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Abstract

Quantum graphs are metric graphs that are equipped with a differential operator acting on the
edges of the graph, alongside with a set of meaningful vertex conditions. Structures like these often
arise as simplified models in mathematical physics when considering the propagation of waves in
wire-like configurations. From the various different kinds of quantum graphs, in this work, only
two types are being considered. The focus is set upon equilateral finite quantum graphs equipped
with the negative second derivative as their differential operator. For the vertex conditions it will
be distinguished between the natural Kirchhoff conditions on one hand, and the so-called Anti-
Kirchhoff conditions on the other. Both types of quantum graphs will be analyzed with respect
to the spectrum of the associated differential operator. Since the two vertex conditions can be
considered to be dual to each other, one might wonder if and how the spectra of the respective
operators are related. The answer will be presented in three steps. At first a qualitative description
for both spectra is derived, which will culminate in the main intermediate result stating that both
spectra are discrete subsets of the nonnegative real numbers. As a second step a quantitative
spectral analysis is conducted, taking into account the underlying graph structure. Finally, as the
third and last step, the obtained results will be used to compare both of the spectra, and illustrate
this comparison by means of four generic quantum graphs with different adjacency properties.



1 Introduction

This work presents a small excerpt from the spectral theory of differential operators associated
with so-called quantum graphs. The notion of a quantum graph refers to a graph-like structure of
finitely or infinitely many vertices, connected by edges which are identified with one dimensional
intervals. The quantum graph transcends this metric substructure by being additionally equipped
with a differential operator that acts on a direct sum of function spaces each of which is defined
on one of the edge-intervals of the graph. Finally, the communication between functions acting on
adjacent edges is controlled by a set of vertex conditions. These conditions, which are the analogous
notions to the boundary conditions in boundary value problems of ordinary or partial differential
equations, state constraints for edge-functions whose domain overlaps at common vertices.

Structures like quantum graphs have appeared in scientific works for the first time in the
1930s in the context of chemistry where they were used to model the motion of electrons between
atoms, see for example [Pau36]. Since then numerous other application in various research areas
like physics, chemistry, biology, engineering and pure mathematics have emerged - and are still
emerging - making the respective literature on quantum graphs immensely rich. We refer to the
survey paper [Kuc02] which provides a detailed overview of different applications with emphasis
on spectral problems and to [Kuc04] which contains over 700 references.

As it has been stated above - and as one would expect when confronted with the overwhelming
amount of research articles in this field - we will only treat a small subset of possible types of
quantum graphs here. The focus will be set on equilateral and finite quantum graphs, with the
standard Laplacian acting as a differential operator, subjected to either Kirchhoff or Anti-Kirchhoff
conditions. The term equilateral refers to the length of the edges of the quantum graphs, stating
that we assume them all to be of the same length. Also we will only consider graphs with finitely
many vertices, and hence finitely many edges. By these assumptions we omit any effects coming
from the varying edge lengths in the graph and instead emphasize the pure adjacency structure.
Also we do not include issues arising from graphs with infinitely many edges. The standard
Laplacian, that is the negative second derivative acting on each edge as on a conventional interval,
is the simplest elliptic differential operator. More general differential operators like the Schrödinger
or magnetic Schrödinger operator will not be part of the discussion. Finally a word on the vertex
conditions. The natural Kirchhoff conditions, sometimes also called δ-type or even Neumann-
conditions, demand continuity of the edge-functions whose domains overlap at a shared vertex
combined with a so-called flow conditions stating that the outgoing derivatives at each edge should
sum up to zero. The Anti-Kirchhoff conditions, also called δ′-type conditions, are much less
common than the Kirchhoff ones. They are in some respect dual to the aforementioned ones, since
they flip the conditions between the derivatives and values resulting in a continuity-condition for
the derivatives and a “flow”-condition for the function values at the vertices.

We will analyze the spectra of the operators associated with these two types of quantum graphs.
Since both types only differ in their vertex conditions, which are - as mentioned above - in some
sense dual, and hence related to each other, one might wonder if this relationship will also be
reflected in the operator spectra. To answer this question we will take a three-step approach. As
our first step we will analyze the spectrum of both graphs qualitatively. Our results will show that
both spectra are real, nonnegative and discrete. On our way to this intermediate result we will
need several results from the theory of unbounded linear operators on Hilbert spaces including the
respective spectral theory, which will be provided in Section 2. We are going to use these results
to show that both operators associated with the considered quantum graphs are self-adjoint and
nonnegative. For the discreteness of the spectrum we will utilize one of the Sobolev-embedding
theorems showing that the resolvents of the operators are compact. All these results are given
in Section 3.2.1. As the second step we will perform a quantitative analysis of the spectra in
Section 3.2.2. For that purpose we will apply the so-called adjacency calculus introduced by
von Below in [vB84], in which we will transform the eigenvalue-problem to an equivalent matrix
eigenvalue-problem. As a third and last step we will use our results from the previous steps to
compare the spectra, and illustrate the results for four generic examples, including some plots for
the corresponding eigenfunctions. This final step is presented in Section 3.2.4 and 3.2.5.

2



2 Foundations

2.1 Spectral theory of unbounded operators

In this section, as in the thesis in general, we only consider linear operators on complex Hilbert
spaces, meaning that all operators in the following are of the same type T : H ⊃ dom(T ) → H
with H being a complex Hilbert space.

2.1.1 First notions and the Spectral Mapping Theorem

In operator theory one generally distinguishes between bounded and unbounded linear operators.
While in the first case we can always find a constant M > 0 such that ‖Tx‖ ≤M‖x‖ for all x ∈ H,
such a constant does not exist in the unbounded case. Typical representatives for the unbounded
kind are differential operators, which will also play the central role in this work. The notion of an
unbounded linear operator is introduced in the following frame, cf. [Wer11, Definition VII.2.1].

Definition 2.1 (Linear Operator). A linear mapping T : H ⊃ dom(T ) → H whose domain
dom(T ) is a subspace of H is called a (linear) operator. We say that T is densely defined if
dom(T ) = H. An operator S : H ⊃ dom(S)→ H is called an extension of T if dom(T ) ⊂ dom(S)
and Sx = Tx for all x ∈ dom(T ). In this case we write T ⊂ S.

Since all operators in this work are linear, we will usually drop this specification in the following
and simply refer to them as operators. Although the above definition also includes bounded
operators it is usually introduced in the context of unbounded operators, since we normally have
dom(T ) = H in the bounded case. In other words: for an unbounded operator T one frequently
has dom(T ) $ H which motivates Definition 2.1.

The goal of the subsequent considerations is to give a short introduction in the spectral theory of
unbounded operators, aiming at results which are important in the framework of spectral analyses
of differential operators on compact graphs. Main references have been [Wer11], [AU10], [Bre10],
[EN99] and [Are]. More specific citations will be given whenever we refer to important theorems
or definitions from these sources.

Since we want to discuss aspects of spectral theory, it makes sense to start with the central
notion of this field, that is the spectrum of an operator, alongside with its counterpart, the resolvent
set, cf. [Wer11, Definition VII.2.14].

Definition 2.2 (Spectrum and resolvent set). Let T : H ⊃ dom(T ) → H, then we define the
resolvent set ρ(T ) and the spectrum σ(T ) of T as

(i) ρ(T ) := {λ ∈ C : (λ− T ) : dom(T )→ H is bijective and (λ− T )−1 ∈ L(H)}

(ii) σ(T ) := C \ ρ(T ).

As customary, we refer with L(H) to the set of bounded linear operators on H. Essential for
the definition of the spectrum is that the operator (λ−T )−1 is not only exists, but that this inverse
is additionally bounded.

We see that an element of ρ(T ) is always associated with a bounded linear operator, which
leads to the following definition, see [Wer11, Definition VII.2.14].

Definition 2.3 (Resolvent operator). Let T : H ⊃ dom(T ) → H. If λ ∈ ρ(T ) we define the
resolvent operator of T at λ as R(λ, T ) : H → dom(T ) ⊂ H as

R(λ, T ) := (λ− T )−1.

In the bounded case, that is T ∈ L(H), we know that σ(T ) is a nonempty, compact set
in the complex plane (see Proposition A.4). This is a result arising from bounded operators
being continuous. Unbounded operators, however, are not continuous, which results in σ(T ) not
necessarily being compact. A somewhat weaker notion than continuity, which takes its place in the
spectral theory of unbounded operators, is closedness. The importance of this concept is illustrated
by the result that we have σ(T ) = C whenever T is not closed [Wer11, p. 354]. In the following
we therefore usually assume that the considered operators are closed.
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The elements of the spectrum can be categorized according to the properties of λ − T and
(λ−T )−1 respectively. One important group are the so-called eigenvalues, which are the elements
of the point spectrum, introduced by the following definition, cf. [EN99, Definition 1.6].

Definition 2.4 (Point spectrum). Let T : H ⊃ dom(T )→ H be closed. If (λ− T ) : dom(T )→ H
is not injective for some λ ∈ C, we call λ an eigenvalue of T . We define the point spectrum σp(T )
of T as the set of all its eigenvalues, hence

σp(T ) := {λ ∈ C : (λ− T ) is not injective}.

The resolvent operators associated with the elements of the spectrum σ(T ) are bounded oper-
ators. We can hence apply classic results from spectral theory of bounded operators. This usually
makes it easier to treat the spectra of the resolvent operators than the spectrum of the considered
unbounded operator T . Fortunately, it turns out that both spectra are related to each other. This
is the content of the following important result, which can be found in [EN99, Theorem 1.13].

Theorem 2.5 (Spectral Mapping Theorem). Let T : H ⊃ dom(T ) → H be closed with ρ(T ) 6= ∅
and λ ∈ ρ(T ). Then

σ(R(λ, T )) \ {0} = (λ− σ(T ))−1 := {(λ− µ)−1 ∈ C : µ ∈ σ(T )}
σp(R(λ, T )) \ {0} = (λ− σp(T ))−1 := {(λ− µ)−1 ∈ C : µ ∈ σp(T )}.

Proof. Let µ 6= 0 and λ ∈ ρ(T ), then we obtain

(µ−R(λ, T ))x = µ(λ− µ−1 − T )R(λ, T )x for all x ∈ H
= µR(λ, T )(λ− µ−1 − T )x for all x ∈ dom(T ).

This implies the two identities

ker(µ−R(λ, T )) = ker(λ− µ−1 − T )

ran(µ−R(λ, T )) = ran(λ− µ−1 − T )

from which we conclude that µ̃ ∈ σ(R(λ, T )) if and only if λ− µ̃−1 ∈ σ(T ). When we only consider
the first identity we see that the same also holds for the point spectrum. If we now set µ := λ−µ̃−1,
hence µ̃ = (λ− µ)−1 we arrive at the assertion.

The Spectral Mapping Theorem allows us to analyze the spectrum of an operator by using
the spectral properties of the resolvent operators. A specific case we are interested in, is when
an unbounded operator has a compact resolvent for some λ ∈ ρ(T ). In this case it follows that
R(λ, T ) is compact for all λ ∈ ρ(T ). This is an immediate consequence from the resolvent identity
(Proposition A.8) and the ideal property of compact operators in L(H), i.e., for K ∈ K(H) (where
K(H) denotes the set of compact operators on H) and S ∈ L(H) it follows KS,SK ∈ K(H).
Consequently it makes sense to introduce the following definition, cf. [Are, Definition 1.3.1].

Definition 2.6 (Operator with compact resolvent). An operator T : H ⊃ dom(T ) → H with
ρ(T ) 6= ∅ is said to have compact resolvent if there exists λ ∈ ρ(T ) such that R(λ, T ) is compact.

The next lemma provides us with a criterion to check whether an operator has compact resolvent
or not, which is quite useful for our applications, cf. [Are, p. 8].

Lemma 2.7 (Criterion for compact resolvent). Let T : H ⊃ dom(T ) → H be an operator with
ρ(T ) 6= ∅. Then T has compact resolvent if and only if the embedding (dom(T ), ‖ · ‖T ) ↪→ H, where
‖ · ‖T denotes the graph norm, is compact.

Proof. First, assume that T has compact resolvent, and consider λ ∈ ρ(T ) 6= ∅. Recalling that
T : (dom(T ), ‖·‖T )→ H is continuous, we conclude that (λ−T )−1(λ−T ) : (dom(T ), ‖·‖T )→ H is
compact as the composition of a continuous and a compact operator, hence (dom(T ), ‖ · ‖T ) ↪→ H
is compact. For the converse implication assume that (dom(T ), ‖ · ‖T ) ↪→ H is compact, which
we can express by saying that the injection i : (dom(T ), ‖ · ‖T ) → H is compact. By the closed
graph theorem (λ−T )−1 : H → (dom(T ), ‖ · ‖T ) is continuous, implying that i(λ−T )−1 : H → H
is compact as the composition of a continuous and a compact operator. Hence T has compact
resolvent, which concludes the proof.
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Using the Spectral Mapping Theorem 2.5 and the spectral properties of compact operators,
see Proposition A.5, we obtain a spectral classification for (unbounded) operators with compact
resolvent, see [Are, Prop. 1.3.3].

Corollary 2.8 (Spectrum of operators with compact resolvent). Let T : H ⊃ dom(T )→ H be an
operator with compact resolvent. Then the following holds.

(i) T has a pure point spectrum, that is σ(T ) = σp(T ).

(ii) The spectrum σ(T ) is either finite or the spectrum can be expressed as

σ(T ) = {λn ∈ C : n ∈ N} with lim |λn| =∞.

(iii) All eigenvalues have finite multiplicity, that is dim ker(λ− T ) <∞ for all λ ∈ C.

2.1.2 The spectrum of self-adjoint operators

From now on we will focus our attention on self-adjoint operators, which is justified by the fact,
that all differential operators associated with compact quantum graphs we will encounter later,
turn out to be self-adjoint. We will begin with introducing the definition of self-adjointness in the
unbounded case, developing criteria for this property, and finally analyze the spectra of self-adjoint
unbounded operators.

A property that is closely related to self-adjointness is symmetry, which will be formally intro-
duced in the next definition, cf. [Wer11, Definition VII.2.2].

Definition 2.9 (Symmetric operator). An operator T : H ⊃ dom(T ) → H is called symmetric
if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ dom(T ). If additionally 〈Tx, x〉 ≥ 0 holds, we say that T is
nonnegative.

Note that the above definition regarding nonnegative operators makes sense, since for symmetric
T one always has 〈Tx, x〉 ∈ R, as shown in Lemma 2.10.

An interesting property of symmetric operators, which we will need later, is given by the next
auxiliary result, see [Wer11, Lemma VII.2.7].

Lemma 2.10. Let T : H ⊃ dom(T )→ H be symmetric. Then (±i− T ) : dom(T )→ ran(±i− T )
is bijective and (±i− T )−1 : ran(±i− T )→ dom(T ) is bounded.

Proof. The symmetry of T implies 〈Tx, x〉 ∈ R for all x ∈ dom(T ). Indeed, recalling that for all
x, y ∈ H we have 〈x, y〉 = 〈y, x〉, it follows 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉 and hence 〈Tx, x〉 ∈ R.
Consequently we have Re〈Tx, ix〉 = 0 for all x ∈ H. Using this result we compute

‖(±i− T )x‖2 = ‖Tx‖2 + ‖x‖2 ∓ 2Re〈Tx, ix〉
= ‖Tx‖2 + ‖x‖2 ≥ ‖x‖2

which shows that ker(±i−T ) = {0}. This implies that (±i−T ) : dom(T )→ H is injective and that
(±i−T ) : dom(T )→ ran(±i−T ) is bijective. We conclude that (±i−T )−1 : ran(±i−T )→ dom(T )
exists. Finally we see from

‖x‖ = ‖(±i− T )(±i− T )−1x‖ ≥ ‖(±i− T )−1x‖

that (±i− T )−1 : ran(±i− T )→ dom(T ) is also bounded, which concludes the proof.

An operator is called self-adjoint when it is identical with its so-called adjoint operator. The
notion of the adjoint operator will be introduced below, see for example [Wer11, Definition VII.2.3].

Definition 2.11 (Adjoint operator). Let T : H ⊃ dom(T ) → H be densely defined. The adjoint
operator T ∗ : H ⊃ dom(T ∗)→ H is defined by

〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ dom(T ), y ∈ dom(T ∗)

with the domain dom(T ∗) := {y ∈ H : ∃z ∈ H with 〈Tx, y〉 = 〈x, z〉 for all x ∈ dom(T )}. In the
case T = T ∗ we say that T is self-adjoint.
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Note that, according to the above definition, we can only discuss self-adjointness of an operator
if it is densely defined. Consequently, whenever we assume self-adjointness of an operator, it implies
that this operator is densely defined.

It is worth noting, that in the bounded case, self-adjointness and symmetry are identical con-
cepts. This is the assertion of the Hellinger-Toeplitz Theorem, cf. [Wer11, Theorem V.5.5]. From
this perspective we can understand self-adjointness, as well as closedness of an operator, as con-
cepts motivated by the theory of unbounded operators. We see, an unbounded densely defined
operator that is symmetric is not necessarily self-adjoint (we only have T ⊂ T ∗). But a self-adjoint
operator is always symmetric.

The first result concerning the spectrum of a self-adjoint operator T , we are going to show,
is that σ(T ) 6= ∅. This is clear whenever T is bounded, since σ(T ) 6= ∅ for all T ∈ L(H), see
Proposition A.4. But in the general unbounded case, that is when we are not assuming self-
adjointness, σ(T ) = ∅ is possible [Wer11, p. 354]. However, if we do assume self-adjointness, the
spectrum is nonempty also in the unbounded case.

Theorem 2.12 (Nonempty spectrum). The spectrum of any self-adjoint operator T is nonempty.

Proof. As we mentioned before, in the bounded case this result follows from Proposition A.4.
Thus, let T be an unbounded self-adjoint operator. Assume that the spectrum is empty, that
is σ(T ) = ∅, then ρ(T ) = C which implies in particular 0 ∈ ρ(T ). Consequently it follows that
R(0, T ) = (0− T )−1 = −T−1 and hence T−1 exists and is bounded. Assume C 3 µ 6= 0 then

µ− T−1 = (µT − Id)T−1

= −µ(µ−1 − T )T−1.

Since 0, µ−1 ∈ ρ(T ) = C it follows the right hand side is invertible. We compute its inverse as

(−µ(µ−1 − T )T−1)−1 = −µ−1T (µ−1 − T )−1

= µ−1((µ−1 − T )− µ−1)(µ−1 − T )−1

= µ−1(Id− µ−1(µ−1 − T )−1)

which is bounded since µ−1 ∈ ρ(T ) = C. This shows that also µ− T−1 is invertible with bounded
inverse, which in turn implies that σ(T−1) = {0} since we just showed that µ ∈ ρ(T−1) for
all µ 6= 0 and according to Proposition A.4 the spectrum of a bounded operator is not empty,
hence σ(T−1) 6= ∅. But since T−1 is also self-adjoint (see Proposition A.7) this result shows by
Proposition A.6 that ‖T−1‖ = 0 which is equivalent with the absurd result T−1 = 0. We hence
conclude that σ(T ) 6= ∅.

The next spectral property of a self-adjoint unbounded operator T we want to show is that
σ(T ) ⊂ R. This result is presented in Theorem 2.15. Before we get there, we need some preparation.
We begin with some relations between T and its adjoint T ∗, cf. [Wer11, Theorem VII.2.4,VII.2.5].

Lemma 2.13. Let T : H ⊃ dom(T )→ H be densely defined, then

(i) T ∗ is closed.

(ii) ker(∓i− T ∗) = ran(±i− T )⊥.

(iii) If T is closed and symmetric, then ran(±i− T ) is closed.

Proof. (i) Since T is densely defined, its adjoint operator T ∗ is well defined. Consider the sequence
(yn) ⊂ dom(T ∗) with yn → y ∈ H and T ∗yn → z ∈ H. Using the continuity of the scalar product
we obtain

〈Tx, y〉 = lim〈Tx, yn〉 = lim〈x, T ∗yn〉 = 〈x, z〉

which shows that y ∈ dom(T ∗) with T ∗y = z, in other words T ∗ is closed.
(ii) At first we show ker(∓i − T ∗) ⊃ ran(±i − T )⊥. To that end let y ∈ ran(±i − T )⊥,

then we have 〈(±i − T )z, y〉 = 0 for all z ∈ dom(T ) = dom(±i − T ). We can hence write
z 7→ 〈(±i − T )z, y〉 = 〈z, 0〉 from which we see that y ∈ dom(T ∗) = dom(∓i − T ∗) = (±i − T )∗
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with 〈z, (∓i− T ∗)y〉 = 0, thus (∓i− T ∗)y = 0 which is y ∈ ker(∓iT ∗). If we read these arguments
in reverse we obtain the proof for the remaining inclusion ker(∓i− T ∗) ⊂ ran(±i− T )⊥.

(iii) Since T is symmetric we can use Lemma 2.10 to show that (±i−T ) : dom(T )→ ran(±i−T )
is bijective, hence invertible, and (±i−T )−1 : ran(±i−T )→ dom(T ) is bounded, that is continuous.
Now consider the sequence (xn) ⊂ dom(T ) with (±i−T )xn → y ∈ ran(±i− T ). Since ((±i−T )xn)
is convergent it is a Cauchy sequence, from which we conclude with the continuity of (±i− T )−1

that (xn) is a Cauchy sequence in dom(T ). This implies that there exists a limit x := limxn ∈ H
and that Txn → y ∓ ix. Since T is closed we have x ∈ dom(T ) and Tx = y ∓ ix and hence
y = (±i − T )x ∈ ran(±i − T ). This shows ran(±i− T ) = ran(±i − T ), i.e., ran(±i − T ) is
closed.

We will use these rather technical results to obtain criteria for the self-adjointness of an operator,
that are more convenient than the original Definition 2.11. We refer to [Wer11, Theorem VII.2.9].

Lemma 2.14 (Criteria for self-adjointness). Let T : H ⊃ dom(T )→ H be symmetric and densely
defined, then the following assertions are equivalent.

(i) T is self-adjoint.

(ii) T is closed and ker(±i− T ∗) = {0}.

(iii) ran(±i− T ) = H.

Proof. (i) ⇒ (ii) From Lemma 2.13 (i) we know that T ∗ is closed, and since T is self-adjoint, that
is T = T ∗ we see that T is closed too. Using again Lemma 2.13 (i) we know that (±i − T ) :
dom(T ) → H is injective, hence ker(±i − T ) = {0} which implies ker(±i − T ∗) = {0} with the
self-adjointness of T .

(ii) ⇒ (iii) Since T is symmetric we can use the second part of Lemma 2.13 to conclude
ran(±i− T )⊥ = {0}. Since T is also assumed to be closed this result in combination with the last
part of Lemma 2.13 implies ran(±i− T ) = H.

(iii) ⇒ (i) Since T ⊂ T ∗, hence dom(T ) ⊂ dom(T ∗) we only have to show the inclusion
dom(T ∗) ⊂ dom(T ). In this case T would be a symmetric operator with dom(T ) = dom(T ∗),
which implies self-adjointness. Let y ∈ dom(T ∗) ⊂ H then according to (iii) we can find an
x ∈ dom(T ) = dom(±i − T ) such that (±i − T ∗)y = (±i − T )x. Because of T ⊂ T ∗ we arrive at
(±i− T ∗)y = (±i− T ∗)x, which implies y = x ∈ dom(T ) since (±i− T ∗) is injective according to
Lemma 2.13 and (iii). This shows dom(T ∗) ⊂ dom(T ) and concludes the proof.

This already brings us to our central result in this short subsection. With criterion (iii) from
Lemma 2.14, which is sometimes called the range condition, we are able to show that the spectrum
of a self-adjoint operator is real, cf. [Wer11, Theorem VII.2.16]

Theorem 2.15 (Spectrum of self-adjoint operator). Let T : H ⊃ dom(T ) → H be a densely
defined, symmetric operator. Then T is self-adjoint if and only if σ(T ) ⊂ R.

Proof. The idea of the proof is to show that any non-real z ∈ C is included in the resolvent set ρ(T ),
i.e., (z − T ) : dom(T ) → H is bijective and (z − T )−1 is bounded. To that end we pick λ, µ ∈ R
with µ 6= 0 such that z := λ + iµ ∈ C \ R, and consider the auxiliary operator S : dom(T ) → H
defined as

S :=
T

µ
− λ

µ
.

