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1 Introduction

A C∗-algebra A may be thought of as a complete subspace of the bounded linear operators B(H) on a
Hilbert space H that is closed under taking adjoints and composition of operators. This viewpoint is
made precise by the Gelfand-Naimark-Segal Theorem. We interpret the composition as a multiplication
which is not commutative in general. In some cases however, it is.
The Gelfand-Naimark Theorem states that the multiplication is commutative if and only if there is a
locally compact Hausdorff space X such that A ∼= C0(X). The space C0(X) refers to the set of continuous
functions which vanish at infinity. The isomorphism is a map that respects all operations from A and
C0(X). For example, multiplication on C0(X) is given by point-wise multiplication. Thus, C∗-algebras
formally describe functions on a ”noncommutative” space that vanish at infinity.
One can then try to generalize results about commutative spaces to noncommutative ones. Concerning
this viewpoint, we will mostly be concerned with K-theory. In K-theory, one assigns two groups K0 and
K1 to a C∗-algebra A (a locally compact Hausdorff space in the commutative case). The groups K0 and
K1 are constructed so that certain equivalences are respected. For example Kj(A) ∼= Kj(B) if A can be
continuously deformed into B.
The theory of C∗-algebras largely depends on analyzing examples. Crossed product are a very powerful
way to construct new C∗-algebras from old ones. If G is a group and A a C∗-algebra, the crossed product
AoG may informally be thought of as a C∗-algebra that contains both A and G where G is implemented
through unitary operators.
As many interesting C∗-algebras arise from crossed products, it is desirable to have tools that allow the
computation of K-theory for these algebras. The basic techniques to achieve that are Connes’ Thom
isomorphism and the Pimsner-Voiculescu sequence. The Connes-Thom isomorphism states that

K0(AoR) ∼= K1(A)

and
K1(AoR) ∼= K0(A).

The Pimsner-Voiculescu sequence allows to compute K-theory for many crossed products with Z.
We will conduct the necessary results from the theory of C∗-algebras, K-theory and crossed products.
Afterwards, we proceed with a very detailed description of the proof for Connes’ Thom isomorphism
which first appeared in [1] and is based on both, Connes’ original proof from [2] and the proof of the
Pimsner-Voiculescu sequence in [3].
Furthermore, we sketch how the Pimsner-Voiculescu sequence can be derived from Connes’ Thom iso-
morphism. We end with the calculation of K-theory for some C∗-algebras using the Pimsner-Voiculescu
sequence.
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2 C∗-Algebras

2.1 Basic Theory

Definition 2.1. Let A be a complex algebra. An involution on A is an antilinear map ∗ : A −→ A such
that (a∗)

∗
= a and (ab)∗ = b∗a∗ for a, b ∈ A. If A admits an involution, we say that A is a ∗-algebra.

Whenever A is a ∗-algebra, A is called a Banach-∗-algebra if it is equipped with a norm || · || such that
||ab|| ≤ ||a|| ||b|| for a, b ∈ A holds, making A complete. A C∗-algebra A is a Banach-∗-algebra, for which

all a ∈ A satisfy the C∗-identity ||a∗a|| = ||a||2.

Whenever A and B are ∗-algebras, we call a linear map ϕ : A −→ B a ∗-homomorphism if for a, b ∈ A
ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a∗) = ϕ(a)∗ hold. A ∗-isomorphism is a bijective ∗-homomorphism. In that
case, it’s inverse ϕ−1 is a ∗-isomorphism too. If ϕ : A −→ A is a ∗-isomorphism, then ϕ is called a
∗-automorphism. We will frequently write A ∼= B if there is a ∗-isomorphism between A and B. The
algebra A is called unital if (A, ·) admits a (multiplicative) unit and commutative if ab = ba for all
a, b ∈ A. We say that a ∈ A is self-adjoint if a∗ = a. If A,B are unital ∗-algebras and ϕ : A −→ B is a
∗-homomorphism, then ϕ is called unital if ϕ(1A) = 1B .
Whenever X is a locally compact Hausdorff space and Y a topological space, the set of continuous
functions f : X −→ Y will be denoted by C(X,Y ).

Example 2.2.

(1) Let H be a Hilbert space. The Banach space B(H) is a C∗-algebra with composition as multiplication
and adjoining of operators being it’s involution.

(2) Let A be a C∗-algebra and X a locally compact Hausdorff space. For any f ∈ C(X,A), we set
Kf,ε = {x ∈ X | ||f(x)|| ≥ ε}. Let C0(X,A) = {f ∈ C(X,A) | Kf,ε compact for all ε > 0}.
C0(X,A) is a C∗-algebra equipped with the pointwise operations from A and ||f || = sup

x∈X
||f(x)||A

for f ∈ C0(X,A).

In this section, A will from now on denote a C∗-algebra. The starting point of the theory of C∗-algebras
is the Gelfand-Naimark theorem. By C0(X), we will denote the C∗-algebra C0(X,C) for a given locally
compact Hausdorff space.

Theorem 2.3 (Gelfand-Naimark). If A is a commutative C∗-algebra, then there is a locally compact
Hausdorff space X with

A ∼= C0(X).

Proof. See [4, Theorems 1.3.6 and 2.1.10].

This theorem gives us an intuition on how to think about noncommutative C∗-algebras. It is the space
of continuous functions on a ”noncommutative” topological space and we can try to generalize results
from topology to C∗-algebras.
The following result about ∗-homomorphisms is frequently useful.

Theorem 2.4. Suppose that ϕ : A −→ B is a ∗-homomorphism of C∗-algebras.

(1) The map ϕ is norm-decreasing, i.e. ||ϕ(a)||B ≤ ||a||A for a ∈ A.

(2) If ϕ is injective, it is also isometric.

Proof. See [5, Theorem 1.5.7].

Theorem 2.4 implies that there is at most one norm turning a ∗-algebra into a C∗-algebra. Furthermore,
this theorem replaces the fundamental theorems for operators on Banach spaces for ∗-homomorphisms.
A sub-C∗-algebra of A is a subset B ⊆ A that is a C∗-algebra with the operations inherited from A.

Definition 2.5. Suppose that A is a C∗-algebra. An ideal of A is a closed linear subspace I such that
for all a ∈ A aI ⊆ I and Ia ⊆ I.
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If I is an ideal of A, it is also a sub-C∗-algebra of A and the quotient A/I is a C∗-algebra [4, Theorems
3.1.3 and 3.1.4]. The multiplication is given by (a+I)(b+I) = ab+I and the involution by (a+I)∗ = a∗+I.

Proposition 2.6. If ϕ : A −→ B is a ∗-homomorphism of C∗-algebras, then ϕ(A) ⊆ B is a C∗-algebra.

Proof. The proof is taken from [4, Theorem 3.1.7].
Set I = ker(ϕ), so that I is an ideal of A. As A/I is a C∗-algebra, the map a+I 7→ ϕ(a) is an injective ∗-
homomorphism of C∗-algebras and thus isometric by Theorem 2.4. But the image of isometric operators
between Banach spaces is complete.

We say that A is simple if it’s only ideals are 0 and A itself. The next example from [4, Example 3.2.2]
is a C∗-algebraic version of the finite range approximation theorem.

Example 2.7. Given a Hilbert space H, the sub-C∗-algebra K(H) of B(H) is simple.

Proof. Given an ideal 0 6= I ⊆ K(H), there is K ∈ I with K 6= 0. We can multiply K with operators
T, S ∈ K(H) to obtain any projection P = TKS onto a 1-dimensional subspace of H. But I is assumed
to be closed, so the spectral Theorem for compact operators yields I = K(H). That is, because we can
always wright K = K+K∗

2 + iK−K
∗

2i and both summands are up to a factor i self-adjoint.

Definition 2.8. Let B be a ∗-algebra. A ∗-representation of B is a pair (π,H), where H is a Hilbert
space and π : B −→ B(H) is a ∗-homomorphism. If π is injective, (π,H) is said to be faithful.

Theorem 2.9 (Gelfand-Naimark-Segal). Suppose A is a C∗-algebra. There is a faithful ∗-representation
(π,H) of A.

Proof. See [4, Theorem 3.4.1].

We will now introduce techniques that are mandatory for K-theory, following [6, Chapter 1].
In K-theory, the matrix-algebras of a C∗-algebra are important. Given n ∈ N, the set Mn(A) of n× n-
matrices with entries in A equipped with entry-wise addition and scalar-multiplication is a vector space.

For a, b ∈ Mn(A), we define ab = (
n∑
j=1

aijbjk) and a∗ = (a∗ji)ij . With these operations, Mn(A) is a

∗-algebra.
There is a unique norm on Mn(A) that turns Mn(A) into a C∗-algebra [6, section 1.3]. Oftentimes, one
needs to adjoin a unit to A using the following Proposition. We define Ã = {(a, z) | a ∈ A, z ∈ C}.
With the multiplication (a, α)(b, β) = (ab + aβ + αb, αβ) and the involution (a, α)∗ = (a∗, α), Ã is a
∗-algebra with unit (0, 1). We identify {(a, 0) | a ∈ A} with A, turning A to a subset of Ã. Instead of
(0, 1), we will from now on write 1Ã.

Proposition 2.10. Let A be a C∗-algebra.

(1) The ∗-algebra Ã carries a C∗-norm.

(2) It contains A as an ideal and Ã/A ∼= C.

Proof. See [5, Proposition 1.1.3].

Note that if A is already unital, the unit of Ã does not agree with the original unit from A. If ϕ : A −→ B
is a ∗-homomorphism of C∗-algebras, the map ϕ̃ : Ã −→ B̃, a + α1Ã 7→ ϕ(a) + α1B̃ is a unital ∗-
homomorphism.

Definition 2.11. A sequence of C∗-algebras and ∗-homomorphisms

... An An+1 An+2 ...
ϕn ϕn+1

is said to be exact at An+1 if ϕn(An) = ker(ϕn+1),
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The sequence is called exact if it is exact at all the An. If B, I are C∗-algebras and ϕ : I −→ A,
ψ : A −→ B are *-homomorphisms, then the sequence

0 I A B 0
00,I ϕ ψ 0B,0

(1)

is called a short exact sequence if it as an exact sequence. In the above sequence, 0 denotes the C∗-algebra
{0}. The maps 00,I and 0B,0 denote the zero-maps from 0 to I and from B to 0, respectively.

Thus, ϕ is always injective and ψ surjective in a short exact sequence. Since 00,I and 0B,0 are the only
maps from 0 to I and from B to 0, respectively, we will often omit these terms above the corresponding
arrows and write

0 I A B 0
ϕ ψ

instead. If there is a ∗-homomorphism λ : B −→ A such that ψ ◦ λ = IdB , the sequence is called split
exact. That is, B is not only a quotient of A, but also a sub-C∗-algebra and the map ψ restricts to the
identity on B.

Example 2.12. Let A be a C∗-algebra.

(1) If I is an ideal of A, then

0 I A A/I 0ι π

is a short exact sequence. The map π is given by the canonical projection, i.e. π(a) = [a] = a+ I.
The symbol ι denotes the inclusion map of A ⊂ Ã, i.e. ι(a) = a for a ∈ A.

(2) The special case of adjoining a unit gives rise to a split exact sequence

0 A Ã C 0.ι π

λ

with λ(z) = 1Ãz.

Proof. Let I be an ideal of A. If x ∈ I, then π(x) = x + I = I, showing ι(A) ⊆ ker(π). Conversely, if
x ∈ ker(π), then I = π(x) = x + I, thus x ∈ I which shows ker(π) ⊆ ι(A). Since ι is injective and π is
surjective, the above sequence is exact.
Turning to the case of adjoining a unit, the above sequence is exact by Proposition 2.10. λ is a ∗-
homomorphism identifying C with C1Ã. We have π(λ(α)) = π(α1Ã) = α1Ã + I = α(1Ã + I) = α.

2.2 Tensor Products

Tensor products play a big role in both, K-theory and the study of crossed products.

Definition 2.13. Let V and W be complex vector spaces. An algebraic tensor product of V and W is
any complex linear space T such that there exists a bilinear τ : V ×W −→ T map satisfying the following
universal property:
Given a bilinear map B : V × W −→ S into another complex vector space S, there is a linear map
L : T −→ S with B = L ◦ τ .

Proposition 2.14. Suppose V and W are C-vector spaces. The following assertions hold:

(1) There exists a tensor product of V and W .

(2) Any two tensor products of V and W are isomorphic.

Proof. See [7, Page 299, Satz 2].

By the second assertion, we may take any tensor product T of V and W and write V ⊗W instead of T .
The elements τ(v, w) are denoted by v ⊗ w for v ∈ V and w ∈ W . These vectors span V ⊗W linearly,
see [7, Page 300].
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Now, suppose that B and C are ∗-algebras. Then the algebraic tensor product B⊗C carries a ∗-algebra
structures too, see [4, Pages 188 and 189]. For b, b′ ∈ C and c, c′ ∈ C, the multiplication is given by
(b ⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′ and the involution by (b ⊗ c)∗ = b∗ ⊗ c∗. Both operations are then extended
linearly.

Definition 2.15. If C is a ∗-algebra, then any norm γ on C that satisfies γ(cc′) ≤ γ(c)γ(c′) and
γ(c∗c) = γ(c)2 is called a C∗-norm on C.

In particular, we do not insist C∗-norms to be complete. In fact, whenever a C∗-norm on C is complete,
it must be the unique norm turning C into a C∗-algebra. The next proposition guaranties the existence
of C∗-norms on algebraic tensor products of C∗-algebras.

Proposition 2.16. Let A,B be C∗-algebras. There exists a C∗-norm || · ||max on A⊗B such that given
any C∗-norm γ on A⊗B the inequality

γ(c) ≤ ||c||max (2)

holds for any c ∈ A⊗B. Furthermore, ||a⊗ b||max ≤ ||a|| ||b|| for a ∈ A and b ∈ B.

Proof. See [4, Theorem 6.3.5, Corollary 6.3.6 and Page 193].

The norm || · ||max is called the maximal norm on A ⊗ B. It’s completion is called the maximal tensor
product of A and B. It is denoted by A⊗max B.

Definition 2.17. We say that a C∗-algebra A is nuclear if for any C∗-algebra B, there is a unique
C∗-norm on A⊗B.

We will from now on only be concerned with taking tensor products of C∗-algebras where one of the
factors is nuclear.

Example 2.18. Let H be a Hilbert space. Then K(H) is nuclear.

Proof. See [4, Example 6.3.2].

Proposition 2.19. If A is a commutative C∗-algebra, then it is nuclear too.

Proof. See [4, Theorem 6.4.15].

Proposition 2.20. Let X denote a locally compact Hausdorff space and A a C∗-algebra. The bilinear
map B : C0(X)×A −→ C0(X,A), B(f, a)(x) = f(x)a induces a ∗- homomorphism

ϕ : C0(X)⊗A −→ C0(X,A)

satisfying ϕ(f ⊗ a) = B(f, a). The map ϕ extends to a ∗-isomorphism ϕ : C0(X)⊗max A −→ C0(X,A).

Proof. See [4, Theorem 6.4.17]

The following Proposition states that taking maximal tensor products is associative.

Proposition 2.21. Let A,B,C be C∗-algebras. Then there is a ∗-isomorphism

(A⊗max B)⊗max
∼= A⊗max (B ⊗max C)

mapping (a⊗ b)⊗ c to a⊗ (b⊗ c).

Proof. See [4, Page 215, Excercise 9].

Tensor products are also commutative.

Proposition 2.22. Let A and B denote C∗-algebras. There is a ∗-isomorphism A⊗max B ∼= B ⊗max A
mapping a⊗ b to b⊗ a.
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Proof. The map A × B −→ B ⊗ A, (a, b) 7→ b ⊗ a is bilinear. Thus, it extends to a linear map
A ⊗ B −→ B ⊗ A, a ⊗ b 7→ b ⊗ a by the definition of a tensor product. Repeating this with A and
B interchanged, we observe that B ⊗ A −→ A ⊗ B, b ⊗ a 7→ a ⊗ b is it’s inverse. These two maps
are ∗-homorphisms. Now, any C∗-norm on A ⊗ B induces a C∗-norm on B ⊗ A and vice versa. Thus,
a⊗ b 7→ b⊗ a extends to an isomorphism A⊗max B ∼= B ⊗max A.
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3 K-theory

In K-theory, one assigns two groups, K0(A) and K1(A) to A. These groups reflect the properties of A in
many ways. For example, a ∗-isomorphism of C∗-algebrasA andB induces isomorphismsK0(A) ∼= K0(B)
and K1(A) ∼= K1(B).

3.1 The Semigroup V (A)

Definition 3.1. Suppose that B is a ∗-algebra and that p, u, v ∈ B.

(1) We call p a projection if p = p∗ = p2.

(2) We say that u is a unitary if u∗u = uu∗ = 1.

(3) Whenever A is unital, v is said to be a partial isometry if vv∗v = v.

Topological properties of the set of projections in a given ∗-algebra play an important role. The topology
will come from a C∗-norm.

Definition 3.2. Given a ∗-algebra B that carries a C∗-norm, let p, u, v ∈ B. We write

(1) p ∼h q if there is a continuous map [0, 1] 3 t 7→ pt ∈ B of projections such that p0 = p and p1 = q,

(2) p ∼u q if there is a unitary u ∈ B̃ with upu∗ = q,

(3) p ∼ q if v∗v = p and vv∗ = q for a partial isometry v ∈ B.

The above relations ∼h,∼u,∼ are called homotopic equivalence, unitary equivalence and Murray-von
Neumann equivalence, respectively. Each of the three relations is an equivalence relation [6, Page 21].

