to a heat semigroup or Gaussian semigroup.

If we impose boundary conditions on the domain of the generator, the semigroup can
often not be stated explicitly anymore. We have to conclude properties of the generated
semigroup from the properties of the generator. We will look at two concrete examples
on one-dimensional intervals on which we impose Dirichlet boundary conditions: Let
X =12%([0,1],C) and d > 0:

vi (X, t) = dvxx (x, 1) on [0, 1] x (0, 00)
v(0,t) =v(1,t) =0 fort >0 4.1)
v(x,0) = f(x) for x € [0, 1] with f € X.
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In addition, we will consider a section problem: Let X = L%([0,1],C),d > 0 and e < 0:

wi(x,t) = dwyx(x, t) + ew(x, t) on [0, 1] x (0, 00)
w(0,t) =w(1,t) =0 fort >0 4.2)
w(x,0) = f(x) for x € [0, 1] with f € X.

We can rewrite the problems [¢.1)and [£.2] with operators as follows:

Af =" D(A) = {f € W»2([0,1],C)|f(0) = f(1) = 0}
Bf=f D(B) = {f € L?([0,1],C)[f(0) = f(1) = 0}
C; =dA

C,=dA +eB

We will show that the closure of A generates a contraction semigroup by the Lumer-
Phillips theorem (2.24). Hence, we need to show that A is dissipative and densely defined
and that ran(A — A) is dense in X. The dissipativity of A can be shown via the duality set
(2.22). By integration of parts we obtain

1 1

Affdx = —J (V)% dx < 0. (4.3)

(Af, f) 210,17 :J .

0
(A,D(A)) is densely defined in X, due to the fact that D(A) = W22([0,1]) € WO2[0,1] =
L2([0, 1]). What remains to be proved is that ran(A — A) is dense in X for any A > 0. We
will make use of the fact that the image of a dense subset remains dense under a surjective
continuous function. We will use a similar approach as Engel and Nagel ([ENOO, p. 94].
By using A? we ensure that it is positive as required by the Lumer-Phillips theorem. We
see that A> — A is surjective if for every g € W22 there exists a function f € W2 with
f(0) = 0 and f(1) = 0 such that A’f — f” = g. Such a function can be found. Hence
ran(A?> — A) is dense and therefore (A, D(A)) generates a contraction semigroup. The
above argumentation also holds for the generator dA as long as d > 0 so that the closure
of Cy is the generator of a contraction semigroup, too.

We will now turn to the operator C,. By using perturbation theorem we will show
that C, generates an analytic semigroup if dA generates an analytic semigroup and if B is
an A-bounded operator with the the A-bound ap < «. We will start by proving that dA
generates an analytic semigroup.

We recall that an operator A* is called an adjoint operator if (A*f,g) = (f,Ag). The
operator A is called self-adjoint if Af = A*f and D(A) = D(A*). We verify that dA with
d € R,d > 0 is indeed self-adjoint

1 1 1

-l—J g’ dx :dJ g’ dx
0 0 0
1

1 1
-l—J /g’ dx :dJ /g’ dx
0 0 0

with the domain D(A) = {f € W%2([0, 1])}. Self-adjoint operators are normal and with
corollary we see that dA generates a bounded analytic semigroup (Remember that A
generates is a contraction semigroup, which implies that o(A) < 0).

1
(f,dAg)12((0,1)) = dL fg”"dx=d (fg/

1

(dAf, g)r2(10,1)) = dJ

Of”gdx:d<f’g
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In a next step we verify that eB is dA-bounded, i.e. that || Bf|| < a||Af||+ b]/f|| holds. With
eBf = ef we find
lefl] < alldAf]| + biIf]].

Let b = |e|, then the inequality holds for any a > 0, hence the A-bound of B is 0. Further-
more, W22[0,1] € L2[0,1], also D(dA) C D(eB). By theoremm (C2,D(C1)) generates
an analytic semigroup.