It is easy to check that S is symmetric, and that dom(S∗) = dom(T ∗) = dom(S), hence that S is
self-adjoint. This allows us to use Lemma 2.14 which leads to ran(i− S) = H. We conclude

H = ran(i− S) = ran(µ−1(λ+ iµ− T )) = ran(z − T )

which shows that (z − T ) : dom(T ) → H is surjective. To show that (z − T ) is also injective, we
note that z−T = µ(i−S). Since S is symmetric we can apply Lemma 2.10 to see that (i−S) and
hence (z − T ) is injective with (z − T )−1 : H → dom(T ) being bounded. Summarizing our results
we see that z ∈ ρ(T ) which implies σ(T ) ⊂ R. For the converse implication, let σ(T ) ⊂ R, hence
±i ∈ ρ(T ) which implies T ± i being bijective, hence ran(±i−T ) = H. This shows self-adjointness
of T by Proposition 2.14, and concludes the proof.
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We can further narrow down the spectrum of a self-adjoint operator when it is nonnegative,
see Definition 2.9. In this case the spectrum is nonnegative as well.

Lemma 2.16 (Nonnegative spectrum). Let T : H ⊃ dom(T )→ H be nonnegative and self-adjoint.
Then σ(T ) is contained in [0,∞) ⊂ R.

Proof. Since T is self-adjoint we already know that σ(T ) ⊂ R, see Theorem 2.15. Now assume
there exists a λ ∈ σ(T ) with λ < 0. Then by definition there is an 0 6= f ∈ H with Tf = λf . We
hence conclude

0 ≤ 〈Tf, f〉 = 〈λf, f〉 = λ‖f‖2H < 0

which is absurd. It follows λ ≥ 0 which is the assertion.

2.1.3 Symmetric forms associated with operators

Until this point we discussed the spectrum of self-adjoint operators with compact resolvent. With
these results we can characterize the spectrum of a given operator as soon as we identified it as
being self-adjoint and/or having compact resolvent. Regarding self-adjointness, we already came
up with a criterion which can be used to determine whether or not a given operator is self-adjoint
or not, that is Lemma 2.14. However, it turns out, that its applications might require some effort.

In this subsection we want to present an approach, based on [Are, Section 3.4], which often
makes it easier to check the operator properties. This approach is based on the idea, that a
certain type of operator can be associated with a unique bilinear form, which reflects the operator
properties, and is usually easier to analyze.

We begin by introducing a new kind of operator, cf. [Are, Definition 1.4.1].

Definition 2.17 (Dissipative operator). An operator T on H is called dissipative if

Re〈Tx, x〉 ≤ 0 for all x ∈ dom(T ).

In the symmetric case, we have 〈Tx, x〉 ∈ R, and can thus write 〈Tx, x〉 ≤ 0. With respect to
Definition 2.9 we could also call such an operator nonpositive.

It turns out that the spectra of dissipative operators have an interesting property described by
the next result, cf. [Are, Proposition 1.4.2].

Proposition 2.18. Let T : H ⊃ dom(T ) → H be a dissipative operator. Assume there exists
some λ ∈ C+ := {z ∈ C : Re(z) > 0} such that (λ − T ) is surjective. Then µ ∈ ρ(T ) with
‖R(µ, T )‖ ≤ Re(µ)−1 for all µ ∈ C+.

Proof. Let µ ∈ C+ such that (µ−T ) is surjective. Now consider x ∈ dom(T ) and y := (µ−T )x ∈ H,
then one obtains with the dissipativity of T and the Cauchy-Schwarz inequality

Re(µ)‖x‖2 = Re〈µx, x〉
= Re〈x, y〉+ Re〈Tx, x〉
≤ Re〈x, y〉
≤ ‖x‖‖y‖

hence Re(µ)‖x‖ ≤ ‖y‖. If additionally µ ∈ ρ(T ), that is µ ∈ C+ ∩ρ(T ) =: M then y = R(µ, T )−1x
and it follows ‖R(µ, T )‖ ≤ Re(µ)−1 as claimed. Since ρ(T ) and C+ are open, M is open too. Also
M is closed, which follows from Corollary A.10 and ‖R(µ, T )‖ ≤ Re(µ)−1. Since M is nonempty
and connected this shows that M = C+.

Dissipative operators are closely related to symmetric operators. This is expressed in the next
proposition, cf. [Are, Proposition 1.4.5].

Proposition 2.19. Let T : H ⊃ dom(T ) → H be an operator, then the following assertions are
equivalent.

(i) T is symmetric;
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(ii) 〈Tx, x〉 ∈ R for all x ∈ dom(T );

(iii) ±iT is dissipative.

Proof. It is easy to see that (ii) and (iii) are equivalent. Indeed, if 〈Tx, x〉 ∈ R ∀x ∈ dom(T )
it follows that Re〈±iTx, x〉 = Re(±i〈Tx, x〉) = 0 for all x ∈ dom(T ), which by Definition 2.17
shows dissipativity of ±iT . On the other hand if ±iT are dissipative and 〈Tx, x〉 = α + iβ for
some β ∈ R \ {0} then Re〈±iTx, x〉 = Re(±i〈Tx, x〉) = ∓β switches sign, hence β = 0 and thus
〈Tx, x〉 ∈ R for all x ∈ dom(T ).

It remains to show that (i) and (ii) are equivalent. We begin with (i)⇒(ii). If T is symmetric
then 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉 for all x ∈ dom(T ) where the second equality results from the
properties of the scalar product 〈·, ·〉, hence 〈Tx, x〉 ∈ R. To show (ii)⇒(i) we use the polarization
identity, cf. Proposition A.2. Note that due to the symmetry of T by setting s(x, y) := 〈Tx, y〉
we obtain a sesquilinear form with associated quadratic form q(x) := 〈Tx, x〉. Applying the
polarization identity gives us

〈Tx, y〉 =
1

4

3∑
k=0

ik〈T (x+ iky), x+ iky〉

=
1

4

3∑
k=0

ik〈T ((−i)kx+ y), (−i)kx+ y〉

= 〈Ty, x〉 = 〈x, Ty〉.

The last two results allow us to to characterize the spectrum of symmetric operators. Interest-
ingly, this type of operator only allows four possible forms, cf. [Are, Proposition 1.4.6].

Proposition 2.20. Let T : H ⊃ dom(T )→ H be a symmetric operator, then σ(T ) has one of the
following forms.

(i) σ(T ) = C

(ii) σ(T ) = {z ∈ C : Im(z) ≥ 0}

(iii) σ(T ) = {z ∈ C : Im(z) ≤ 0}

(iv) σ(T ) ⊂ R
Proof. Since T is symmetric, iT is dissipative according to Proposition 2.19. Now assume that
µ ∈ ρ(iT ) with Re(µ) > 0, then (µ − iT ) = i(−iµ − T ) is surjective, that is −iµ ∈ ρ(T ) with
Im(−iµ) < 0. Now we use Proposition 2.18 to see that ρ(T ) ⊂ {z ∈ C : Im(z) < 0}. Similar
arguments show that when Re(µ) < 0 it follows ρ(T ) ⊂ {z ∈ C : Im(z) > 0}. Considering all
combinations of these two cases, recalling that σ(T ) = C \ ρ(T ) we obtain the four possibilities
that are stated in the assertion.

We use this information on symmetric operators to deduce a criterion for dissipative and self-
adjoint operators, cf [Are, p. 13].

Proposition 2.21. A densely defined operator T : H ⊃ dom(T ) → H is dissipative and self-
adjoint if and only if the following conditions hold.

(i) T is symmetric;

(ii) 〈Tx, x〉 ≤ 0 for all x ∈ dom(T );

(iii) (Id− T ) is surjective.

Proof. If T is dissipative and self-adjoint, then T is especially symmetric, hence 〈Tx, x〉 ∈ R for all
x ∈ dom(T ) and due to dissipativity it follows 〈Tx, x〉 ≤ 0 ∀x ∈ dom(T ). Now assume 1 ∈ σ(T ),
that is Tx = x for some 0 6= x ∈ H, then 〈Tx, x〉 = 〈x, x〉 = ‖x‖2 > 0 which contradicts
dissipativity. Hence 1 ∈ ρ(T ) which implies that (Id − T ) is surjective. On the other hand, if (i),
(ii) and (iii) hold we refer to Proposition 2.20 to see that σ(T ) ⊂ R (note that 1 ∈ ρ(T )), which
according to Proposition 2.15 implies that T is self-adjoint. Finally dissipativity is given by (ii),
concluding the proof.
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We will use this criterion to develop the notion of a sesquilinear form that is associated with
a dissipative and self-adjoint operator. This will allow us to analyze the properties of the given
operator by analyzing its associated form.

We begin with introducing some vocabulary, cf. [Are, p. 40, 41].

Definition 2.22 (Sesquilinear form). Let V be a complex vector space, then a mapping of the kind
a : V × V → C is called a sesquilinear form on V if it satisfies the following conditions.

a(x1 + x2, y) = a(x1, y) + a(x2, y)

a(x, y1 + y2) = a(x, y1) + a(x, y2)

a(λx, y) = λa(x, y)

a(x, λy) = λa(x, y)

for all x, x1, x2, y, y1, y2 ∈ V and for all λ ∈ C. We say the form is symmetric if a(x, y) = a(y, x)
for all x, y ∈ V . If in the symmetric case additionally a(x, x) ≥ 0 for all x ∈ V we say that a is
positive. If V is even a normed space with norm ‖ · ‖V we call a sesquilinear form on V coercive,
if for some α > 0 we have Re a(x, x) ≥ α‖x‖2V for all x ∈ V .

Definition 2.23 (H-elliptic form). Let V,H be Hilbert spaces with V ↪→ H (cf. Definition A.14)
and let a : V × V → C be a continuous sesquilinear form. We say that a is H-elliptic if for some
w ∈ R the form aw : V × V → C defined by aw(x, y) := a(x, y) + w〈x, y〉H is coercive.

The form aw introduced in Definition 2.23 is in fact an equivalent scalar product on V , as it is
shown in the next lemma, cf. [Are, p. 41].

Lemma 2.24. Let V,H be Hilbert spaces with V ↪→ H and let a : V × V → C be a positive and
H-elliptic form. Then aw, as introduced in Definition 2.23, is an equivalent scalar product on V
for all w > 0.

Proof. Since a is a positive (and thus also a symmetric) sesquilinear form, it follows that aw, as a
sum of two scalar products on V , is a scalar product too. If we denote the norm induced by aw as
‖x‖w :=

√
aw(x, x) we have to show that there exist m,M > 0 such that m‖x‖V ≤ ‖x‖w ≤M‖x‖V

for all x ∈ V . But this is easy to see, since the first inequality is a direct consequence from aw
being coercive, while the second inequality follows from V ↪→ H (which means ‖x‖H ≤ c‖x‖V for
some c > 0).

We are now going the first step to associate a dissipative and self-adjoint operator with a
specific sesquilinear form. Instead of taking such an operator and deducing a form from it, we will
approach this matter from the other side. We will consider a specific sesquilinear form, to define
an associated operator, cf. [Are, Theorem 3.4.2].

Proposition 2.25. Let V,H be Hilbert spaces such that V is dense in H and V ↪→ H. Let
a : V × V → C be a positive, continuous and H-elliptic sesquilinear form. The operator A defined
below is self-adjoint and dissipative.

A : H ⊃ dom(A)→ H

dom(A) := {x ∈ V : ∃y ∈ H with a(x, z) = 〈y, z〉H ∀z ∈ V }
Ax := −y

Proof. Consider x, y ∈ dom(A), then by the definition of A and the positivity of a we find

〈Ax, y〉H = −a(x, y) = −a(y, x) = 〈Ay, x〉H = 〈x,Ay〉H

as well as 〈Ax, x〉H = −a(x, x) ≤ 0 showing that A is symmetric and dissipative. To prove
self-adjointness of A, referring to Proposition 2.21, it only remains to be shown that (Id − A) is
surjective. Recall, that according to Lemma 2.24 setting w = 1

a1(x, y) := a(x, y) + 〈x, y〉H

defines a scalar product on V which is equivalent to 〈·, ·〉V . Now let y ∈ H, then F (z) := 〈z, y〉H
defines a continuous linear form on V , for which by the Riesz-Frechet Theorem A.3 exists a unique
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x ∈ V such that a1(z, x) = 〈z, y〉H for all z ∈ V . Rearranging leads to a(x, z) = 〈y − x, z〉H for all
z ∈ V and thus Ax = x− y, showing that Id− T is surjective indeed.

Definition 2.26 (Associated operator). The operator A defined in Proposition 2.25 is called the
operator associated with a.

So far we deduced an operator A associated with a given continuous, positive and H-elliptic
sesquilinear form a. To justify the terminology we still have to show, that in this context the
associated operator A is well defined, that is we need to show existence and uniqueness. Before we
do that, we introduce the following terminology, cf. [Are, Definition 3.4.4].

Definition 2.27 (Closed positive form). Let V,H be Hilbert spaces such V is dense in H and
V ↪→ H. Moreover let a : V × V → C be a positive, continuous and H-elliptic sesquilinear form.
Then we call the pair (V, a) a closed positive form.

To show that every dissipative self-adjoint operator A can be associated with a unique closed
positive form (V, a) such that A is associated with a we have to use the spectral theorem, which is
given in Theorem A.11. It states that every dissipative self-adjoint operator is unitarily equivalent
to a simple multiplication operator. For the next result we refer to [Are, Theorem 3.4.5].

Proposition 2.28. Let H be a separable Hilbert space, and let A : H ⊃ dom(A)→ H be dissipative
and self-adjoint. Then there exists a unique closed positive form (V, a) on H such that A is
associated with a.

Proof. To show uniqueness, assume (V, a) be a closed positive form, such that A is the operator
associated with a. We equip V with the scalar product a1(x, y) := a(x, y) + 〈x, y〉H which is
equivalent to 〈x, y〉V as we showed in Lemma 2.24 and use this scalar product to show that
dom(A) is dense in V . To that end let y ∈ V such that a1(x, y) = 0 for all x ∈ dom(A). Using
Definition 2.26 it follows

a1(x, y) = 〈−Ax, y〉H + 〈x, y〉H
= 〈(Id−A)x, y)〉H = 0 for all x ∈ dom(A).

Since A is self-adjoint and dissipative, (Id− A) is surjective (see Proposition 2.21), which implies
y = 0, and thereby density of dom(A) in V . If now (W, ã) is another closed positive form such
that A is associated with ã, then dom(A) is dense in W and by Definition 2.26 it follows that both
equivalent norms given by√

ã1(x, x) :=
√
ã(x, x) + 〈x, x〉H =

√
‖Ax‖2H + ‖x‖2H for all x ∈ dom(A)√

a1(x, x) =
√
a(x, x) + 〈x, x〉H =

√
‖Ax‖2H + ‖x‖2H for all x ∈ dom(A)

are identical for all x ∈ dom(A) as well as both forms ã(x, y) = −〈Ax, y〉H = a(x, y) for all
x, y ∈ dom(A). By the density of dom(A) in V and the continuity of the forms a, ã, this shows
that a = ã and W = V , hence uniqueness of (V, a).

For the other half of the proof, we will only give a sketch, since in order to show the existence
of a closed positive form (V, a), we have to utilize the spectral theorem, that is Theorem A.11.
It allow us to assume that H is a measure space H = L2(Ω,Σ, µ) where we can express A by a
multiplication operator Af = mf with dom(A) = {f ∈ H : mf ∈ H} and a measurable function
m : Ω→ [0,∞). We are now going to explicitly define a closed positive form (V, a) such that A is
associated with a. To that end define V and its scalar product by

V := {f ∈ L2(Ω,Σ, µ) :

∫
Ω

m|f |2 dµ <∞}

〈f, g〉V :=

∫
Ω

fg(1 +m) dµ.

Now one can show that (V, 〈·, ·〉V ) is a Hilbert space that is densely embedded in H. To define the
form a such that A is associated with a consider

a(f, g) :=

∫
Ω

fgmdµ
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then (V, a) is a closed positive form such that A is associated with a.

Definition 2.29 (Associated form). Let H be a separable Hilbert space, and A : H ⊃ dom(A)→ H
be dissipative and self-adjoint. The according to Proposition 2.28 well defined closed positive form
(V, a) such that A is associated with a is called the form associated with A.

So far we can only deduce self-adjointness and dissipativity of an operator A from the form
(V, a) associated with it. The next result addresses a criterion how we can show that A has compact
resolvent by analyzing the associated form, cf. [Are, Theorem 3.4.7].

Proposition 2.30. Let (V, a) be a closed positive form on the Hilbert space H, and let A : H ⊃
dom(A)→ H be the operator associated with a. If V

c
↪→ H then A has compact resolvent.

Proof. According to Lemma 2.7 it suffices to show that (dom(A), ‖ · ‖A) is compactly embedded in
(H, ‖ · ‖). To that end, we note that (dom(A), ‖ · ‖A) ↪→ (V, ‖ · ‖V ) is continuous. This follows from
Lemma 2.24, since a1(x, x)1/2 is an equivalent norm on V . As (V, ‖ · ‖V ) ↪→ (H, ‖ · ‖) is compact,
also (dom(A), ‖ · ‖A) ↪→ (H, ‖ · ‖) is compact as the composition of a continuous and a compact
embedding.

2.2 Combinatorial graphs and related matrices

A compilation of notions and results from the theory of finite combinatorial graphs, alongside with
related theorems from linear algebra are presented below. The main sources for this section have
been [KB12, Section 8.4] and [vB85].

2.2.1 Combinatorial graphs

We will use the notation Γ = (V,E) for a given graph with the sets of vertices V and edges E both
of which we assume to be nonempty, i.e., V,E 6= ∅. We will confine our considerations to finite
graphs, allowing us to use the notation V = {v1, . . . , vn} and E = {e1, . . . , eN} with n,N ∈ N
denoting the number of vertices and edges respectively. We will call two vertices vi, vj ∈ V adjacent,
denoted as vi ∼ vj , if there exists an edge e ∈ E with e = {vi, vj}. In this context the following
index mapping will turn out to be convenient, cf. [vB85, p. 311].

Definition 2.31. Let Γ = (V,E) be a combinatorial graph with a given vertex- and edge-numbering
IV := {1, . . . , n} and IE := {1, . . . , N}. We define the index mapping s : IV × IV → IE as

s(i, j) :=

{
k if ek = {vi, vj}
1 else.

We will assign each edge e = {vi, vj} ∈ E a specific direction, classifying the two adjacent
vertices vi, vj into a start-vertex and an end-vertex. If vi is the start- and vj the end-vertex we
will denote for the directed edge e = (vi, vj). Additionally we will use the notation o(e) = vi and
t(e) = vj to refer to the start- and end-vertex of a given directed edge e = (vi, vj) respectively. As
customary we will denote the degree of a vertex v ∈ V with γv := |{e ∈ E : v ∈ E}| assuming that
γv > 0 for all v ∈ V . Moreover we will write Ev := {e ∈ E : v ∈ e} for the set of all edges e ∈ E
that contain the vertex v. Finally all graphs considered here will be assumed to be simple and
connected, i.e., containing neither multi-edges nor loops, and every two distinct vertices vi, vj ∈ V
can be connected by a path (cf. Definition B.10). We summarize our assumptions.

Assumption 2.32 (Combinatorial graph). The combinatorial graph Γ = (V,E) is assumed
to be nonempty, directed, connected, finite and simple. Additional conditions might be added.

2.2.2 Matrices associated with combinatorial graphs

The internal structure of a finite graph, regarding both the adjacency situation as well as the
orientation of the edges, can be conveniently described by the means of matrices. In this section
we will present the matrices we need to do so. We will encounter the so called adjacency matrix
A, the transition matrix Z, and the signed incidence matrix D.

We begin with the adjacency matrix. As the name suggests this matrix summarizes the adja-
cency structure of our graph, cf. [KB12, Definition 8.39].
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Definition 2.33 (Adjacency matrix). Let Γ = (V,E) be a graph satisfying Assumption 2.32 with
vertices V = {v1, v2, . . . , vn}. We define the adjacency matrix A(Γ) := (eij) ∈ {0, 1}n×n by

eij =

{
1 if vi ∼ vj
0 if vi � vj .

Most of the time we will just write A instead of A(Γ). Also we will sometimes write ev,w with
vertices v, w ∈ V for an element in A when we did not introduce a numbering of the vertices. The
next proposition shows two basic properties of the adjacency matrix A when we are considering
connected graphs, as we assumed it in Assumption 2.32, see [KB12, 8.42, 8.43].

Proposition 2.34. The adjacency matrix A(Γ) of a connected combinatorial graph Γ = (V,E)
satisfying Assumption 2.32 is symmetric and irreducible.

Proof. The symmetry of A is a direct consequence from the adjacency relation ∼ being symmetric,
that is vi ∼ vj if and only if vj ∼ vi. For the second part of the assertion assume that A is reducible
(see Definition B.2), that is, there exits a permutation matrix P ∈ Rn×n such that

PAPT =

(
A11 0
0 A22

)
.

with A11 ∈ Rr×r and A22 ∈ R(n−r)×(n−r) for some N 3 r < n where n = |V |. Here we used the
symmetry of A. But this implies that we can find disjoint V1, V2 ⊂ V with V1 ∪ V2 = V such that
v1 � v2 for all v1 ∈ V1 and v2 ∈ V2, that is Γ is not connected. This shows that A is irreducible.

The adjacency matrix will play an important role in the so called adjacency calculus discussed
in Section 3.2.2. In the same context we will also encounter the so called transition matrix Z, which
is derived from the adjacency matrix, and plays an important role in our quantitative analyses in
Section 3.2.2, cf. [vB85, p. 317].

Definition 2.35 (Transition matrix). Let Γ be a combinatorial graph satisfying Assumption 2.32
with adjacency matrix A. Using e := (1)n×1, we define the transition matrix Z ∈ {0, 1}n×n as

Z(Γ) := Diag(Ae)−1A.

Here, as customary, the Diag operator maps a vector v = (vi) ∈ Cn to a corresponding diagonal
matrix V = (vij) ∈ Cn×n with vii = vi for all i ∈ {1, . . . , n}.

We will now take a closer look on the properties of the transition matrix. As it has been said
before, we are mostly interested in information on the eigenvalues, cf. [vB85, p. 317] and [vB84].

Lemma 2.36. Let Γ be a graph satisfying Assumption 2.32 with adjacency matrix A. Then the
the transition matrix Z is irreducible and row-stochastic. Moreover Z has only real eigenvalues
µi, . . . , µn ∈ R which can sorted, taking into account their multiplicities, as

1 = µ1 > µ2 ≥ . . . ≥ µn ≥ −1. (1)

Furthermore, if µn = −1 then Γ is bipartite.

Proof. From Proposition 2.34 we know that A is irreducible, which by the Definition 2.35 of Z
shows that Z is irreducible as well. Since Z is derived from the adjacency matrix by dividing each
row by its row-sum, Z is obviously row-stochastic.

We will now show that all eigenvalues are indeed real. To that end we define the positive definite
matrix D := Diag(Ae) and the symmetric matrix W := D−1/2AD−1/2 where the exponent −1/2
applies on each diagonal element of D. Let now v ∈ Cn be an eigenvector of Z corresponding to
the eigenvalue µ, then we obtain with ṽ := D1/2v (again the exponent just applies on the diagonal)

Zv = µv ⇔ Av = µDv

⇔ AD−1/2D1/2v = µD1/2D1/2v

⇔ D−1/2AD−1/2ṽ = µṽ

⇔ Wṽ = µṽ
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hence σ(Z) = σ(W ). With the symmetry of W this shows that σ(Z) is real. Now using Proposition
B.4 we conclude that σ(Z) ∈ [−1, 1]. Additionally we know from the theorem of Perron-Frobenius
B.5 that the eigenvalue λ = 1 is simple, which in summary shows that (1) holds.