For any p, q ∈ A, we will write diag(p, q) instead of

(
p 0
0 q

)
∈M2(A).

Proposition 3.3. Let p, q ∈ A be projections. Then the following implications hold:

(1) If p ∼h q then p ∼u q.

(2) If p ∼u q then p ∼ q.

(3) If p ∼ q then diag(p, 0) ∼u diag(q, 0) in M2(A).

(4) If p ∼u q then diag(p, 0) ∼h diag(q, 0) in M2(A).

Proof. See [6, Propositions 2.2.7 and 2.2.8]

We set M∞(A) = {a |a is an N× N−matrix with entries in A and finitely many non-zero entries} and
identify Mn(A) ∼= {diag(a, 0) ∈ Mn+1 | a ∈ Mn(A)} ⊆ Mn+1(A). With this notation, we have

M∞(A) =
∞⋃
n=1

Mn(A). M∞(A) is a ∗-algebra inheriting the operations from the ∗-algebras Mn(A).

If a ∈ Mn(A), then ||a||M∞(A) = ||a||Mn(A) is a norm on M∞(A) as the right side is independent of n.
Let P∞(A) denote it’s projections, i.e. matrices a ∈Mn(A) for some n ∈ N with a∗ = a2 = a.

Definition 3.4. Suppose that A is a C∗-algebra. We set V (A) = P∞(A)/ ∼h.

The set (V (A),+) is a semigroup equipped with the addition [p]∼h+[q]∼h = [diag(p, q)]∼h . Furthermore,
Proposition 3.3 implies that either of the relations ∼h,∼u,∼ agree with each other on M∞(A). Thus,
V (A) = P∞/ ∼u= P∞/ ∼.
The following Proposition is based on [6, Proposition 2.3.2].

Proposition 3.5. If A is a C∗-algebra, then the following assertions are true.

(1) The semigroup V (A) is Abelian.

(2) If p, q ∈M∞(A) are projections with pq = qp = 0, then [p]∼h + [q]∼h = [p+ q]∼h .
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Proof. Fix projections p ∈ Mn(A), q ∈ Mm(A). We may suppose n > m, such that q ∈ Mn(A). The

matrix u =

(
0 1
1 0

)
∈Mn(Ã) is a unitary. Thus, we have diag(p, q) ∼u u∗ diag(p, q)u = diag(q, p), which

implies [p]∼u + [q]∼u = [q]∼u + [p]∼u .

Now assume pq = qp = 0 and let v =

(
p 0
q 0

)
∈M2(A). The equality vv∗ =

(
p 0
q 0

)(
p q
0 0

)
=

(
p 0
0 q

)
implies vv∗v =

(
p 0
0 q

)(
p 0
q 0

)
= v, so v is a partial isometry. But p+ q = v∗v ∼ vv∗ = diag(p, q).

The next example is a special case of [6, Example 3.3.3].

Example 3.6. Let H = `2(N) and δ11 ∈ B(H) be the operator defined by δ11(xi)i∈N = (δ1ixi)i∈N. Then
1B(H)− δ11 is a projection and 1B(H)− δ11 ∼ 1B(H). In particular, we have [1B(H)]∼+ [δ11]∼ = [1B(H)]∼.

Proof. 1B(H) − δ11 is a projection with range {x ∈ H | x1 = 0}. Let v ∈ B(H) be the unilateral right
shift. Then v∗v = 1B(H) and vv∗ = 1B(H) − δ11, and we conclude 1B(H) − δ11 ∼ 1B(H). The equality
[1B(H)]∼ + [δ11]∼ = [1B(H)]∼ now follows from Proposition 3.5 by noting that (1B(H) − δ11)δ11 = 0.

Example 3.6 shows that V(A) does not have cancellation in general.

3.2 The K-groups

To define K0(A), one needs the so-called Grothendieck-construction, see [6, Paragraph 3.1.1]. For an
Abelian semigroup S, we now define a relation on S×S. Given (r, s), (r′, s′) ∈ S×S, write (r, s) ∼ (r′, s′)
if there is t ∈ S such that r + s′ + t = r′ + s+ t.

Lemma 3.7. The relation ∼ is an equivalence relation and G(S) = S × S/ ∼ is an Abelian group.

Proof. See [6, Paragraph 3.1.2].

The addition on G(S) is given by [(s, t)] + [(s′, t′)] = [(s + s′, t + t′)]. We shall write s − t instead of
[(s, t)] if s, t ∈ S. The map γS : S −→ G(S), s 7→ s− 0 is a semigroup homomorphism.

Lemma 3.8. If ϕ : S −→ T is a semigroup homomorphism, there exists a unique group homomorphism
G(ϕ) : G(S) −→ G(T ) such that the diagram

S T

G(S) G(T )

ϕ

γS γT

G(ϕ)

commutes, i.e. G(ϕ)(s1 − s2) = ϕ(s1)− ϕ(s2).

Proof. See [6, Paragraph 3.1.2].

Definition 3.9. Suppose A is a C∗-algebra. We set K00(A) = G(V (A)) and write [p]00 instead of
[p]∼h − [0]∼h for a projection p ∈M∞(A).

The following Proposition shows that K00 respects ∗-homomorphisms, see [8, Sections 5.2, 5.3] and [6,
Section 3.2.2, Proposition 3.2.4].

Proposition 3.10. For a C∗-algebra B and a ∗-homomorphism ϕ : A −→ B, there is a group homo-
morphism K00(ϕ) : K00(A) −→ K00(B) such that the following properties hold:

(1) We have K00(IdA) = IdK00(A).

(2) If ψ : B −→ C is another ∗-homomorphism into a C∗-algebra C, then K00(ψ◦ϕ) = K00(ψ)◦K00(ϕ).

It is given by
K00(ϕ)([p]00 − [q]00) = [ϕ(p)]00 − [ϕ(q)]00. (3)
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Proof. If p ∼h q in M∞(A), there is a path of projections pt from p to q. Since the mapping t 7→ pt
is continuous, so is t 7→ ϕ(pt), also ϕ(p0) = p and ϕ(p1) = q. Thus, ϕ(p) ∼h ϕ(q) and the map
α : V (A) −→ V (B), α[p]∼h = [ϕ(p)]∼h is well-defined. For projections p, q ∈ A, we have

α([p]∼h + [q]∼h) = α[diag(p, q)]∼h
= [ϕ(diag(p, q))]∼h
= [diag(ϕ(p), ϕ(q)]∼h
= [ϕ(p)]∼h + [ϕ(q)]∼h
= α[p]∼h + α[q]∼h

(4)

Thus, α is a semigroup homomorphism. Set K00(ϕ) = G(α). Formula (3) holds by definition. We have

K00(IdA)([p]00 − [q]00) = [IdA(p)]00 − [IdA(q)]00 = [p]00 − [q]00 = IdK00(A)([p]00 − [q]00)

and

K00(ψ ◦ ϕ)([p]00 − [q]00) = [ψ(ϕ(p))]00 − [ψ(ϕ(q))]00 = K00(ψ)(K00(ϕ)([p]00 − [q]00)).

Lemma 3.11. If A is a unital C∗-algebra, the split exact sequence of Example 2.12 (2) induces a split
exact sequence

0 K00(A) K00(Ã) K00(C) 0.
K00(ι) K00(π)

K00(λ)

(5)

Proof. See [6, Proposition 3.2.8].

Now, we are able to define K0(A).

Definition 3.12. Let π : Ã −→ C denote the canonical projection. Set K0(A) = ker(K00(π)) ⊆ K00(Ã).

The following Proposition is based on the [6, Discussion below Definition 4.1.1].

Proposition 3.13. If A is a unital C∗-algebra, then K00(A) ∼= K0(A).

Proof. Let ι : A −→ Ã denote the inclusion A ⊆ Ã and π : Ã −→ C the canonical projection. By
definition, the sequence

0 K0(A) K00(Ã) K00(C) 0.i K00(π)

is exact if i : K0(A) −→ K00(Ã) denotes the inclusion K0(A) ⊆ K00(Ã). If p ∼h q in A, then p ∼h q
in Ã. Thus, the map α : K00(A) −→ K0(A), K00(A) 3 [p]00 7→ [p]00 ∈ K00(Ã) is well-defined. Indeed,
K00(π)(α([p]00 − [q]00)) = K00(π)([ι(p)]00 − [ι(q)]00) = K00(π) ◦K00(ι)([p]00 − [q]00) = 0,

because the sequence (5) is exact at K00(Ã). Since

K00(ι)([p]00 − [q]00) = α([p]00 − [q]00),

the following diagram commutes.

0 K00(A) K00(Ã) K00(C) 0

0 K0(A) K00(Ã) K00(C) 0

K00(ι)

α

K00(π)

i K00(π)

(6)

Now, K00(ι) is injective, because the upper sequence is exact at K00(A). Thus, i◦α = K00(ι) implies that
α is injective. α is surjective too, because i is injective and K00(ι)(K00(A)) = ker(π) = i(K0(A)).
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If A is unital, we may identifyK0(A) withK00(A) and write [p]0 instead of [p]00. Under this identification,
the following Theorem holds.

Theorem 3.14 (Standard picture of K0(A)). Let A be a C∗-algebra.

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(Ã), p− q ∈M∞(A)} (7)

Additionally, we have

(1) K0(A) = {[p]0 − [s(p)]0 | p ∈ P∞(Ã)}, where s = λ ◦ π, i.e. s(a+ 1Ãα) = 1Ãα.

(2) Let p, q ∈M∞(Ã). Then [p]0 − [s(p)]0 = [q]0 − [s(q)]0 if and only if there are r1, r2 ∈ P∞(Ã) with
s(r1) = r1 and s(r2) = r2 with diag(p, r1) ∼h diag(q, r2). In this case, one may choose r1 = 1k,
r2 = 1l for some k, l ∈ N.

(3) For p, q ∈M∞(Ã) satisfying p− q ∈M∞(A), we have [p]0 − [q]0 = 0 if and only if there is m ∈ N
such that diag(p, 1m) ∼h diag(q, 1m).

Proof. See [6, Proposition 4.2.2].

Let ϕ : A −→ B be a ∗-homomorphism of C∗-algebras. If [p]0 − [q]0 ∈ K0(A), we calculate that
ϕ̃(p) − ϕ̃(q) = ϕ̃(p − q) = ϕ(p − q) ∈ M∞(B). So ϕ induces a homorphism K0(ϕ) : K0(A) −→ K0(B)
with

K0(ϕ)([p]0 − [q]0) = [ϕ̃(p)]0 − [ϕ̃(q)]0. (8)

If A is unital, K0(ϕ) is given by K00(ϕ) under the identification of Proposition 3.13.
Suppose that H is a seperable Hilbert space and E ∈ K(H) is a projection of rank one, i.e. a projection
such that there is ξ ∈ H with Eξ = ξ and Eh = 0 if ξ ⊥ h. Now, the map ϕ : A −→ A ⊗ K(H),
ϕ(a) = ϕ(a)⊗ E is a ∗-homomorphism, because E is a projection.

Proposition 3.15. The map K0(ϕ) is an isomorphism.

Proof. See [9, Corollary 6.2.11].

We now follow [8, Section 8.1] to introduce K1(A).

Definition 3.16. Suppose that A is a unital C∗-algebra and let u, v ∈ A be unitaries.

(1) We write u ∼h v if there is a continuous map [0, 1] 3 t 7→ ut ∈ A of unitaries such that u0 = u and
u1 = v.

(2) We set U(A) = {u ∈ A | u unitary} and U(A)0 = {u ∈ U(A) | u ∼h 1}.

(3) Given n ∈ N, we let Un(A) and Un(A)0 denote the sets Un(Mn(A)) and Un(Mn(A))0, respectively.

We will identify u ∈ Un(Ã) with diag(u, 1) ∈ Un+1(Ã). This turns Un(Ã) into a subgroup of Un+1(Ã).

Let U∞(Ã) =
∞⋃
n=1
Un(Ã). By U∞(Ã)0 we denote the set

∞⋃
n=1
Un(Ã)0 ⊆ U∞(Ã). Both, U∞(Ã) and U∞(Ã)0

are groups inheriting the group operations from the Un(Ã). If u ∈ Un(Ã)0 and v ∈ Un(Ã), there is a
continuous map t 7→ ut such that u0 = u and u1 = u. But then t 7→ v∗utv is also continuous, which
implies v∗uv ∼h v∗1v = 1. Thus, U∞(Ã)0 is a normal subgroup of U∞(Ã).

Definition 3.17. Given a C∗-algebra A, we set K1(A) = U∞(Ã)/U∞(Ã)0.

For u ∈ U∞(Ã), let [u]1 denote the equivalence class of u. So we get a map [ ]1 : U∞(Ã) −→ K1(A),
u 7→ [u]1. As for K0, there is a standard picture of K1.

Theorem 3.18 (Standard picture of K1(A)). If A is a C∗-algebra, we have

K1(A) = {[u]1 | u ∈ U∞(Ã)} (9)

The group K1(A) satisfies the following properties:

(1) The map [ ]1 is a group homomorphism.
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(2) Addition is given by[diag(u, v)] = [u]1 + [v]1.

(3) The group K1(A) is Abelian.

(4) For u, v ∈ U∞(Ã), we have [u]1 = [v]1 if and only if u ∼h v.

Proof. See [6, Proposition 8.1.4].

Now, let ϕ : A −→ B be a ∗-homomorphism of C∗-algebras. If u, v ∈ Mn(Ã) with u ∼h v, we have
ϕ̃(u) ∼h ϕ̃(v), so the map K1(ϕ) : K1(A) −→ K1(B), [u]1 7→ [ϕ̃(u)]1 is well-defined.

Proposition 3.19. Let ϕ : A −→ B and ψ : B −→ C be ∗-homomorphisms of C∗-algebras. Then the
following properties hold for j ∈ {0, 1}:

(1) Kj(IdA) = IdKj(A)

(2) Kj(ψ ◦ ϕ) = Kj(ψ) ◦Kj(ϕ)

Proof. See [6, Propositions 4.1.3 and 8.2.2].

To state another important property of K-theory, we need the notion of a homotopy.

Definition 3.20. Suppose that ϕ,ϕ′ : A −→ B and ψ : B −→ A are ∗-homomorphisms of C∗-algebras.

(1) ϕ and ϕ′ are called homotopic if there is a map [0, 1] 3 t 7→ ϕt of ∗-homomorphisms ϕt : A −→ B
such that ϕ0 = ϕ, ϕ1 = ϕ′ and t 7→ ϕt(a) continuous for all a ∈ A in the norm.

(2) The sequence (not necessarily exact) A B A
ϕ ψ

is called a homotopy if ϕ ◦ψ is homo-
topic to IdB and ψ ◦ ϕ to IdA.

Proposition 3.21. Suppose that A B A
ϕ ψ

is a homotopy of C∗-algebras. Then for j = 0, 1
the map Kj(ϕ) : Kj(A) −→ Kj(B) is an isomorphism with inverse Kj(ψ).

Proof. See [6, Proposition 4.1.4] for the proof if j = 0. The statement for j = 1 can be derived from that
by using Proposition 3.28.

Proposition 3.22. Suppose that H is a seperable (not necessarily finite dimensional) Hilbert space.
Then K0(K(H)) = Z and K1(K(H)) = 0.

Proof. See [6, Corollary 6.4.2 and Example 8.1.8].

The isomorphism may described as follows. A projection in K(H) is a projection onto a finite dimensional
subspace. One may identify Mn(K(H)) ∼= K(Hn). Now a projection p ∈ K(Hn) is mapped to the
dimension of the subspace it projects onto. In particular, 1 is the image of the rank one projections.

3.3 The Cyclic Six-Term Exact Sequence

The following Proposition shows that K-theory respects exactness properties. The six-term exact se-
quence is then derived by defining so-called connecting maps δj between Kj(B) and K|j−1|(I) for j = 0, 1.

Proposition 3.23. Let

0 I A B 0
ϕ ψ

be a short exact sequence of C∗-algebras. Then the induced sequence

0 Kj(I) Kj(A) Kj(B) 0
Kj(ϕ) Kj(ψ)

is exact at Kj(A) for j ∈ {0, 1}.

Proof. See [6, Propositons 4.3.2 and 8.2.4]
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With the convention arctan(∞) = π/2, the map d(r, t) = |arctan(r)− arctan(t)| defines a metric on the
set R ∪ {∞}. This metric turns R ∪ {∞} into a locally compact Hausdorff space.

Definition 3.24. We set
SA = C0(R, A) (10)

and
CA = {f ∈ C0(R ∪ {∞}, A)} (11)

SA is called the suspension of A and CA the cone of A.

When talking about suspensions and cones of A, we will write ft instead of f(t) for f ∈ CA or f ∈ SA.
Also, SC = C0(R) and CC will be denoted by S and C, respectively.
The maps ι : SA −→ CA given by continuous extension, i.e. by setting ι(f)∞ = 0 and π : CA −→ A,
π(f) = f(∞), yield a short exact sequence

0 SA CA C 0ι π (12)

Furthermore, given a ∗-homomorphism ϕ : A −→ B into a C∗-algebra B, then the map Sϕ : SA −→ SB
given by Sϕ(f)t = ϕ(ft) is a ∗-homomorphism. Also, the map Cϕ : CA −→ CB, Cϕ(f)t = ϕ(ft) is a
∗-homomorphism.
The following Lemma is a consequence of Proposition 2.20, see also [6, Lemma 10.1.1].

Lemma 3.25. Let X be a locally compact Hausdorff space. Then elements g ∈ C0(X,A) of the form

g(x) =
n∑
i=1

fi(x)ai for fi ∈ C0(X) and ai ∈ A are dense in C0(X,A).