We will now turn to the stability of the semigroups generated by the generators C;
and C;. It was shown that C; is both a self-adjoint and dissipative operator on a Hilbert
space. By[B.2} C; generates a strongly stable semigroup. Using the same theorem, we can
show that also C; generates a strongly stable semigroup. For this we will quickly verify
that C; is indeed also self-adjoint and fulfils the condition (Cxf,f);2(9 ;; < 0. We prove
dissipativity first:

1 1 1

(V)% dx + eJ f2dx < 0. (4.4)

dAff + ef? dx = —dJ
0

(Cafy ) r2(0,17) _J .

0
We know that the right hand side is smaller than zero from equation 4.3|(remember that
d > 0) and the fact that e < 0, so that also the second term must be negative. We verify
self-adjointness:

1
<f, dAg + 689)]}([0)]}) = JO f(dg// +€g) dx
1 1
:dJ fg”dx—i—eJ fgdx
0 0

1 1 1
= dfg’ +dJ f’g’dx+eJ fgdx
0 0 0
1 1
:dJ f/g’dx—i-eJ fg dx
0 0
1 E— p—
<dAf+€Bf, 9)[_2([0’”) = O(df//+ef)g dx

1

1
:dJ f”gdx+eJ fgdx
0

1 1 1
=df’g —|—dJ f’g/dx—i—eJ fgdx
0 0 0
1 1
:dJ Wg'dx—i—eJ fg dx.
0 0

Furthermore, D(C;) = D(C3) holds. Hence, also C, generates a strongly stable semi-
group.
4.3 An example of a chaotic semigroup

The following example is taken from the paper of Desch, Schappacher and Webb which
shows a chaotic solution semigroup of a partial differential equation [DSW97, p. 807]. We
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will prove that the generated semigroup is indeed chaotic by verifying the conditions of
theorem
Let X = L?([0, 00), C). We consider the following partial differential equation:

ut(xyt) = auxx(x>t) + buy (X) t) + Cu(x)t))
u(0,t) =0 fort >0 (4.5)
u(x,0) = f(x) forx > 0 with f € X
Leta,b,c > 0andc < b%/(2a) < 1. We claim that the solution semigroup to this problem

is chaotic.
Proof: We re-write the partial differential equations in terms of the following operators:

Arf=f" D(A1) = {f € W»([0, 00), C)If(0) = 0}
Bif =+ D(By) = {f € W?([0,00), C))
A =aA;+bBy +cl
The defined operator A7 is the generator of a contraction semigroup and so is aA; for any
a > 0. The operator By is a dissipative operator by example and taking into account

the remark in so is bBy. In order to apply theorem we need to verify if bBy is
(aAq)-bounded with ap < 1, i.e.

b1 Bf|| < ol arsf]| + BIIf].

In example I11.2.2 Engel and Nagel (see [ENO0, p. 169] for the full proof) show that an
operator B= (% with D(B) := WP (Q) is A-bounded with A = (fl—xzz onD(A) = WP (Q)
where Q C R. The A-bound ag = 0. They estimate:

~ 9 -
IBfllp < lfllp + el Afllp.
Let A = aA; and B = bB; with a,b > 0 and b < co we find
9 ae
B < — — .
IB1flly < Il + Al

Choosing ¢ > 0 small enough, one sees that the Aj-bound is still zero. Furthermore,
D(A7) € D(B;), since W™P(Q) ¢ WP (Q) for all k < m. By theorem aA1 + bB;
generates a contraction semigroup. Since clearly cI € £, the bounded perturbation
theorem shows that A is the generator of a strongly continuous semigroup.