This brings us to the last part of the assertion. Assume that µn = −1 is an eigenvalue of
Z, then −1 is also an eigenvalue of the symmetric matrix W corresponding to some eigenvector
0 6= w̃ = D1/2w with Zw = −w. Since also 1 ∈ σ(Z) we know that 1 is an eigenvalue of W too,
corresponding to a strictly positive eigenvector ũ = D1/2u > 0 by the theorem of Perron-Frobenius.
Note that in this context Zu = u and hence u = e. Now, due to |w̃| = | − w̃| = |Ww̃| ≤ W |w̃|
(because W only contains positive entries) we find

ũT |w̃| ≤ ũTW |w̃| = (Wũ)T |w̃| = ũT |w̃|

which implies that W |w̃| = |w̃|. We conclude that w̃ has no zero elements since |w̃| is an eigenvector
corresponding to µ1 = 1 and by the theorem of Perron-Frobenius, which states |w̃| > 0. Due to
|w̃| = cũ for some c > 0 and w̃ 6= ũ > 0 (both correspond to different eigenvalues) we can assume
w̃ to have positive and negative elements. If we now recall from before that ũ := D1/2e with
e = (1)n×1 and w̃ := D1/2w we conclude that an eigenvector w = (wi) of Z corresponding to the
eigenvalue µn = −1 only contains ±1 elements due to |w| = ce with c > 0. If we sort the indices
of the wi in the subsets P and N , that is wi > 0 for all i ∈ P and wi < 0 for all i ∈ N we obtain
by considering Zw = −w and setting Z = (zij) that∑

j∈P
zij −

∑
j∈N

zij = 1 for all i ∈ N

∑
j∈P

zij −
∑
j∈N

zij = −1 for all i ∈ P.

This implies, since Z = (zij) is row-stochastic, that zij = eij = 0 for all (i, j) ∈ N × N on the
one hand and zij = eij = 0 for all (i, j) ∈ P × P on the other. Hence in P and N we found a
bipartition of V showing that Γ is bipartite.

So far we know, that whenever we find µn = 1 in the spectrum of Z(Γ) that Γ is bipartite. In
the next lemma we will see, that the converse also holds. In fact, we can even show more.

Lemma 2.37. Let Γ be a connected graph. The eigenvalues of Z(Γ) are symmetric with respect
to 0 if and only if Γ is bipartite.

Proof. At first assume that Γ = (V,E) is bipartite, hence we can find two disjoint subsets A,B ⊂ V
with A ∪ B = V such that each of the subsets A,B is not interconnected, that is for each e ∈ E
we have e ∩A 6= ∅ and e ∩B 6= ∅. If we now label the vertices by first numbering all vertices from
A and then all vertices from B, that is

V = {v1, v2, . . . , vnA︸ ︷︷ ︸
A

, vnA+1, vnA+2, . . . , vnA+nB︸ ︷︷ ︸
B

} (2)

we see that the adjacency matrix A corresponding to these vertex labels is of the form

A =

(
0 M
MT 0

)
where M is a nA × nB-matrix. Taking into account the definition of Z we find the structure

Z =

(
0 MA

MB 0

)
with the nA×nB-matricesMA andMB . Now assume that λ 6= 0 is an eigenvalue of Z corresponding
to the eigenvector v = (vA, vB)T which we split in the same way as indicated in (2). We compute

Zv =

(
0 MA

MB 0

)(
vA
vB

)
=

(
MAvB
MBvA

)
=

(
λvA
λvB

)
= λv.
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If we now consider the vector v′ := (−vA, vB)T we obtain

Zv′ =

(
0 MA

MB 0

)(
−vA
vB

)
=

(
MAvB
−MBvA

)
=

(
λvA
−λvB

)
= −λ

(
−vA
vB

)
= −λv′

from which we see that −λ is an eigenvalue of Z too. The converse implication is a direct conse-
quence from Lemma 2.36 since the symmetry of the eigenvalues especially results in λ = −1 being
an eigenvalue of Z. Combining both results we arrive at the assertion.

The combinatorial graphs that we consider here mostly contain two structures - the adjacency
structure describing which vertices are adjacent, and the direction structure describing the direc-
tions assigned to the edges of the graph. So far we only considered the adjacency structure - now
we turn to the structure of directions, which is described by the so-called signed incidence matrix,
cf. [vB85, p. 311].

Definition 2.38 (Signed incidence matrix). Let Γ = (V,E) be a graph satisfying Assumption 2.32,
with vertices V = {v1, v2, . . . , vn} and edges E = {e1, e2, . . . , eN}. We define the signed incidence
matrix D(Γ) := (dij) ∈ {−1, 0, 1}n×N by

dij =


−1 if vi = o(ej)

1 if vi = t(ej)

0 else.

The last case in the definition above obviously holds when the vertex vi is not contained in the
edge ej . Most of the times we will just write D instead of D(Γ). Also we will sometimes write
dv,e with a vertex v ∈ V and an edge e ∈ E for an element in D when we did not introduce a
numbering of the vertices and edges. The following two results provide us with information on the
rank of D and its kernel, see [Jun08, Theorem 4.2.4].

Lemma 2.39 (Rank of D). Let Γ = (V,E) be a graph satisfying Assumption 2.32 with n vertices
and the signed incidence matrix D. Then rank(D) = n− 1.

Proof. At first we note that each column of D contains exactly one +1 and one −1 entry, while the
remaining values are zero. Summing up all n row vectors ri := (di,1, . . . , di,N ) we hence obtain the
zero-vector showing that rank(D) < n. Now assume

∑
ciri = 0 would be another row vector sum

resulting in the zero vector with at least one ck 6= 0. Using again the property that each column
is filled with zeros except from exactly one ±1 pair, next to Γ being connected, we conclude that
ci = ck 6= 0 for all i ∈ {1, . . . , n}. Since this is the case we started with we see that rank(D) = n−1,
which is the assertion.

Corollary 2.40. Let Γ = (V,E) be a graph satisfying Assumption 2.32 with n vertices, N edges
and the signed incidence matrix D. Then dim(ker(D)) = N − n+ 1.

Proof. Since D maps into an N -dimensional space we have N = dim(ker(D)) + rank(D) which
immediately gives dim(ker(D)) = N − n+ 1 by using Lemma 2.39.

2.3 The notion of a quantum graph

In this section the notion of a quantum graph will be introduced. A quantum graph is a pair
(Γl,H) consisting of a metric graph Γl and a specific differential operator H, often referred to as
the Hamiltonian of the quantum graph. Both of these objects relate to each other as the metric
graph is used to define the domain of the Hamiltonian. One usually expresses this situation by
saying that H is acting on Γl or that Γl is equipped with H.

In the following we will develop the notions of both the metric graph and the Hamiltonian,
where we follow the introduction given by Berkolaiko and Kuchment in [BK13, Section 1.1-1-4].

2.3.1 Metric graphs

A metric graph is a combinatorial graph whose edges have been assigned specific lengths or weights.
This allows us to define a metric on this type of graph, which justifies the term metric graph. A
formal definition is given below, cf. [Kuc04, Definition 1]
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Definition 2.41 (Metric graph). A metric graph Γl := (Γ, l) is a pair consisting of a combinatorial
graph Γ = (V,E) and a function l : E → (0,∞] with e 7→ l(e) =: le. If |V | <∞ and le <∞ for all
e ∈ E we say that Γl is compact. If even le = 1 for all e ∈ E the metric graph is called equilateral.

It is easy to see, that we can define a simple path metric (cf. Definition B.10) on compact metric
graphs by defining the distance between two vertices as the shortest weighted path connecting them,
see [Mug17, Example 1.1.3].

Proposition 2.42 (Graph metric). Let Γl = (Γ, l) be a compact metric graph, with Γ in line with
Assumption 2.32. Then we can define a metric d : V × V → [0,∞) by setting

d(u, v) := min

{∑
e∈p

le : p is a path from u to v

}
.

We forgo the elementary proof. A compact metric graph with an underlying directed combi-
natorial graph according to Assumption 2.32 allows us to interpret an edge e ∈ E of such a graph
as a one dimensional real interval [0, le] with the origin in o(e) and the end in t(e), that is with a
direction inherited from the directional structure of Γ.

If we identify each edge of Γl with an interval we can define functions on the edges of the graph,
and thereby on the graph in total [BK13, Definition 1.3.7].

Definition 2.43 (Graph function spaces). Let Γl = (Γ, l) be a compact metric graph with Γ =
(V,E) in line with Assumption 2.32, and where each edge e ∈ E is identified with the interval [0, le]
as described before. With 1 ≤ p <∞ and k ∈ N0 we set Lp(e) := Lp(0, le) and Hk(e) := Hk(0, le).

Moreover we define the graph function spaces (L̃p(Γ), ‖ · ‖L̃p) and (H̃k(Γ), ‖ · ‖H̃k) by

L̃p(Γ) :=
⊕
e∈E

Lp(e) with ‖f‖2
L̃p(Γ)

:=
∑
e∈E
‖f‖2Lp(e), f ∈ L̃

p(Γ)

H̃k(Γ) :=
⊕
e∈E

Hk(e) with ‖f‖2
H̃k(Γ)

:=
∑
e∈E
‖f‖2Hk(e), f ∈ H̃

k(Γ).

One can easily check that L̃2(Γ) and H̃k(Γ), k ∈ N are in fact Hilbert spaces with respect to
the scalar product 〈f, g〉L̃2(Γ) :=

∑
e∈E
〈f, g〉L2(e) and 〈f, g〉H̃k(Γ) :=

∑
e∈E
〈f, g〉Hk(e) respectively.

This already concludes our review on metric graphs. For easier reference we will summarize
our most frequently assumed properties of the metric graphs in the following

Assumption 2.44 (Metric graph). The metric graph Γl = (Γ, l) with Γ = (V,E) according
to Assumption 2.32 is assumed to be compact and equilateral. Moreover we associate Γl with
the graph function spaces (L̃p(Γ), ‖ · ‖L̃p) and (H̃k(Γ), ‖ · ‖H̃k) introduced in Definition 2.43.

2.3.2 The Hamiltonian

The so-called HamiltonianH is the differential operator of a quantum graph (Γl,H). The definition
of the Hamiltonian incorporates a metric graph Γl, a set of classical differential operators, each of
which is assigned to an edge of the graph (or, to be more precise, to the function spaces associated
with the edges of Γl) and finally a set of so-called vertex conditions, which state conditions for
graph functions to be in dom(H) referring to their values and derivatives at the vertices of Γl.

Considering the classical differential operators which are assigned to the function spaces as-
sociated with the edges of Γl, we note that in applications these operators are usually defined in
a similar fashion. This allows one to just define one classical differential operator, which is then
applied on each edge separately. Referring to [BK13, p. 12] the most common operators are

(Negative) Standard Laplacian fe 7→ −
d2

dx2
e

fe

General Schrödinger operator fe 7→
(
− d2

dx2
e

+ V (xe)

)
f(xe)

Magnetic Schrödinger operator fe 7→
(

1

i

dfe
dxe
−A(xe)

)2

f(xe) + V (xe)f(xe)

16



where xe refers to the coordinate associated with the interval [0, le] associated with the edge e ∈ E,
and V,A are potential function defined on a space the graph is embedded in.

For the remainder of this subsection, as for the remainder of the thesis, we are going to focus
on quantum graphs constituted by a compact metric graph in line with Assumption 2.44 (we will
call such quantum graphs consequently compact quantum graphs), and the standard Laplacian as
introduced above. The latter we will usually denote as −∆.

To completely define −∆ on Γl we have to describe its domain. So far, by the definition of
the metric graph Γl summarized in Assumption 2.44, we just implied that f ∈ dom(H) whenever

f ∈ L̃p(Γ) or f ∈ H̃k(Γ), depending on the considered graph function space. But which function

space should we use in this case specifically? It is clear, that we cannot use L̃p(Γ) as the domain for
−∆, since not all functions in Lp(e), e ∈ E are differentiable. To overcome this problem one might

think to simply use C̃2(Γ) instead of L̃p(Γ), where its definition would be analogous to Definition

2.43. However, C̃2(Γ) is neither closed nor dense in L̃p(Γ). To account for density we could switch

to C̃∞0 (Γ), but the problem remains that also C̃∞0 (Γ) is not closed in L̃2(Γ) and would result in

σ(H) = C. Only its closure in L̃2(Γ), that is H̃2
0 (Γ), finally gives us a reasonable (because closed)

domain for our Hamiltonian. We will hence use dom(−∆) = H̃2
0 (Γ) for our next considerations.

Although we now have a Hamiltonian with closed domain, it does not make a lot of sense yet
if we want to capture the nature of the underlying graph structure. The reason for that is that
the edge functions are pairwise independent - they do not communicate with each other. If we
change a single edge-function, we do not have to change any other function in response. However,
as soon as we introduce vertex conditions the situation changes. Considering any vertex v ∈ V ,
the vertex conditions state requirements for f to be in the domain of H with respect to the values
and derivatives of all edge-functions fe defined on edges that share the vertex v. Two examples
for such vertex conditions, which are also the conditions considered in this thesis, are the so-called
Kirchhoff and Anti-Kirchhoff vertex conditions. Referring to [vBM13, Section 3] they are defined
by requiring for each v ∈ V that

Kirchhoff conditions (CK) :

{
fe(v) = fē(v) ∀e, ē ∈ Ev∑
e∈Ev dv,ef

′
e(v) = 0.

Anti-Kirchhoff conditions (KC) :

{
de,vf

′
e(v) = dē,vf

′
ē(v) ∀e, ē ∈ Ev∑

e∈Ev d
2
v,efe(v) = 0.

where dv,e refers to the values of the signed incidence matrix D, cf. Definition 2.38, and Ev denotes
the set of all edges that contain v, cf. Section 2.2.

Note that the values fe(vi) and derivatives f ′e(vi) of the edge function at the vertices vi ∈ V
are well defined whenever fe ∈ H2(e) due to Theorem A.13.

Looking back at the vertex conditions, we notice that every f ∈ H̃2
0 (Γ) satisfies both Kirchhoff

and Anti-Kirchhoff conditions. From that perspective one can understand the requirement of these
vertex conditions as the extension of dom(−∆) = H̃2

0 (Γ) to {f ∈ H̃2(Γ) : f satisfies CK} ⊃ H̃2
0 (Γ)

and {f ∈ H̃2(Γ) : f satisfies KC} ⊃ H̃2
0 (Γ) respectively. Since the standard Laplacian on these

domains are the central objects in this thesis, we summarize their definition.

Definition 2.45 (Considered Hamiltonians). Let Γl = (Γ, l) be a metric graph in line with

Assumption 2.44, and set H̃2
CK := {f ∈ H̃2(Γ) : f satisfies CK} and H̃2

KC := {f ∈ H̃2(Γ) :
f satisfies KC}. We define the Hamiltonians −∆CK

Γ and −∆KC
Γ by

−∆CK
Γ : L̃2(Γ) ⊃ H̃2

CK(Γ)→ L̃2(Γ) with fe 7→ −
d2fe
dx2

e

∀e ∈ E

−∆KC
Γ : L̃2(Γ) ⊃ H̃2

KC(Γ)→ L̃2(Γ) with fe 7→ −
d2fe
dx2

e

∀e ∈ E.
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3 Spectral analyses

This section contains the spectral analyses of the standard Laplacian on bounded one dimensional
intervals (Section 3.1) and on finite equilateral metric graphs (Section 3.2). For both domains two
kinds of boundary/vertex conditions are considered. In the first case we consider Dirichlet and
Neumann conditions, while in the second case we distinguish between Kirchhoff and Anti-Kirchhoff
conditions. Note that the first analysis can be interpreted as a special case of the second analysis
by considering a bounded interval as a graph with one edge and two vertices. Moreover, the
Dirichlet and Neumann boundary conditions can be understood as Anti-Kirchhoff and Kirchhoff
vertex conditions respectively.

Each analysis is subdivided into three parts, that is a qualitative spectral analysis, a quanti-
tative spectral analysis and finally a comparison of the spectra with respect to the distinguished
boundary/vertex conditions. While the qualitative analysis focuses on general properties of the
spectra, we actually compute the spectra in the quantitative analysis. Finally, we compare the
results for both boundary/vertex conditions and analyze how the spectra might be related.

3.1 The standard Laplacian on bounded intervals

In the following we will analyze the spectrum of the standard Laplacian −∆ on a bounded one
dimensional interval under Dirichlet and Neumann boundary conditions respectively. For most of
these results we refer to [Are, Section 3] and to our results from Section 2.1.3.

To provide a general reference and fully formulate the spectral problem we are considering in
this subsection, we state the following

Problem 3.1. Let a, b ∈ R such that a < b. Consider the two Laplacians

Dirichlet Laplacian :=


−∆D : L2(a, b) ⊃ dom(−∆D)→ L2(a, b)

dom(−∆D) := {f ∈ H2(a, b) : f(a) = f(b) = 0}
−∆Df := −f ′′

Neumann Laplacian :=


−∆N : L2(a, b) ⊃ dom(−∆N )→ L2(a, b)

dom(−∆N ) := {f ∈ H2(a, b) : f ′(a) = f ′(b) = 0}
−∆Nf := −f ′′.

Find λD ∈ C and 0 6= u ∈ dom(−∆D), as well as λN ∈ C and 0 6= v ∈ dom(−∆N ) such that

−∆Du = λDu

−∆Nv = λNv.

3.1.1 Qualitative analysis

To qualitatively analyze the operators presented in Problem 3.1, we use two different approaches,
both of which are outlined in [Are, Section 3]. At first we are going to consider the Dirichlet
Laplacian. We will show that this operator is nonnegative, self-adjoint and has compact resolvent.
The central means to show that will be the representation theorem of Riesz-Fréchet (see Theorem
A.3) in combination with the range condition as criterion for self-adjointness of an operator.

For the second considered operator, the Neumann Laplacian, we will utilize the approach of
associated forms, presented in Subsection 2.1.3. We will end up with the same result, as we
will arrive at for the Dirichlet Laplacian, that is −∆N being nonnegative, self-adjoint and having
compact resolvent.

Before we get to our first analysis, we note the following important result, which is an easy
corollary of the Rellich-Kondrachov Theorem A.15.

Corollary 3.2. Let [a, b] ⊂ R be a bounded real interval. Then H2(a, b)
c
↪→ L2(a, b).

Proof. The assertion is an immediate consequence from the Rellich-Kondrachov Theorem A.15
when setting j = 0 and m = p = q = 2, since W 0,2(a, b) = L2(a, b).
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The following result considers the properties of the Dirichlet Laplacian. It was derived from
[Are, Theorem 3.2.1].

Proposition 3.3 (Dirichlet Laplacian). The Dirichlet Laplacian −∆D defined in Problem 3.1 is
nonnegative, self-adjoint and has compact resolvent.

Proof. At first note that σ(−∆D) = −σ(∆D). Indeed, if λ ∈ C and some f ∈ dom(T ) satisfies
−∆Df = λf then obviously ∆Df = (−λ)f . This allows us to analyze ∆D with the domain
dom(∆D) := dom(−∆D) instead of −∆D.

We begin by analyzing some simple properties of ∆D. First, consider f, g ∈ dom(T ), then by
partial integration, and the boundary conditions, we find

〈∆Df, g〉L2(a,b) = −
∫ b

a

f ′g dx = 〈f,∆Dg〉L2(a,b)

which shows that ∆D is symmetric. Moreover from 〈Af, f〉L2(a,b) = −
∫ b
a
|f ′|2 dx ≤ 0 we see that

∆D is also dissipative. If we now have a look at Proposition 2.21 we see that two of the three
conditions that identify an operator as dissipative and self-adjoint are satisfied. It only remains to
be shown that Id−∆D is surjective, that is ran(Id−∆D) = L2(a, b).

To that end, let g ∈ L2(a, b), and define the continuous linear form Φ(ϕ) :=
∫ b
a
ϕg dx on

H1
0 (a, b). By the Riesz-Fréchet Theorem A.3 there exists a unique f ∈ H1

0 (a, b) such that for all
ϕ ∈ H1

0 (a, b)

Φ(ϕ) =

∫ b

a

ϕg dx = 〈ϕ, f〉H1(a,b) =

∫ b

a

ϕf dx+

∫ b

a

ϕ′f
′
dx (3)

holds. Considering ϕ instead of ϕ, and taking the complex conjugate of (3) leads to

−
∫ b

a

ϕ′f ′ dx =

∫ b

a

ϕ(f − g) dx

for all ϕ ∈ C∞0 (a, b) ⊂ H1
0 (a, b), implying that f − g is the weak derivative of f ′. It follows

f ∈ H2(a, b) with f ′′ = f − g, and therefore f ∈ dom(A) and (Id −∆D)f = g. This shows that
∆D is surjective, and according to Proposition 2.21 implies that ∆D is self-adjoint.

To show that ∆D also has compact resolvent, we consider (λ−∆D)−1 for some λ ∈ ρ(∆D) 6= ∅.
First, note that (λ−∆D)−1 maps L2(a, b) continuously into H2(a, b) ⊃ dom(∆D). Moreover, refer-
ring to Corollary 3.2, we recall that H2(a, b) is compactly embedded in L2(a, b). As a composition
of a continuous and a compact operator, we see that (λ−∆D)−1 : L2(a, b)→ L2(a, b) is compact
as well. This shows that ∆D has compact resolvent.

Summarizing our results, we see that ∆D is dissipative, self-adjoint and has compact resolvent.
With the considerations from the beginning of this proof, we hence see, that −∆D is nonnegative,
self-adjoint and has compact resolvent.

We continue our qualitative considerations with the Neumann Laplacian ∆N . This time we
choose a different approach using the symmetric form associated with ∆N as we presented it in
Subsection 2.1.3. We refer to [Are, Theorem 3.4.8].

Proposition 3.4 (Neumann Laplacian). The Neumann Laplacian −∆N defined in Problem 3.1
is nonnegative, self-adjoint and has compact resolvent.

Proof. With the same arguments as in Proposition 3.3, we will consider ∆N instead of −∆N . We
are choosing this approach since ∆N will turn out to be a dissipative operator, and is thus in
line with the operators we considered in Subsection 2.1.3, when we looked at symmetric forms
associated with operators.

Our strategy is to find the form associated with ∆N (cf. Definition 2.29), show that this form is
positive, continuous and H-elliptic and finally use Proposition 2.25 and 2.30 to confirm the claimed
properties of ∆N .

Considering the definition of the associated operator of a positive, continuous and H-elliptic
form, as it is introduced in Proposition 2.25 we will try to reformulate 〈−∆Nf, g〉L2(a,b) with
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f, g ∈ dom(∆N ) such that it can be interpreted as a form on a subspace of L2(a, b). Using partial
integration and the boundary conditions we find

〈−∆Nf, g〉 = −
∫ b

a

f ′′g dx =

∫ b

a

f ′g′ dx

which suggests to define the form a(f, g) :=
∫ b
a
f ′g′ dx on V := H1(a, b). We check the properties

of a. Since for all f, g ∈ V we have

a(f, g) =

∫ b

a

g′f ′ dx =

∫ b

a

g′f
′
dx = a(g, f)

a(f, f) =

∫ b

a

f ′f
′
dx =

∫ b

a

|f ′|2 dx ≥ 0

|a(f, g)| = |
∫ b

a

f ′g′ dx| ≤MfMg‖f ′‖V ‖g′‖V

with MfMg > 0, where we used in the estimate of |a(f, g)| that f ′, g′ ∈ C(a, b). Hence a is positive
and continuous. To show that a is also L2(a, b)-elliptic we simply consider

‖f‖2H1(a,b) = ‖f‖2L2(a,b) + ‖f ′‖2L2(a,b)

= 〈f, f〉L2(a,b) + a(f, f).

We hence identified a as a positive, continuous and L2(a, b)-elliptic form.
If we knew that a is actually the form associated with ∆N we would be done at this point. But

in fact we do not know that yet - a is just a promising candidate. The rest of the proof is therefore
concerned with showing that the operator associated with a is identical with ∆N .

Let A be the operator associated with our form a. Now consider f ∈ dom(∆N ) with ∆Nf =: g.
We obtain for h ∈ V

〈−g, h〉L2(a,b) = 〈−∆Nf, h〉L2(a,b) =

∫ 1

0

g′h
′
dx = a(g, h).