By choosing X = R and X = R ∪ {∞}, we obtain the following Proposition which is taken from [6,
Proposition 10.1.2].

Proposition 3.26. If

0 I A B 0
ϕ ψ

is a short exact sequence of C∗-algebras, then both sequences,

0 SI SA SB 0
Sϕ Sψ

and

0 CI CA CB 0
Cϕ Cψ

are short exact sequences too.

Proof. We will only proof the result for cones, the rest follows from replacing every C by an S.
Cϕ is injective, because ϕ is and Cϕ(CI) ⊆ ker(Cψ), because Cψ ◦Cϕ = C(ψ ◦ϕ) = C0 = 0. If f ∈ CA
with ψ(f) = 0 is given, then Cψ(ft) = 0 for all t so that ft = ϕ(gt) for some gt ∈ I. As ||ϕ(gt)|| = ft,
we infer g ∈ CI and Cϕ(g) = f .
By Lemma 3.25, ψ(A) contains a dense subspace of B and is thus surjective, because the image of a
∗-homomorphism is a C∗-algebra by Proposition 2.6.

The most important tools for calculating the K-theory of a C∗-algebra are Bott periodicity and the
cyclic six-term exact sequence. Let

0 I A B 0
ϕ ψ

(13)

be a short exact sequence of C∗-algebras.

Proposition 3.27. There is a group homomorphism δ1 : K1(B) −→ K0(I), which makes the sequence

K1(I) K1(A) K1(B) K0(I) K0(A) K0(B)
K1(ϕ) K1(ψ) δ1 K0(ϕ) K0(ψ)

exact.
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Proof. See [6, Lemma 9.1.1 and Proposition 9.3.3].

Note that by Propositon 3.23, the sequence above is already exact at K0(A) and K1(A). The map δ1 is
called the index map associated to the sequence (13).

Proposition 3.28. There is an isomorphism θA : K1(A) −→ K0(SA). Furthermore if B is a C∗-algebra,
the following diagram commutes for any ∗-homomorphism ϕ : A −→ B:

K1(A) K0(SA)

K1(B) K0(SB)

θA

K1(ϕ) K0(Sϕ)

θB

(14)

Proof. See [6, Theorem 10.1.3].

Theorem 3.29. [Bott periodicity] There is an isomorphism βA : K0(A) −→ K1(SA). Furthermore if B
is a C∗-algebra, the following diagram commutes for any ∗-homomorphism ϕ : A −→ B:

K0(A) K1(SA)

K0(B) K1(SB)

βA

K0(ϕ) K1(Sϕ)

βB

(15)

Proof. See [6, Chapter 11].

Remark 3.30. Suppose that A is a C∗-algebra. Bott periodicity, Theorem 3.29 and Proposition 3.28
may be summarized as

Kj(A) = K|j−1|(SA)

for j = 0, 1.

Theorem 3.31 (six-term exact sequence). There is a group homomorphism δ0 : K0(B) −→ K1(I) such
that the six-term sequence

K0(I) K0(A) K0(B)

K1(B) K1(A) K1(I)

K0(ϕ) K0(ψ)

δ0δ1

K1(ψ) K1(ϕ)

(16)

of Abelian groups is exact.

The map δ0 is called the exponential map associated to the sequence (13). The six-term exact sequence
is in fact a combination of Theorem 3.29 and Proposition 3.27. For that reason, the term Bott periodicity
often refers to both the six-term sequence and Theorem 3.29 in the literature.
The most important aspect about the index and exponential map is that these make the six-term sequence
exact. However, we will need two more facts about these maps as we proceed.

Proposition 3.32. Suppose that

0 I ′ A′ B′ 0
ϕ′ ψ′

(17)

is a short exact sequence of C∗-algebras. Furthermore, suppose that we are given ∗-homomorphisms
γ : I −→ I ′, α : A −→ A′ and β : B −→ B′ such that the following diagram commutes:

0 I A B 0

0 I ′ A′ B′ 0

ϕ

γ α

ψ

β

ϕ′ ψ′

(18)
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We denote the index and exponential map of (6.8) by δ′0 and δ′1, respectively. In this situation both
diagrams,

K1(B) K0(I)

K1(B′) K0(I ′)

δ1

K1(β) K0(γ)

δ′1

(19)

and

K0(B) K1(I)

K0(B′) K1(I ′)

δ0

K0(β) K1(γ)

δ′0

(20)

commute.

Proof. See [6, Proposition 9.1.5 and Proposition 12.2.1].

Proposition 3.33 (Second standard picture of the index map). Let A be a C∗-algebra. Suppose that
we are given natural numbers m ≥ n and let u ∈ Un(B̃). Also assume that v ∈ Mm(Ã) is a partial
isometry such that ψ̃(v) = diag(u, 0m−n). In that case, there are projections p, q ∈ Mm(Ĩ) satisfying
1m − v∗v = ϕ̃(p) and 1m − vv∗ = ϕ̃(q) and

δ1(u) = [p]0 − [q]0.

Proof. See [6, Proposition 9.2.2].

Note that since ϕ is injective, p and q are unique up to choice of v. Also, since δ1 is well-defined, [p]0−[q]0
does not depend on the choice of v.
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4 C∗-Dynamics and Crossed Products

Crossed products are C∗-algebras that are made out of another C∗-algebra and a group.

Definition 4.1. Let G be a group that is endowed with a topology T .

(1) The group G is called a topological group if both the maps · : G × G −→ G and −1 : G −→ G are
continuous where G×G is equipped with the product topology.

(2) A locally compact group is a topological group that is locally compact and Hausdorff.

Throughout this paragraph, G will denote a locally compact group and A a C∗-algebra.

4.1 Haar Measure

To define crossed products of C∗-algebras, one needs the notion of Haar-measure.

Definition 4.2. Let X be a locally compact Hausdorff space.

(1) A Borel measure µ on X is a measure on X such that any Borel set of X is measurable. That is,
any open set is measurable.

(2) Suppose µ is a Borel measure on X. If for any measurable set A of X and any open set V ⊆ X

µ(V ) = sup{µ(C) | C ⊆ V , C compact} (21)

and
µ(A) = inf{µ(U) | V ⊆ U, U open} (22)

then µ is called a Radon measure on X.

(3) Suppose that G is a locally compact group. A (left) Haar measure on G is a Radon measure µ 6= 0
such that

µ(sA) = µ(A) (23)

for A ⊆ G measurable and s ∈ G.

Theorem 4.3. Suppose that G is a locally compact group.

(1) There exists a Haar-measure µ on G.

(2) A Haar measure on G is unique up to multiplication by a positive real number.

Proof. See [10, Theorem 1.3.5].

We will write µG to denote any Haar-measure on G.
Suppose that V is a Banach space. For a function f ∈ C(G,V ), let supp(f) = {s ∈ G | f(s) 6= 0}, set
Cc(G,V ) = {f ∈ C(G,V ) | supp(f) compact} and Cc(G) = Cc(G,C).

Proposition 4.4. Let G be a locally compact group.

1) For 1 ≤ p <∞, we have Cc(G) = Lp(G,µG) where Lp(G,µG) is the Banach space of p-integrable
functions with respect to µG.

2) If f ∈ Cc(G), then for every ε > 0, there is a neighborhood V of 1G ∈ G such that for all s, t ∈ G
with s−1t ∈ V or t−1s ∈ V , we have |f(s)− f(t)| < ε.

Proof. See [10, Proposition 1.3.3 and Lemma 1.3.7].

By the definition of Haar measure,
∫
G
χB(sr)dµG(r) = µG(s−1B) = µG(B) =

∫
G
χB(r)dµG(r) for fixed

s ∈ G and any µG-measurable set B. Passing to linear combinations of characteristic functions and
taking a limit if necessary, yields ∫

G

f(sr)dµG(r) =

∫
G

f(r)dµG(r) (24)
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for any f ∈ Lp(G,µG). This property is called left-invariance of µG.

Theorem 4.5. There is a function ∆ : G −→ R>0 that satisfies the following properties:

(1) The map ∆ is a continuous group homomorphism into the group (R>0, ·).

(2) For any f ∈ L1(G,µG), we have
∫
G
f(rs)dµG(r) = ∆(s)

∫
G
f(r)dµG(r).

(3) If f ∈ L1(G,µG), then
∫
G
f(r)dµG(r) =

∫
G

∆(r−1)f(r−1)dµG(r).

Proof. See [10, Theorem 1.4.1]

Property (2) of the preceeding Theorem determines ∆ uniquely. Indeed, if ∆′ also satisfies property (2),
then (∆(s)−∆′(s))

∫
G
f(r)dµG(r) = 0 for any f ∈ L1(G,µG). Thus, ∆(s) 6= ∆′(s) for any s ∈ G would

yield a contradiction to µG 6= 0. Since any other Haar measure of G is a constant multiple of µG, ∆ does,
again by property (2), not depend on the choice of µG. The homomorphism ∆ is called the modular
function of G.

4.2 Vector-valued Integration

We want to integrate functions that take values in an arbitrary C∗-algebra rather than C or R.

Proposition 4.6. Suppose that V is a complex Banach space. There is a linear map Cc(G,V ) −→ V ,
f 7→

∫
G
f(s)dµG(s). Furthermore, this map has the following properties:

(1) If φ ∈ Cc(G) and x ∈ X, then the integral of the function f given by t 7→ φ(t)x may be evaluated
by
∫
G
f(s)dµG(s) = x

∫
G
φ(s)dµG(s).

(2) Given a bounded linear Operator T : X −→ Y into another Banach space Y , we have∫
G
Tf(s)dµG(s) = T

∫
G
f(s)dµG(s) for any f ∈ Cc(G,V ).

(3) ||
∫
G
f(s)dµG(s)|| ≤

∫
G
||f(s)||dµG(s) for f ∈ Cc(G,V ).

Proof. See [11, Lemma 1.91].

The above integral definition is sufficient in order to define crossed products and avoids the technical
difficulties of defining L1(G,A), see [11, Appendix B].
However, we will need to take slightly more general integrals in the case G = R. We want to integrate
functions that are continuous on a compact subset of R (and do not vanish on the boundary). Integrals
of this type will appear in the proof of Connes’ cocycle Lemma.
A sufficient definition of such an integral is being defined in [12, Page 203]. Suppose V is a Banach space
and f : I −→ V a continuous function on a compact interval I = [t, r]. We can form the Riemann sum

In(f) =

n∑
j=0

1

n
f

(
t+ j · r − t

n

)
and take the limit

r∫
t

f(s)ds := lim
n→∞

In(f).

This can be seen by copying the proofs in the case V = R. But as we assume that f is continuous, the
theory becomes easier. We will now conduct the most important properties of this integral.

Proposition 4.7. Let V be a Banach space. Also, suppose that f : [t, r] −→ V is continuous.

(1) The integral satisfies the triangle inequality ||
r∫
t

f(s)ds|| ≤
r∫
t

||f(s)||ds.

(2) If g : [t, r] −→ C is continuous and v ∈ V , we have
r∫
t

f(s)ds = v
r∫
t

g(s)ds for f(s) = v · g(s).
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(3) If T : V −→W is a continuous operator between Banach spaces, then
r∫
t

Tf(s)ds = T
r∫
t

f(s)ds.

Sketch of the Proof. We need to apply the triangle inequality to the Riemann sums.

4.3 The Universal Norm

Following [11, Chapter 2], we now introduce crossed products. These arise in the following way. We first
give the algebra Cc(G,A) a ∗-algebra structure (that depends on an action). The crossed product will
then be the completion of Cc(G,A) with respect to the universal norm.

Definition 4.8. Suppose V is a complex Banach space. For v ∈ V , let ρv : B(V ) −→ R be defined by
ρv(T ) = ||Tv||. The strong topology is the coarsest topology on B(V ) such that all of the maps ρv are
continuous with respect to it.

The set Aut(A) of ∗-automorphisms of A is a group equipped with composition being it’s multiplication.
We endow this group with the topology of strong convergence inherited from B(A).
For any Hilbert space H, U(H) will denote the group of unitary operators on H. We endow U(H) also
with the topology of strong convergence inherited from B(H).

Definition 4.9. A unitary representation (U,H) of G consists of a Hilbert space H and a group homo-
morphism U : G −→ U(H), s 7→ Us that is continuous with respect to the strong topology.

We now give an Example of a representation of G [11, Example 1.83].

Example 4.10. Let G be a locally compact group and H = L2(G,µG). The map V : G −→ U(H),
Vsf(r) = f(s−1r) induces a unitary representation of G.

Proof. We will first show that for fixed s ∈ G the operator Vs is a unitary. Indeed, taking f, g ∈ H we
have

〈Vsf, g〉 =

∫
G

f(s−1r)g(r)dµG(r) =

∫
G

f(r)g(sr)dµG(r) = 〈f, Vs−1g〉 (25)

which shows that Vs−1 = V ∗s . We also have Vs−1Vsf = VsVs−1f = f which shows that Vs is a unitary,
because V ∗s = Vs−1 = V −1

s . Furthermore, Vstf(r) = f((st)−1r) = f(t−1s−1r) = Vtf(s−1r) = VsVtf(r),
so V is a group homomorphism.
Now, let ε > 0, f ∈ Cc(G) and set Cf = 2 · µG(supp(f)) < ∞. Applying Proposition 4.4 (2) to the
function f , there is a neighborhood U ⊆ G of 1 ∈ G such that for all t, r ∈ G with s−1rr−1t = s−1t ∈ U ,
we have |f(s−1r)− f(t−1r)| < ε. Taking any t in the neighborhood sU of s, we calculate

||Vsf − Vtf ||2 =

∫
G

|f(s−1r)− f(t−1r)|2dµG(r)

=

∫
(s·supp f)∪(r·supp f)

|f(s−1r)− f(t−1r)|2dµG(r)

≤
∫

(s·supp f)∪(r·supp f)

ε2 dµG(r)

≤ ε2 · Cf .

(26)

Proposition 4.4 (1) implies that V is continuous in the strong topology on U(H), because the family (Vs)
is uniformly bounded as it consists of unitary operators.

In the proof above, we used that µG(C) is finite for any compact subset C ⊆ G, see [10, Corollary 1.3.6].

Definition 4.11. Suppose that A is a C∗-algebra and G a locally compact group.

(1) A group-action of G on A is a group homomorphism α : G −→ Aut(A) that is continuous in the
strong topology.

(2) If α : G −→ Aut(A) is an action, the tuple (A,G, α) is called a C∗-dynamical system.
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We will form now on fix an action on α : G −→ Aut(A) so that (A,G, α) is a C∗-dynamical system
throughout the rest of this section.
The set Cc(G,A, α) = Cc(G,A) is a linear space equipped with the pointwise operations from A. Now,

for f, g ∈ Cc(G,A) let (f ∗ g)(s) =
∫
G
f(r)αs(g(s−1r))dµG(r). We call f ∗ g the convolution of f and g.

Furthermore, for f ∈ Cc(A,G), set f∗(s) = ∆(s−1)αs(f(s−1)∗). The function f∗ is continuous, because
each of the maps ∆ : G −→ G, −1 : G −→ G and ∗ : A −→ A are continuous. The set supp(f∗) is
compact, because the inverse X−1 = {x−1 | x ∈ X} of a compact set X ⊆ G is compact too.
We call Cc(G,A) the convolution algebra of the system (A,G, α).

Proposition 4.12. Suppose that (A,G, α) is a C∗-dynamical system. The convolution algebra Cc(G,A)
is a ∗-algebra equipped with convolution as it’s multiplication and ∗ as it’s involution.

Proof. See [11, page 48]

Definition 4.13. Let H be a Hilbert space and (A,G, α) a C∗-dynamical system. If (π,H) is a ∗-
representation of A and (U,H) a unitary representation of G, then the pair (π, U) is called a covariant
representation of (A,G, α) if π(αs(a)) = Usπ(a)U∗s for all a ∈ A.

The reason to consider covariant representations of the system (A,G, α) is that these induce ∗-representations
of the convolution algebra Cc(G,A).

Proposition 4.14. Let (π, U) be a covariant representation of a C∗-dynamical system (A,G, α). Then

the map π o U : Cc(G,A) −→ B(H), π o U(f) =
∫
G
π(f(s))UsdµG(s) defines a ∗-representation of

Cc(G,A). Also, the following estimate holds:

||π o U(f)|| ≤
∫
G

||f(s)||dµG(s) <∞ (27)

Proof. See [11, Proposition 2.23].

The representation π o U is called the integrated form of π and U .
The following Proposition will later be used to show that the norm of a crossed product is positively
definite.

Lemma 4.15. There exists a covariant representation (π, U) of (A,G, α) such that the integrated form
π o U is faithful.

Proof. See [11, Example 2.14 and Lemma 2.26]

For f ∈ Cc(G,A), we set ||f ||u = sup
(π,U)

||πoU(f)||. Estimate (27) in Proposition 4.14 implies ||f ||u <∞.

Also by Proposition 4.14, || · ||u satisfies the C∗-identity. Lemma 4.15 yields that || · ||u is positively
definite. This norm is called the universal norm of the system (A,G, α).

Definition 4.16. If (A,G, α) is a C∗-dynamical system, we set Aoα G = Cc(G,A), where the closure
is taken with respect to the universal norm. The C∗-algebra A oα G is called the (universal) crossed
product of (A,G, α).

As crossed products are defined in terms of a dense subspace, it is often useful to know more dense
subspaces. The following Lemma is an incarnation of the existence of partitions of unity for crossed
products.

Lemma 4.17. Suppose that (A,G, α) is a C∗-dynamical system. Functions f ∈ Cc(G,A) of the form

t 7→ f(t) =
k∑
i=1

aifi(t) for fi ∈ Cc(G) are dense in the crossed product Aoα G.