In a next step we will verify the criteria of to show that the semigroup is chaotic. For
this, we define the slotted disk

bZ bZ bZ
u {?\GCl‘?\ <c 4a>‘\4a,lm()\)7é01fRe\c 4(1}

As ¢ < b?/(2a) < Tand a,b,c > 0 we see that U intersects the imaginary axis. We look
at the eigenvalue problem Af = Af or

afy +bfy +cfa =Afa and ,(0) =0
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A solution for this problem is

_ 2
fa(x) = e (P/20)xgin <x AR b) )

a 4q2

The boundary condition is quickly verified to hold. We can verify the solution by deriving
fa and multiplying with a, b and c respectively:

—A b2
cfa(x) =ce (b/20)xgin (x c—r >

a 4q2
bfy(x) =— lzie—(b/za)" sin (x % _ 4:;) 4 pe—(b/2a)x % 7 ;izcos (X C;)\ B Ez)
afy (x) :Z(zle_(b/ZU.)x sin (x c ; A _ ;) B ge—(b/Za)x % B ;ﬁZCOS (x c ; A _ Zﬁi)
— ge*(b/Za)x % _ 4122 cos (x c ; A Aii)
— qe~(b/2a)x % — ;ﬁz sin (x % — 41;22> .

It is quickly verified that the cosine terms cancel out when inserting the derivatives into
the differential equation. We will look at the remaining terms and see that:

b2 b2 c—A b2 c—A b2
v . A (b/2a)x o; v _
<c + a( 2)) (e sin (x 2)) = Afy.

To ensure that f) are indeed eigenvectors of A with eigenvalues A we must show that
fao € X and that f} € X so that f), € D(A). We estimate f) by using the well-known fact
that the sine function can be estimated from above by the exponential function, hence

a w"]

corlia [V b e

As the last term in the exponent is smaller than zero, also [fa(x)| — 0 as x — +o0, hence
fa € L?([0,00),C) = X. Similarly it can be verified that f} € X:

2 — 2
fa(x) :f?e_(b/za)X sin (x A b)

c—A b2

fa(x)] < e (b/2a)% exp [

a 4q2
b c—A b2 c—A b2
_ Zo—(b/2a)x, [ ¥ n_F
ae a 4a2 °° <X a 4a2>
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The first and third term of the right hand side go to zero as x — oo by a similar argument
as above which leaves us with the middle term. We use the fact that cos(-) < 1 and obtain:

I3 (x)] < [\)E [_\/TJF \/‘}\_ <C_ Zi) m o—(b/2a)x
] b? b2 | _(b/2a)x
SERCG)
L2 0

—(b/2a)x

=—-—e¢

2a -

as x — +o00.
Choose an ¢ € X’ = X and A € U, we define F(A) as required by theorem [3.11}

Fo(A) = (b, Fa) = Jcp(x)e—“’/zfl)x sin (x coA b22> dx. (4.6)

a 4a

We rename the first part of the integrant in [4.6]

W(x) = {e“’/ 200%¢(x) ifx >0,

0 if x <0,
which yields
, c—A b2
Fe(A) = le(x) sin (x . 4a2> dx
Using the identity:
. eix _ efix
sin(x) = 7
we obtain
1 ixy/eA b2 —ixy/eA b2
Fo(A) = 7 th(x)e a a2 dx—Jlb(x)e a e dx| . 4.7)

This is equivalent to writing Fy, in terms of the Fourier transform P of P:

1 - c—A b2 - c—A b2
F¢(7\):21[11)<— a _émz>_lb< a —4a2>]- (4.8)

The integrals in 4.7 converge absolutely and the square root is analytic for A € U. Hence,
F¢ (A) depends analytically on A € U. Assume that Fy, vanishes on the whole set U then
by analycity we can see from {4.8|that

() =P(—wn) forallpeR,

Consequently, 1 is an even function which implies that also 1 is even, since the Fourier
transform is even if and only if the function is even (see e.g. [Vrell} p. 167]). As{ =0 on
the negative half-line, \p must vanish everywhere, implying that ¢ = 0.