Thus, by Definition 2.29 we have f ∈ dom(A) and Af = g which shows −∆N ⊂ A.
For the converse inclusion assume f ∈ dom(A) with Af =: g. Using the definition given in

Proposition 2.25 we find for h ∈ V

a(f, h) = 〈−g, h〉L2(a,b) = −
∫ b

a

gh dx =

∫ b

a

f ′h
′
dx. (4)

Since C∞0 (a, b) ⊂ V this holds especially for all h ∈ C∞0 (a, b), showing that f ′ ∈ H1(a, b), thus
f ∈ H2(a, b), which allows us to consider f ′′. Partial integration in (4) gives us

a(f, h) =

∫ b

a

f ′h
′
dx = −

∫ b

a

f ′′h dx = −[f ′h]ba +

∫ b

a

f ′h
′
dx

for all h ∈ V . This shows f ′(a) = f ′(b) = 0 as well as f ′′ = g, and thereby f ∈ dom(A). Combining
both results we end up with A = ∆N , showing that ∆N is indeed the operator associated with a.
Applying Proposition 2.25 we hence conclude that ∆N is dissipative and self-adjoint.

Finally we want to address the property of ∆N having compact resolvent, as claimed in the
assertion. According to Proposition 2.30 we can show that by checking if V is compactly embedded
in L2(a, b). But this follows immediately from Corollary 3.2. We hence see, that ∆N has compact
resolvent indeed.

Applying these results on −∆N , recalling the considerations at the beginning of Proposition
3.3, we conclude that −∆N is nonnegative, self-adjoint and has compact resolvent.

Our results from Section 2.1.2 and 2.1.1, that is Proposition 2.8 and Proposition 2.16, now
imply the following corollary
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Corollary 3.5 (Spectra of Interval Laplacians). The spectra σ(−∆D) and σ(−∆N ) satisfy

[0,∞) ⊃ σ(−∆D) = {λDi : i ∈ N} with lim
i→∞

λDi =∞

[0,∞) ⊃ σ(−∆N ) = {λNi : i ∈ N} with lim
i→∞

λNi =∞

where σ(−∆D) = σp(−∆D) and σ(−∆N ) = σp(−∆N ) and all eigenvalues λDi , λ
N
i have finite

multiplicities.

3.1.2 Quantitative analysis

It is an easy task to actually compute the eigenvalues, which we will do in this short subsection. The
results will illustrate the qualitative characterizations we developed in the preceding subsection.

We note the following elementary result.

Proposition 3.6. Let l := b − a then the eigenvalues and eigenfunctions of the Dirichlet and
Neumann Laplacian, as presented in Problem 3.1, are given by (α ∈ R \ {0})

σ(−∆D) = {(l−1kπ)2 : k ∈ N} σ(−∆N ) = {(l−1kπ)2 : k ∈ N0}

uDk (x) = α sin(
√
λkx) uNk (x) = α cos(

√
λkx).

Proof. We begin with the Dirichlet Laplacian. First, consider the case λ = 0, hence −u′′ = 0.
The general solution is given by u(x) = ax + b with a, b ∈ C, and the boundary conditions
lead to a = b = 0. We hence end up with the trivial solution, which implies by definition that
0 6∈ σ(−∆D). Considering λ > 0 we obtain the general solution u(x) = a sin(

√
λx) + b cos(

√
λx),

and the boundary conditions lead to b = 0 and λ = (l−1kπ)2 for k ∈ N.
We continue with the Neumann Laplacian. The case λ = 0 with general solution u(x) = ax+ b

with a, b ∈ C implies that u(x) = b with b 6= 0 is an eigenfunction. Hence this time 0 ∈ σ(−∆N ).
Now for λ > 0 we have again the general solution u(x) = a sin(

√
λx)+b cos(

√
λx), and the boundary

conditions result in a = 0 and λ = (l−1kπ)2 for k ∈ N.

3.1.3 Spectral comparison

Before we compare the spectra, we want to stress, that the Dirichlet and Neumann boundary
conditions can be interpreted in the the frame of Kirchhoff and Anit-Kirchhoff conditions, as they
have been introduced in Section 2.3. Indeed, considering the Dirichlet boundary conditions, we see
that the sums of function values at the boundary equal zero, while the first derivative is continuous.
The converse is true, when we consider the Neumann conditions. We hence see, that we can refer to
the Dirichlet conditions as Anti-Kirchhoff, and to the Neumann conditions as Kirchhoff conditions.

Now we turn to the spectra. First, we see that the quantitative result, Proposition 3.1.2, is
consistent with the quantitative result, Corollary 3.5. Moreover, a comparison of both spectra
shows that they are not identical, but only differ in σ(−∆N ) not including the 0. Later, in Section
3.2.4 we will interpret this difference from a broader perspective.

0.0 0.2 0.4 0.6 0.8 1.0

x

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

u
k
(x
)

Single edge solutions Anti-Kirchhoff (Dirichlet)

k =1

k =2

k =3

k =4

0.0 0.2 0.4 0.6 0.8 1.0

x

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

u
k
(x
)

Single edge solutions Kirchhoff (Neumann)

k =1

k =2

k =3

k =4

Figure 1: Some eigensolutions for Kirchhoff and Anti-Kirchhoff conditions
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3.2 The standard Laplacian on finite equilateral quantum graphs

In this section we analyze compact quantum graphs under Kirchhoff and Anti-Kirchhoff conditions,
where the respective Hamiltonian is taken from Definition 2.45. As in the section before we will at
first derive a qualitative description of the spectra, followed by a quantitative consideration and a
spectral comparison. Main sources have been [BK13, Section 1.4] and [vB85, Section 5].

In order to provide a clear formulation of the problem with all assumptions and notations we
summarize the problem below.

Problem 3.7. Let Γ = (V,E) be a nonempty, connected, finite and simple combinatorial
digraph with the vertex set V = {v1, . . . , vn}, the edge set E = {e1, . . . , eN}, the adjacency
matrix A(Γ) = (eij) and the signed incidence matrix D(Γ) = (dij).

We assume that Γ is equipped with a equilateral metric structure, meaning that each edge
e = (u, v) ∈ E is identified with the real interval [0, 1] and an own coordinate xe ∈ [0, 1], where
xe = 0 and xe = 1 correspond to u and v respectively. Finally on each edge ei ∈ E we define
a corresponding edge-function by ui : [0, 1]→ R, x 7→ ui(x).

We now want to find functions u ∈
⊕

e∈E H
2(e) that satisfy the Kirchhoff or Anti-

Kirchhoff conditions, as well as scalars λ ∈ C such that u|ei = ui while −u′′i = λui for all

i ∈ {1, . . . , N}. In operator notation these problems read: find u ∈ H̃2
CK(Γ) and ū ∈ H̃2

KC(Γ)
such that

−∆CK
Γ u = λu

−∆KC
Γ ū = λū

3.2.1 Qualitative analysis

When we introduced the Hamiltonians −∆CK
Γ and −∆KC

Γ in Definition 2.45 we saw, that both of

their domains were extensions from H̃2
0 (Γ). The main result of this subsection, Theorem 3.12, is

to show, that these extensions result in −∆CK
Γ and −∆KC

Γ being self-adjoint operators, where we
follow the approach presented in [BK13, Section 1.4.1]. Before we get to this result, we need some
preparations.

One of the central ideas in the proof of Theorem 3.12 is to consider each vertex of the underlying
graph Γ independently. To do so, we are going to introduce some notation, that is convenient for
that purpose, cf. [BK13, p. 16, 17].

Definition 3.8 (Vertex vectors). Let (Γl,H) be a compact quantum graph with graph Γl = (V,E)
and the associated signed incidence matrix D(Γ) = (di,j). Let v ∈ V and Ev := {e ∈ E : v ∈ e} =
{e1, . . . , ek} be the set of edges that contain v and f1, . . . , fk the corresponding edge-functions. We
introduce the vertex-value vector Fv and the vertex-derivative vector F ′v as

Fv = (f1(v), . . . , fk(v))T

F ′v = (−dv,1f1(v), . . . ,−dv,kfk(v))T

Note that the definition of F ′v is chosen, such that each entry of F ′v can be interpreted as an
outgoing derivative at v ∈ V .

In the main proof of this subsection, the vertex conditions will be expressed in form of ma-
trices with specific properties. In this context we will frequently use the following notation for
concatenating matrices horizontally.

Definition 3.9. Let A ∈ Cn×r and B ∈ Cn×s be two matrices with the same number of rows. We
denote by (A|B) ∈ Cn×(r+s) the matrix that results when concatenating A and B horizontally.

We are now prepared to derive the fist auxiliary result, see [BK13, Lemma 1.4.7].

Lemma 3.10. Let A,B ∈ Cn×n such that (A|B) has full rank and AB∗ is self-adjoint. Then for
all k ∈ R \ {0} the matrix A + ikB ∈ Cn×n has full rank and is thus invertible. Furthermore the
matrix M(k) := −(A+ ikB)−1(A− ikB) is unitary.
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Proof. We know from elementary linear algebra that for any complex valued matrix T ∈ Cm×n we
have the rank equality rank(T ) = rank(TT ∗). By setting T = A+ ikB with k ∈ R \ {0} we obtain

rank(A+ ikB) = rank((A+ ikB)(A+ ikB)∗)

= rank((A+ ikB)(A∗ − ikB∗))
= rank(AA∗ + k2BB∗)

= rank((A|kB)(A|kB)∗)

= rank((A|kB))

= rank((A|B)).

Since (A|B) has full rank, this shows the first part of the assertion. We move on to the second
part. As we have just shown the matrix A+ ikB has full rank for real and non-zero k, and is thus
invertible. The matrix M(k) := −(A+ ikB)−1(A− ikB) is hence well-defined. To proof unitarity
we need to show M(k)M(k)∗ = I = M(k)∗M(k). To that end reformulate M(k) and obtain

M(k) = −(A+ ikB)−1(A− ikB)

= −(A+ ikB)−1(A− ikB)(A∗ + ikB∗)(A∗ + ikB∗)−1

= −(A+ ikB)−1(A+ ikB)(A∗ − ikB∗)(A∗ + ikB∗)−1

= −(A∗ − ikB∗)(A∗ + ikB∗)−1

where we used (A − ikB)(A∗ + ikB∗) = (A + ikB)(A∗ − ikB∗) which can easily be verified by a
direct computation. We now use this result to check for unitarity.

M(k)M(k)∗ = −(A+ ikB)−1(A− ikB)(−(A∗ − ikB∗)(A∗ + ikB∗)−1)∗

= (A+ ikB)−1(A− ikB)(A− ikB)−1(A+ ikB) = I

Analogously we also obtain M(k)∗M(k) = I which shows that M(k) indeed is unitary.

Our next lemma is considering the embedding of H̃2(Γ) into L̃2(Γ). As in the case of a bounded
one-dimensional interval, this embedding turns out to be compact as well.

Lemma 3.11. Let Γl = (Γ, l) be a compact metric graph, then H̃2(Γ)
c
↪→ L̃2(Γ).

Proof. The Rellich-Kondrachov Theorem A.15 implies that H2(I)
c
↪→ L2(I) for a bounded one

dimensional interval I, cf. Corollary 3.2. Therefore any sequence (fk)k∈N ⊂ H2(I) with ‖fk‖H2 ≤ 1
for all k ∈ N contains a convergent subsequence (fki)i∈N in (L2(I), ‖ · ‖L2). Now consider a

sequence (fk)k∈N := (fe1k , . . . , f
eN
k )k∈N ⊂ H̃2(Γ) =

⊕
ej∈E H

2(ej) with ‖fk‖H̃2 ≤ 1. With the

compactness of Γl, and the above considered one dimensional case, it follows that H2(ej)
c
↪→ L2(ej)

for all j = 1, . . . , N which implies that (f
ej
k )k∈N contains a convergent subsequence (f

ej
ki

)i∈N in

(L2(ej), ‖ · ‖L2) for all j = 1, . . . , N . We can hence find an increasing index sequence (rk)k∈N ⊂ N
such that (f

ej
rk )k∈N is convergent in (L2(ej), ‖·‖L2) for all j = 1, . . . , N , which implies that (frk)k∈N

is convergent in (L̃2(Γ), ‖ · ‖L̃2). This shows H̃2(Γ)
c
↪→ L̃2(Γ) which is the assertion.

This already brings us to the main result of this subsection which gives a characterization of
self-adjoint compact quantum graphs. The proof has been taken from [BK13, Theorem 1.4.4].

Theorem 3.12 (Self-adjoint extensions of compact quantum graphs). Let (Γl,−∆V C
Γ ) be a com-

pact quantum graph with combinatorial graph Γ = (V,E) and Hamiltonian −∆V C
Γ defined by

H̃2
V C(Γ) := {f ∈ H̃2 : f satisfies the vertex conditions V C}

−∆V C
Γ : L̃2(Γ) ⊃ H̃2

V C(Γ)→ L̃2(Γ)

fe 7→ −f ′′e for all e ∈ E

where the function spaces L̃2(Γ) and H̃2
V C(Γ) are defined according to Definition 2.43. Then the

following assertions are equivalent.
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a) The Hamiltonian −∆V C
Γ is self-adjoint.

b) For every vertex v ∈ V of degree γv there exist two matrices Av, Bv ∈ Cγv×γv such that

(Av|Bv) ∈ Cγv×2γv has maximal rank, AvB
∗
v is self-adjoint and all f ∈ H̃2

V C(Γ) satisfy

AvFv +BvF
′
v = 0 (5)

where the vertex vectors Fv and F ′v are defined as in Definition 3.8.

c) For every vertex v ∈ V of degree γv there exists a unitary matrix Uv ∈ Cγv×γv such that all

f ∈ H̃2
V C(Γ) satisfy

i(Uv − I)Fv + (Uv + I)F ′v = 0. (6)

d) For every vertex v ∈ V of degree γv there exist three orthogonal (and also mutually orthogonal)
projectors P vD, P

v
N and P vR := I − P vD − P vN , on Cγv and an invertible self-adjoint operator

Γv, acting on P vRCγv such that all f ∈ H̃2
V C(Γ) satisfy

P vDFv = 0 (7a)

P vNF
′
v = 0 (7b)

P vRF
′
v = ΛvP

v
RFv. (7c)

Proof. To unburden the notation we will set −∆ := −∆V C
Γ throughout this proof. We start with

the assumption of self-adjointness from which we will work our way through the statements in the
natural order a)⇒ b)⇒ c)⇒ d)⇒ a).

a)⇒ b At first we assume that −∆ is self-adjoint (cf. Definition 2.15) on L̃2(Γ) with domain

dom(−∆) = H̃2
V C(Γ) as described above. We have to show that in this case, that - if we express

the vertex conditions as described in b), using the matrices Av, Bv for v ∈ V - these matrices have
the properties as stated in b). Since these conditions consider each vertex independently we can
confine our analysis to a single vertex v ∈ V .

We hence pick a vertex v ∈ V and consider a function f ∈ dom(−∆). By the definition of
dom(−∆) this implies that f satisfies the vertex conditions V C as described in b), which means
that we can find Av, Bv ∈ Cγv×γv such that

AvFv +BvF
′
v = 0

with the vertex vectors Fv and F ′v as described in Definition 3.8. We also chose another function

g ∈
⊕

e∈Ev C
∞(e) ⊂ H̃2(Γ) of which we assume that it is non-zero in a small vicinity of v, and

vanishes at all other vertices. What conditions does g have to satisfy to be in the domain of the
adjoint operator −∆∗? We check the respective condition, cf. Definition 2.11. Via integration by
parts (twice) we obtain

〈−∆f, g〉 = −
∑
e∈Ev

∫
e

f ′′e (x)ge(x) dx

= −
∑
e∈Ev

∫
e

fe(x)g′′e (x) dx−
∑
e∈Ev

f ′e(v)ge(v) +
∑
e∈Ev

fe(v)g′e(v)

= 〈f,−∆g〉 − 〈F ′v, Gv〉Cγv + 〈Fv, G′v〉Cγv (8)

with Gv = (g1(v), . . . , gγv (v))T and G′v = (g′1(v), . . . , g′γv (v))T and 〈·, ·〉Cγv being the canonical
scalar product on Cγv . In the following we omit the specific denotation of the scalar product, since
it will always be clear which scalar product is considered. From the above computation resulting in
(8), we conclude that for g ∈ dom(−∆∗) the last term 〈Fv, G′v〉 − 〈F ′v, Gv〉 has to vanish. Assume
that g satisfies this condition, that is 〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0 for all f ∈ dom(−∆), then we have
〈−∆f, g〉 = 〈f,−∆g〉 for all f ∈ dom(−∆), which - according to Definition 2.11 - implies that
g ∈ dom(−∆∗). Since we assumed that −∆ is self-adjoint it follows g ∈ dom(−∆∗) = dom(−∆)
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which in particular means

AvGv +BvG
′
v = 0.

We just showed that if AvFv + BvF
′
v = 0 then 〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0 for all f ∈ dom(−∆) is

equivalent to AvGv +BvG
′
v = 0. As our next step we will show that this implies that (Av|Bv) has

full rank. To that end assume that for all f ∈ dom(−∆), i.e., f satisfying AvFv + BvF
′
v = 0 we

have 〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0. One one hand this implies that (Fv, F
′
v)
T ∈ ker(Av|Bv), meaning

that (Fv, F
′
v)
T lies in a subspace with dimension dim ker(Av|Bv) = γv − n with n ∈ {0, 1, . . . , γv}.

On the other hand, due to 〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0 for all such f results in 2γv − n conditions on
(Gv, G

′
v)
T , one for each dimension of ker(Av|Bv), resulting in (Gv, G

′
v)
T lying in a subspace with

dimension 2γv − (γv − n) = γv + n. Since −∆ is self-adjoint the same holds if we switch the roles
of f and g resulting in n = 0 and therefore

dim ker(Av|Bv) = γv

which shows that (Av|Bv) has full rank - giving the first of the two conditions stated in a).
The second condition was the self-adjointness of the matrix AvB

∗
v . To show this we assume

f ∈ dom(−∆), i.e., AvFv + BvF
′
v = 0. Now we chose an arbitrary h ∈ Cγv and set Gv := −B∗h

and G′v := A∗h. Note that we can easily construct a function g ∈
⊕

e∈Ev C
∞(e) that satisfies

these vertex conditions, since on each edge the value ge(v) and the derivative g′e(v) can be chosen
independently of each other. We now see that

〈Fv, G′v〉 − 〈F ′v, Gv〉 = 〈Fv, A∗vh〉 − 〈F ′v,−B∗vh〉
= 〈AvFv, h〉+ 〈BvF ′v, h〉
= 〈AvFv +BvF

′
v, h〉

= 0

where we used AvFv +BvF
′
v = 0. Due to the self-adjointness of −∆ this implies that we also have

AvGv +BvG
′
v = 0 which - by recalling Gv = −B∗h and G′v = A∗h - leads to

(−AvB∗v +BvA
∗
v)h = 0.

Since h ∈ Cγv was chosen arbitrarily we conclude that AvB
∗
v = BvA

∗
v = (AvB

∗
v)∗ showing the

self-adjointness of AvB
∗
v . This concludes the first of four implication we wanted to show.

b)⇒ c) Now we assume that we can express the vertex conditions by a set of matrix pairs
(Av, Bv) having the properties stated in b). According to Lemma 3.10 the matrix Av + ikBv is
invertible for any real k 6= 0, hence we can consider the matrix −2i(Av+ikBv)

−1. After multiplying
equation (5) with this matrix, and rearranging the terms in two different ways, we obtain

−2i(Av + ikBv)
−1Av = i(M(k)− I)

−2i(Av + ikBv)
−1Bv = −1

k
(M(k) + I)

which already gives equation (6) by setting k = −1 and Uv = M(−1).

c)⇒ d) Since Uv is unitary we have |λ| = 1 for all λ ∈ σ(Uv), thus the following construction
makes sense: For each vertex v ∈ V we define P vD, P

v
N to be the orthogonal projectors onto the

eigenspaces of Uv that corresponds to the eigenvalues −1 and +1 respectively. Consequently
P vR := I − P vD − P vN projects on the eigenspace of the remanding eigenvalues of Uv. The definition
of the projectors implies that all three of them commute with Uv, and of course also with I. Hence
they also commute with Uv ± I. Keeping this in mind when multiplying (6) with P vD and P vN
respectively we obtain

i(Uv − I)P vDFv + (Uv + I)P vDF
′
v = 0

i(Uv − I)P vNFv + (Uv + I)P vNF
′
v = 0.

Since P vD corresponds to the eigenspace of −1 we conclude (Uv − I)PnD = 0. With an analog
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argument we see that (Uv + I)PnD = 0, and hence

P vDFv = 0

P vNF
′
v = 0.

Now we consider the remanding P vR. When we denote by (Uv+I)R the restriction of (Uv+I) to the
eigenspace of the eigenvalues that are not ±1, i.e., the space P vRCγv , then (Uv + I)R is invertible.
We multiply (6) with P vR and rearrange the equation resulting in

P vRF
′
v = −i(Uv + I)−1

R (Uv − I)P vRFv

= ΛP vRFv

where we defined Λ := −i(Uv + I)−1
R (Uv − I). This matrix is invertible and self-adjoint on P vRCγv .

d)⇒ a) In this last part of the proof we assume that H̃2
V C(Γ) := {f ∈ H̃2(Γ) : f satisfies (7)}

and have to show that −∆ is self-adjoint. We will do so by showing dom(−∆) = dom(−∆∗), that

is dom(−∆∗) = H̃2
V C(Γ) as defined before. We begin with showing symmetry. To that end assume

that f, g satisfy (7), that is

P vDFv = 0

P vNF
′
v = 0

P vRF
′
v = ΛvP

v
RFv

P vDGv = 0

P vNG
′
v = 0

P vRG
′
v = ΛvP

v
RGv.

Setting I = P vD+P vN+P vR and recalling that for an orthogonal projector P it holds 〈Px, y〉 = 〈x, Py〉
for all x, y on the considered Hilbert space, as well as 〈x, y〉 = 〈Px, Py〉 and PP = P we find

〈F ′v, Gv〉 = 〈F ′v, (P vD + P vN + P vR)Gv〉
= 〈F ′v, P vDGv〉+ 〈P vNF ′v, Gv〉+ 〈P vRF ′v, Gv〉
= 〈ΛP vRFv, P vRGv〉.

An analogous computations for 〈Fv, G′v〉 yields the same result, that is 〈Fv, G′v〉 = 〈ΛP vRFv, P vRGv〉
and hence 〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0 which implies 〈−∆f, g〉 = 〈f,−∆g〉, thus symmetry.

Until this point we only showed that dom(−∆) ⊂ dom(−∆∗). To prove equality we assume

g ∈
⊕

e∈Ev C
∞(e) ⊂ H̃2(Γ) such that g does not vanish only in a small vicinity of v, and 〈−∆f, g〉 =

〈f,−∆g〉, that is

〈Fv, G′v〉 − 〈F ′v, Gv〉 = 0 (9)

for all f ∈ H̃2
V C(Γ). We have to show that g ∈ H̃2

V C(Γ), meaning that g satisfies (7).
To that end we first note that we can express (7) by setting AV := P vD−ΛP vR and Bv = P vN+P vR

and writing AvFv + BvF
′
v = 0 for f ∈ H̃2

V C(Γ). This is a consequence from the three projectors
being mutually orthogonal. Moreover by this definition we have AvB

∗
v = BvA

∗
v, that is AvB

∗
v is

self-adjoint.
Now we choose an arbitrary h ∈ Cγv and pick f ∈ H̃2(Γ) such that Fv = −B∗vh and F ′v := A∗vh,

then f ∈ H̃2
V C(Γ) since AvB

∗
v = BvA

∗
v. Plugging these values into (9) we obtain

0 = 〈−B∗vh,G′v〉 − 〈A∗vh,Gv〉 = 〈−h,AvGv +BvG
′
v〉

which implies AvGv + BvG
′
v = 0 since h was chosen arbitrarily. With the above definition of the

matrices Av, Bv it follows, that g satisfies (7), thus g ∈ H̃2
V C(Γ). We conclude that dom(−∆) =

dom(−∆∗), showing that −∆ is self-adjoint.

With this characterization we are now in a position to show that the Kirchhoff and Anti-
Kirchhoff conditions are in fact two examples for such self-adjoint boundary conditions. With
respect to the definition of the CK- and KC-conditions in Subsection 2.3.2 it is easy to see, that
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for given v ∈ V the corresponding matrices Av, Bv ∈ Cγv×γv are given by

ACKv = BKCv =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 0 0

 BCKv = AKCv =


0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0
1 1 · · · 1


At first we have to consider the rank of (Av|Bv) which is obviously full in both cases. Next we
check AvB

∗
v for being a self-adjoint matrix. Since the result AvB

∗
v = 0 is in both cases the zero

matrix which trivially is self-adjoint, we see that both the Kirchhoff and Anti-Kirchhoff conditions
indeed result in self-adjoint Hamiltonians. We summarize this result.