Proof. See [11, Proof of Lemma 3.18].
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Definition 4.18. let (A,G, α) be a C∗-dynamical system suppose that f ∈ Cc(G,A). We define
||f ||L1(G,A) = ||f ||L1 =

∫
G
||f(r)||dr.

The integral is well-defined, because the function r 7→ ||f(r)|| is a continuous function with compact
support and || · ||L1 defines a norm. The following Proposition is frequently useful to show boundedness
of a homomorphism in the universal norm.

Proposition 4.19. Suppose that (A,G, α) and (B, β,G) are C∗-dynamical systems. Furthermore, as-
sume that ϕ : Cc(G,A) −→ Cc(G,B) is a ∗-homomorphism that is bounded in the norm || · ||L1 . Then ϕ
extends to a ∗-homomorphism ϕ : Aoα G −→ B oβ G.

Proof. See [11, Corollary 2.46].

4.4 Equivariance

To apply the cyclic six-term exact sequence of K-theory to crossed products, we need a relation between
crossed products and short exact sequences.

Definition 4.20. Suppose that (A,G, α) and (B,G, β) are C∗-dynamical systems.

(1) A ∗-homomorphism ϕ : A −→ B is called G-equivariant or just equivariant if ϕ(αs(a)) = βs(ϕ(a))
for any a ∈ A and s ∈ G.

(2) An equivariant short exact sequence is a short exact sequence of equivariant ∗-homomorphisms.

Let (B,G, β) be another C∗-dynamical system. If ϕ : A −→ B is equivariant, let ϕ̂(f)(s) = ϕ(f(s)) for
f ∈ Cc(G,A). Equivariance yields that ϕ̂ : Cc(G,A) −→ Cc(G,B) is a ∗-homomorphism.

Lemma 4.21. Suppose (A,G, α) and (B,G, β) are C∗-dynamical systems and that ϕ : A −→ B is an
equivariant ∗-homomorphism. There is a unique extension ϕ̂ : Aoα G −→ B oβ G of ϕ̂.

Proof. See [11, Corollary 2.47].

The following Proposition shows that taking crossed products respects equivariant short exact sequences.

Proposition 4.22. Let (I,G, γ), (B,G, β) and (A,G, α) be C∗-dynamical systems and

0 I A B 0
ϕ ψ

an equivariant short exact sequence. Then the sequence

0 I oγ G Aoα G B oβ G 0
ϕ̂ ψ̂

is exact too.

Proof. See [11, Proposition 3.19].

4.5 Crossed Products and Tensor Products

There is also a connection between crossed and tensor products, see [11, Remark 2.74].
Suppose that (B,G, β) is a C∗-dynamical system. For fixed t ∈ G, the map (α⊗β)t : A⊗B −→ A⊗maxB,
(α⊗ β)t(a⊗ b) = αt(a)⊗ βt(b) is continuous with respect to the maximal norm on A⊗ B. Indeed, the

map γαt : A⊗B −→ R+, γαt

(
n∑
i=1

ai ⊗ bi
)

=

∥∥∥∥ n∑
i=1

αt(ai)⊗ βt(bi)
∥∥∥∥

max

defines a C∗-norm in A⊗B. But

then ∥∥∥∥∥
(
α⊗ β)t(

n∑
i=1

ai ⊗ bi

)∥∥∥∥∥
max

= γαt

(
n∑
i=1

ai ⊗ bi

)
≤

∥∥∥∥∥
n∑
i=1

ai ⊗ bi

∥∥∥∥∥
max

(28)
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by Propositon 2.16. This implies that α⊗ β extends to A⊗max B.
Now, (α ⊗ β) : G −→ Aut(A ⊗max B), t 7→ (α ⊗ β)t is a group homomorphism, because α is a group
homomorphism. Also by Proposition 2.16,

||(α⊗ β)t(a⊗ b)− (α⊗ β)s(a⊗ b)||max ≤ ||(αt(a)− αs(a))|| ||b||+ ||(βt(b)− βs(b))|| ||a|| (29)

which shows that α⊗ Id is continuous in the strong topology.
Now if B is a C∗-algebra, then Id : G −→ Aut(B), t 7→ IdB is an action on B.

Proposition 4.23. Suppose (A,G, α) is a C∗-dynamical system and that B is a C∗-algebra. There is
an isomorphism

(Aoα G)⊗max B ∼= (A⊗max B) oα⊗Id G.

Given f ∈ Cc(G,A) and b ∈ B, this isomorphism maps f ⊗ b to the function t 7→ f(t)⊗ b.

Proof. See [11, Lemma 2.75].

4.6 Abelian Groups and Takai Duality

We will now assume that G is Abelian. The circle T = {z ∈ C : |z| = 1} is a group equipped with the
multiplication from C (z−1 = z ).

Definition 4.24. Let G be a locally compact Abelian group.

(1) A character of G is a group homomorphism χ : G −→ T.

(2) The Pontryagin dual of G is the set of all characters of G. It is denoted by Ĝ.

The Pontryagin dual is a group with multiplication (χχ′)(t) = χ(t)χ′(t). We endow G with the weak-∗

topology coming from L1(G). This is the coarsest topology such that for any f ∈ L1(G), the maps
χ 7→

∫
G
f(s)χ(s)ds is continuous.

Proposition 4.25. If G is a locally compact Abelian group, then Ĝ is a locally compact Abelian group.

Proof. See [11, Corollary 1.79].

dualizing twice gives us the original group back.

Theorem 4.26 (Pontryagin duality). Suppose that G is a locally compact Abelian group. Then there is

in isomorphism G ∼= ̂̂
G into the double dual group that is a homeomorphism.

Proof. See [10, Theorem 3.5.5].

On the crossed product AoαG, there is an action α̂ : Ĝ −→ Aut(AoαG) given by α̂χ(f)(r) = χ(r)f(r)
for r ∈ G and f ∈ Cc(G,A), see [11, Section 7.1].

Theorem 4.27 (Takai duality). Suppose that (A,G, α) is a C∗-dynamical system with G Abelian. Then

(Aoα G) oα̂ Ĝ ∼= A⊗max K(L2(G)).

The Takai duality Theorem states that the operation of taking crossed products is it’s own inverse up to
tensoring with the compact operators.

Definition 4.28. Let (A,G, α) be a C∗-dynamical system with G Abelian and I an ideal of A. If
αs(a) ∈ I for any s ∈ G and a ∈ I, then I is called α-invariant.

If I is an ideal of A and ι : I −→ A the inclusion map, we may identify I oα G with it’s image under ι̂
given by Proposition 4.22. So we have ι̂(IoαG) = IoαG ⊆ AoαG. Then IoαG is an ideal of AoαG.
Now if f ∈ Cc(G, I) and χ ∈ Ĝ, then α̂χ(f)(s) = χ(s)f(s) ∈ I for any s ∈ G. We infer α̂χ(f) ∈ I oα G,
so I oα G is α̂-invariant. The next Proposition states that the correspondence of α-invariant ideals and
α̂-invariant ideals in the crossed products is one to one.
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Proposition 4.29. Suppose that (A,G, α) is a C∗-dynamical system with G Abelian. If J is an α̂-
invariant ideal of Aoα G, then there is an α-invariant ideal I of A such that J = I oα G.

Proof. See [13, Proposition 6.3.9].

Proposition 4.29 is a consequence of the Takai duality Theorem. One has to show that the invariant
ideals of A⊗max K(L2(G)) for the double dual action ̂̂α correspond to the α-invariant ideals of A.
The group R is it’s own dual.

Example 4.30. The map ω : R −→ R̂, y 7→ ωy, where ωy(x) = e−ixy is both, a homeomorphism and an
isomorphism.

Proof. See [11, Example 1.80].

We will from now on identify y ∈ R with ωy. Suppose now A = C, then α = Id is the only action on A.

Definition 4.31. Let G be a locally compact group. The crossed product CoIdG is called the (universal)
group C∗-algebra of G and is denoted by C∗(G).

For f ∈ Cc(G,A) = Cc(G), we define the Fourier transform of f , f̂ : Ĝ −→ C by f̂(χ) =
∫
f(s)χ(s)ds.

Now, f̂ is an element of C0(Ĝ). Indeed f is continuous by definition of the topology on Ĝ and the set

{χ ∈ Ĝ : f̂(χ) ≥ ε} is compact for any ε > 0 by the arguments in [4, Page 15].

Proposition 4.32. Suppose that G is a locally compact Abelian group. The Fourier transformation
extends to an isomorphismˆ: C∗(G) −→ C0(Ĝ).

Proof. See [11, Proposition 3.1].

4.7 Smoothing

Suppose that G = R. We want to use the smooth structure (i.e. being able to take derivatives) of R.
The following example motivates this procedure. The map s 7→ τs, τs(f)t = ft−s defines an action on
S = C0(R). We will later see that τ is continuous in the strong topology.

Example 4.33. Suppose f ∈ C1(R) ∩ C0(R) and that

(τs(f)− f)/s

converges uniformly to a function g ∈ C0(R) as s→ 0, then g = f ′.

Proof. We have (τs(f)t − ft)/s = (f(t− s)− f(t))/s, so (τs(f)− f)/s converges to f ′ pointwise.

The theory of smoothing is taken from [2, Appendix 3].
Our generalized notion of smoothness will depend on the action α.

Definition 4.34. Suppose that V is a Banach space. A function f : R −→ V is called differentiable if

the limit f ′(s0) = lim
s→s0

f(s)−f(s0)
s−s0 exists with respect to the norm of V for any s0 ∈ R.

We call a function f : R −→ V smooth if f (n) = (f (n−1))′ exists for any n ∈ N with f (0) = f . As α is
continuous in the strong topology, s 7→ αs(a) is a continuous map for any a ∈ A. The smooth elements
of A are the ones for which this map is smooth.

Definition 4.35. Let (A,R, α) be a C∗-dynamical system.

(1) Suppose that a ∈ A. We call a smooth if the map s 7→ αs(a) is smooth.

(2) We set A∞ = {a ∈ A : a is smooth}.
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We can identify Mn(A∞) with Mn(A)∞ by extending the action to every entry. Indeed, we have seen
that Mn(A) may be represented as a sub-C∗-algebra of B(Hn) ∼= Mn(B(H)). But then being continuous
in the strong topology just means being continuous in every entry with respect to the strong topology.

Furthermore, we set δ(a) = lim
s→0

αs(a)−a
s for a ∈ A∞. In fact, as δ(αt(a)) = αt(a), a is differentiable if

and only if δ(a) exists. We think of δ as a noncommutative analogue to the derivative.

Remark 4.36. Let (A,R, α) be a C∗-dynamical system . The set A∞ is a ∗-algebra. Furthermore, if
a, b ∈ A∞ and z ∈ C, then

(1) δ(a+ b) = δ(a) + δ(b),

(2) δ(za) = zδ(a),

(3) δ(a∗) = δ(a)∗ and

(4) δ(ab) = aδ(b) + δ(a)b.

Proof. The hardest part is (4), we need to mimic the prove of the product rule in the commutative case.
We have

δ(ab) =
αs(a)αs(b)− αs(a)b+ αs(a)b− ab

t

and as αs(a)→ a when s→ 0, we obtain the desired formula.

The algebra A∞ is not complete in general. For example if A = C0(R), we may approximate functions
that are only continuous by smooth ones. We are mainly interested in A∞, because we want to replace
projections by smooth ones.

Lemma 4.37. Let (A,R, α) be a C∗-dynamical system. Any projection p ∈ Mn(A) is homotopic to a
projection q ∈Mn(A∞).

We will now sketch the proof of this Lemma.

Lemma 4.38. If (A,R, α) is a C∗-dynamical system, then A∞ is dense in A.

Sketch of the Proof. Take a mollifier φ ∈ C∞(R). Given a ∈ A, set b =
∫
R
αs(a)φ(s)ds which mimics

the convolution formula in the commutative case. δ(b) =
∫
R
αs(a)φ′(s)ds and b is close to a.

One needs the so-called holomorphic functional calculus, see [12, Section 3.3].

Definition 4.39. Suppose that A is a C∗-algebra and A a dense ∗-subalgebra. A is called a local C∗-
algebra if it is closed under holomorphic calculus.

Lemma 4.40. If (A,R, α) is a C∗-dynamical system, then A∞ is a local C∗-algebra.

Sketch of the Proof. As αt is an automorphism, f(αt(a)) = αt(f(a)) for functions holomorphic on a
neighbourhood of sp(a). That follows from holomorphic functional calculus being a contour integral.
One then mimics a proof of the chain rule.

Sketch of the Proof of Lemma 4.37. The proof is very similar to the one of [6, Lemma 6.3.1 (i)], so
we describe the adjustments that have to be made. We cannot use continuous functional calculus as
A∞ is only closed under holomorphic functional calculus. One instead defines f to be 1 on the set
{z ∈ C : Re(z) > 1 − 3δ} and 0 on {z ∈ C : Re(z) < 3δ}. These domains do not intersect, so f is
holomorphic. Now, approximate p by an element a ∈ A∞ and replace it by a+a∗

2 if it is not self-adjoint.
Then f(a)2 = f(a) and f(a) is close to both p and a by the last estimate in the proof of [12, Proposition
3.3.9]. But f(a) is also close to a projection from A∞, because it is close to a self-adjoint element, see
[8, Proof of Proposition 4.6.2]. Projections that are close need to be homotopic, see [6, Proposition
2.2.4].
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We will from now on only be concerned with differentiation of projections. Suppose that A is commutative
and that C0(X) ∼= A by Gelfand duality, Theorem 2.3. Take a projection p ∈ C0(X) ∼= A. It is a
function satisfying p = p∗ = p2. Now, p = p2 implies p(x) ∈ {0, 1}. On a connected component p has to
be constant, because it is a continuous function.

Example 4.41. Set A = M2(C) and let ut = 1√
t2+1

·
(

1 t
−t 1

)
. Then αt(a) = utau

∗
t defines an action

on A. Furthermore, δ(p) exists for p = diag(1, 0) and is not 0.

Proof. The map t 7→ ut is continuous in t and consists of unitaries, so α is an action. We have

αt(p) =

(
1

t2+1
−t
t2+1

−t
t2+1

t2

t2+1

)

But then δ(p) =

(
0 −1
−1 0

)
.

We will see in the proof of Connes’ cocycle Lemma that δ(p) = 0 if and only if αs(p) = p for any s ∈ R.
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5 The Connes-Thom Isomorphism

5.1 Statement of the Theorem

Throughout this section, (A,R, α) will denote a C∗-dynamical system. Haar measure on (R,+) is
Lebesgue measure and the modular function is 1.
Our goal is to prove the following Theorem which first appeared in [2].

Theorem 5.1 (Connes-Thom isomorphism). Suppose A is a C∗-algebras and that α : R −→ Aut(A) is
an action by the real line on A. There are isomorphisms

φ1
A : K0(Aoα R) −→ K1(A)

and
φ0
A : K1(Aoα R) −→ K0(A)

such that given another C∗-dynamical system (B, β,R) and an equivariant ∗-homomorphism ϕ : A −→ B,
both diagrams,

K0(Aoα R) K1(A)

K0(B oβ R) K1(B)

φ1
A

K0(ϕ̂) K1(ϕ)

φ1
B

(30)

and

K1(Aoα R) K0(A)

K1(B oβ R) K0(B)

φ0
A

K1(ϕ̂) K0(ϕ)

φ0
B

(31)

commute.

The pair (φ1
A, φ

0
A) is often just called the Thom isomorphism. Commutation of (30) and (31) is often

referred to as naturality of the Thom-isomorphism.
Theorem 5.1 is a generalization of Bott periodicity, Theorem 3.29. If α = Id, then Aoα R ∼= SA. That
is, because

Aoα R ∼= (A⊗max C) oα⊗Id R ∼= A⊗max C
∗(R).

By the Fourier transformation, Proposition 4.32, C∗(R) ∼= S and A⊗max S ∼= SA by Proposition 2.20.

5.2 Outline of the Proof

The action α is homotopic to the trivial action Id on A. This follows from the associative structure of

R, set α
(t)
s (a) = αt·s(a). We have α(0) = Id and α(1) = α. However, Aoα R ∼= Aoid R does not always

hold, i.e. crossed products do not respect homotopies. However, as we have seen in Proposition 3.21,
K-theory does and so one might suspect

Kj(Aoα R) ∼= Kj(AoId R) ∼= K|j−1|(A).

The proof will however take a different route. We will in fact pass to a different C∗-dynamical system
associated to (A,R, α) in which we can remove the α-part from the action.

Example 5.2. Let A = S = C0(R) and α : R −→ Aut(A) be given by right translation. Then A oα R
is not isomorphic to AoId R.

Proof. As A is commutative, convolution with respect to Id is commutative by the formula

(f ∗ g)(r) =

∫
R
f(s)g(r − s)ds =

∫
R
f(r − s)g(s)ds = (g ∗ f)(r).

Convolution with respect to α is not commutative as α 6= Id. So AoαR and AoId R are not isomorphic.
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We will associate a short exact sequence, called the Wiener-Hopf extension to the system (A,R, α). This
sequence is of the form

0 ∗ ∗ Aoα R 0∗ ∗

The six-term sequence of K-theory, Theorem 3.31, then yields an exact sequence

K0(B) ∗ K0(Aoα R)

K1(Aoα R) ∗ K1(B)

∗ ∗

δ0δ1

∗ ∗

for some C∗-algebra B. We will show that the K-groups of B are K0(B) ∼= K1(A) and K1(B) ∼= K1(A).
The next step is to show that δ0 and δ1 are isomorphisms. In order to achieve this, the problem will be
reduced to showing that δ1 as always surjective. We first examine the situation when A is unital and
deduce the non-unital case from that. Naturality is achieved by investigating all the isomorphisms out
of which K0(Aoα R) ∼= K1(A) and K1(Aoα R) ∼= K0(A) are composed.
This Prove first appeared in [1]. The Wiener-Hopf extension is an analogue of the Toeplitz extension
from [3, Page 98]. In [8, Section 10.9] another variant of this proof due to unpublished work of M.
Pimsner D. Voiculescu is given. The outline given above is the same, however the use of Connes’ cocycle
is replaced by various estimates. Much of our presentation supplements this proof with more details too.