This satisfies the criteria by Desch, Schappacher and Webb (theorem [3.11) and infers that
the semigroup generated by A is indeed chaotic.
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4.4 Outlook

We have shown in the previous section that equation[4.5has a chaotic solution semigroup.
Furthermore, we know that the equations4.1|and [f.2] have a stable solution semigroup. It
would be interesting to consider the case of coupling these equations on their boundary
on the y-axis and mirroring equation[4.2on the y-axis (the case[4.1]is included by allowing
e = 0). This would lead to the following problem:

wi(x, 1) = dwyx (X, 1) + ew(x, 1) on [—1,0] x [0, c0)
U (X, 1) = auex (X, 1) + by (x, t) + cu(x, t) on [0, co) x [0, c0)
w(—1,t) =0
w(0,t) = u(0,1t)
wx(0,t) = ux(0,t)

Similarly to our examples, we rewrite this problem in terms of operators:

Arf=f" D(A7) = {f € W52([0,0),C)}
Arzg=g" D(Az) ={g € W»2([-1,0],C) | g(—1) = 0}
Byf =f' D(By) = {f € W"2([0,00),C)}

This would lead to the coupled operator A(f, g) = (aA;+bB1+cl, dA;+el) which domain
would be D(A) = {W>?2([0, 00),C) ® W>?([-1,0],C) | g(—1) = 0;f(0) = g(0);f'(0) =
g’(0)}. Similar as in the last section, one would be interested in the point spectrum of
the operator A which would lead to the eigenvalue problem Af, = Af,, respectively
Agx = Agx keeping the boundary conditions as defined above:

dgy + egr = Agx x € [-1,0] (4.9)
afy 4 bfy + cfy = Afy x € [0, c0). (4.10)

Solving this system of equations would lead to an equation for f with parameters
a,b,c,d, e, A. The solution of these differential equation can be found in annex 2. Simi-
larly as in chapter 4.3 one would need to verify that indeed f” € L?. We assume that this
would lead to conditions for the parameters under which f” € L2 holds. In that case, one
could prove that the coupled operator will indeed generate a chaotic semigroup.



Annex 1: Review functional analysis,
complex analysis and operator theory

In this chapter, we will gather some definitions and results from functional analysis and
operator theory which will be used in the main part of this thesis.

A 1 (Elementary definitions). Let X,Y be Banach spaces.

o A compact operator T maps any bounded subset of a X to a relatively compact set in Y.

o A densely defined linear operator T is a linear operator that is defined on a dense linear
subspace D(T) of X and takes values in Y: D(T) C X — Y.

A 2. Let T be a bounded linear operator on a Banach space X and let X' be its dual space. A family
of operators (T; )ic1 C L(X) converges to T € L(X) if and only if:

o ||T(t)—T|| — 0 (uniform operator topology)

o || T(t)x —Tx|| = 0Vx e X (strong operator topology, SOT)

o [(T(t)x —Tx,x")| = 0Vx e X,x" € X" (weak operator topology, WOT)

A 3 (Uniform boundedness principle). Let K be a subset of £L(X). Then the following properties
are equivalent

(1) Kis bounded for the SOT, i.e. sup | T(x)|| < oo forallx € Xand T € K
(2) Kis uniformly bounded, i.e. sup ||T|| < oo forall T € K

For a proof, see e.g [Werl8, p. 157].

A 4. Let X,Y be a Banach space, T € L(X,Y) and (Ty.) C L(X,Y) be sequences bounded in norm.
Then the following statements are equivalent [BKR17, p. 333].

(1) Tix — Tx for all x € X (Convergence in SOT).

(2) There is a dense subspace D C X so that for all x € D we have pointwise convergence
Tex — Txin X.

(3) For every compact set K C X and all x € K we have uniform convergence Tyyx — Tx in X.

A 5 (Compact sets in Banach spaces). Let X be a Banach space and F be a function from a
compact set K C R into £(X). Then the following assertions are equivalent.

(1) Fis continuous for the SOT, i.e. K 3 t — F(t)x € X are continuous for every x € X.

(2) Fis uniformly bounded on K and the maps K 3 t — F(t)x € X are continuous for all x in
some dense D C X.
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(3) Fis continuous for the topology of uniform convergence on compact subsets of X, i.e.
Kx C>(t,x) — Ft)x e X
is uniformly continuous for every compact set C in X.
For a proof see [ENOO, p. 37].