Corollary 3.13 (Self-adjointness). The Hamiltonians −∆CK
Γ and −∆KC

Γ from Definition 2.45
are self-adjoint.

In the remainder of this subsection we will show that both Hamiltonians −∆KC
Γ and −∆CK

Γ

are not only self-adjoint, but also are nonnegative and have compact resolvent. First we show
nonnegativity for which we refer to [Kuc04, p. 15,16].

Proposition 3.14 (Nonnegativity). The Hamiltonians −∆CK
Γ and −∆KC

Γ from Definition 2.45
are nonnegative.

Proof. We begin with −∆CK
Γ . Assume f ∈ H̃2(Γ) satisfying the vertex conditions. Integrating by

parts leads to

〈−∆CK
Γ f, f〉 =

∑
e∈E
−
∫ te

oe

f ′′(x)f(x) dx

=
∑
e∈E

{
[−f ′(x)f(x)]teoe +

∫
e∈E
|f ′(x)|2 dx

}
(10)

=
∑
e∈E

∫
e∈E
|f ′(x)|2 dx > 0.

The first part of the above summation in (10) vanishes due to the Kirchhoff-flow condition, and
we see, that −∆CK

Γ is in fact nonnegative. If we consider our second operator −∆KC
Γ we obtain a

similar result by an analogous computation. In this case the first summation term in (10) vanishes
due to the Anti-Kirchhoff flow condition, i.e.,

∑
e∈Ev f(v) = 0. Both operators are hence examples

for self-adjoint nonnegative operators, which - including our considerations above - proves the
assertion.

To show that both Hamiltonians also have compact resolvent, we will use Lemma 3.11 from
above. The following proof was taken from [BK13, Theorem 3.1.1].

Theorem 3.15 (Compact resolvent). The Hamiltonians −∆CK
Γ and −∆KC

Γ from Definition 2.45
have compact resolvent.

Proof. Let λ ∈ ρ(H) with H ∈ {−∆CK
Γ ,−∆KC

Γ }. Then the resolvent operator (λ − H)−1 is a

bounded operator from L̃2(Γ) to dom(H) ⊂ H̃2(Γ). From Lemma 3.11 we know that H̃2(Γ)
c
↪→

L̃2(Γ) which shows that (λ−H)−1 is a compact operator on L̃2(Γ).

Finally we summarize the above results. We see that we obtained the same qualitative result,
as we already did for bounded intervals, see Corollary 3.5.

Corollary 3.16 (Spectra of graph Laplacians). The spectra σ(−∆CK
Γ ) and σ(−∆KC

Γ ) satisfy

[0,∞) ⊃ σ(−∆CK
Γ ) = {λCKi : i ∈ N} with lim

i→∞
λCKi =∞

[0,∞) ⊃ σ(−∆KC
Γ ) = {λNi : i ∈ N} with lim

i→∞
λKCi =∞

where σ(−∆CK
Γ ) = σp(−∆CK

Γ ) and σ(−∆KC
Γ ) = σp(−∆KC

Γ ) and all eigenvalues λCKi , λKCi have
finite multiplicities.
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3.2.2 Quantitative analyses by adjacency calculus

From the qualitative results of the previous section we already know, that the spectra of both types
of quantum graphs that we consider here are discrete subsets of the nonnegative real numbers with
finite multiplicities. The central assumption we used to obtain this result was Γ being compact,
that is Γ containing only a finite number of edges, all of which are of finite length. What we did not
take into account was the specific structure of the graph, which is encoded in its adjacency matrix
A and its length matrix L. In this section we will use this additional information to specifically
compute the spectra and the corresponding eigenvectors. To that end we will utilize the so-called
adjacency calculus that has been introduced by Joachim von Below in his dissertation from 1984
[vB84] and which he more compactly summarized in [vB85] or recently in [vBM13].

In the first two Subsection 3.2.2 and 3.2.2 we will consider compact quantum graphs subjected
to Kirchhoff and Anti-Kirchhoff conditions respectively. These sections will contain the main
ideas of and theorems the general approach and finally a quantitative description of the spectrum
and the eigenvectors of such quantum graphs. In the following Subsection 3.2.4 both spectra are
compared, and it is discussed how they are related to each other. Finally, in the last Subsection
3.2.5 we will consider four generic examples of quantum graphs, and compute and visualize the
respective spectra together with the corresponding eigenvectors.

Quantum graphs under Kirchhoff conditions

In this subsection we will perform a quantitative analysis of the spectrum of −∆CK
Γ on a given

graph Γ = (V,E) as described in problem 3.7. Our approach will be as follows: we will transform
the eigenvalue problem from the canonical edgewise formulation, as given below in (11), to a matrix
differential equation with the vertex conditions expressed as algebraic matrix equations, see (15).
This form has the advantage that it can be treated by standard techniques from the theory of
ordinary differential equations. We will solve the problem in matrix form, obtaining eigenvalues
and multiplicities that only depend on the adjacency structure of the underlying combinatorial
graph. We begin with repeating the formulation of the eigenvalue problem in the conventional
edgewise manner. Find λ ∈ [0,∞) (as we know from our results in Section 3.2.2) such that

− u′′j = λuj for all j ∈ {1, . . . , N} (11a)

ui(v) = uj(v) for all v ∈ ei ∩ ej (11b)∑N

j=1
diju

′
j(vi) = 0 for all i ∈ {1, . . . , n}. (11c)

In this formulation we have N functions uj , each one defined on an own edge ej . For the matrix
formulation of the problem we will arrange these function in a common matrix U as described by
the next definition, cf. [vB85, Eq.(3)].

Definition 3.17. In the situation of (11) we define the matrix valued function U using the com-
ponents of the adjacency matrix A = (eij) and the signed incidence matrix D = (dij) as

U := (uij) : [0, 1]→ Cn×n with x 7→ uij(x) := eijus(i,j)

(
1 + di,s(i,j)

2
− xdi,s(i,j)

)
(12)

It might be helpful to re-check with Definition 2.31 to understand (12). We see from the above
definition that the component functions uij of U are identical zero, whenever the respective entry
in the adjacency matrix A is zero. Furthermore it is easy to see that uij and uji are strongly
related, as described by the next lemma.

Lemma 3.18. In the situation given in Definition 3.17 we have

U∗(x) = U(1− x) (13)

U ′(x)∗ = −U ′(1− x) (14)

Proof. For non-adjacent vi and vj with i, j ∈ {1, . . . , n} we have eij = 0 and also eji = 0. With
(12) we hence see that in this case uij(x)∗ = uji(x) = 0. If on the other hand vi and vj are
adjacent and say di,s(i,j) = 1 we get eij = eji = 1 and dj,s(j,i) = −1 by the definition of D.
Using again our definition (12) we obtain uij(1 − x)∗ = uji(x) which we can equivalently write

28



as uij(x)∗ = uji(1 − x) if we denote the transformed variable again by x. The last case with
di,s(i,j) = −1 is treated analogously, which in summary shows (13). Equation (14) on the other
hand follows immediately by differentiating (13) component-wise.

We hence see that if a component uij (which corresponds to an actual edge) describes the
function us(i,j) on an interval starting at vi and ending in vj , the component u∗ji describes the
complex conjugate function u∗s(i,j) in reverse, starting at vj and ending in vi.

As a next step we now have to express the eigenvalue problem (11) using the function U from
Definition 3.17. The first line (11a) can obviously be translated into −U ′′ = λU . To translate the
second line (11b) which expresses the continuity of the graph function u at the vertices, we observe
that in the case of continuity of u we have uij(0) = us(i,j)(vi) = u(vi). This means, that if we
denote φ := (u(vi)) and e := (1) we can express (11b) simply by ∃φ ∈ Cn such that U(0) = φe∗ ·A,
where the operation · refers to the Hadamard product, see Definition B.6. Finally we conclude
by similar considerations that we can express (11c) by summing up the rows in U ′(0), which we
can write as U ′(0)e, and require that each of these sums is zero, hence U ′(0)e = 0. As we now
translated all lines from our first formulation in (11) to a formulation using our new matrix U , we
can reformulate our problem now. We want to find λ ∈ [0,∞) such that there exists a nontrivial
matrix function U = (uij) with eij = 0⇒ uij = 0 (see Definition 3.17) and

− U ′′ = λU Matrix differential equation (15a)

U(0) = φe∗ · A Continuity condition (15b)

U ′(0)e = 0. Kirchhoff flow condition (15c)

It is becoming apparent, that whenever we consider the vertex conditions, the matrices U(0) and
U ′(0) as well as the vector (u(vi)) enter the equations. To simplify our notation we introduce the
following abbreviations for these terms, where we already used φ := (u(vi)) above.

Definition 3.19. In the context of Definition 3.17 and problem (15) we define

Φ := U(0) Ψ := U ′(0) φ := (u(vi)).

As our next step we will provide the general solution of the matrix differential equation (15a),
that is the solution that does not take into account the vertex conditions described by the equations
(15b) and (15c). For this simple result we only need the theory of ordinary differential equations,
since we can solve (15a) simply by solving for each component function, see [vB85, p.315].

Lemma 3.20 (General solution). Let U be a nontrivial solution of (15a) corresponding to the
eigenvalue λ. Then λ ∈ [0,∞) and U is of the form

U(x) =

{
Φ + x(Φ∗ − Φ) if λ = 0

cos(
√
λx)Φ + sin(

√
λx)√
λ

Ψ if λ > 0.

Proof. From our qualitative analyses in the last section, cumulating in Proposition 3.14, we know
that all eigenvalues are real and lie in [0,∞). If we now first assume λ = 0, that is considering
U ′′ = 0, we obtain - by considering each component separately - that all solutions are given by

U(x) = Φ + xM M ∈M (16)

with M := {M = (mij) ∈ Cn×n : eij = 0 ⇒ mij = 0}. Taking into account (13) we find by
plugging x = 1 into (16) that U(1) = Φ∗ = Φ + M hence M = Φ∗ − Φ which gives the assertion
for λ = 0. In the remaining case all solutions of U ′′ = −λU and their derivatives are given by

U(x) = sin(
√
λx)A+ cos(

√
λx)B A,B ∈M (17)

U ′(x) =
√
λ cos(

√
λx)A−

√
λ sin(

√
λx)B A,B ∈M. (18)

which is also an immediate consequence from considering each entry separately. Inserting x = 0

into (17) and (18) respectively yields A =
√
λ
−1

Ψ and B = Φ, which gives assertion for λ > 0 and
concludes the proof.
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In the proof of Lemma 3.20 we encountered the matrix set M consisting of all matrices that
have the same zero-components as the adjacency matrix of the considered graph. In the following
we will come across more such spaces, which will be presented in the next definition.

Definition 3.21 (M-spaces). Let Γ be a combinatorial graph as described in problem 3.7 with
adjacency matrix A = (eij)n×n and e = (1)n×1. We define the three matrix spaces

M(Γ) := {M = (mij) ∈ Cn×n : eij = 0⇒ mij = 0}
M−(Γ) := {M ∈M(Γ) : M∗ = −M and Me = 0}
M+(Γ) := {M ∈M(Γ) : M∗ = M and Me = 0}.

In the context of eigenvalue multiplicities we will need to know the dimensions of the two matrix
spacesM− andM+. It turns out that these dimensions are determined by the number of vertices
and edges within the graph together with property of bipartiteness, cf. [vB85, p.320-322].

Lemma 3.22 (Dimensions of M-spaces). Consider the three M-spaces described in Definition
3.21. Then the following dimension formulas hold.

dim(M−) = N − n+ 1

dim(M+) =

{
N − n+ 1 if Γ is bipartite

N − n if Γ is not bipartite

Proof. We begin with the formula for M−. Consider the restriction of the mapping

T : RN → Rn×n, x := (xk)N×1 7→ T (x) := (eijdi,s(i,j)xs(i,j))n×n

to ker(D), that is T |ker(D). Here, as usual, D = (dij)n×N is the signed incidence matrix of the
considered graph Γ. While the definition of T , that uses the signed incidence matrix D, ensures
that for every x ∈ RN we have T ∗(x) = −T (x), the restriction to the domain ker(D) provides
T (x)e = 0 for all x ∈ ker(D). Hence T (ker(D)) ⊆M−. If on the other hand M = (mij)n×n ∈M−
is given, then the assumptions eij = 0 ⇒ mij = 0, M∗ = −M and Me = 0 require M to be of
the form (eijdi,s(i,j)xs(i,j))n×n for some x = (xk)N×1 ∈ ker(D), and henceM− ⊆ T (ker(D)). This
shows thatM− is isomorphic to ker(D) which by Proposition 2.40 shows dimM− = dim ker(D) =
N − n+ 1.

We continue with the two formulas for M+, beginning with the bipartite case. In this context
we note that the rank of D does not change when we alternate the directions of the graph. If we
are now given a bipartite graph with V = V1 ∪ V2, V1 ∩ V2 = ∅ we can assign its directions in a
way that that all origins lie in V1 and all terminals V2. As a consequence the entries of any row in
the respective signed incidence matrix D have all the same sign, which results in ker(D) = ker(A).
With analogous arguments as before we can now construct an isomorphism between ker(D) and
M+ by considering the restriction of the mapping

S : RN → Rn×n, x := (xk)N×1 7→ S(x) := (eijxs(i,j))n×n

to ker(D), i.e., S|ker(D). We hence see that also in this case we have dimM+ = dim ker(D) =
N − n+ 1, which shows the second formula of the assertion.

This brings us to the last case, that is the dimension formula of M+ for non-bipartite graphs.
This part of the proof will require the most effort to show. At first, we consider the case N = n. As
we know from Lemma B.14 this corresponds to Γ having exactly one cycle ζ. Since we additionally
assume that Γ is not bipartite we conclude A(ζ)e 6= 0. We now assume that Γ is larger than ζ,
i.e., Γ is not a pure cycle. For showing that in that case also A(Γ)e 6= 0 we partition A(Γ) and e
without limitation as in the following equation

A(Γ)e =

(
A(ζ) A12

A21 A22

)(
e1

e2

)
=

(
A(ζ)e1 +A12e2

A21e1 +A22e2

)
.

Since Γ is unicyclic we can find a row in (A21 |A22) that only contains one 1, which shows that
(A21 |A22)e 6= 0 andA(Γ)e 6= 0. This result combined with Γ being connected andA(Γ)e 6= 0 shows
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Figure 2: On the left side the first case, i.e., when Γ contains and even cycle - on the right side
the opposite case, when Γ does not contain any even cycle. Note that the dashed lines indicate
possible additional edges and not the removed edge. An example for an edge that we removed
from the graph is colored gray.

that we cannot find a nontrivial matrix M ∈ M with M = M∗ and Me = 0 that is dimM+ = 0.
We hence see, that the dimension formula holds in the unicyclic case. In the following we can
thus assume that Γ contains at least two cycles, which requires N ≥ 5 edges. We will proof the
dimension formula for these cases by induction over the number of edges N . Since we just showed
the cases for N < 5 the induction base is given. Now assume that Γ has N ≥ 5 edges, and that
dim(M+) = N −n holds for any such graph with N < N edges. We will show that we can remove
one of the N edges e0 ∈ E such that we obtain a connected and non-bipartite subgraph Γ0 one
the one hand, and on the other hand a matrix M0 ∈ M+ that allows us to decompose M+ into
the direct sum

M+(Γ) = RM0 ⊕M+(Γ0).

Since in this case Γ0 has N − 1 edges we can apply our induction hypothesis resulting at first in
dimM+(Γ0) = (N − 1)− n = N − n− 1 and finally together with RM0 being one-dimensional in
dim(M+) = N − n. It remains to show that we actually can find such an edge e0 ∈ E. For that
purpose we distinguish two cases, both of which are visualized in figure 3.2.2.

First we assume that Γ contains an even cycle ζ, that is a cycle in Γ with an even number
of edges E(ζ). In this case we can pick e0 as one of the edges in E(ζ) that do not lie on all
odd cycles of Γ. Such an edge obviously exists since ζ is even. Since the removed edge e0 comes
from a cycle, the resulting graph Γ0 is connected. Also because ζ is even with e0 not lying on all
odd cycles, Γ0 cannot turn out to be bipartite. We hence see, that Γ0 satisfies the criteria. By
assigning alternately ±1 to the edges of ζ and 0 to the remaining edges of Γ, see figure 3.2.2, we
define our matrix M0 ∈M(Γ) by writing these values to the respective entries. We see that in this
manner each row of the symmetric matrix M0 contains exactly one +1 and one −1 entry resulting
in M0e = 0. Since each matrix from M+(Γ0) has a zero-entry at the position of e0, we see that
M0 is indeed linear independent of M+(Γ0), which concludes the consideration for this case.

For the remaining case that Γ does not contain an even cycle, we choose two (odd) cycles ζ
and ζ ′ where we pick any edge of ζ as e0. With the same argumentation as above we see that the
resulting Γ0 is connected and non-bipartite. Since Γ does not contain even cycles we conclude,
that ζ and ζ ′ do not contain common edges - otherwise we could construct an even cycle using
edges from both ζ and ζ ′. We now consider a path Λ from an edge v1 ∈ ζ to v2 ∈ ζ ′ of length l ≥ 0
with Λ having no common edges with ζ and ζ ′ respectively and assign values to the edges in the
following manner: the two edges on ζ that contain v1 are assigned with −1, while the remaining
edges in ζ are denoted with ±1 alternately. The only edge on Λ that contains v1 is assigned 2,
while the following edges on Λ are assigned in turn +2 and −2 until v2 ∈ ζ ′ is reached. The two
edges on ζ ′ that contain v2 are denoted with (−1)l, and the remaining edges on ζ are alternating
between −(−1)l and (−1)l. One can now check, that this convention leads to a matrix M0 ∈ M
with M0e = 0 and M∗0 = M0, hence M0 ∈ M+. Also, with the same arguments as in the case
before, we see that M0 is linear independent of M+(Γ0). This concludes the considerations for
this last case, and thereby completes the proof.

Before we proceed with the quantitative discussion of the Kirchhoff spectrum, we still need one
rather technical lemma in the context of Hadamard operations.
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Lemma 3.23. Let A = (aij)m×n and B = (bij)m×n ∈ Rm×n and x = (xi)n×1 ∈ Rnm then

((A ·B)x)i = (ADiag(x)BT )ii

Proof.

((A ·B)x)i =

n∑
j=1

aijbijxj =

n∑
j=1

aijxjbij = (ADiag(x)B∗)ii

This brings us to the main result of this subsection - the quantitative description of the spectrum
for compact and equilateral quantum graphs under Kirchhoff conditions, see [vB85, p.317-323].

Proposition 3.24 (Kirchhoff spectrum). Let (Γl,−∆CK
Γ ) be a quantum graph under Kirchhoff

conditions with transition matrix Z as described in problem 3.7. Then its spectrum is given by

σ(−∆CK
Γ ) = {0} ∪ {λ > 0 : cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = −1}

without counting multiplicities. The respective multiplicities (m(λ) = 0 is possible) are given by

m(λ) =



1 if λ = 0

m(cos
√
λ,Z) if sin

√
λ 6= 0

N − n+ 2 if cos
√
λ = 1 and λ > 0

N − n+ 2 if cos
√
λ = −1 and Γ is bipartite

N − n if cos
√
λ = −1 and Γ is not bipartite.

Proof. We start with the case λ = 0. From Lemma 3.20 we know that all solutions of (15a) with
λ = 0, along with the respective derivatives are given by

U(x) = Φ + x(Φ∗ − Φ) (19)

U ′(x) = Φ∗ − Φ. (20)

We now easily get a new expression for Ψ by inserting x = 0 into (20) and using (15b)

Ψ = Φ∗ − Φ

= (eφ∗ − φe∗) · A. (21)

Substituting (21) into the Kirchhoff flow condition (15c) and using Lemma 3.23 we compute

(A · eφ∗)e = (A · φe∗)e
⇒ (Aφe∗)ii = (Aeφ∗)ii
⇔ Aφ = Diag(Ae)φ
⇔ Diag(Ae)−1Aφ = φ

⇔ Zφ = φ

Hence the vertex distribution φ corresponding to the eigenvalue λ = 0 of (15) is an eigenvector of
the transition matrix Z belonging to the eigenvalue µ1 = 1, which is simple by Lemma 2.36.

We proceed with the second case, λ > 0, sin
√
λ 6= 0. Referring again to Lemma 3.20, all

these solutions, along with their respective derivatives, are of the form

U(x) = cos(
√
λx)Φ +

sin(
√
λx)√
λ

Ψ (22)

U ′(x) = −
√
λ sin(

√
λx)Φ + cos(

√
λx)Ψ (23)

Plugging x = 1 into (22), using U(1) = U∗(0) = Φ∗ from Lemma 3.18 and finally (15b) we obtain
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Ψ =

√
λ

sin
√
λ

(Φ∗ − Φ cos
√
λ)

=

√
λ

sin
√
λ

(eφ∗ − cos
√
λφe∗) · A (24)

a new expression for Ψ. Substituting (24) into (15c) and using Lemma 3.23 we compute

(eφ∗ · A)e = (cos
√
λφe∗ · A)e

⇒ (Aφe∗)ii = cos
√
λ(Aφ∗e)ii

⇔
n∑
j=1

aijφi = cos
√
λφi

n∑
j=1

aij

⇔ Aφ = cos
√
λDiag(Ae)φ

⇔ Zφ = cos
√
λφ

which shows the assertion for this case. For the remaining case of sin
√
λ = 0 we will distinguish

the cases cos
√
λ = 1 and cos

√
λ = −1. Note that in both cases due to Lemma 2.36 we have

cos
√
λ ∈ σ(Z), which leaves us proofing the multiplicity formulas only.

We will begin with the first case, i.e., assuming λ > 0, cos
√
λ = 1. Considering the solutions

space with vanishing Ψ we see from (22) and (15b) that every solution U(x) = cos(
√
λx)φe∗ · A

is a multiple of A giving this space only one dimension. If, on the other hand, we consider all
solutions with vanishing Φ we obtain from Ψ = −Ψ∗ - this follows after plugging x = 1 into (23)
- and (15c) that this solutions space is isomorphic to M− with dim(M−) = N − n+ 1, according
to Lemma 3.22. Combining these results we obtain m(λ) = N − n+ 2 as stated in the assertion.

For the remaining case λ > 0, cos
√
λ = −1 we proceed in an analogous way. Again by

plugging x = 1 into (23) we see that Ψ = Ψ∗ which together with (15c) indicates that the solution
space with vanishing Φ is of dimension dim(M+) which, according to Lemma 3.22, is eitherN−n+1
or N−n depending on whether Γ is bipartite or not. For the solution space with vanishing Ψ we see
again from (22) that this space is due to (15b), i.e., φe∗ · A at least one dimensional. By plugging
x = 1 into (22) we see that −Φ∗ = Φ which is only possible for non-trivial Φ if Γ is bipartite,
due to the continuity-condition (15b). If Γ is not bipartite we cannot label the vertices alternately
with +1 and −1 without adjacent vertices getting the same value, which makes it impossible to
construct a skew-symmetric matrix of the type φe∗ · A. If we combine these results we obtain the
remaining multiplicity formulas.

We see that the spectrum of the quantum graph−∆CK
Γ is tightly related to the transition matrix

Z of the underlying graph structure. If we want to compute the eigenvalues of a given quantum
graph, as we consider them here, we first have to compute the eigenvalues of Z. The specific
formulas are given in the following corollary, which also states the corresponding eigenvectors.