5.3 The Wiener-Hopf Extension

Given s ∈ R, the translation map τs(f)t = ft−s is an automorphism of S. Now, since sup
t∈R
|ft−s − ft−r|

converges to 0 as r approaches s, τ is continuous in the strong topology, so τ defines an action on S.
Thus, we obtain an action τ ⊗α on the tensor product S⊗maxA. Under the isomorphism in Proposition
2.20, this action becomes (τ ⊗α)s(f)t = αs(ft−s) for f ∈ SA. Repeating this argument with S replaced
by C and setting∞−s =∞ for any s ∈ R, we get an action (τ⊗α) : R −→ CA, (τ⊗α)s(f)t = αs(ft−s).

Lemma 5.3. The short exact sequence

0 SA CA A 0ι π

is equivariant with respect to the actions described above.

Proof. For f ∈ SA, we have (τ ⊗α)s(ι(f))t = αs(ι(f)t−s) =

{
αs(0) if t =∞
αs(ft−s) otherwise

= ι((τ ⊗α)s(f))t.

Also, given f ∈ CA, we have

π((τ ⊗ α)s(f)) = (τ ⊗ α)s(f)∞ = αs(f)∞−s = αs(f∞) = αs(π(f)) (32)

Now, Proposition 4.22 yields that the sequence

0 SAoτ⊗α R CAoτ⊗α R Aoα R 0ι̂ π̂

is exact. This sequence is called the Wiener-Hopf extension of (A,R, α), see [1, Page 144]. Applying
Theorem 3.31, we get a six-term exact sequence

K0(SAoτ⊗α R) K0(CAoτ⊗α R) K0(Aoα R)

K1(Aoα R) K1(CAoτ⊗α R) K1(SAoτ⊗α R)

K0(ι̂) K0(π̂)

δ0δ1

K1(π̂) K1(ι̂)

(33)

of K-groups.
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Lemma 5.4. If both, K0(CAoτ⊗α R) and K1(CAoτ⊗α R) are 0, then δ0 and δ1 are isomorphisms.

Proof. We have
ker(δ0) = K0(π̂)(K0(CAoτ⊗α R)) = K0(π̂)(0) = 0 (34)

and
δ0(K0(Aoα R)) = ker(K1(ι̂)) = K1(SAoτ⊗α R) (35)

which yields that δ0 is an isomorphism. Similarly, δ1 is an isomorphism.

We will later show that the K-theory of SA oτ⊗α R is the same as of A. Because of this, it is natural
to try to show that the assumptions of Lemma 5.4 are satisfied and then, to conclude that Theorem 5.1
follows from that. Indeed, this will be our argument. However, one needs to be cautious that naturality
((30) and (31)) are satisfied.
At this point, we should evaluate functions f ∈ Cc(R, SA) or f ∈ Cc(R, CA) like f(r)(t) = f(r)t. But
we will mostly write ft(r) instead of f(r)t. Also, f(r) will denote the function t 7→ ft(r) = f(r)t.
The following Lemma is based on [1, Page 147] and [11, Lemma 7.4].

Lemma 5.5. There is a ∗-isomorphism ϕ̂ : SAoτ⊗α R −→ SAoτ⊗Id R mapping f ∈ Cc(R, SA) to

ϕ̂(f)t(r) = α−t(ft(r)).

Proof. Let ϕ : SA −→ SA denote the map ϕ(f)t = α−t(ft). We need to first verify that ϕ is well-defined.
As t→∞ or t→ −∞, we have ||α−t(ft)|| = ||ft|| → 0. The estimate

||α−t(ft)− α−s(fs)|| ≤ ||α−t(ft)− α−s(ft)||+ ||α−s(ft)− α−s(fs)||
= ||α−t(ft)− α−s(ft)||+ ||ft − fs||

(36)

yields continuity of ϕ(f), because α is continuous in the strong topology.
We now show that ϕ is equivariant with respect to the actions τ ⊗ α and τ ⊗ Id. Indeed,

(τ ⊗ Id)s(ϕ(f))t = ϕ(f)t−s = αs−t(ft−s)

= α−t(αs(ft−s))

= α−t((τ ⊗ α)s(f)t)

= ϕ((τ ⊗ α)s(f))t

(37)

which shows (τ ⊗ Id)s(ϕ(f)) = ϕ((τ ⊗ α)s(f)). Applying Lemma 4.21, we obtain a ∗-homomorphism
ϕ̂ : SAoτ⊗α R −→ SAoτ⊗Id R. Furthermore, ϕ is bijective, because it’s inverse is given by

ϕ−1(f)t = αt(ft)

Now, ϕ−1 is equivariant too and ϕ̂−1 is the inverse of ϕ̂. Given f ∈ Cc(R, SA), we calculate that
ϕ̂(f)t(r) = ϕ(f(r))t = α−t(ft(r)).

Lemma 5.5 gives an intuitive reason, why we are switching to the dynamical systems (SA, τ ⊗α,R) and
(CA, τ ⊗ α,R). The τ -part of the action carries all the information about the α-part.
For f ∈ Cc(R, S), we define Tf ∈ B(L2(R)) by Tfξ(t) =

∫
R ft(s)ξ(t − s)ds for ξ ∈ L2(R). If h ∈ L2(R),

||h||L2(R) = 1, then the rank one projection onto h is given by Ehξ(t) =
∫
R h(t)h(t− s)ξ(t− s)ds.

Lemma 5.6. Suppose h ∈ L2(R), ||h||L2(R) = 1. Then for any sequence φ(n) ∈ S = C0(R) with

||h− φ(n)||L2(R) → 0, the functions f (n) ∈ Cc(S) defined by f
(n)
t (r) = φ

(n)
t φ

(n)
t−r satisfy

Tf(n) → Eh

in K(L2(R)).
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Proof. Given ε > 0, we choose n0 ∈ N with ||φ(n) − h||L2(R) < ε for n ≥ n0. Given ξ ∈ L2(R), we infer∫
R

(∫
R
|φ(n)
t h(t− s)− h(t)h(t− s)| |ξ(t− s)|ds

)2

dt =

∫
R

(∫
R
|φ(n)
t − h(t)| |h(t− s)| |ξ(t− s)|ds

)2

dt

≤
∫
R

∫
R
|φ(n)
t − h(t)|2|h(t− s)|2|dsdt ||ξ||2L2(R)

= ||φ(n) − h||2L2(R)||h||
2
L2(R)||ξ||

2
L2(R)

≤ ε2||ξ||2L2(R)

(38)

and∫
R

(∫
R
|φ(n)
t h(t− s)− φ(n)

t φ
(n)
t−s| |ξ(t− s)|ds

)2

dt =

∫
R

(∫
R
|φ(n)
t | |h(t− s)− φ(n)

t−s| |ξ(t− s)|ds
)2

dt

≤
∫
R

∫
R
|φ(n)
t |2 |h(t− s)− φ(n)

t−s|2dsdt ||ξ||2L2(R)

= ||φ(n) − h||2L2(R)||φ
(n)||2L2(R)||ξ||

2
L2(R)

≤ ε2||φ(n)||2L2(R)||ξ||
2
L2(R)

≤ ε2(1 + ε)2||ξ||L2(R)

(39)

which yields Tf(n) −→ Eh.

The following Example may be found in [11, Example 2.12 and the proof of Theorem 4.2.4].

Example 5.7. Let M : S −→ B(L2(R)) denote the multiplication operator, M(f)h(t) = fth(t) for
f ∈ S, h ∈ L2(R). Furthermore, let V : R −→ U(L2(R)) denote the (left-)regular representation of R
from Example 4.10.

(1) The the pair (M,V ) is a covariant representation.

(2) The integrated form is given by M o V (f)h(t) =
∫
R ft(s)h(t− s)ds.

(3) ψ = M o V is bounded in the universal norm and it’s image lies in K(L2(R)).

Proof. Given s, t ∈ R, we have

VsM(f)V ∗s h(t) = M(f)V ∗s h(t− s) = f(t− s)V ∗s h(t− s) = f(t− s)h(t) = M(τs(f))h(t). (40)

Thus, (M,V ) is a covariant representation. For f ∈ Cc(R, S), the integrated form satisfies

M o V (f)h(t) =

∫
R
M(f(s))Vsdsh(t) =

∫
R
M(f(s))Vsh(t)ds =

∫
R
ft(s)Vsh(t)ds =

∫
R
ft(s)h(t− s)ds

where we used Property (2) of Proposition 4.6 in the second equality.
As the integrated form of a covariant representation, ψ = MoV is bounded by definition of the universal,
the only assertion left to prove is (3).
We must show that for f ∈ Cc(R, S), ψ(f) is compact. Using Lemma 4.17, we can approximate f by
linear combinations of functions like gt(r) = φ(r)f̃t for φ ∈ Cc(R) and f ∈ S. As |f̃t| → 0 if t→ −∞,∞,
we may take f ∈ Cc(R) ⊆ S with ||f̃ − f ||∞ = sup

t∈R
|f̃t − f t| < ε.

Setting gt(r) = φ(r)f t, we have

||g − g||L1 =

∫
R
||f − f̃ ||∞|g(s)|ds ≤ ε · C.

But the universal norm is dominated by || · ||L1 , see Proposition 4.14, so we infer ||g − g||u ≤ ε · C.
Furthermore, Tg is compact, because it’s kernel lies in L2(R× R). As the compact operators are closed
in B(L2(R)), we conclude that ψ(S oτ R) ⊆ K(L2(R)).

28



We call ψ = M o V the natural representation of S oτ R. Note that as ψ is bounded in the universal
norm, we may extend ψ ot a ∗-homomorphism ψ : S oτ R −→ K(L2(R)).

Lemma 5.8. The ∗-homomorphism ψ is surjective.

Proof. Let T ∈ K(L2(R)). Set Re(T ) = T−T∗
2 and Im(T ) = T−T∗

2i , so that T = Re(T ) + iIm(T ). As
Re(T ) is a compact self-adjoint operator, we may apply the spectral Theorem. There is an orthonormal
bases (hi)i∈N of L2(R) of eigenvectors of Re(T ). The sum

∑
i∈N

λiPi converges in the operator norm to

Re(T ), where λi is the eigenvalue to hi and Pi is the projection onto hi, i.e. Pihj = δijhi. But as the
image of a ∗-homomorphism is a C∗-algebra by Proposition 2.6, Pi ∈ ψ(Soτ R) by Lemma 5.6 and thus
Re(T ) ∈ ψ(S oτ R). The same argument may be applied to Im(T ), so that T ∈ ψ(S oτ R).

The following Lemma is known in much wider generality, see [11, Theorem 4.24]. In our situation
however, it can be derived from the Takai duality Theorem, see [8, Lemma 10.9.1].

Lemma 5.9. The ∗-homomorphism ψ : S oτ R −→ K(L2(R)) from Example 5.7 is injective.

Proof. The Fourier transformationˆ: C∗(R) −→ S, f̂(t) =
∫
R e
−istf(s)ds for f ∈ Cc(R) is an isomorphism

by Proposition 4.32. We will now show that this isomorphism is equivariant with respect to the dual
action Îd on C∗(R) = CoId R and the action τ on S. Indeed, for f ∈ Cc(R), we have

̂̂Idr(f)(t) =

∫
R
e−itsÎdr(f)(s)ds =

∫
R
e−itse−isr(f)(s)ds =

∫
R
e−i(t−r)s(f)(s) = τr(f̂)(t) (41)

which yields by denseness that ˆ is an equivariant isomorphism. But then S oτ R ∼= (C oId R) oÎd R.
The second term is, by Takai duality, Theorem 4.27, isomorphic to

C⊗max K(L2(R)) ∼= K(L2(R)).

Now, S oτ R ∼= K(L2(R)) is simple by Example 2.7, but then the ideal ker(ψ) must be 0.

By Propositions 4.23 and 2.20, we infer that

SAoτ⊗Id R ∼= (S ⊗max A) oτ⊗Id R ∼= A⊗max (S oτ R) (42)

We will now calculate the isomorphism SAoτ⊗α R ∼= A⊗K(L2(R)), see [1, Page 145].

Lemma 5.10. There is a ∗-isomorphism γ : A ⊗max K(L2(R)) −→ SA oτ⊗α R such for f ∈ Cc(R, S)
and a ∈ A, we have γ(a⊗ Tf )t(r) = αt(a)ft(r).

Proof. Let η : A ⊗max (S oτ R) −→ SA oτ⊗Id R be the ∗-isomorphism from Proposition 4.23. It is
given by η(a ⊗ f)t(r) = aft(r). Furthermore, fix the ∗-isomorphisms ψ : S oτ R −→ K(L2(R)) and
ϕ̂ : SAoτ⊗α R −→ SAoτ⊗α R from Example 5.7 and Lemma 5.5, respectively.
As ψ−1 : K(L2(R)) −→ S oτ R is a ∗-isomorphism, the map

Id⊗ψ−1 : A⊗max K(L2(R)) −→ A⊗max (S oτ R)

given by (Id⊗ψ−1)(a⊗Tf )t(r) = a⊗ψ−1(Tf ) = a⊗ f is a ∗-isomorphism. Now, γ = ϕ̂−1 ◦η ◦ (Id⊗ψ−1)
is the desired isomorphism. Indeed,

γ(a⊗ Tf )t(r) = ϕ̂−1 ◦ η ◦ (Id⊗ψ−1)(a⊗ Tf )t(r)

= αt(η ◦ (Id⊗ψ−1)(a⊗ Tf )t(r))

= αt(η(a⊗ f)t(r))

= αt(aft(r))

= αt(a)ft(r).

(43)
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The next Lemma only serves the purpose to show naturality in Theorem 5.1.

Lemma 5.11. Let (B, β,R) be another C∗-dynamical system and suppose that ϕ : A −→ B is an
equivariant ∗-homomorphism.

(1) The ∗-homomorphism Sϕ is equivariant with respect to the actions τ ⊗ ϕ and τ ⊗ β.

(2) If γA denotes the ∗-isomophism from Lemma 5.10 applied to (A,R, α) and γB the one corresponding
to the system (B, β,R), then the following diagram commutes:

A⊗max K(L2(R)) SAoτ⊗α R

B ⊗max K(L2(R)) SB oτ⊗β R

γA

ϕ⊗Id Ŝϕ

γB

(44)

Proof. We first verify the equivariance of Sϕ. For f ∈ SA, we have

Sϕ((τ ⊗ α)s(f))t = ϕ((τ ⊗ α)s(f)t)

= ϕ(αs(ft−s))

= βs(ϕ(ft−s))

= βs(Sϕ(f)t−s)

= (τ ⊗ β)s(Sϕ(f))t

Suppose that f ∈ Cc(R, S) and a ∈ A. By equivariance if ϕ, we get:

Ŝϕ(γA(a⊗ Tf ))t(r) = Sϕ(γA(a⊗ Tf )(r))t

= ϕ(γA(a⊗ Tf )t(r))

= ϕ(αt(a)ft(r))

= βt(ϕ(a)ft(r))

= βt(ϕ(a))ft(r)

(45)

Also, (ϕ⊗ Id)(a⊗ Tf ) = ϕ(a)⊗ Tf , so we get

γB((ϕ⊗ Id)(a⊗ Tf ))t(r) = γB(ϕ(a)⊗ f)t(r) = βt(ϕ(a))ft(r) (46)

which implies that the diagram commutes, because linear combinations of the form a⊗ Tf are dense in
A⊗max K(L2(R)).

For h ∈ L2(R), ||h||L2(R) = 1, let ϕ : A −→ A⊗maxK(L2(R)), denote the ∗-homomorphism ϕ(a) = a⊗Eh.
Furthermore, let γ : A ⊗max K(L2(R)) −→ SA oτ⊗α R be the ∗-isomorphism from Lemma 5.10. Set
ωE = γ ◦ ϕ. The next Lemma is based on [1, Page 146].

Lemma 5.12. The map K0(ωE) : K0(A) −→ K0(SAoτ⊗α R) is an isomorphism.

Proof. By Proposition 3.15, K0(ϕ) : K0(A) −→ K0(A ⊗max K(L2(R))) is an isomorphism. The ∗-
isomorphism γ induces an isomorphism K0(γ) : K0(A⊗maxK(L2(R))) −→ K0(SAoτ⊗αR) by Proposition
3.19. By setting ωE = γ ◦ ϕ, wee see that K0(ωE) is an isomorphism by Proposition 3.19.