A 6 (Closed graph theorem). Let X and Y be Banach spaces. If T € L£(X,Y) and closed then T
is continuous.

For a proof, see e.g [Werl8, p. 174].

A 7 (Hahn Banach). Let X be a normed vector space and U a linear subspace of X. Then for each
linear functional uw : U — K there exists a continuous linear functional x : X — K such that
x|y, = wand x| = [l

See e.g. [Werl8| p. 109].

A 8 (Riesz-Fréchet representation theorem). Let H be a Hilbert space and let H' denote its dual
space. For each continuous functional ¢ € H’ exists exactly oney € H such that d(x) = (x,y)
for all x € H. Furthermore, |[y||n = ||||n--

See e.g. [Werl8, p. 246].

A 9 (Identity theorem for analytic functions). Let f : D — C be an analytic function on a
region D. Suppose that f(zy) = 0 for a sequence{zn} € D where z, — z € D, i.e. it has a cluster
point. Then f is identically zero in D.

For a proof see e.g. [Sim15, p. 54].



Annex 2: Solution to the eigenvalue
problem in chapter 4.4

The solution for equation of f.9]is:
g)\(x) = C1 ex\/g + Cze_x\/g
if A — e > 0. The boundary condition g(—1) = 0 yields
A—e
C] = —Cze<2 d >)

hence

We note that g(0) = C; (_JZW) + ]> and g’(0) = C; < )‘de> (—e<2 A%de> — 1>‘

Assuming A — e < 0 we obtain

—A - A
gy\(x):Qcos(x ed )—i—Czsin(x ed )

In that case, the boundary condition g(—1) = 0 yields

which leads to

gralx) = Cz [—tan (— e;A) cos (x 657\>+sin (x eg}\>],and
QQ(X)=C2< e—A) [tan(— e_)\>sin<x e_}\>—|—cos<x e_)\>].
d d a 3

We note that §,(0) = —C; tan <— e?‘) and §5(0) = C, ( e?‘).
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Next, we look at equation .10} The general solution is

— i_C*A _ _ i_cf?\
f)\(x) _ C3e( b/2a+ Tal < >x+ C4e( b/2a vy < )x
. b2 c—A . . . . .
if ( a2 A ) > 0. The first derivative is:
b2 —A —b/2a+y/ 25— )x
fa(x) =Cs | —b/2a+ R . e< 4a? >
4q? a
2 — —b/2a—y/ b5 A
+Co [ —bja— /22 _c=A e< /e Vi >X.
4q2 a
Ifx = Othenf)(0) = C3+Csand f}(0) = C3 (-b/za+ Vi — C;A>+c4 (—b/Za— P C;A)

c—A
a

~ — 2 . 2
f}\(X) = Cge(*b/ZG)XCOS <X c—A _ b) + C4e(*b/za)xsin (X c—A _ b) .

Assuming (% — ) < 0, the general solution of |4.10|becomes

a 4q2

The first derivative is

s b c—A b? c—A b? _ , c—A b?
f&z—CgRe( b/2‘1)"Cos<x ¥ —4(12>—C3< . —w> el bﬁa}"sm(x T i

_ 2
— C42%e(_b/za)x sin (x A b) + Cy4

a 4a?

We find that f3(0) = C3 and f4(0) = —C3% +Cy < c—A _ b2>



List of symbols

|- norm
D(A) domain of A
Im imaginary part
L(X) set of bounded linear operators on X
LP(Q)  Lebesgue space over Q
R(A\,A) resolvent,ie. (A—A)""
ran(A) range of A

Re real part
p(A) resolvent set of A
o(A) spectrum of A
op(A)  point spectrum of A
T adjoint operator of T

WKP(Q) Sobolev space, i.e. subset of functions f € LP(Q) such that f and its
mixed partial weak derivatives up to the order k are in LP

X’ dual space of X

Xp set of periodic points in X
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