Corollary 3.25 (Kirchhoff eigenvectors). In the situation described in Proposition 3.24 we denote
the eigenvalues of Z by 1 = µ1 > µ2 > . . . > µn ≥ −1 (see Lemma 2.36). Then the eigenvalues
λr,k (k ∈ N0) of the quantum graph −∆CK

Γ are given by

λr,k =



0 if r = 1, k = 0

(2k)2π2 if r = 1, k 6= 0

(2kπ ± arccos(µr))
2 if 1 < r < n

(2k + 1)2π2 if r = n and Γ is bipartite

(2kπ ± arccos(µr))
2 if r = n and Γ is not bipartite

(2k + 1)2π2 if r = n+ 1 and Γ is not bipartite

Denoting with ζr the eigenvector of Z corresponding to µr the eigenvectors Ur,k(x) are given by
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Ur,k(x) =



αA · ζ1e∗ if r = 1 and k = 0

α

(
cos(

√
λ1,kx)A+

sin(
√
λ1,kx)√
λ1,k

Ψ

)
with

(
Ψ∗

Ψe

)
=
(−Ψ

0

)
if r = 1 and k 6= 0

α

(
cos(

√
λr,kx)ζre

∗ +
sin(
√
λr,kx)

sin(
√
λr,k)

(eζ∗r − cos(
√
λr,k)ζre

∗)

)
· A if 1 < r < n

α

(
cos(

√
λn,kx)ζne

∗ · A+
sin(
√
λn,kx)√
λn,k

Ψ

)
with

(
Ψ∗

Ψe

)
=
(

Ψ
0

)
if r = n and Γ bp

α

(
cos(

√
λn,kx)ζne

∗ +
sin(
√
λn,kx)

sin(
√
λn,k)

(eζ∗n − cos(
√
λn,k)ζne

∗)

)
· A if r = n and Γ nbp.

α

(
sin(
√
λn,kx)√
λn,k

Ψ

)
with

(
Ψ∗

Ψe

)
=
(

Ψ
0

)
if r = n+ 1

As this corollary is a direct consequence of Proposition 3.24 we forgo a formal proof. The
formula for the eigenvalues is obvious, and also all the eigenvectors already appear in the proof of
Proposition 3.24. What remains to be shown is that all given eigenvectors above actually satisfy
the eigenvalue problem 15, which is easy to check.

Quantum graphs under Anti-Kirchhoff conditions

In this subsection the quantitative analysis for our problem 3.7 with Anti-Kirchhoff vertex condi-
tions is considered. The approach will be similar to the respective analysis for Kirchhoff conditions
that has been presented in the preceding section. Some of the results we derived above can be
reused in the context of Anti-Kirchhoff conditions, which makes this subsection shorter than the
last one. We begin with stating problem 3.7 for the Anti-Kirchhoff case in the edgewise manner.

− u′′j = λuj for all j ∈ {1, . . . , N} (25a)

dkiu
′
i(vk) = dkju

′
j(vk) for all vk ∈ ei ∩ ej (25b)∑N

j=1
d2
ijuj(vi) = 0 for all i ∈ {1, . . . , n} (25c)

Using the same conventions as in the previous section, that is Definitions 3.17 and 3.19, we obtain
the matrix differential equation for the Anti-Kirchhoff case. Since in this case the derivative u′ is
continuous on the graph, it makes sense to introduce the new abbreviation ψ := (u′(vi)) which
contains the derivatives evaluated at all vertices. Again we want to find λ ∈ [0,∞) such that there
exists a nontrivial matrix function U = (uij) with eij = 0⇒ uij = 0 (see Definition 3.17) and

− U ′′ = λU Matrix differential equation (26a)

U ′(0) = ψe∗ · A Anti-Kirchhoff continuity condition (26b)

U(0)e = 0. Anti-Kirchhoff flow condition (26c)

We see that the roles of U(0) and U ′(0) have changed if we compare (26) with (15). The following
two propositions is the main result in the quantitative discussion of the spectrum for compact
equilateral quantum graphs subjected to Anti-Kirchhoff conditions, cf. [vBM13, Theorem 3.5].

Proposition 3.26 (Anti-Kirchhoff spectrum). Let (Γl,−∆KC
Γ ) be a quantum graph under Anti-

Kirchhoff conditions with transition matrix Z as in problem 3.7. Then the spectrum of −∆KC
Γ is

given by

σ(−∆KC
Γ ) = {0} ∪ {λ > 0 : − cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = 1}

without counting multiplicities. The respective multiplicities (m(λ) = 0 is possible) are given by

m(λ) =



N − n+ 1 if λ = 0 and Γ is bipartite

N − n if λ = 0 and Γ is not bipartite

m(− cos
√
λ,Z) if sin

√
λ 6= 0

N − n+ 2 if cos
√
λ = −1

N − n+ 2 if cos
√
λ = 1, λ > 0 and Γ is bipartite

N − n if cos
√
λ = 1, λ > 0 and Γ is not bipartite.
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Proof. We start with the first case λ = 0. As we know from Lemma 3.20 all solutions of the matrix
differential equation (26a) for λ = 0 are given by U(x) = Φ + (Φ∗ − Φ)x. We will now show that
the Anti-Kirchhoff conditions lead to a vanishing slope matrix, i.e., Φ∗ −Φ = 0. Using integration
by parts we find

0 =

N∑
j=1

∫ 1

0

u′′j uj dxj

=

N∑
j=1

[u′juj ]
1
0 −

N∑
j=1

∫ 1

0

u′2j dxj .

Expanding the first term results in

N∑
j=1

[u′juj ]
1
0 =

N∑
j=1

u′j(1)uj(1)−
N∑
j=1

u′j(0)uj(0)

=

N∑
j=1

(+1)u′j(1)uj(1) +

N∑
j=1

(−1)u′j(0)uj(0)

=

N∑
j=1

∑
vi∈ej

diju
′
j(vi)uj(vi)

=

n∑
i=1

γvi∑
j=1

diju
′
j(vi)uj(vi).

Considering a fixed vertex vi the Anti-Kirchhoff condtions result in diju
′
j(vi) = diku

′
k(vi) for all

j, k ∈ {1, . . . , N} with vi ∈ ej ∩ ek. Hence we can write diju
′
j(vi) =: u′(vi) and extract that term

from the sum. This results in

N∑
j=1

[u′juj ]
1
0 =

n∑
i=1

γvi∑
j=1

u′(vi)uj(vi)

=

n∑
i=1

u′(vi)

γvi∑
j=1

uj(vi)︸ ︷︷ ︸
=0

due to the Anti-Kirchhoff vertex condition (26b). And all together we obtain

0 =

N∑
j=1

∫ 1

0

u′′j uj dxj = −
N∑
j=1

∫ 1

0

u′2j dxj ≤ 0

which can only hold if u′j ≡ 0 for all j ∈ {1, . . . , N} hence Φ∗ − Φ = 0 or Φ∗ = Φ. From the last
result and (26c) we see that Φ ∈ M+ which implies that eigenspace for λ = 0 is isomorphic to
M+ whose dimension is given by Lemma 3.22 to dim(M+) = N − n+ 1 for Γ being bipartite and
dim(M+) = N − n for Γ not being bipartite.

We continue with the case λ > 0, sin
√
λ 6= 0. Once again utilizing Lemma 3.20 we know that

all solutions of (26a) and their derivatives for this case are given by

U(x) = cos(
√
λx)Φ +

sin(
√
λx)√
λ

Ψ (27)

U ′(x) = −
√
λ sin(

√
λx)Φ + cos(

√
λx)Ψ. (28)

By plugging x = 1 into (28) and using (14) we arrive at a new expression for Φ in terms of Ψ.
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−Ψ∗ = −
√
λ sin

√
λΦ + cos

√
λΨ

⇔ Φ =
1√

λ sin
√
λ

(cosλΨ + Ψ∗)

Now we use the vertex conditions (26c) and (26b). In the same manner as in proof 3.24 we obtain

(A · eψ∗)e = − cos
√
λ(A · ψe∗)e

⇔ Zψ = − cos
√
λψ

which shows the assertion for this case. We now consider the case sin
√
λ = 0. Here we have to

distinguish the cases cos
√
λ = −1 and cos

√
λ = 1. Note that in both cases due to Lemma 2.36 we

have cos
√
λ ∈ σ(Z), which leaves us proving the multiplicity formulas only.

We will begin with the first case, i.e., λ > 0, cos
√
λ = −1. By plugging x = 1 into (27)

U(1) = Φ∗ = Φ cos
√
λ+
√
λ
−1

sin(
√
λ)Ψ

we conclude, that in this case Φ∗ = −Φ. Considering all solutions (27) with vanishing Ψ we
conclude m(λ) ≥ N − n + 1 by using (26c) and Lemma 3.22. If we consider all solutions with
vanishing Φ on the other hand, then according to (27) these solutions are of the form

U(x) = λ−1 sin(
√
λx)Ψ

with Ψ = Ψ∗ by (28). Using (26b) we see that Ψ = ψe∗·A is a multiple ofA, hencem(λ) = N−n+2.

Finally we assume λ > 0, cos
√
λ = 1. Then by (28) and (26b) we have−Ψ∗ = Ψ = ψe∗·A, for

which there are only non-trivial solutions if Γ is bipartite, because otherwise we cannot alternately
assign +1 and −1 to the vertices without any adjacent vertices getting the same value, which
permits to define a skew-symmetric matrix of the form ψe∗ · A. In that case this solutions space
is one dimensional. Considering all solutions with vanishing Ψ we obtain Φ∗ = Φ by (27), and by
(26b) and lemma (3.22) we see that m(λ) ≥ N − n+ 1 in the bipartite and m(λ) ≥ N − n in the
non-bipartite case, which together amounts to the remaining multiplicity formulas.

Corollary 3.27 (Anti-Kirchhoff eigenvectors). In the situation described in Proposition 3.24 we
denote the eigenvalues of Z by 1 = µ1 > µ2 > . . . > µn ≥ −1 (see Lemma 2.36). Then the
eigenvalues λr,k (k ∈ N0) of the quantum graph −∆CK

Γ are given by

λr,k =



(2k + 1)2π2 if r = 1

((2k + 1)π ± arccos(µr))
2 if 1 < r < n

((2k + 1)π ± arccos(µr))
2 if r = n and Γ is not bipartite

(2k)2π2 if r = n, k 6= 0 and Γ is bipartite

0 if r = n+ 1, k = 0

(2k)2π2 if r = n+ 1, k 6= 0 and Γ is not bipartite.

Denoting with ζr the eigenvector of Z corresponding to µr the eigenvectors Ur,k(x) are given by

Ur,k(x) =



α

(
cos(

√
λ1,kx)Φ +

sin(
√
λ1,kx)√
λ1,k

ζ1e
∗
)
A with

(
Φ∗

Φe

)
=
(−Φ

0

)
if r = 1

α

(
cos(
√
λr,k)ζre

∗+eζ∗r√
λr,k sin(

√
λr,k)

cos(
√
λr,kx) +

sin(
√
λr,k)x√
λr,k

ζre
∗
)
· A if 1 < r < n

α

(
cos(
√
λn,k)ζne

∗+eζ∗n√
λn,k sin(

√
λn,k)

cos(
√
λn,kx) +

sin(
√
λn,k)x√
λn,k

ζne
∗
)
· A if r = n and Γ nbp.

α

(
cos(

√
λn,kx)Φ +

sin(
√
λn,kx)√
λn,k

ζne
∗
)

with
(

Φ∗

Φe

)
=
(

Φ
0

)
if r = n, k 6= 0 and Γ bp.

αΦ with
(

Φ∗

Φe

)
=
(

Φ
0

)
if r = n+ 1 and k = 0

α
(
cos(

√
λn,kx)Φ

)
with

(
Φ∗

Φe

)
=
(

Φ
0

)
if r = n+ 1 and k 6= 0
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3.2.3 Quantitative analyses by the secular equation

In this section we want to present yet another approach - evolving around the so-called secular
equation - to quantitatively determine the spectrum of the Hamiltonians −∆CK

Γ and −∆CK
Γ , as

described in Problem 3.7. In fact this approach, which was first introduced by J.-P. Roth, see
[Rot84], in 1984, is even broad enough to also be applicable for all compact quantum graphs in
general, that is we do not have to assume an equilateral metric structure. However, since the subject
of this thesis is focused on equilateral, compact quantum graphs, we will mostly be concerned with
this specific case. The following discussion is essentially based on [BK13, Section 2.1 and 3.7.1].

At first we will explain the main idea of the approach. Assume we had found a (nontrivial)

solution 0 6= f ∈ H̃2
V C(Γ) and a positive 0 < λ ∈ R such that −∆V C

Γ f = λf , where −∆V C
Γ

represents either −∆CK
Γ or −∆CK

Γ . Since it turns out to be convenient, for the rest of this section
we will denote the eigenvalue λ in the form λ = k2, which makes sense, since we know from the
qualitative analyses in Section 3.2.1 that λ is always a nonnegative real number. We hence have

−∆V C
Γ f = k2f. (29)

How does the solution f look like? Since (29) implies that fe := f |e satisfies −f ′′e = k2fe for all
e ∈ E we can express the restriction of f to any edge e ∈ E of Γ as fe(xe) = a1e−ikxe + a2eikxe ,
where xe denotes the edge coordinate (according to the assigned direction of e), and a1, a2 ∈ C
are constants accounting for the vertex conditions. We can hence say that f can be described on
each edge e ∈ E as a superposition of the so-called plane waves e−ikxe and eikxe .

At this point, a new idea comes into play. So far, we have considered a metric graph - roughly
speaking - as a set of one-dimensional edge-intervals that were glued together at the vertices. Each
edge was thereby associated with exactly one distinct direction, that is the natural direction of the
interval. However, the solution of the eigenvalue problem does not depend on the choice of this
direction. The spectra do not change, if we switch the directions of an edge-interval on the metric
graph. This is illustrated by the results of the last section, were the spectra are given as a function
of the adjacency matrix A but not of the signed incidence matrix D which contains the directions.
Motivated by this observation we will start to consider each edge as a two-way-street consisting
of two directed edges, also called bonds, with opposite directions, see Figure 3. This two-way-
picture is especially suited when we consider the edgewise solutions fe(xe) = a1e−ikxe + a2eikxe

which consist of two components. If we now fix a vertex v of a given edge e = {v, v′} and define
the coordinate xve as the edge coordinate originating in v we can think of the solution component
f ine,v(x

v
e) := a1e−ikx

v
e = ab′e

ik(−xve) to be defined on the incoming bond b′, while the other component

foute,v (xve) := a2eikx
v
e = abe

ikxve can be thought of to be defined on the outgoing bond b with respect
to the considered vertex v. The edge solution fe is then obtained by adding both components,
that is fe = f ine,v + foute,v . In the perspective of this interpretation of the solution, the situations at
the vertices can be seen a system of incoming and outgoing waves of the same wavelength.

The natural question that arises at this point is: what purpose serves this cumbersome con-
struction? It allows us to introduce a concept that is referred to in the literature as scattering.
Roughly speaking scattering describes how the solution distributes or scatters at the vertices of
the graph, if we understand it in terms of incoming and outgoing waves, as we sketched it in the
paragraph above. We will now explain this concept in more detail.

Consider a fixed vertex v ∈ V , a fixed incident edge e ∈ Ev and a solution 0 6= f of (29) that
has a unit incoming component on e, and zero incoming components on e′ ∈ Ev \ {e}, that is
f ine,v(x

v
e) = e−ikx

v
e and f ine′,v(x

v
e′) = 0 for all e′ ∈ Ev \ {e}. We will call the corresponding solution

f (e). In this context we now introduce the so-called local scattering matrix σ(v) at vertex v, cf.
[BK13, p. 38].

Definition 3.28 (Local scattering matrix). Let f (e) ∈ H̃2
V C(Γ) be a solution of (29) with f ine,v(x

v
e) =

e−ikx
v
e and f ine′,v(x

v
e′) = 0 for all e′ ∈ Ev \ {e} as described before. Then the local scattering matrix

σ(v) := (σ
(v)
e,e′) ∈ Cγv×γv at the considered vertex v ∈ e, where e, e′ ∈ Ev is defined by{

f
(e)
e (xve) = e−ikx

v
e + σ

(v)
e,e eikx

v
e on e

f
(e)
e′ (xve′) = σ

(v)
e′,ee

ikxve on e′ 6= e.
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Figure 3: Interpretation of an undirected edge e = {v, v′} as the combination of two directed edges
b = (v, v′) and b′ = (v′, v) with opposite directions. The two edge coordinates xve and xv

′

e originate
in the vertices v and v′ respectively.

Note that in order to describe the complete local scattering matrix σ(v) we have to consider the
solutions f (e) for all e ∈ Ev. In the situation described in Definition 3.28 we have one incoming

unit wave and |Ev| outgoing waves with amplitudes σ
(v)
e,e′ at the considered vertex v. This situation

can be understood as the scattering of the incoming wave at v to the outgoing waves.

Before we continue to extend the scattering approach on the whole graph, we will have a closer
look on the local scattering matrix and present a few of its properties. The following lemma was
taken from [BK13, Lemma 2.1.3].

Lemma 3.29. In the situation described in Definition 3.28 the local scattering matrix σ(v)(k) is
unitary and can be expressed as

σ(v)(k) = −(Av + ikBv)
−1(Av − ikBv) (30)

where Av, Bv ∈ Cγv×γv are the matrices described in Theorem 3.12 that express the vertex condi-
tions at the considered vertex v ∈ V .

Proof. With respect to Lemma 3.10, stating unitarity of −(Av + ikBv)
−1(Av − ikBv), we only

have to show that σ(v)(k) can actually be expressed in the form (30). To that end we consider the
solution f (e) described in Definition 3.28 and determine the vertex value and the vertex derivative

vector F
(e)
v and F

′(e)
v , cf. Definition 3.8. Using Definition 3.28 we obtain

F (e)
v = (δe′,e + σ

(v)
e′,e(k))

F ′(e)v = ik(−δe′,e + σ
(v)
e′,e(k))

where δe′,e denotes the Kronecker delta. If we repeat this definition for every e ∈ Ev, that is

obtaining F
(e)
v and F

′(e)
v for each solution f (e), e ∈ Ev, and concatenate the resulting F

(e)
v and

F
′(e)
v horizontally in the two matrices Fv and F′v, then these matrices can be expressed as

Fv = I+ σ(v)(k)

F′v = ik(−I+ σ(v)(k))

where I denotes the identity matrix. Since all solutions f (e) satisfy the vertex conditions it follows
from AvFv +BvF′v = 0 that

Av(I+ σ(v)(k)) +Bv(ik(−I+ σ(v)(k))) = 0

which we can solve for σ(v)(k) and obtain (30). Note that (Av + ikBv)
−1 is invertible for k 6= 0 by

Lemma 3.10.

The last result allows us to compute the local scattering matrices for Kirchhoff and Anti-

Kirchhoff vertex conditions which we will denote as σ
(v)
CK and σ

(v)
KC respectively. To that end

let Γ = (V,E) be the underlying combinatorial graph of a given compact quantum graph, and
consider a vertex v ∈ V with γv incident edges collected in Ev. We begin with the discussion of
the Kirchhoff case. As we have seen in Lemma 3.29 σ(v) can be computed using the local vertex
matrices Av, Bv ∈ Cγv×γv as introduced in Section 3.2.1. For convenience we restate them at this
point one more time for the Kirchhoff case.
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ACKv =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 0 0

 BCKv =


0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0
1 1 · · · 1


A direct computation of (30) for different values of 0 < k and γv leads to the assumption that

σ
(v)
CK(k) = 2γ−1

v − E, where E = (1)γv×γv . This assumption can easily be confirmed by checking

ACKv − ikBCKv = −(ACKv + ikBCKv )(2γ−1
v − E)

which is equivalent to 2γ−1
v −E = −(ACKv +ikBCKv )−1(ACKv −ikBCKv ) and avoids the computation

of the inverse (Av + ikBv)
−1. In the same way we can compute the local scattering matrix σ

(v)
KC

for the Anti-Kirchhoff case. The respective matrices for the vertex conditions read

AKCv =


0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0
1 1 · · · 1

 BKCv =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 0 0

 .

It is easy to see that in this case we have σ
(v)
KC = −σ(v)

CK which we can confirm in the same way as in
the Kirchhoff case before. We see that in both cases the local scattering matrices are independent
of k. We summarize our results.

Corollary 3.30. Let (ΓL,−∆V C
Γ ) be a compact quantum graph with −∆V C

Γ ∈ {−∆CK
Γ ,−∆KC

Γ }.
The the local scattering matrices σ

(v)
CK and σ

(v)
KC are given by

σ
(v)
CK(k) = σ

(v)
CK =

2

γv
− E (31)

σ
(v)
KC(k) = σ

(v)
KC = E− 2

γv
. (32)

Since we will later compute the scattering matrices of some specific quantum graphs, see Section
3.2.5, we compute the local scattering matrices for the relevant cases of γv ∈ {1, 2, 3}:

σ
(v)
CK

γv=1
= 1 (33)

σ
(v)
KC

γv=1
= −1 (34)

σ
(v)
CK

γv=2
=

(
0 1
1 0

)
(35)

σ
(v)
KC

γv=2
=

(
0 −1
−1 0

)
(36)

σ
(v)
CK

γv=3
=

− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

 (37)

σ
(v)
KC

γv=3
=

 1
3 − 2

3 − 2
3

− 2
3

1
3 − 2

3
− 2

3 − 2
3

1
3

 (38)

Note that the independence of both local scattering matrices σ
(v)
CK and σ

(v)
KC from k can be put

in a more general context. It turns out, that σ(v) is independent of k if and only if the vertex
conditions at v have no Robin part, that is PR,v = 0, if we express the vertex conditions by using
the orthogonal projectors PD,v, PN,v and PR,v introduced in Theorem 3.12. The corresponding

results can be found in [BK13, p. 38-41]. But since we only need the k-independence of σ
(v)
CK and

σ
(v)
KC we forgo these rather technical considerations at this point.

We will now proceed by extending the scattering concept from a single vertex v ∈ V to the
whole graph Γ. To that end let (f, k) be an eigenpair of −∆V C

Γ f = k2f . Considering a fixed
vertex v ∈ V with incident edge e = {v, v′} ∈ Ev, the restriction of f to this edge can be generally
expressed as

fe(x
v
e) = abe

ikxve︸ ︷︷ ︸
foute,v (xve)

+ āb′e
ikxv

′
e︸ ︷︷ ︸

fout
e,v′ (x

v′
e )

= abe
ikxve + āb′e

ikLe︸ ︷︷ ︸
ab′

e−ikx
v
e
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where Le denotes the length of the edge (which in our case is always one, but for now we will
leave the notation in its general from). If we repeat that consideration for every edge e ∈ Ev and
summarize the coefficients ab and āb′e

ikLe in the vectors α = (ab) and β = (eikLeab̄) we can express
the vertex value and the vertex derivative vector at v as Fv = α+β and F ′v = ik(α−β). Plugging
these vectors in the vertex condition AvFv +BvF

′
v = 0 and rearranging leads to

αv = −(Av + ikBv)
−1(Av − ikBv)βv (39)

= σ(v)(k)βv (40)

which shows that both coefficient vectors are related to each other by the local scattering matrix
σ(v)(k). If we now apply this construction for each vertex v ∈ V , we can collect all resulting
equations in a linear system. While doing so, we will notice, that each coefficient appears twice -
once as the weight of an incoming wave and once as a weight of an outgoing wave. We will hence
end up with a 2|E| × |E| system, described by the following definition, see [BK13, p. 41, 42].

Definition 3.31 (Global scattering matrix). Let (ΓL,−∆V C
Γ ) be a quantum graph as described in

Corollary 3.30 with local scattering matrices σ(v) for all v ∈ V . We define the global scattering
matrix S(k) = (sb′,b) ∈ C2|E|×|E| by setting

sb′,b = δt(b),vδo(b′),vσ
(v)
b′,b

where b, b′ refer to the bonds of the graph.

Taking a closer look on this slightly cryptic definition, we see that the global scattering matrix
relates the vector of the solution coefficients ab, ab′ as in (39) to a weighted version of themselves.
Indeed, if we define the vector a ∈ C2|E| to be this coefficient vector (note that the actual order of
the different ab, ab′ in a depends on how we labeled the bonds b, b′ over the graph Γ, cf. Section
3.2.5), and if we define L := Diag(lb), where the order of the lb on the diagonal of L corresponds
to the order of the elements in a, we obtain

a = S(k)eikLa. (41)

From this relation it becomes obvious that k2 is an eigenvalue of problem (29) if and only if the
coefficient vector a is an eigenvector of S(k)eikL. The corresponding eigenvector f is then described
by the plane waves e−ikxe and eikxe weighted accordingly with the coefficients contained in a. We
emphasize this connection in an own theorem, cf. [BK13, Theorem 2.1.8].