Lemma 5.13. Let (B, β,R) be another C∗-dynamical system. Suppose that ωEA is the isomorphism,
we get if we apply Lemma 5.12 to (A,R, α) and ωEB the one when applied to (B,R, β). The rank one
projection E may be chosen arbitrarily. In that case, the following diagram commutes for any equivariant
∗-homomorphism ϕ : A −→ B:

A SAoτ⊗α R

B SB oτ⊗β R

ωEA

ϕ Ŝϕ

ωEB

(47)
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Proof. Let ϕA : A −→ A⊗maxK(L2(R)) and ϕB : B −→ B⊗maxK(L2(R)) denote the ∗-homomorphisms
ϕA(a) = a⊗ E and ϕB(b) = b⊗ E. We obtain:

(ϕ⊗ Id)(ϕA(a)) = (ϕ⊗ Id)(a⊗ E)

= ϕ(a)⊗ E
= ϕB(ϕ(a))

(48)

Thus, the diagram

A A⊗max K(L2(R))

B B ⊗max K(L2(R))

ϕA

ϕ ϕ⊗Id

ϕB

(49)

commutes. But then, the diagram

A A⊗max K(L2(R)) SAoτ⊗α R

B B ⊗max K(L2(R)) SB oτ⊗β R

ϕA

ϕ ϕ⊗Id

ψA

ϕ⊗Id Ŝϕ

ϕB ψB

(50)

commutes by Lemma 5.11. Now, the top row is ωEA and the bottom one is ωEB .

Lemma 5.14. There is an isomorphism λA : K1(A) −→ K1(A⊗maxK(L2(R))) such that given another
C∗-algebra B and a ∗-homomorphism ϕ : A −→ B, the diagram

K1(A) K1(A⊗max K(L2(R)))

K1(B) K1(B ⊗max K(L2(R)))

λA

ϕ ϕ⊗Id

λB

(51)

commutes.

Proof. We have SA ⊗max K(L2(R)) ∼= S(A ⊗max K(L2(R))) given by f ⊗ T 7→ g with gt = ft ⊗ T by
Proposition 2.21. Furthermore, the diagram

SA⊗max K(L2(R)) S(A⊗max K(L2(R)))

SB ⊗max K(L2(R)) S(A⊗max K(L2(R)))

Sϕ⊗Id S(ϕ⊗Id)

commutes. We obtain isomorphisms

K1(A) ∼= K0(SA) ∼= K0(SA⊗max K(L2(R))) ∼= K0(S(A⊗max K(L2(R)))) ∼= K1(A⊗max K(L2(R))).

The first and last one come from Proposition 3.28. The second one comes from Lemma 5.12 by choosing
an arbitrary rank one projection E. Combining all the diagrams from Lemma 5.13 and Proposition 3.28,
we obtain that diagram (51) commutes.

Lemma 5.15. There are isomorphisms

ΘA,0 : K0(SAoτ⊗α R) −→ K0(A)

and
ΘA,1 : K1(SAoτ⊗α R) −→ K1(A)
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such that given any C∗-dynamical system (B, β,R) and an equivariant ∗-homomorphism ϕ : A −→ B,
the both diagrams,

K0(SAoτ⊗α R) K0(A)

K0(SB oτ⊗β R) K0(B)

ΘA,0

K0(Ŝϕ) K0(ϕ)

ΘB,0

(52)

and

K1(SAoτ⊗α R) K1(A)

K1(SB oτ⊗β R) K1(B)

ΘA,1

K1(Ŝϕ) K1(ϕ)

ΘB,1

(53)

commute.

Proof. Set ΘA,0 = K0(ωEA)−1 for any rank one projection E ∈ K(L2(R)), where ωEA is given by Lemma
5.12. (52) commutes by Lemma 5.13.
Let λA : K1(A) −→ K1(A ⊗max K(L2(R))) be the the isomorphism from Lemma 5.14. Now, we set
ΘA,1 = λ−1

A ◦K1(γA)−1, where γA : A⊗maxK(L2(R)) −→ SAoτ⊗αR is the ∗-isomorphism from Lemma
5.10. Then ΘA,1 is an isomorphism and the corresponding diagram commutes like in Lemma 5.13.

We are now able to show that verifying the assumptions of Lemma 5.4 yields Theorem 5.1.
Suppose that (B, β,R) is another C∗-dynamical system and that ϕ : A −→ B is an equivariant ∗-
homomorphism. The Wiener-Hopf extensions of (A,R, α) and (B,R, β) connect in the following way:

0 SAoτ⊗α R CAoτ⊗α R Aoα R 0

0 SB oτ⊗β R CB oτ⊗β R B oβ R 0

ι̂A

Ŝϕ Ĉϕ

π̂A

ϕ̂

ι̂B π̂B

(54)

The upper row denotes the Wiener-Hopf extension of (A,R, α). The lower row is the Wiener-Hopf

extension of (B,R, β). Now, ϕ̂ is well-defined by Proposition 4.21. Ŝϕ is well-defined by the first

calculation in Lemma 5.11. The same calculation however, shows that so is Ĉϕ. We want to apply
Proposition 3.32, so we need to show that the diagram above commutes. Note that given f ∈ SA,

Cϕ(ιA(f))t = ϕ(ιA(f)t) =

{
ϕ(ft) if t ∈ R
ϕ(0) if t =∞

=

{
Sϕ(f)t if t ∈ R
0 if t =∞

= ιB(Sϕ(f))t.

But then

Ĉϕ(ι̂A(f))t(r) = Cϕ(ι̂A(f)(r))t = Cϕ(ιA(f(r)))t = ιB(Sϕ(f(r)))t = ιB(Ŝϕ(f)(r))t = ι̂B(Ŝϕ(f))t(r)

for any f ∈ Cc(SA,R). Also,

ϕ̂(π̂A(f))(r) = ϕ(πA(f(r)) = ϕ(f∞(r)) = Cϕ(f(r))∞ = Ĉϕ(f)∞(r) = πB(Ĉϕ(f)(r))∞ = π̂B(Ĉϕ(f))(r).

Since (54) commutes, we may apply Proposition 3.32. Let δA,1 and δA,0 denote the index and exponential
map of the Wiener-Hopf extension for the system (A,R, α), respectively. Also, let δB,1, δB,0 denote the
index and exponential map for (B,R, β), respectively. Proposition 3.32 yields that both,

K1(Aoα R) K0(SAoτ⊗α R)

K1(B oβ R) K0(SB oτ⊗β R)

δA,1

K1(ϕ̂) K0(Ŝϕ)

δB,1

(55)
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and

K0(Aoα R) K1(SAoτ⊗α R)

K0(B oβ R) K1(SB oτ⊗β R)

δA,0

K0(ϕ̂) K1(Ŝϕ)

δB,0

(56)

commute.
If we say that an assertion about the system (A,R, α) ”always holds”, we mean that it holds whenever
we replace (A,R, α) by any other C∗-dynamical system (B,R, β).
Now if K0(CA oτ⊗α R) = 0 and K1(CA oτ⊗α R) = 0 always holds, we may apply Lemma 5.4 to infer
that δA,1, δB,1, δA,0, δB,0 are isomorphisms. But then, applying Lemma 5.15, we see that δA,1 ◦ ΘA,0,
δA,0 ◦ΘA,1, δB,1 ◦ΘB,0 and δB,0 ◦ΘB,1 are isomorphisms.

Lemma 5.16. If both, K0(CAoτ⊗α R) = 0 and K1(CAoτ⊗α R) = 0 always hold, then the maps

φ0
A = ΘA,0 ◦ δA,1 : K1(Aoα R) −→ K0(A)

and
φ1
A = ΘA,1 ◦ δA,0 : K0(Aoα R) −→ K1(A)

satisfy the assertions of Theorem 5.1.

Proof. We have seen that both maps are isomorphisms. Thus, we are left proving naturality, see [1, Page
153]. Using Lemma 5.15, we obtain commutative diagrams

K1(Aoα R) K0(SAoτ⊗α R) K0(A)

K1(B oβ R) K0(SB oτ⊗β R) K0(B)

δA,1

K1(ϕ̂) K0(Ŝϕ)

K0(ΘA,0)

K0(ϕ)

δB,1 K0(ΘB,0)

(57)

and

K0(Aoα R) K1(SAoτ⊗α R) K1(A)

K0(B oβ R) K1(SB oτ⊗β R) K1(B)

δA,0

K0(ϕ̂) K1(Ŝϕ)

K1(ΘA,1)

K1(ϕ)

δB,0 K1(ΘB,1)

(58)

which implies naturality.

So we need to show that K0(CAoτ⊗α R) and K1(CAoτ⊗α R) are 0.
The following Lemma is contained in [6, Example 4.1.5].

Lemma 5.17. We have K0(CA) ∼= 0 and K1(CA) ∼= 0.

Proof. We fix an arbitrary homeomorphism h : (0, 1] −→ R ∪ {∞}. Define hT : C −→ C0((0, 1]),
C 3 f 7→ f ◦ h. It’s inverse is given by f 7→ f ◦ h−1, so hT is a ∗-isomorphism. Now, set γs(f)t = fts.

Then C 0 0
α0 is a homotopy. We infer Kj(CA) = 0 by Propositon 3.21.

The following Lemma from [1, Lemma 1], reduces the problem even further.

Lemma 5.18. If the index map δ1 of the Wiener-Hopf extension is always surjective, then

Kj(CAoτ⊗α R) = 0

for j = 0, 1.

Proof. The proof consists of two steps:

1) If K1(A) = 0, then K0(Aoα R) = 0.

2) If K0(A) = 0, then K1(Aoα R) = 0.
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We are insisting that δ1 : K1(Aoα R) −→ K0(SAoτ⊗α R) is always surjective.

Step 1) If K1(Aoα R) ∼= 0, then K0(SAoτ⊗α R) ∼= 0, but then K0(A) ∼= 0 by Lemma 5.15. So we have

K1(Aoα R) ∼= 0⇒ K0(A) ∼= 0 (59)

Now if K1(A) ∼= 0, we have K1(A ⊗max K(L2(R))) ∼= K1(SA oτ⊗α R) ∼= 0 by Lemma 5.9 and
5.15. By Takai duality, Theorem 4.27, we infer K1((Aoα R)oα̂ R) ∼= 0. Formula (59) now implies
K0(Aoα R) ∼= 0.
Thus, step 1)

K1(A) = 0⇒ K0(Aoα R) = 0

is completed.

Step 2) If K0(A) ∼= 0, we conclude by Bott periodicity, Theorem 3.29 that K1(SA) ∼= 0. So that
K0(SAoId⊗α R) by step 1). Now, K0(S(Aoα R)) ∼= 0 by Proposition 4.23. But then

K1(Aoα R) ∼= 0

by Proposition 3.28.

Now, since K0(CA) ∼= 0 and K1(CA) ∼= 0 by Lemma 5.17, we conclude:
K0(CAoτ⊗α R) ∼= 0 by step 1) and K1(CAoτ⊗α R) ∼= 0 by step 2).

In view of Lemma 5.16, we need to show that δ1 : K1(Aoα R) −→ K0(SAoτ⊗α R) is surjective.
We will from now on suppose that A is unital and prove the general case later.
We set B = Mm(A). By [4, Example 6.3.1], Mm(C)⊗max A ∼= B. This isomorphism is given by sending
(αij)1≤i,j≤m ⊗ a to (αija)1≤i,j≤m. Note that we may extend the action α : R −→ A to α : R −→ B by
applying α to all the components.

5.4 Connes’ Cocycle

We must show that given a projection p ∈ B, there is an element h ∈ K1(AoαR) with δ1(h) = K0(ωE)[p]0
for some rank one projection E. That is sufficient, because K0(ωE) is an isomorphism by Lemma 5.12.
We can always replace p by a projection q with p ∼h q.

Definition 5.19. Suppose that A is a unital C∗-algebra and G a locally compact group. We say that
two actions α, β : G −→ Aut(A) are exterior equivalent if there is a map s 7→ us of unitaries satisfying
the following conditions:

(1) ust = usαs(ut).

(2) βt(a) = utαt(a)u∗t .

(3) t 7→ ut is continuous in the norm.

A function u : G −→ U(A) satisfying (1) is called a unitary (1-)cocycle and the equation (1) is called the
(1-)cocycle identity. We will only be concerned with exterior equivalence in the situtation G = R.
The following Proposition is contained in [2, Proposition 4].

Proposition 5.20. There is an action β on B that is exterior equivalent to α and a projection q ∈ B∞
with p ∼h q such that βt(q) = q for all t ∈ R.

We will now give a proof for Proposition 5.20. We must find a map of unitaries t 7→ ut that is continuous
in the norm on B and satisfies

us+t = usαs(ut) (60)

αt(p) = u∗t put. (61)

We fix a projection q ∈Mn(B∞) that is homotopic to p by using Lemma 4.37. Now, set

δ(q) = lim
t→0

αt(q)− q
t
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and
P = i[δ(q), q]

where [a, a′] = aa′ − a′a. Furthermore, set

Pn,t =

∫
· · ·
∫

0≤s1≤...≤sn≤t

αs1(P )...αsn(P )ds1...dsn

for t ∈ R+. This integral is well defined, because Pn,t =
t∫

0

sn∫
0

...
s2∫
0

αs1(P )ds1αs2(P )ds2...dsn−1αsn(P )dsn,

so Pn,t is an iterated Riemann integral with continuous integrand. In fact, we integrate over an n-
dimensional triangle inscribed into the n-dimensional cube with side length t. With an n− dimensional
triangle, we mean a volume that looks like a triangle whenever we look at a 2-dimensional cross-section
from all sides of the cube. Now, let

ut =

∞∑
n=0

Pn,t

for t ≥ 0. We will first show that ut has all the claimed properties for t ≥ 0. Then the cocycle identity
(60) tells us that for t ≤ 0 we must have

u0 = u0α0(u0)

implying u0 = 1, so we get
1 = ut−t = utαt(u−t).

The last equation may be solved for u−t = α−t(u
∗
t ) giving us the full cocycle.

Lemma 5.21. The series ut =
∞∑
n=0

Pn,t converges absolutely.

Proof. We have
||P || = ||δ(q)q − qδ(q)|| ≤ 2 · C

with C = max(||δ(q)||, ||q||). But then

||ut|| ≤
∞∑
n=0

||Pn,t||

≤
∞∑
n=0

∫
· · ·
∫

0≤s1≤...≤sn≤t

||αs1(P )...αsn(P )||ds1...dsn

≤
∞∑
n=0

(2C)n
∫
· · ·
∫

0≤s1≤...≤sn≤t

1 ds1...dsn

=

∞∑
n=0

(2Ct)n

n!
<∞.

(62)

Again, we are integrating over a triangle inscribed into the n-dimensional cube.
So we have

∫
·· ·
∫

0≤s1≤...≤sn≤t
1 ds1...dsn = tn

n! . This follows from the following induction step:

∫
· · ·
∫

0≤s1≤...≤sn+1≤t

1 ds1...dsn+1 =

t∫
0

Pn,sndsn

=

t∫
0

snn
n!
dsn

=
tn+1

(n+ 1)!
.

(63)
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Next, we remark that δ(q) is self-adjoint. Indeed, we have

δ(q)∗ = lim
t→0

(
αt(q)− q

t

)∗
=
αt(q

∗)− q∗

t
=
αt(q)− q

t
= δ(q).

But that implies P ∗ = (i[δ(q), q])∗ = −i[q, δ(q)] = i[δ(q), q] = P , so P is self-adjoint too. But then the
adjoint of the integral Pn,t is given by

P ∗n,t =

∫
· · ·
∫

0≤sn≤...≤s1≤t

αs1(P )...αsn(P )ds1...dsn,

so we just need to reorder the integrand. To motivate the following procedures, we calculate a few
terms of utαt(us) which we want to be equal to ut+s. The terms are ut = 1 + P1,t + P2,t + ... and
αt(us) = 1 + αt(P1,s) + αt(P2,s) + ..., multiplying everything out, we get

utαt(us) = 1 + (P1,t + αt(P1,s)) + (P2,t + P1,tαt(P1,s) + αt(P2,s))...

We have

P1,t + αt(P1,s) =

t∫
0

αs1(P )ds1 +

s∫
0

αs1+t(P )ds1 =

t+s∫
0

αs1(P )ds1

and

P2,t + P1,tαt(P1,s) + αt(P2,s)

=

∫∫
0≤s1≤s2≤t

αs1(P )αs2(P )ds1ds2 +

∫
0≤s1≤t

αs1(P )ds1

∫
t≤s2≤t+s

αs2(P )ds2

+

∫∫
t≤s1≤s2≤t+s

αs1(P )αs2(P )ds1ds2.

(64)

To get P2,t+s, we must fill the full triangle described by 0 ≤ s1 ≤ s2 ≤ t + s. Looking at the 3
integrals above, we see that the first integral runs over the volume 0 ≤ s1 ≤ s2 ≤ t, the second over
0 ≤ s1 ≤ t ≤ s2 ≤ t+ s and the third one over t ≤ s1 ≤ s2 ≤ t+ s. But these three conditions together
form a partition of the condition 0 ≤ s1 ≤ s2 ≤ t+ s.

Lemma 5.22. The ut satisfies the cocycle identity ut+s = utαt(us) for all t, s ≥ 0.

Proof. Set Un = Un,t,s =
n∑
k=0

Pk,tαt(Pn−k,s), so that the series
∞∑
n=0

Un converges to utαt(us) in the norm.

Looking at one of the terms Un, we want to show that Un = Pn,t+s.
The summand Pk,tαt(Pn−k,t) corresponds to the volume described by the two conditions

0 ≤ s1 ≤ ... ≤ sk ≤ t

and
t ≤ sk+1 ≤ ... ≤ sn ≤ t+ s.

But the combination of these two conditions for all k forms a partition of the condition

0 ≤ s1 ≤ ... ≤ sn ≤ t+ s.

So we know that the cocycle identity is satisfied. The proof of Lemma 5.21 shows that us → 1 = u0 as
s→∞. Applying the cocycle identity, we get ut+s = utαt(us). The right term converges to ut as s→ 0.
Thus, t 7→ ut is continuous in the norm.
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The only assertion left is to show that ut is a unitary for all t ≥ 0. We set Q = [δ(q), q] = P/i. Our
integral terms now become

Pn,t = in
∫
· · ·
∫

0≤s1≤...≤sn≤t

αs1(Q)...αsn(Q)ds1...dsn

and

P ∗n,t = (−i)n
∫
· · ·
∫

0≤sn≤...≤s1≤t

αs1(Q)...αsn(Q)ds1...dsn.

If we expand the terms of utu
∗
t =

∞∑
n=0

n∑
k=0

Pk,tP
∗
n−k,t, we get 1 for the first,

−i
∫

0≤s1≤t

αs1(Q)ds1 + i

∫
0≤s1≤t

αs1(Q)ds1 = 0

for the second and

−
∫∫

0≤s2≤s1≤t

αs1(Q)αs2(Q)ds1ds2 +

∫
0≤s1≤t

αs1(Q)ds1

∫
0≤s2≤t

αs2(Q)ds2 −
∫∫

0≤s1≤s2≤t

αs1(Q)αs2(Q)ds1ds2

for the third. If we compute the first difference in the third term, we see that the combination of the
conditions

0 ≤ s1 ≤ t

and
0 ≤ s2 ≤ t

is weaker than the condition 0 ≤ s2 ≤ s1 ≤ t. Thus, all the terms from the first term cancel and we are
left with the part from the second integral where 0 ≤ s2 ≤ s1 ≤ t does not hold. But that just means
0 ≤ s1 ≤ s2 ≤ t, so the rest cancels with the third term.
If we say terms of Pk,tP

∗
n−k,t, we mean the

(
n
k

)
summands of

Pk,tP
∗
n−k,t = ik

∫
· · ·
∫

0≤s1≤...≤sk≤t

αs1(Q)...αsk(Q)ds1...dsk (−i)n−k
∫
· · ·
∫

0≤sn≤...≤sk+1≤t

αsk+1
(Q)...αsn(Q)ds1...dsn−k

= ik(−i)n−k
∫
· · ·
∫

0≤sn≤...≤sk+1≤s1≤...≤sk≤t

αs1(Q)...αsn(Q)ds1...dsn

+ ik(−i)n−k
∫
· · ·
∫

0≤sn≤...≤sk+2≤s1≤sk+1≤...≤sk≤t

αs1(Q)...αsn(Q)ds1...dsn

+ ...

+ ik(−i)n−k
∫
· · ·
∫

0≤sn≤...≤sk+2≤s1≤...≤sk≤sk+1≤t

αs1(Q)...αsn(Q)ds1...dsn

+ ik(−i)n−k
∫
· · ·
∫

0≤sn≤...≤sk+3≤s1≤sk+2≤...≤sk≤sk+1≤t

αs1(Q)...αsn(Q)ds1...dsn

+ ...

+ ik(−i)n−k
∫
· · ·
∫

0≤s1≤...≤sk≤sn≤...≤sk+1≤t

αs1(Q)...αsn(Q)ds1...dsn.

(65)

So we split the product into all the triangles that lie in the integration volume.

Lemma 5.23. The element ut is a unitary for any t ≥ 0.

37



Proof. We want to show that
n∑
k=0

Pk,tP
∗
n−k,t = 0 for n ≥ 1. As t is fixed, we may set Pk = Pk,t Since the

left factor has a factor ik and the right one a factor (−i)n−k, the sign alternates as we run over k. We
will in fact show the following:
After we cancel the rest of Pk−1P

∗
n−k+1 with the terms of PkP

∗
n−k, all the terms from PkP

∗
n−k that are

left are terms of Pk+1P
∗
n−k−1. We prove this by induction.

Suppose that all the terms that were left in Pk−1P
∗
n−k−1 were terms of PkP

∗
n−k. Thus, the terms of

PkP
∗
n−k that are left have to satisfy

0 ≤ s1 ≤ ... ≤ sk ≤ t,

0 ≤ sn ≤ ... ≤ sk+1 ≤ t

and cannot satisfy both of the following conditions:

0 ≤ s1 ≤ ... ≤ sk−1 ≤ t

0 ≤ sn ≤ ... ≤ sk ≤ t

We want these terms to satisfy:
0 ≤ s1 ≤ ... ≤ sk+1 ≤ t

0 ≤ sn ≤ ... ≤ sk+2 ≤ t

As the second condition from the first set of conditions implies the second from the last one, we must only
show that sk ≤ sk+1. Now, the first condition of the first set implies the first of the second. Combining
the second condition with the first set, we are left with

0 ≤ sn ≤ ... ≤ sk+1 ≤ t

and
sk+1 ≤ sk

That is, because sk+1 ≤ sk is the only relation in which these differ. But then satisfying the first set and
not the second means that sk ≤ sk+1.
Now if we look at the last term P0P

∗
n = P ∗n , we see that this summand consists of only one term which

has to cancel with a term of the previous summand, so the whole sum is 0. The identity u∗tut = 1 may
be shown by replacing ≤ with ≥ and vice versa.

The next Lemma states that a noncommutative function with derivative 0 is fixed by the action.

Lemma 5.24. Suppose that b ∈Mn(B∞) with δ(b) = 0. Then αt(b) = b for all t ∈ R.

Proof. If δ(b) = 0, the derivative of s 7→ αs(b) is 0 (for any s), because δ(αs(b)) = αs(δ(b)) = 0. But
then

lim
t→0

φ(αt+s(b))− φ(αs(b))

t
= 0

for any continuous linear functional φ ∈Mn(B)′. So the map s 7→ φ(αs(b)) is constant. If αs(b) 6= αr(b)
for some s, r ∈ R, we may apply the Hahn Banach Theorem to find some φ ∈Mn(B)′ with ||φ(αs(b))|| = 1
and ||φ(αr(b))|| = 0 which is a contradiction.

We have a map t 7→ ut that satisfies all of the assertions claimed in Proposition 5.20 for t, s ≥ 0. However,
if it is possible to extend t 7→ ut to a cocycle on R, then we must have

1 = u0 = ut−t = utαt(u−t)

for t ≥ 0. So set vt = ut for t ≥ 0 and vt = α−t(u
∗
t ) for t ≤ 0.
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Proof of Proposition 5.20. The element vt is a unitary for all t ∈ R as ut is one for t ≥ 0. The map
t 7→ vt is also continuous in the norm as t 7→ ut is. The cocycle identity follows from a case distinction.
For example, if t ≥ 0, s ≤ 0 and t ≥ −s, then

vtαt(vs) = utαt−s(u
∗
s) = ut(ut−sαt−s(us))

∗ut−s = utu
∗
tut−s = ut−s.

We will now identify ut and vt by setting ut = vt for t ≤ 0. The only thing left is to show that
utαt(q)u

∗
t = q for all t ∈ R. Note that βt(a) = utαt(a)u∗t is an action (exterior equivalent to α) on B.

We calculate

utαt(q)u
∗
t =

∞∑
n=0

n∑
k=0

Pk,tαt(q)P
∗
n−k,t

= αt(q) + (P1,tαt(q) + αt(q)P
∗
1,t) +

∞∑
n=2

n∑
k=0

Pk,tαt(q)P
∗
n−k,t

(66)

First, we provide an estimate for the last term. We have∥∥∥∥∥
∞∑
n=2

n∑
k=0

Pk,tαt(q)P
∗
n−k,t

∥∥∥∥∥ ≤
∞∑
n=2

n∑
k=0

||Pk,t|| ||Pn−k,t||

≤
∞∑
n=2

n∑
k=0

(2Ct)n

k!(n− k)!

≤ t2
∞∑
n=2

n∑
k=0

(2C)ntn−2

k!(n− k)!

(67)

where we used the estimates from Lemma 5.21. Now, we give an estimate for the second term, fix ε > 0
and t > 0 so small that ||αs(P )− P || ≤ ε for 0 ≤ s ≤ t.∥∥∥∥P1,tαt(q)

t
− iPαt(q)

∥∥∥∥ =
||i
∫ t

0
(αs(P )− P )ds αt(q)||

t

≤ ||q|| · ε
(68)

As αt(q)→ q whenever t→ 0, we obtain

P1,tαt(q)

t
→ iPq.

Now, by a similar estimate, we get
αt(q)P

∗
1,t

t
→ −iqP.

Combining all these estimates, we get

βt(q)

t
=
utαt(q)u

∗
t

t
=
utαt(q)u

∗
t − αt(q) + αt(q)

t
→ i[P, q] + δ(q).

We will now calculate that i[P, q] + δ(q) = 0. We have

i[P, q] = i(Pq − qP ) = i(i((δ(q)q − qδ(q))q − q(δ(q)q − qδ(q))) = 2qδ(q)q − qδ(q)− δ(q)q.

Applying the product rule, we get δ(q) = δ(q2) = qδ(q) + δ(q)q. Thus,

i[P, q] + δ(q) = 2qδ(q)q = 2q(qδ(q) + δ(q)q)q = 4qδ(q)q = 0.

And Lemma 5.24 applied to the action β yields the claim.

It is possible to show that two exterior equivalent C∗-dynamical systems are ∗-isomorphic, see [11,
Lemma 2.68]. However, we cannot simply switch from the action α to β in order to directly deduce
that any projection p lies in the image of the index map δ1. The reason for this is that the isomorphism
K0(ωE) : K0(A) −→ K0(SA oτ⊗α R) from Lemma 5.12 depends on the action itself. Also, we would
need to switch to another action for every p ∈ P∞(A). We must instead provide calculations with the
cocycle to show K0(ωE)([p]0) ∈ δ1(K1(SAoτ⊗α R)) instead.
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5.5 Surjectivity of the Index Map

Let p ∈ B be a projection. We will from now on fix a cocycle ut satisfying the assertions of Proposition
5.20. That is, t 7→ ut is a map of unitaries that is continuous in the norm and satisfies

us+t = usαs(ut) (69)

αt(p) = u∗t put. (70)

Note that we have switched to a projection q ∈ B∞ with p ∼h p and called it p. That is no problem,
because K-theory respects homotopies by construction.
The following identifications are made in [2, Page 148]. There is an isomorphism CB ∼= Mm(CA) by
sending a function f : R −→ CB to the matrix of functions (fij)1≤i,j≤m. We may also extend τ ⊗ α to
CB by (τ ⊗ α)s(f)t(r) = αs(ft−s(r)) where the right α is the extended version on B.
Furthermore, we have

CB oτ⊗α R ∼= Mm(CAoτ⊗α R)

by Proposition 4.23. Also, Mm(SA) ∼= SB and we may extend the action τ ⊗ α to SB. Applying
Proposition 4.23 again, we obtain

Mm(SB oτ⊗α R) ∼= Mm(SAoτ⊗α R).

We will also identify f ∈ Cc(R, SB) with ι̂(f) ∈ Cc(R, CB), where ι̂(f)t(r) = ft(r) and extend this
identification, so that SB oτ⊗α R ⊆ CB oτ⊗α R and S oτ R ⊆ C oτ R
Suppose E ∈ K(L2(R)) is a rank one projection. By Lemma 5.12, it is sufficient to show that K0(ωE)[p]0
lies in the image of δ1 for any projection p ∈Mm(A). For this, we choose a specific rank one projection,
see [1, Page 146].
Let E be the rank one projection onto h ∈ L2(R) given by

h(t) = e−t/2χ(t).

h is called the first Laguerre function. Here, χ = χ[0,∞] is the characteristic function of the set [0,∞].
The following Lemma will later be useful to apply Proposition 3.33 to our situation. It is contained in
[2, Lemma 2]. If f, g ∈ Cc(R, SA), then by Property (2) in Proposition 4.6, we have

(f ∗g)t(r) =

(∫
R
f(s)(τ ⊗ α)s(g(r − s))ds

)
t

=

∫
R
ft(s)(τ ⊗α)s(g(r−s))tds =

∫
R
ft(s)αs(gt−s(r−s))ds.

Lemma 5.25. Given any f ∈ Cc(R, C), set fp ∈ Cc(R, CB) to fp,t(r) = (fp)t(r) = purft(r).

(1) Then f 7→ fp extends to a ∗-homomorphism C oτ R −→ CB oτ⊗α R.

(2) Furthermore, this ∗-homomorphism maps S oτ R into SB oτ⊗α R.

Proof. Fix f, g ∈ Cc(R, C). We will first verify that f 7→ fp is a homomorphism with respect to the
convolution algebra operations. Indeed, the cocycle identity (69) implies that

u∗sur = u∗sus+(r−s) = u∗susαs(ur−s) = αs(ur−s).
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Now, we calculate that

(fp ∗ gp)t(r) =

∫
R
fp,t(s)αs(gp,t−s(r − s))ds

=

∫
R
pusft(s)αs(put−sgr−s(r − s))ds

=

∫
R
pusαs(p)αs(ur−t)fp,t(s)gp,t−s(r − s)ds

=

∫
R
pusαs(p)u

∗
surfp,t(s)gp,t−s(r − s)ds

=

∫
R
ppurfp,t(s)gp,t−s(r − s)ds

= pur

∫
R
fp,t(s)gp,t−s(r − s)ds

= pur(f ∗ g)t(r)

= (f ∗ g)p,t(r).

(71)

Furthermore,
urαr(u−r) = ur−r = u0 = 1,

so that

(f∗p )t(r) = αr(fp,t−r(−r)∗)
= αr((pu−rft−r(−r))∗)

= (αr(pu−r))
∗ft−r(−r)

= (αr(pu−r))
∗f∗t (r)

= (αr(p)αr(ur)αr(u−r))
∗f∗t (r)

= (u∗rpurαr(u−r))
∗f∗t (r)

= purf
∗
t (r).

(72)

We want to apply Proposition 4.19, so we must show that f 7→ fp is bounded in || · ||L1 . We calculate

||fp||L1 =

∫
R
||fp(r)||CBds

=

∫
R

sup
t∈R
||fp,t(r)||Bds

=

∫
R

sup
t∈R
||purft(r)||Bds

=

∫
R

sup
t∈R
||pur||B |fp(r)|ds

=

∫
R

sup
t∈R
||puru∗rp∗||1/2|fp(r)|ds

=

∫
R

sup
t∈R
||p||2B |fp(r)|ds

=

∫
R

sup
t∈R
|fp(r)|ds

= ||f ||L1

(73)

where we used ||p||2 = ||pp∗|| = ||p||. The second assertion follows from lim
t→−∞

fp,t(r) = 0 for all

f ∈ Cc(R, S) and r ∈ R.

Let e = ψ−1(E), where ψ is the isomorphism from Lemmas 5.8 and 5.9. We infer that e ∈ S oτ R is a
projection. The next Lemma will later be used to apply Proposition 3.33. It is contained in [1, Pages
149 and 150] and [14, Lemma 6].
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Lemma 5.26. There is an element f ∈ C oτ R satisfying

f + f∗ + f∗ ∗ f = 0

and
f + f∗ + f ∗ f∗ = e.

We will now prepare the proof of Lemma 5.26 with the following calculations.
First, we define the following kernel operator. Let f̃ denote the function f̃t(r) = e−r/2χ(r)χ(t − r).

F ∈ B(L2(R)) is now given by Fh(t) =
∫
R
f̃t(s)h(t− s)ds. We set g(r) = e−r/2χ(r). The operator F is

bounded, because

|Fh(t)| ≤
∫

Rf̃t(s)|h(t− s)|ds =

∫
R
g(s)χ(t− s)|h(t− s)|ds =

t∫
−∞

g(s)|h(t− s)|ds

holds. Applying the Cauchy-Schwartz inequality, we obtain ||Fh||2L2(R) ≤
∫
R

t∫
−∞

g(s)2dsdt ||h||2L2(R). But

∫
R

t∫
−∞

g(s)2dsdt ≤
∫
R e
−tdt = 2. Now, let ε > 0 be given. Set χε(t) =

 1 if t ≥ ε
t/ε if 0 ≤ t ≤ ε
0 if t ≤ 0

, so that

χε is continuous and only differs from χ on the interval [0, ε]. Let Fε denote the operator, where χ is
replaced by χε in the kernel function.
Furthermore, set mε(t) = sup

0≤s≤ε
|g(t− s)|. We infer that

∫
R
mε(t)

2dt =

∫
R

sup
0≤s≤ε

|g(t− s)|2ds =

∫
R

sup
0≤s≤ε

es−tχ(t− s)ds ≤ eε
∫
R
e−tdt = eε <∞.

Also, mε′(t) ≤ mε(t) if ε′ ≤ ε for all t ∈ R. Now, Fε → F in B(L2(R)) as ε → 0. Indeed, fixing
h ∈ L2(R), we have

|(Fε − F )h(t)| ≤
∫
R
g(s)|χ(t− s)− χε(t− s)||h(t− s)|ds

=

∫
R
g(t− s)|χ(s)− χε(s)||h(s)|ds

=

ε∫
0

g(t− s)|χ(s)− χε(s)||h(s)|ds

≤
ε∫

0

mε(t)|χ(s)− χε(s)||h(s)|ds

≤ ε ·mε(t)
2||h||L2(R).

(74)

We can now infer that ||(Fε − F )h||2L2(R) ≤ ε
∫
Rmε(t)

2dt||h||L2(R). But this yields Fε → F in B(L2(R)).

Now, let gε = e−r/2χε(r)χε(1/ε− r) and let F ′ε be the operator with kernel gε(s)χε(t− s), i.e.

F ′εh(t) =

∫
R
gε(s)χε(t− s)h(t− s)ds.

We have

〈(F ′ε − Fε)h, ξ〉 ≤
∫
R

∫
R
|g(s)− gε(s)| χ(t− s) |h(t− s)|ds|ξ(t)|dt
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But then by Fubini’s Theorem

〈(F ′ε − Fε)h, ξ〉 ≤
∫
R

∫
R
|g(s)− gε(s)||h(t− s)|ds|ξ(t)|dt

=

∫
R

∫
R
|g(s)− gε(s)||h(t− s)||ξ(t)|dtds

≤
∫
R
|g(s)− gε(s)|ds ||h||L2(R)||ξ||L2(R).