Theorem 3.32 (Secular equation I). Let (ΓL,−∆V C
Γ ) be a compact quantum graph. Then k2 ∈

C \ {0} is an eigenvalue of −∆V C
Γ if and only if k satisfies the so-called secular equation

det(I− S(k)eikL) = 0 (42)

where L := Diag(lb) is the diagonal length matrix as described before.

The secular equation allows us to determine the eigenvalues of a compact quantum graph with
the exception k2 = 0. This exception arises since in the case k2 = 0 the edgewise solutions are not
given anymore by a superposition of plane waves.

It turns out that we can obtain an even stronger assertion than given in Theorem 3.32 whenever

the global scattering matrix S(k) does not depend on k. As we have seen before σ
(v)
CK and σ

(v)
KC are

k-independent, hence also the respective global scattering matrices SCK and SKC are independent
of k. It thus makes sense for us, to consider this more powerful result, which is stated in Theorem
3.34. Before we get there, we need a preparing lemma, see [BK13, Lemma 3.7.2].

Lemma 3.33. Let U ∈ Cn×n, n ∈ N be a unitary matrix. Moreover let eiθ(k), k ∈ R be an
eigenvalue of UeikL with L := Diag(li), li > 0 for all i = 1, . . . , n corresponding to the normalized
eigenvector u(k) then

dθ(k)

dk
= 〈u(k), Lu(k)〉 (43)

which especially implies that dθ(k)
dk > 0.

40



Proof. First, note that UeikL is unitary since U and eikL are unitary, hence it makes sense to
consider its eigenvalues in the form eiθ(k), k ∈ R. From the unitarity it also follows that we can
choose θ(k) to be a real function. Moreover the components of UeikL are constant or exponential
function, implying that UeikL is analytic, and thereby that θ(k) is analytic. Summarizing: θ(k)
can be chosen real analytic. This allows us to differentiate the eigenvalue equation

SeikLu(k) = eiθ(k)u(k) (44)

with respect to k leading to

SeikLiLu(k) + SeikLu′(k) = i
dθ(k)

dk
eiθ(k)u(k) + eiθ(k)u′(k). (45)

We will now compute the inner product of (45) with (44), that is

〈SeikLiLu(k) + SeikLu′(k), SeikLu(k)〉 = 〈idθ(k)

dk
eiθ(k)u(k) + eiθ(k)u′(k), eiθ(k)u(k)〉

which results in

〈u(k), iLu(k)〉 = 〈u(k), i
dθ(k)

dk
u(k)〉

⇔ 〈u(k), Lu(k)〉 =
dθ(k)

dk
〈u(k), u(k)〉

which is, taking into account the normalization of u(k), the stated identity (43). Since this implies
lmin ≤ θ′j(k) for all j = 1, . . . , n with lmin = min{l1, . . . , ln} we obtain 0 < θ′j(k) since l1, . . . , ln > 0.
This concludes the proof.

We can now state the improvement of Theorem 3.32, which shows that in the case of a k-
independent global scattering matrix not only the roots of the secular equation relate to the
eigenvalues of the quantum graph Hamiltonian, but also the multiplicities of the roots coincide
with the multiplicities of the respective eigenvalues, cf. [BK13, Theorem 3.7.1].

Theorem 3.34 (Secular equation II). Let (Γl,−∆V C
Γ ) be a compact quantum graph with a k-

independent global scattering matrix. Then k2 ∈ C\{0} is an eigenvalue of −∆V C
Γ with multiplicity

mk2 if and only if k is a root of the secular equation (42) with the same multiplicity.

Proof. From Theorem 3.32 we already know that k2 ∈ C\{0} is an eigenvalue of −∆V C
Γ if and only

if it is a root of the secular equation (42). Thus we only have to show that also the multiplicities
coincide. The assertion states that for k0 ∈ C \ {0} such that det(I− Seik0L) = 0 the multiplicity
mχ(λ0) of the root λ0 := 1 of the characteristic polynomial χSeik0L(λ0) = det(λ−Seik0L) coincides
with the multiplicity mf (k0) of the root k0 in f(k) := det(I − SeikL). To confirm that claim, we
reformulate f(k) as

f(k) = det(I− SeikL) =

2E∏
j=1

(1− eiθj(k)) (46)

where eiθj(k) denote the eigenvalues of SeikL. Now assume that k0 6= 0 satisfies f(k0) = 0, such
that λ0 = 1 is an eigenvalue of Seik0L with multiplicity m. We have to show that f (r)(k0) = 0 for
all N 3 r < m and f (m)(k0) 6= 0. To that end let J be the index set of the m eigenvalue indices
with eiθj(k0) = 1 for all j0 ∈ J . Then we rewrite (46) as

f(k) = fr(k)
∏
j∈J

(1− eiθj(k)) = fr(k)f1(k). (47)

Note that in this representation f1(k0) = 0 and fr(k0) 6= 0. If we now consider the first m
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derivatives of f(k), we can express these as

f (r)(k) =
∑
j∈J

pr,j(k)(1− eiθj(k)), 0 < r < m (48)

f (m)(k) =
∑
j∈J

pm,j(k)(1− eiθj(k)) + fr(k)(−i)m
∏
j∈J

θ′j(k)eikL (49)

for some function pr,j(k) and pm,j(k) resulting while computing the derivatives. Note that the last

stated summand in (49) results from fr(k)f
(m)
1 (k). From (48) it is obvious that f (r)(k0) = 0 for all

N 3 r < m. And since θ′j(k0) > 0 for all j ∈ 1, . . . , 2|E| according to Lemma 3.33, and fr(k0) 6= 0,

we conclude that f (m)(k0) 6= 0.
It remains to be shown that if k0 ∈ C \ {0} is a root of f with multiplicity m that λ0 = 1 is

an eigenvalue of SeikL (which implies that k2 is an eigenvalue of −∆V C
Γ by Theorem 3.32) with

the same multiplicity. But this implication is also a consequence of (48) and (49). Indeed, assume
that f has a root at k0 6= 0 with multiplicity m such that the index set J , described above, has
n 6= m elements. Then by (48) and (49) we conclude that f has a root at k0 with multiplicity
n 6= m contradicting the assumption. We hence conclude |J | = m, from which we see that λ0 = 1
is an eigenvalue of SeikL with multiplicity m.

3.2.4 Discussion and spectral comparison

In the last two sections we obtained precise descriptions of both spectra σ(−∆CK
Γ ) and σ(−∆KC

Γ )
using the numbers of vertices and edges, the eigenvalues of the transition matrix Z and finally the
global graph property of Γ being bipartite or not. This enables us to proceed with our third and
final step of our analysis program, that is comparing both of these spectra.

Beforehand, however, we want to have another look on both of the spectra, and give a few
remarks. First of all, it has to be noted, that σ(−∆CK

Γ ) and σ(−∆KC
Γ ) are obviously closely

related. Leaving aside multiplicities for a moment, the only difference in the two formulas

σ(−∆CK
Γ ) = {0} ∪ {λ > 0 : cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = −1}

σ(−∆KC
Γ ) = {0} ∪ {λ > 0 : − cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = 1}.

is a sign change regarding the eigenvalues of Z. This close relationship between the spectra results
in a similar way of partitioning them. One refers to the eigenvalues λ > 0 with | cos

√
λ| = 1 as the

eigenvalues associated with the single edge problem, whereas the set of λ > 0 with | cos
√
λ| < 1 is

called the set of immanent eigenvalues. We can hence write

σ(−∆CK
Γ ) = {0} ∪ σs(−∆CK

Γ ) ∪ σi(−∆CK
Γ )

σ(−∆KC
Γ ) = {0} ∪ σs(−∆KC

Γ ) ∪ σi(−∆KC
Γ ).

with σs(−∆Γ) = {k2π2 : k ∈ Z \ {0}} and σi(−∆CK
Γ ) = {(2kπ± arccosα)2 : α ∈ σ(Z) \ {−1, 1}}

and σi(−∆KC
Γ ) = {((2k + 1)π ± arccosα)2 : α ∈ σ(Z) \ {−1, 1}}. An eigenvalue of the first

kind, that is λ ∈ σs, corresponds to an eigensolution which can be thought of as the union of
single edge solutions which satisfy the respective vertex conditions. An eigenvalue of the second
type, that is λ ∈ σi is strongly tight to the adjacency structure of the considered graph. The
corresponding eigensolutions are more complex in the sense, that its restrictions to a single edge
are not necessarily solutions of this single edge problem, cf. [vBM13, Remark 3.3, 3.6].

Keeping this spectral partition in mind, we now discuss a reasonable way to compare them
both. The first way that comes to mind, is a comparison with respect to identity. That is asking:
When are both spectra identical in terms of values and multiplicities? This question is answered
by the following result, cf. [vBM13, Corollary 3.9].

Corollary 3.35. The spectra of the operators −∆CK
Γ and −∆KC

Γ described in problem 3.7 coincide,
counting multiplicities, if and only if Γ is both unicyclic and bipartite.

Proof. At first we consider the case that Γ is unicyclic and bipartite. From Proposition 3.24 and
3.26 we know that λ = 0 is an eigenvalue of both operators with multiplicities mCK(λ) = 1 and
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mKC(λ) = N−n+1 since Γ is bipartite. Because Γ is also unicyclic, which by Lemma B.14 results
in N = n, we conclude that mKC(λ) = 1 = mCK(λ).

For the nonzero part of the spectrum we once again go back to Proposition 3.24 and 3.26 which
state that these parts of the spectra can be expressed as

σ(−∆CK
Γ ) = {0} ∪ {λ > 0 : cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = −1}

σ(−∆KC
Γ ) = {0} ∪ {λ > 0 : − cos

√
λ ∈ σ(Z)} ∪ {λ > 0 : cos

√
λ = 1}.

From Proposition 2.37 we know, that the spectrum of Z is symmetric with respect to 0 since Γ
is bipartite, hence σ(−∆CK

Γ ) \ {0} = σ(−∆KC
Γ ) \ {0} without counting multiplicities. To include

the multiplicities we consider the respective formulas which are also given in the propositions 3.24
and 3.26. By again using the symmetry of σ(Z) we see that these values also coincide, hence
σ(−∆CK

Γ ) \ {0} = σ(−∆KC
Γ ) \ {0} counting multiplicities. This shows the ”⇒” direction of the

assertion.

For the converse implication, we assume that both spectra coincide counting multiplicities.
From Proposition 3.24 and 3.26, we conclude that Z has to be symmetric with respect to 0, which
by Proposition 2.37 implies that Γ is bipartite. Finally, from the λ = 0 case in proposition, 3.24
and 3.26, we conclude n = N , which by B.14 shows that Γ is unicyclic. This shows the ”⇐”
direction of the assertion, and concludes the proof.

This condition is very specific. Only if the considered graph Γ is both bipartite as well as uni-
cyclic the two spectra are identical. This of course does not include the identity of the corresponding
eigenvectors, but the spectra σ(−∆CK

Γ ) and σ(−∆KC
Γ ) coincide in values and multiplicities. Con-

sidering this result one might now ask to what extent we can reduce the assumptions on Γ and
still get a general assertion regarding the comparison of both spectra. To that end we are going to
order the eigenvalues of −∆CK

Γ and −∆KC
Γ in an ascending order, that is

σ(−∆CK
Γ ) = {λCK0 , λCK1 , . . .} such that λCKj ≤ λCKj+1 for all j ∈ N0 (50a)

σ(−∆KC
Γ ) = {λKC0 , λKC1 , . . .} such that λKCj ≤ λKCj+1 for all j ∈ N0 (50b)

where we allow multi-entries since we include the multiplicities in our considerations. From that
perspective we can actually extend the result from Corollary 3.35, cf. [vBM13, Remark 3.11].

Corollary 3.36. Let Γ be a bipartite graph as described in problem 3.7. If we order the eigenvalues
of −∆CK

Γ and −∆KC
Γ like in (50), the following relations between λCKj and λKCj hold for j ∈ N0.

λCKj ≤ λKCj if Γ is a tree

λCKj = λKCj if Γ is unicyclic

λCKj ≥ λKCj if Γ is multicyclic

Proof. Considering Proposition 3.24 and 3.26 we know that eigenvalues corresponding to the case
λ > 0 with sin

√
λ 6= 0 coincide counting multiplicities for both quantum graphs, since σ(Z)

is symmetric with respect to zero in the bipartite case. We therefore just have to consider the
remaining eigenvalues. In the case that Γ is a tree, hence N − n = −1, we see that λ = 0 is
not an eigenvalue for the Anti-Kirchhoff case (see Proposition 3.26). Taking into account that the
multiplicities for the case cos

√
λ = ±1 coincide this result in σ(−∆KC

Γ ) = σ(−∆CK
Γ ) \ {0}, and

therefore shifts the spectrum to λCKj ≤ λKCj . The second case is already given in Corollary 3.35.
Finally, the multicyclic case (that is N −n > 0) follows by similar arguments as the tree case, only
that we have now mKC(λ = 0) > mCK(λ = 0) = 1 which results in a spectral shift in the other
direction. The combination of these results gives the assertion.

Considering the above result one might wonder if we can also find a global spectral inequality
if we additionally drop the assumption of bipartiteness. It turns out, that such an inequality does
not exist. A counter example is given in [vBM13, Example 3.12].
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3.2.5 Spectral analysis of generic quantum graphs

In this subsection we want to illustrate the results we obtained during our spectral analyses. We will
consider four generic graphs subjected to Kirchhoff and Anti-Kirchhoff conditions, and compute
their spectra as well as some of their eigenvectors. Since the specific form of the eigenvectors
(eigenfunctions) is sometime hard to imagine, and since there are only very few illustrations in the
literature, we will plot some of the eigenvectors for both cases.

The last subsections have shown that the spectra of both types of quantum graphs as well as
their similarity is determined by the properties of bipartiteness and the number of cycles of the
underlying combinatorial graph structure. We therefore will consider four kinds of graphs where
each one represents a different combination of these key properties. These graphs are summarized
in the following table.

bipartite not bipartite

unicyclic

not unicyclic

Table 1: Overview of the considered graphs

Before we analyze these graph, we will fix the labeling of the vertices and bonds, so that it
is easier to follow the construction of the given adjacency and scattering matrices. Note that the
given labeling below is arbitrary. Spectra and eigenvectors, of course, do not depend on this choice.
We could also have chosen any other labeling.

Figure 4: Labeling of vertices and bonds of the considered graphs

Bipartite and unicyclic We will walk through Table 1 from top to bottom and left to right.
Hence, the first graph we consider is a cycle graph with four vertices and four edges (n = 4, N = 4),
in graph theory referred to as C4. This graph is obviously unicyclic and bipartite, and thereby
corresponds to the case where the spectra of σ(−∆CK

Γ ) and σ(−∆KC
Γ ) coincide, see Corollary 3.35.

According to our vertex labeling form Figure 4 the adjacency matrix A and the corresponding
transition matrix Z are given by

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 Z =


0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

 .

The eigenvalues of Z counting multiplicities are given below. We also give the corresponding
eigenvectors which we write in the columns of the matrix Σ. These eigenvectors are sorted according
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to the order the eigenvalues are given in σ(Z).

σ(Z) = {1, 0, 0,−1} Σ(Z) =


1 −1 0 1
1 0 −1 −1
1 1 0 1
1 0 1 −1


Considering Corollary 3.24 and 3.26 we are now able to compute the spectra. Before we do so, we
want to introduce a specific notation that is used below. We set N0 := N ∪ {0} and

N(m) := {1, 1, . . . , 1︸ ︷︷ ︸
m times

, 2, 2, . . . , 2︸ ︷︷ ︸
m times

, 3, . . .}

N(m)
0 := {0, 0, . . . , 0︸ ︷︷ ︸

m times

, 1, 1, . . . , 1︸ ︷︷ ︸
m times

, 2, . . .}.

The advantage of this notation is, as we will see below, that we can easily include the multiplicities
of the respective eigenvalue sets in the following tables without needing extra columns. Also we
use the abbreviation cos

√
λ > 0 for cos

√
λ with λ > 0.

Kirchhoff (CK) Anti-Kirchhoff (KC)

λ = 0 {0} {0}

cos
√
λ > 0 = 1 {(2k)2π2 : k ∈ N(2)} {(2k)2π2 : k ∈ N(2)}

sin
√
λ 6= 0 {(2kπ ± π

2 )2 : k ∈ N(2)
0 } {(2kπ ± π

2 )2 : k ∈ N(2)
0 }

cos
√
λ = −1 {(2k + 1)2π2 : k ∈ N(2)

0 } {(2k + 1)2π2 : k ∈ N(2)
0 }

Table 2: Comparison of the eigenvalues for C4

Since C4 has four vertices we find four roots µr of the transition matrix Z. While µ1 is always
one (regardless of Γ), in this case we also have µn = µ4 = −1 due to bipartiteness, and we see that
the spectrum of Z is therefore symmetric. The corresponding eigenvalues of the quantum graphs
are the elements of σs(−∆Γ), i.e., the eigenvectors associated with the single edge problem. We
find these values in the second and fourth line in Table 2 (not counting the very top line with the
symbol and names). Between µ1 and µn the spectrum of Z has a double eigenvalue of µ2 = µ3 = 0,
which corresponds the the immanent quantum graph spectra σi(−∆), the values of which are given
in the third row (cos

√
λ > 0). If we order the eigenvalues in an ascending way and include their

multiplicities, we obtain the following specific description of the spectra of both quantum graphs.

σ(−∆CK
Γ ) =

{
0,
(π

2

)2

,
(π

2

)2

, π2, π2,

(
3π

2

)2

,

(
3π

2

)2

, (2π)2, (2π)2,

(
5π

2

)2

,

(
5π

2

)2

, . . .

}

σ(−∆KC
Γ ) =

{
0,
(π

2

)2

,
(π

2

)2

, π2, π2,

(
3π

2

)2

,

(
3π

2

)2

, (2π)2, (2π)2,

(
5π

2

)2

,

(
5π

2

)2

, . . .

}

Alternatively we could have also used the scattering approach to determine the spectra. To that
end we have to construct the global scattering matrices for the Kirchhoff and Anti-Kirchhoff case for
the considered graph C4. With respect to the labeling given in Figure 4 and taking into account the
local scattering matrices (35) and (36) we obtain by Definition 3.31 the following global scattering
matrices SCK and SKC alongside with the corresponding secular equation.
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SCK = −SKC =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0


.

det(I− SCKeikL) = det(I− SKCeikL)

= (1 + e2ik)2(1 + eik)2(−1 + eik)2

We see that this result corresponds with the eigenvalues given in Table 2 that have been computed
using the adjacency calculus. We note, that also the multiplicities correspond to these in Table 2,
as stated by Theorem 3.34.

Finally we want to consider the corresponding eigenvectors of some of the quantum graph
eigenvalues. To that end we refer to Corollary 3.25 and Corollary 3.27. In Figure 5 below, the
eigenvectors for all three types of eigenvalues have been plotted, that is eigenvectors associated with
λ = 0, single-edge-problem-eigenvectors and finally eigenvectors corresponding to the immanent
eigenvalues. Since the parameter k ∈ N from Table 2 only increases the number of periods in
the respective harmonic functions, only the cases k = 0 and k = 1 have been considered. Note
that the edge values (in the CK case) and the edge derivatives (in the KC case) correspond to the
associated eigenvectors of the transition matrix Z of the underlying graph.

Figure 5: The C4 eigenfunctions U1,0 (top-left), U2,0 (top-middle) and U4,0 (top-right), as well as
U1,1 (bottom-left), U2,1 (bottom-middle) and U4,1 (bottom-right) for the CK case (red) and the
KC case (blue), see Corollary 3.25 and Corollary 3.27.

Not bipartite but unicyclic If one removes one of the edges from the graph considered before
(and connects the loose ends), the result is a graph that is still unicyclic but not bipartite anymore.
This cycle graph with n = 3 and N = 3 is denoted as C3. As we know from Corollary 3.35 the
spectra of σ(−∆CK

Γ ) and σ(−∆KC
Γ ) do not coincide in this case. This situation is illustrated below.

First, we consider again the adjacency matrix A and the transition matrix Z (again with respect
to Figure 4) of C3, together with the eigenvalues and eigenvectors of Z (which are presented in
the same way as we did it for C4).

A =

 0 1 1
1 0 1
1 1 0

 Z =

 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0
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σ(Z) =

{
1,−1

2
,−1

2

}
Σ(Z) =

 1 1 1
1 0 −1
1 −1 0


Using Corollary 3.24 and 3.26 it is now possible to compute the spectra for both quantum graphs.
The results are given in Table 3. As one can see on first sight, the spectra do not coincide indeed.
The fact that C3 is not bipartite results in λ = 0 not being an eigenvalue under Anti-Kirchhoff con-
ditions anymore. Also, under Kirchhoff conditions we do not have anymore eigenvalues satisfying
cos
√
λ = −1. Considering the immanent eigenvalues we find σi(−∆CK

Γ ) ∩ σi(−∆KC
Γ ) = ∅ which

is a consequence of σ(Z) not being symmetric anymore, which follows from Γ not being bipartite.
An ascending ordering of both spectra, including multiplicities, leads to

σ(−∆CK
Γ ) =

{
0,

(
2π

3

)2

,

(
2π

3

)2

,

(
4π

3

)2

,

(
4π

3

)2

, (2π)2, (2π)2,

(
8π

3

)2

,

(
8π

3

)2

, . . .

}

σ(−∆KC
Γ ) =

{(π
3

)2

,
(π

3

)2

, π2, π2

(
5π

3

)2

,

(
5π

3

)2

,

(
7π

3

)2

,

(
7π

3

)2

, (3π)2, (3π)2 . . .

}
.

We see that in this case no general inequality like λCKj ≤ λKCj or λKCj ≤ λKCj holds, which is the
result of C3 not being bipartite.

Again we want to compare this result with the spectrum that we obtain by the scattering
approach from Section 3.2.3. To deduce SCK and SKC we refer to the labeling given in Figure
4, and apply the construction given by Definition 3.31, and the local scattering matrices (35) and
(36). We are led to the global scattering matrices SCK and SKC alongside with the corresponding
secular equations as given below.

SCK = −SKC =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0



det(I− SCKeikL) = (e3ik − 1)2

det(I− SKCeikL) = (e3ik + 1)2

which is in line with the results from the adjacency calculus result, given in Table 3.

Considering the eigenvectors of the quantum graphs, see Figure 3, the fact that C3 is not
bipartite results in no eigenvectors with an edge distribution - either with respect to the function
values (CK), or with respect to the function derivatives (KC) - of only ±1 values, where both signs
appear at least once.

Kirchhoff (CK) Anti-Kirchhoff (KC)

λ = 0 {0} ∅

cos
√
λ > 0 = 1 {(2k)2π2 : k ∈ N(2)} ∅

sin
√
λ 6= 0 {(2kπ ± 2π

3 )2 : k ∈ N(2)
0 } {((2k+1)π± 2π

3 )2 : k ∈ N(2)
0 }

cos
√
λ = −1 ∅ {(2k + 1)2π2 : k ∈ N(2)

0 }

Table 3: Comparison of the eigenvalues for C3
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Figure 6: The C3 eigenfunctions U1,0 (top-left), U2,0 (top-middle) and U3,0 (top-right), as well as
U1,1 (bottom-left), U2,1 (bottom-middle) and U3,1 (bottom-right) for the CK case (red) and the
KC case (blue), see Corollary 3.25 and Corollary 3.27.

Bipartite but not unicyclic The next graph is not a cycle graph anymore, but a star graph.
It has four vertices and three edges (n = 4, N = 3), and graph theoretic literature refers to this
graph as S3. Star graphs are always bipartite, but not unicyclic. According to our results above
(Corollary 3.36), a general inequality with respect to the ordered eigenvalues of both quantum
graphs (including multiplicities), that is λCKj ≤ λKCj , can be made. We will see this result reflected
in the results below. Before we get there, we will again give the adjacency matrix A (according to
the labeling presented in Figure 4), the transition matrix Z and the eigenvalues and eigenvectors
of Z, as we did it for the examples above.

A =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

 Z =


0 0 0 1
0 0 0 1
0 0 0 1
1
3

1
3

1
3 0



σ(Z) = {1, 0, 0,−1} Σ(Z) =


1 −1 1

2 1
1 0 −1 1
1 1 1

2 1
1 0 0 −1

 .

Using the usual formulas from Corollary 3.24 and 3.26 in context with the approach using the
adjacency calculus, we obtain the spectra given in Table 4. As we can see, the spectra do not
coincide, but the difference is not too big. Indeed, the only mismatch is encountered for λ = 0,
which is not contained in the Anti-Kirchhoff spectrum, but does appear in the Kirchhoff spectrum.
For the remaining eigenvalues we have the same sets for both quantum graphs.

Kirchhoff (CK) Anti-Kirchhoff (KC)

λ = 0 {0} ∅

cos
√
λ > 0 = 1 {(2k)2π2 : k ∈ N} {(2k)2π2 : k ∈ N}

sin
√
λ 6= 0 {(2kπ ± π

2 )2 : k ∈ N(2)
0 } {(2kπ ± π

2 )2 : k ∈ N(2)
0 }

cos
√
λ = −1 {(2k + 1)2π2 : k ∈ N0} {(2k + 1)2π2 : k ∈ N0}

Table 4: Comparison of the eigenvalues for S3
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As for the two examples before we also want to give an ordered spectrum for both σi(−∆CK
Γ )

and σi(−∆KC
Γ ) in this case. Taking into account the respective multiplicities we obtain

σ(−∆CK
Γ ) =

{
0,
(π

2

)2

,
(π

2

)2

, π2,

(
3π

2

)2

,

(
3π

2

)2

, (2π)2,

(
5π

2

)2

,

(
5π

2

)2

, . . .

}

σ(−∆KC
Γ ) =

{(π
2

)2

,
(π

2

)2

, π2,

(
3π

2

)2

,

(
3π

2

)2

, (2π)2,

(
5π

2

)2

,

(
5π

2

)2

, . . .

}

from which one can see that the general inequality λCKj ≤ λKCj holds. Since the only difference
in the spectra lies in the eigenvalue zero, we expect that both secular equations - that is for the
Kirchhoff case and the Anti-Kirchhoff case - will coincide. In order to check on that matter we
derive the global scattering matrices (with respect to Figure 4 and taking into account the local
scattering matrices (33), (34), (37) and (38)) and compute the secular equations. The results are
presented below.

SCK = −SKC =


0 1 0 0 0 0
− 1

3 0 2
3 0 2

3 0
1 0 0 0 0 0
2
3 0 − 1

3 0 2
3 0

0 0 0 0 0 1
2
3 0 2

3 0 − 1
3 0



det(I− SCKeikL) = det(I− SKCeikL)

= −(1 + eik)(−1 + eik)(1 + e2ik)2

We see that the secular equations coincide indeed, and we also see that the roots are in line with
the results from the adjacency calculus summarized in Table 4, including the multiplicities.

This brings us to the eigenvectors, see Figure 7. Since the considered graph is bipartite, the
spectrum of Z is symmetric, resulting in an eigenvector with a vertex value distribution (Kirchhoff)
or a vertex derivative distribution (Anti-Kirchhoff) that contains only values of ±1 where both signs
appear at least once. Next to this bipartite-specific eigenvector, the plot below also contains two
immanent eigenvectors in the center, and eigenvectors for the case cos

√
λ = 1 on the left. The

respective formulas for these eigenvectors are given by Corollary 3.25 and Corollary 3.27. As before
we confined the plots to k = 0 and k = 1 since a greater k only leads to more edgewise oscillations
with similar situations at the edges.

Figure 7: The S3 eigenfunctions U1,0 (top-left), U2,0 (top-middle) and U4,0 (top-right), as well as
U1,1 (bottom-left), U2,1 (bottom-middle) and U4,1 (bottom-right) for the CK case (red) and the
KC case (blue), see Corollary 3.25 and Corollary 3.27.
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Neither bipartite nor unicyclic The last graph in Table 1 lacks both properties, that we
consider here. It is neither bipartite nor unicyclic. Since it hast four vertices and five edges (n =
4, N = 5) we will refer to this graph as Γ4,5. As in our second example, the lack of bipartiteness has
the consequence, that we cannot apply Corollary 3.36, which would allow us a general comparison
between the Kirchhoff and the Anti-Kirchhoff spectrum.

Before we take a closer look at these spectra, we will give the adjacency matrix A (according to
the labeling presented in Figure 4), the transition matrix Z and the eigenvalues and eigenvectors
of Z, as we did it for the examples above.

A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 Z =


0 1

2 0 1
2

1
3 0 1

3
1
3

0 1
2 0 1

2
1
3

1
3

1
3 0

 .

σ(Z) =

{
1, 0,−1

3
,−2

3

}
Σ(Z) =


1 −1 0 −1
1 0 −1 2

3
1 1 0 −1
1 0 1 2

3


Using Corollary 3.24 and 3.26 we obtain the spectra summarized in Table 5. This time there are
obviously bigger differences than in the examples before. This holds for the eigenvalues them-
selves as also for their multiplicities. The differences in the eigenvalues are caused by the lack of
bipartiteness, which results in an asymmetric spectrum of the transition matrix Z. The different
multiplicities on the other hand are a consequence of Γ4,5 not being unicyclic.

Kirchhoff (CK) Anti-Kirchhoff (KC)

λ = 0 {0} {0}

cos
√
λ > 0 = 1 {(2k)2π2 : k ∈ N(3)} {(2k)2π2 : k ∈ N}

sin
√
λ 6= 0

{(2kπ ± π
2 )2 : k ∈ N0}∪

{(2kπ ± arccos(− 1
3 ))2 : k ∈ N0}∪

{(2kπ ± arccos(− 2
3 ))2 : k ∈ N0}

{(2kπ ± π
2 )2 : k ∈ N0}∪

{(2kπ ± arccos( 1
3 ))2 : k ∈ N0}∪

{(2kπ ± arccos( 2
3 ))2 : k ∈ N0}

cos
√
λ = −1 {(2k + 1)2π2 : k ∈ N0} {(2k + 1)2π2 : k ∈ N(3)

0 }

Table 5: Comparison of the eigenvalues for Γ4,5

For the ordered spectra, we want to introduce the abbreviations αCK := arccos(−1/3) and
βCK := arccos(−2/3) for the Kirchhoff case. For the Anti-Kirchhoff case we consequently use
αKC := arccos(1/3) and βKC := arccos(2/3). Taking into account the multiplicities of the eigen-
values we obtain the following ordered spectra.

σ(−∆CK
Γ ) =

{
0,
(π

2

)2

, α2
CK , β

2
CK , π

2, (2π)2, (2π)2, (2π)2, . . .

}
σ(−∆KC

Γ ) =

{
0,
(π

2

)2

, α2
KC , β

2
KC , π

2, π2, π2, (2π)2, . . .

}
Since αKC < αCK and βKC < βCK we see, that also in this case we cannot find a general inequality
for the eigenvalues like λCKj ≤ λKCj or λKCj ≤ λKCj .

The global scattering matrices in this example can be derived using the local scattering matrices
from (35), (36), (37) and (38). The result is presented below in (51). As the determinant of 10×10
matrices the computation of the secular equations is starting to become rather elaborate. An
evaluation with a computer-algebra system resulted in a longer expression as in the examples
before, which is triggered by the eigenvalues αCK , αKC , βCK and βKC that cannot be expressed
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as p
qπ, p, q ∈ Z, q 6= 0. We will therefore not present it here. However, a numerical evaluation of

the secular equations at the eigenvalues from Table 5 shows that these values are roots indeed.
The eigenvectors for some of the eigenvalues for both quantum graphs are plotted in Figure 8.

A similar selection like in the examples before has been chosen. For the specific formulas of the
eigenvectors we again refer to Corollary 3.25 and 3.27.

Figure 8: The S3 eigenfunctions U1,0 (top-left), U2,0 (top-middle) and U4,0 (top-right), as well as
U1,1 (bottom-left), U2,1 (bottom-middle) and U4,1 (bottom-right) for the CK case (red) and the
KC case (blue), see Corollary 3.25 and Corollary 3.27.

SCK = −SKC =



0 1 0 0 0 0 0 0 0 0
0 0 2

3 0 0 0 − 1
3 0 0 2

3
0 0 0 1 0 0 0 0 0 0
2
3 0 0 0 − 1

3 0 0 0 2
3 0

0 0 0 0 0 1 0 0 0 0
0 0 − 1

3 0 0 0 2
3 0 0 2

3
0 0 0 0 0 0 0 1 0 0
− 1

3 0 0 0 2
3 0 0 0 2

3 0
0 0 2

3 0 0 0 2
3 0 0 − 1

3
2
3 0 0 0 2

3 0 0 0 − 1
3 0


(51)

4 Conclusion

The spectra of the standard Laplacian on finite equilateral metric graphs under two kinds of
vertex conditions, Kirchhoff and Anti-Kirchhoff conditions, have been analyzed, computed and
compared with each other. It turned out that both types of vertex conditions result in self-adjoint
realizations of the standard Laplacian on compact metric graphs, which have compact resolvent.
This result showed that both operators have a discrete spectrum within the nonnegative real
numbers. After this qualitative spectral analysis, which showed no difference of the spectra in
this regard, a quantitative analysis was performed. During this quantitative approach, using the
so-called adjacency calculus introduced by von Below, the specific characteristics of the underlying
graph structure were taken into account, and allowed a specific computation of the spectra both for
the Kirchhoff and the Anti-Kirchhoff case. The obtained results revealed a spectral relationship
in the bipartite case, that can be expressed as an inequality of the ordered spectral elements,
depending on the number of cycles within the graph.

The focus of this work was set on equilateral graphs. The effects of variations in the lengths of
the edges were not considered. The next step in the comparison of Kirchhoff and Anti-Kirchhoff
spectra would therefore be an analysis of compact graphs without the restriction of being equi-
lateral. Von Below already considered this more general case in his dissertation [vB84]. However,
his final result was a transcendental characteristic equation, satisfied by the spectral elements,
which in most cases can only be solved numerically. It is unclear if this result allows for a general
comparison of the spectra as it is possible in the equilateral case.
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Appendices

A Functional analysis and Sobolev spaces

The discussion of quantum graph spectra requires numerous results from operator analysis, es-
pecially functional analysis. Several classic results we use in the main text are given below with
respective sources to read up on the proofs.

Since the theory of differential operators is closely related to Sobolev spaces, we also included
some important results from the theory of Sobolev spaces.

A.1 Functional analysis

An elementary but frequently used theorem is the Cauchy-Schwarz inequality, see for example
[AU10, Theorem 4.4].

Proposition A.1 (Cauchy-Schwarz inequality). Let (U, 〈·, ·〉) be a unitary space with induced norm
‖f‖ :=

√
〈f, f〉. Let f, g ∈ U , then

|〈f, g〉| ≤ ‖f‖‖g‖

Another important result in the context of sesquilinear forms is the polarization identity. It
allows us to recover the sesquilinear form from its quadratic form, cf. [Tes, p. 25].

Proposition A.2 (Polarization identity). Let V be a complex vector space, and s : V × V → C a
sesquilinear form with the associated quadratic form q(x) = s(x, x) then

s(x, y) =
1

4

3∑
k=0

ikq(x+ iky).

Considering linear forms on a Hilbert space, we mention the central representation theorem of
Riesz and Fréchet, see [AU10, Theorem 4.21].

Theorem A.3 (Riesz-Fréchet). Let ϕ : H → C be a continuous linear form on the Hilbert space
H. Then there exists a unique u ∈ H such that ϕ can be expressed as ϕ(v) = 〈u, v〉 for all v ∈ H.

We turn our attention to spectral theory. When we consider bounded or even compact operators
we can characterize their spectra using the following two classic results. We refer to [Mug17,
Theorem 7.1.10, 7.1.13] and [Mug17, Theorem 7.7.1, 7.7.3].

Proposition A.4 (Spectrum of bounded operators). Let T ∈ L(X) with X being a Banach space
over the complex numbers C. Then σ(T ) is a nonempty and compact subset of C.

Proposition A.5 (Spectrum of compact operators). Let X be a Banach space and K ∈ K(X) a
compact operator, then its spectrum σ(K) can be characterized as follows.

(i) σ(K) is either a finite or countable infinite set.

(ii) All λ ∈ σ(K) have finite multiplicity.

(iii) λ ∈ σ(K) \ {0} ⇒ λ ∈ σp(K)

(iv) σp(K) can only accumulate at 0.

(v) If dimX =∞ then 0 ∈ σ(K).

In the context of bounded self-adjoint operators we use the following two results regarding their
spectrum, cf. [Mug17, Theorem 7.1.23] and [PS99, Theorem 7.9].

Lemma A.6. Let T be a bounded self-adjoint operator on the Hilbert space H. Then we have

sup{|λ| : λ ∈ σ(T )} = ‖T‖
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Lemma A.7 (Self-adjoint inverse). Let T : H ⊃ dom(T )→ H be a self-adjoint invertible operator.
Then T−1 is self-adjoint too.

In the context of the resolvent operator we mention the following results. We refer to [Wei12,
Theorem 5.13], [Are, Proposition 1.2.2] and [Are, Proposition 1.2.3].

Lemma A.8 (Resolvent identity). Let T be a closed operator with λ, µ ∈ ρ(T ). Then

R(λ, T )−R(µ, T ) = (µ− λ)R(λ, T )R(µ, T ).

Proposition A.9. (Analyticity of the resolvent) Let T : H ⊃ dom(T ) → H be an operator,
λ0 ∈ ρ(T ) and λ ∈ C such that |λ− λ0| < ‖R(λ0, T )‖−1. Then it follows λ ∈ ρ(T ) and

R(λ, T ) =

∞∑
n=0

(λ0 − λ)nR(λ0, T )n+1.

Corollary A.10. Let T : H ⊃ dom(T )→ H be an operator with nonempty resolvent set, and let
(λn) ⊂ ρ(T ) be a convergent sequence with limλn = λ. If supn∈N ‖R(λn, T )‖ <∞ then λ ∈ ρ(T ).

We conclude this section by stating the spectral theorem. It asserts that any self-adjoint
operator can essentially be understood as a multiplication operator. We refer to [Wer11, Definition
VII.3.1].

Theorem A.11 (Spectral Theorem). Let T : H ⊃ dom(T )→ H be a self-adjoint operator. Then
there exists a measure space (Ω,Σ, µ), a measurable function f : H → R and a unitary operator
U : H → L2(Ω,Σ, µ) such that

(i) x ∈ dom(T )⇔ f · Ux ∈ L2(Ω,Σ, µ);

(ii) UTU∗ϕ = f · ϕ =: Mf (ϕ) for all ϕ ∈ dom(Mf ) = {ϕ ∈ L2(Ω,Σ, µ) : f · ϕ ∈ L2(Ω,Σ, µ)}.

A.2 Sobolev and Lebesgue spaces

Our only result specifically for Lebesgue spaces states the density of C∞0 (a, b) in Lp(a, b), see for
example [Mug17, Theorem 5.1.21].

Proposition A.12. Let (a, b) ⊂ R be an open real interval and 1 ≤ p < ∞, then the space
C∞0 (a, b) is dense in Lp(a, b).

The following elementary results for one dimensional Sobolev spaces is taken from [Mug17,
Theorem 5.3.28].

Theorem A.13. Let I = [a, b] ⊂ R be a compact real interval, then H1(a, b) ⊂ C(a, b).

We introduce the important notion of an embedding, and refer to [AF03, Definition 1.25].

Definition A.14 (Embedding). Let X,Y be two normed spaces. We say that X is embedded in
Y , which we will denote by X ↪→ Y , if X is a subspace of Y and the identity operator defined as
Id : X → Y, x 7→ x is continuous. If the injection Id is even compact we say that X is compactly

embedded in Y , which we will denote as X
c
↪→ Y .

There are numerous embeddings that can be stated, depending on different geometric conditions
of the domain (which is just a finite interval in our case). They can all be found in [AF03, Theorem
6.3]. For our purposes we only need one of the compact embeddings which is stated below without
proof.

Theorem A.15 (Rellich-Kondrachov). Let I ⊂ R be a bounded real interval. Furthermore let
j,m ∈ N with j ≥ 0 and m ≥ 1 and 1 ≤ p, q <∞. Then

W j+m,p(I)
c
↪→W j,q(I)
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B Linear algebra and graph theory

Graph theory and related theorems from linear algebra require several different notions that are
given below. While most of the presented material just introduces the required vocabulary, we
also state the theorem of Perron-Frobenius, which provides us with information on the spectrum
of nonnegative, irreducible matrices.

B.1 Linear algebra

The following three definitions introduce three kinds of special matrices, that we encounter in our
graph theoretic considerations.

Definition B.1 (Nonnegative matrix). We call a matrix A = (aij) ∈ Rn×m of arbitrary shape
nonnegative, if aij ≥ 0 for all i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}.

Definition B.2 (Irreducible matrix). Let A ∈ Rn×n be a square matrix. We call A reducible if
we can find a permutation matrix P ∈ Rn×n such that

PAPT =

(
A11 0
A21 A22

)
with the block matrices A11 ∈ Rr×r and A21 ∈ R(n−r)×r and A22 ∈ R(n−r)×(n−r). If we cannot
find such a matrix P we say that A is irreducible.

Definition B.3 (Stochastic matrix). A square matrix S = (sij) ∈ Rn×n with 0 ≤ sij ≤ 1 for all
1 ≤ i, j ≤ n is said to be row-stochastic if

∑n
j=1 sij = 1 for all i ∈ {1, . . . , n}. If

∑n
i=1 sij = 1 for

all j ∈ {1 . . . , n} then we say that S is column-stochastic. If finally S is both row- and column-
stochastic, we also say that S is stochastic or doubly-stochastic.

Row-stochastic matrices have some nice properties regarding their eigenvalues. Since the tran-
sition matrix Z(Γ) of a graph Γ is row-stochastic, this result is very useful for us [KB12, p. 907].

Proposition B.4. Let S ∈ Rn×n be a row-stochastic matrix, then µ = 1 is an eigenvalue of S
with the eigenvector e := (1)n×1. Furthermore, if λ ∈ σ(S), then |λ| ∈ [0, 1].

The next result is known as the theorem of Perron-Frobenius. It provides us with information
on the spectra for nonnegative and irreducible matrices. We refer to [KB12, Theorem 8.51].

Theorem B.5 (Perron-Frobenius). Let A ∈ Rn×n be an irreducible nonnegative matrix. Then
λ = rad(A) is a simple eigenvalue of A corresponding to a positive eigenvector v ∈ Rn, i.e., v > 0.

It remains to introduce the so-called Hadamard product, which refers to a component-wise
matrix multiplication. We state here a formal introduction, alongside with some obvious properties,
and refer to [vB85, Section 3].

Definition B.6 (Hadamard product). Let A := (aij)n×m ∈ Cn×m and B := (bij)n×m ∈ Cn×m be
two matrices with identical shapes. We define the so-called Hadamard-product as to

A ·B = (aijbij)n×m

Proposition B.7 (Hadamard product rules). Let A,B,C be identical shaped matrices as described
in Definition B.6. Then the following identities hold.

A ·B = B ·A
(A ·B)∗ = AT ·B∗

(A+B) · C = A · C +B · C
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B.2 Graph theory

Given some graph Γ = (V,E) with two vertices v1, v2 ∈ V with v1 6= v2 we can think of walking
from v1 to v2 in a way, that is described in the following definition.

Definition B.8 (Walk). Let Γ = (V,E) be a graph according to Assumption 2.32. A finite sequence
of edges (ei1 , ei2 , . . . , eik) with eij ∩ eij+1 6= ∅ is called a walk.

The term of a walk is rather general, since edges may occur several times. If we do not allow
the multiple use of edges in a walk, we end up at the definition of a trail.

Definition B.9 (Trail). Let Γ = (V,E) be a graph according to Assumption 2.32. A walk
(ei1 , ei2 , . . . , eik) with distinct edges is called a trail.

Since we now ensured that the edges in a trail occur at most one time, we can analogously
require that the vertices of the edges are not reused, i.e., that the trail does not intersect itself.
This brings us to the notion of the path.

Definition B.10 (Path). Let Γ = (V,E) be a graph according to Assumption 2.32. Also, let
p := (ei1 , ei2 , . . . , eik) be a trail of the graph with Γp = (Vp, Ep) being the graph of the trail. If
γv ≤ 2 for all v ∈ Vp with respect to Γp the we call p a path.

All vertices on a path are lying on exactly two edges of the path, with the only possible
exceptions being the first and the last node, each of which may only lie on one edge of the path.
If this is not the case, then the first and the last vertex have to be identical. Such a structure we
call a cycle.

Definition B.11 (Cycle). Let Γ = (V,E) be a graph according to Assumption 2.32. Also, let
p := (ei1 , ei2 , . . . , eik) be a path of the graph with Γp = (Vp, Ep) being the graph of the path. If the
first and the last node coincide, i.e., γv = 2 for all v ∈ Vp with respect to Γp the we call p a cycle.

Not all graphs need to contain a cycle. With this observation we can define our first special
kind of graph, i.e., graphs that do not contain a cycle. For this group there exists a specific name.

Definition B.12 (Tree graph). A graph Γ = (V,E) corresponding to Assumption 2.32 is said to
be a tree or a tree graph if it contains no cycles.

A cycle is also often called a circuit in the literature. We will use the term cycle thought because
it is consistent with our next definition, which is the second special type of graph we introduce
here.

Definition B.13 (Unicyclic graph). A graph Γ = (V,E) corresponding to Assumption 2.32 is said
to be unicyclic, if there exists a cycle c in Γ, and all other cycles contain the same edges as c.

Unicyclic graphs contain exactly one cycle, if we do not distinguish cycles with different num-
berings of the edges. An important property of unicyclic graphs is given by the following lemma.

Lemma B.14. Let Γ = (V,E) be a given graph that is satisfying Assumption 2.32. Then Γ is
unicyclic if and ony if its number of edges and vertices coincide, i.e., |V | = |E|.

Unicyclic graphs can hence be characterized as the set of graphs whose numbers of vertices and
edges coincide. Another special group of graphs are the so-called bipartite graphs.

Definition B.15 (Bipartite graph). Let Γ = (V,E) be a given graph that is satisfying Assumption
2.32. If we can find disjoint V1, V2 ⊂ V with V1 ∪ V2 = V such that e ∩ V1 6= ∅ and e ∩ V2 6= ∅ for
all e ∈ E we say that Γ is bipartite.

The vertex set of a bipartite graph can be split into two disjoint sets, such that every edge of
the graph contains one vertex of each of these sets. We can also express this situation by saying
that each of the disjoint vertex sets is not interconnected.

55



References

[AF03] R.A. Adams and J.J.F. Fournier. Sobolev spaces. Academic Press, 2003.

[Are] W. Arendt. Evolution Equations Governed By Elliptic Operators. Lecture notes, Avail-
able at: https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/

arendt/downloads/Evolution_Equations_Governed_by_Elliptic_Operators.pdf.

[AU10] W. Arendt and K. Urban. Partielle Differenzialgleichungen. Springer, 2010.

[BK13] G. Berkolaiko and P. Kuchment. Introduction to Quantum Graphs. Am. Math. Soc.,
2013.

[Bre10] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, 2010.

[EN99] K. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations.
Springer, 1999.

[Jun08] D. Jungnickel. Graphs, Networks and Algorithms. Springer, 2008.

[KB12] P. Knabner and W. Barth. Lineare Algebra: Grundlagen und Anwendungen. Springer-
Verlag, 2012.

[Kuc02] P. Kuchment. Graph Models for Waves in Thin Structures. Waves in Random Media,
2002.

[Kuc04] P. Kuchment. Quantum Graphs: I. Some basic structures. Waves in Random media,
2004.

[Mug17] D. Mugnolo. Funktionalanalysis. Lecture notes (FernUniversität in Hagen), 2017.

[Pau36] Linus Pauling. The Diamagnetic Anisotropy of Aromatic Molecules. J. Chem. Phy., 1936.

[PS99] V. Pugachev and I. Sinitsyn. Lectures on functional analysis and applications. World
Scientific Publishing Co. Inc., 1999.

[Rot84] Jean-Pierre Roth. Le spectre du laplacien sur un graphe. Théorie du potentiel, pages
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