(75)

Since
∫
R |g(s)− gε(s)|ds→ 0 as ε→ 0, we infer that F ′ε → F in B(L2(R)).

Now, the kernel of F ′ε lies in Cc(R, C). We may again form ψ = M o V : C oτ R −→ B(L2(R)), where
M : C −→ B(L2(R)) and V : R −→ U(L2(R)) are given by M(f)h(t) = f(t)h(t) and Vsh(t) = h(t − s)
for h ∈ L2(R) and t, s ∈ R as in Example 5.7. This time, however we cannot infer that the image lies in
K(L2(R)).

Then the function f̃
(ε)
t (r) = gε(r)χε(t − r) lies in Cc(R, C). The operator ψ(f̃ (ε)) is F ′ε. In particular,

we have ψ(f̃ (ε))→ F in B(L2(R)) as ε→ 0.
As functions f ∈ Cc(R, C) satisfy f∗t (r) = ft−r(−r), we infer that the adjoint of ψ(f) is given by

ψ(f)∗h(t) = ψ(f∗)h(t) =

∫
R
ft−s(−s)h(t− s)dr. (76)

For f, g ∈ Cc(R, C), we obtain

ψ(f)ψ(g)h(t) = ψ(f ∗ g)h(t) =

∫
R

∫
R
f(t, s)g(t− s, r − s)h(r − s)drds (77)

by the convolution formula.
Now, E is given by the kernel

ẽt(r) = h(t)h(t− r) = e−t/2χ(t)e−(t−r)/2χ(t− r) = e−ter/2χ(t)χ(t− r)

where h is the first Laguerre function. We will now calculate the adjoint of F by substituting s → −s,
applying Fubini’s Theorem and then t→ t− s.∫

R
Fh(t) · ξ(t)dt =

∫
R

∫
R
f̃t(s)h(t− s)ξ(t)dsdt

=

∫
R

∫
R
f̃t(−s)h(t+ s)ξ(t)dsdt

=

∫
R

∫
R
f̃t(−s)h(t+ s)ξ(t)dtds

=

∫
R

∫
R
f̃t−s(−s)h(t)ξ(t− s)dtds

=

∫
R

∫
R
h(t)f̃t−s(−s)ξ(t− s)dsdt

(78)

Thus, the adjoint of F is given by the operator with kernel f̃t−r(−r). Furthermore, we have

F ∗Fh(t) =

∫
R
f̃t−s(−s)Fh(t− s)ds

=

∫
R

∫
R
f̃t−s(−s)f̃t−s(r)h(t− s− r)drds

=

∫
R

∫
R
f̃t−s(−s)f̃t−s(r − s)h(t− r)drds

=

∫
R

∫
R
f̃t−s(−s)f̃t−s(r − s)ds h(t− r)dr

(79)
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and

FF ∗h(t)dt =

∫
R
f̃t(s)F

∗h(t− s)ds

=

∫
R

∫
R
f̃t(s)f̃t−s−r(−r)h(t− s− r)drds

=

∫
R

∫
R
f̃t(s)f̃t−r(s− r)h(t− r)drds

=

∫
R

∫
R
f̃t(s)f̃t−r(−(r − s))ds h(t− r)dr

(80)

where we applied the substitution r → r − s in both cases. We infer that the kernels of FF ∗ and F ∗F
are given by the convolution formulas

∫
f̃t−s(−s)f̃t−s(r−s)ds and

∫
f̃t(s)f̃t−r(−(r−s))ds, respectively.

We will now show that F + F ∗ − F ∗F = 0 and F ∗ + F − FF ∗ = E. Indeed, we calculate∫
R
f̃t−s(−s)f̃t−s(r − s)ds =

∫
R
es/2χ(−s)χ(t) e(s−r)/2χ(r − s)χ(t− r)ds

= e−r/2χ(t)χ(t− r)
∫
R
esχ(−s)χ(r − s)ds

= e−r/2χ(t)χ(t− r)
{

1 if r ≥ 0
er if r ≤ 0

(81)

and
f̃t(r) + f̃t−r(−r) = e−r/2χ(r)χ(t− r) + er/2χ(−r)χ(t)

If r ≥ 0, we have χ(−r) = 0 and χ(t)χ(t−r) = χ(r)χ(t−r). That is true, because χ(t)χ(t−r) = χ(t−r)
and χ(r) = 1 for r ≥ 0. If r ≤ 0, we infer χ(r) = 0 and χ(t)χ(t − r) = χ(−r)χ(t), since t ≥ 0 implies
t ≥ r. We have proved F ∗F + F + F ∗ = 0.
The second assertion follows from the following calculations:∫

R
f̃t(s)f̃t−r(s− r)ds =

∫
R
e−s/2χ(s)χ(t− s)χ(s− r)χ(t− s) e(r−s)/2ds

= er/2
∫
R
e−sχ(s)χ(t− s)χ(s− r)ds

= er/2

 e−r − e−t if t ≥ 0 and 0 ≤ r ≤ t
1− e−t if t ≥ 0 and r < 0
0 if t < 0

(82)

ft(r) + ft−r(−r) =

 e−r/2 if t ≥ 0 and 0 ≤ r ≤ t
er/2 if t ≥ 0 and r < 0
0 if t < 0

ẽt(r) =

 er/2e−t if t ≥ 0 and 0 ≤ r ≤ t
er/2e−t if t ≥ 0 and r < 0
0 if t < 0

Thus, FF ∗ + F + F ∗ = E is also true.
The following Lemma is being used in [1, Page 150]. We give a proof for the sake of completeness. The
proof is motivated by [5, Proposition 7.9.7], [11, the discussion above Corollary 3.20] and by the use of
Takai duality in Lemma 5.9.

Lemma 5.27. The ∗-homomorphism ψ = M o V : C oτ R −→ B(L2(R)) is injective.

Proof. We will first show that ker(M o V ) is τ̂ -invariant. Indeed, fix y ∈ R and a ∈ C oτ R with
ψ(a) = 0. There are functions f (n) ∈ Cc(R, C) with f (n) → a as n→∞ in the universal norm. We have
||τ̂y(f (n))− τ̂y(a)||u = ||f (n) − a||u.
Fix ε > 0. For n ∈ N big enough, ||f (n) − a||u ≤ ε. We infer

||ψ(f (n))h||L2(R) ≤ ε · ||h||L2(R)
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for any h ∈ L2(R). Set hy(t) = e−iyth(t), so that ||hy||L2(R) = ||h||L2(R). Furthermore,

ψ(τ̂y(f (n)))h(t) =

∫
R
eiysf

(n)
t (s)h(t− s)ds

= eiyt
∫
R
e−iy(t−s)f

(n)
t (s)h(t− s)ds

= eiyt
∫
R
f

(n)
t (s)hy(t− s)ds

= (ψ(f (n))hy)−y(t).

(83)

Taking the square and integrating both sides, we have

||ψ(τ̂y(f (n)))h||L2(R) = ||(ψ(f (n))hy)−y||L2(R)

= ||(ψ(f (n))hy)||L2(R)

≤ ε · ||hy||L2(R)

= ε · ||h||L2(R).

(84)

But then ||ψ(τ̂y(a))h||L2(R) ≤ ε · ||h||L2(R) and thus ψ(τ̂y(a)) = 0.
We may now apply Proposition 4.29. There is a τ -invariant ideal I of C such that Ioτ R = ker(ψ). Now
if I 6= 0, then there is f ∈ I with f 6= 0. As I is τ -invariant, g = τ1(f) ∈ I with gt = ft−1. The limit of
ft for t→∞ exists by definition, so we have lim

t→∞
(ft − gt) = 0 which implies f − g ∈ S. But f − g 6= 0,

as for m = sup
t∈R
|ft|, the point t = inf{t ∈ R : |ft| ≥ m/2}, we have |ft| = m/2 and |gt| < m/2.

We infer I ∩ S 6= 0, so that I oτ R ∩ S oτ R 6= 0, taking for Example the function (ft − gt)φ(r) for
0 6= φ ∈ Cc(R) which lies in the intersection. However ψ is injective on S oτ R ⊆ C oτ R by Lemma 5.9
which is a contradiction.

Proof of Lemma 5.26. We have seen that ψ : C oτ R −→ B(L2(R)) is injective, so ψ is a ∗-isomorphism
onto it’s image by Theorem 2.4. Furthermore, F ∈ ψ(CoτR) by the above calculations and E ∈ ψ(SoτR)
by Lemma 5.8. Setting f = ψ−1(F ), the formulas F +F ∗ −F ∗F = 0 and F +F ∗ −FF ∗ = E imply the
formulas

f + f∗ + f∗ ∗ f = 0

and
f + f∗ + f ∗ f∗ = e.

Now, let 1 = 1 ˜CBoτ⊗αR
denote the unit adjoint to CB oτ⊗α R.

Our next Lemma is based on [1, Page 150].

Lemma 5.28. If f ∈ C oτ R is given by Lemma 5.26, then fp, ep ∈ CB oτ⊗α R satisfy the following:

1. We have (1− fp)∗ ∗ (1− fp) = 1 and (1− fp) ∗ (1− fp)∗ = 1− ep.

2. The element ˜̂π(1− fp) ∈ B̃ oα R is a unitary.

3. Both, ep and 1− ep are projections in ˜B oα R.

Proof. The map C oτ R 3 g 7→ gp ∈ CB oτ⊗α R is a ∗-homomorphism by Lemma 5.25. The identities
in Lemma 5.26 now imply that

(1− fp)∗ ∗ (1− fp) = 1− fp − f∗p + f∗p fp = 1− (f + f∗ − f∗f)p = 1

and
(1− fp) ∗ (1− fp)∗ = 1− fp − f∗p + fp ∗ f∗p = 1− (f + f∗ − f ∗ f∗)p = 1− ep.

The exactness of the Wiener-Hopf extension at CB oτ⊗α R is equivalent to SB oτ⊗α R = ker(π̂) As

e ∈ S oτ R, ep ∈ SB oτ⊗α R by Lemma 5.25. Thus, ˜̂π(ep) = 0 and ˜̂π(1− fp) ∈ B̃ oα R is a unitary. As
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e ∈ S oα R is a projection, we infer ep ∗ ep = (e ∗ e)p = ep and e∗p = (e∗)p = ep. So ep is a projection,
but then the same is true for 1− ep.

The next Lemma will be used to conclude that δ1 is surjective, see [1, Pages 147 and 150].

Lemma 5.29. Set V = (1− fp) ∈ CB oτ⊗α R and U = ˜̂π(1− V ) ∈ B oα R. We have

δ1(U) = −[ep]0.

Proof. By Lemma 5.28, we may apply Proposition 3.33. The element δ1(U) is given by

δ1(U) = [1− V ∗ ∗ V ]0 − [1− V ∗ V ∗]0 = [1− 1]0 − [1− (1− ep)]0 = [0]0 − [ep]0.

We want to show that δ1 is surjective. If the φ(n) ∈ Cc(R) converge to the first Laguerre function h in

L2(R), then e(n) given by e
(n)
t (r) = φ

(n)
t φ

(n)
t−r converges to e in the universal norm of S oτ R by Lemma

5.6 and Te(n) → E in K(L2(R)). We infer that

ωE(p) = γ(ϕ(p)) = γ(p⊗ E) = lim
n→∞

γ(p⊗ Te(n))

under the ∗-homomorphism ωE from Lemma 5.12. But γ(p⊗ Te(n))t(r) = αt(p)e
(n)
t (r) by Lemma 5.10.

We set
γ(p⊗ Te(n)) = e(n).

Since K0(ωE) is an isomorphism and elements of the form [q]0 for projection q ∈M∞(A) generate K0(A)
by Proposition 3.13, it is enough to show that ωE(p) ∼h ep, because [ep]0 lies in the image of δ1.

Now, ep = lim
n→∞

e
(n)
p , but e

(n)
p,t (r) = pure

(n)
t (r).

The following Lemma is contained in [1, Page 150].

Lemma 5.30. Let ϕ̂ : SAoτ⊗α R −→ SAoτ⊗Id R denote the ∗-isomorphism given by

ϕ̂(g)t(r) = α−t(ft(r))

from Lemma 5.5. Then ϕ̂(ep
(n))t(r) = u∗−tϕ̂(e(n))t(r)ur−t.

Proof. We calculate

ϕ̂(ep
(n))t(r) = α−t(e

(n)
p,t (r)) = α−t(pur)e

(n)
t (r) = u∗−tpu−tα−t(ur)e

(n)
t (r)

by formula (70). The cocycle identity (69) implies that ur−t = u−tα−t(ur), so that

α−t(ur) = u∗−tur−t.

We infer

ϕ̂(ep
(n))t(r) = u∗−tpur−te

(n)
t (r) = u∗−tα−t(αt(p)e

(n)
t (r))ur−t = u∗−tϕ̂(e(n))t(r)ur−t.

We now follow [1, Pages 150 and 151], also see [4, Pages 38 and 39].
Given λ ∈ [0, 1], we define

Lλ(f)t(r) = u∗−λtft(r)

and
Rλ(f)t(r) = ft(r)uλ(r−t)

for f, g ∈ Cc(R, SB) ⊆ SB oτ⊗Id R. The idea is that the pair (L,R) is a unitary in a bigger C∗-algebra
than SAoτ⊗Id R. It is formally given by (r, t) 7→ u−λtδ0(t) where δ0 is the Dirac delta function on the
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point mass 0. The map L is then given by left multiplication and R by right multiplication.
We have Lλ(Rµ(f)) = Rµ(Lλ(f)) for any λ, µ ∈ [0, 1]. Furthermore,

(Rλ(f)∗)t(r) = (Rλ(f)t−r(−r))∗ = (ft−r(−r)uλ(r−(t−r)))
∗ = u∗−λtft−r(−r) = Lλ(f∗)t(r) (85)

But then Rλ(f)∗ = Lλ(f∗), so we get Lλ(f)∗ = Rλ(f∗) by substituting f∗ for f . That implies

Lλ(Rλ(f∗)) = Lλ(Rλ(f))∗.

Also,

Lλ(Rλ(f ∗ g))t(r) = u∗−λt(f ∗ g)t(r)uλ(r−t)

=

∫
R
u∗−λtft(s)gt−s(r − s)uλ(r−t)ds

=

∫
R
u∗−λtft(s)uλ(s−t)u

∗
λ(−(t−s))gt−s(r − s)uλ(r−s−(t−s)ds

=

∫
R
Lλ(Rλ(f))t(s)Lλ(Rλ(g))t−s(r − s)ds

= (Lλ(Rλ(f)) ∗ Lλ(Rλ(g)))t(r),

(86)

so Lλ ◦Rλ = Rλ ◦ Lλ is a ∗-homomorphism.
Furthmore, Lλ and Rλ are both bounded in || · ||L1 . Indeed,

||Lλ(f)||L1 =

∫
R

sup
t∈R
||u∗−λtft(s)||ds

≤
∫
R

sup
t∈R
||u∗−λt|| · ||ft(s)||ds

=

∫
R

sup
t∈R
·||ft(s)||ds

= ||f ||L1

(87)

and

||Rλ(f)||L1 ≤
∫
R

sup
t∈R
||ft(s)|| · ||uλ(s−t)||ds = ||f ||L1 ,

because unitaries have norm 1. We will now also calculate that Lλ and Rλ are bounded in the universal
norm. Indeed,

(Rλ(f) ∗ Lλ(g))t(r) =

∫
R
ft(s)uλ(s−t)u

∗
−λ(t−s)gt−s(r − s)ds = (f ∗ g)t(r)

and

sup
||f ||u≤1

||Rλ(f)||2u = sup
||f ||u≤1

||Rλ(f) ∗Rλ(f)∗||u

= sup
||f ||u≤1

||Rλ(f) ∗ Lλ(f∗)||u

= sup
||f ||u≤1

||f ∗ f∗||

= 1

(88)

by the C∗-identity. We obtain ||Rλ|| ≤ 1 and from Lλ(f)∗ = Rλ(f∗) also ||Lλ|| ≤ 1.
Thus, Uλ = Lλ ◦ Rλ : Cc(R, SB) −→ Cc(R, SB) is a ∗-homomorophism that is bounded in || · ||u
and extends to a ∗-homomorphism Uλ : SB oτ⊗Id R −→ SB oτ⊗Id R and we may also extend both
Lλ, Rλ : SB oτ⊗Id R −→ SB oτ⊗Id R.
The next Lemma is contained in [1, Lemma 3].

Lemma 5.31. For a ∈ SB oτ⊗Id R, we have ||Uλ(a) − Uµ(a)||u → 0 as λ → µ. That is, λ 7→ Uλ is
continuous in the topology of strong convergence.
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Proof. We will in fact show that both, Lλ and Rλ are continuous in the topology of strong convergence
starting with Lλ. As ||Lλ(a)||u ≤ ||a||u for any λ ∈ R, the estimate

||Lλ(a)− Lµ(a)||u ≤ ||Lλ(g)− Lµ(g)||u + 2 · ||a− g||u

shows that it is enough to consider operators g from a dense subspace of SB oτ⊗Id R.

We apply Lemma 4.17, to find a function g ∈ Cc(R, SB) of the form gt(r) =
n∑
i=1

φ(i)(r)f
(i)
t with f (i) ∈ SB

and φ(i) ∈ Cc(R) and ||g − a||u ≤ ε for any ε > 0.
Looking at the form of the above g, it is enough to show that we have ||Lλ(g) − Lµ(g)||u → 0 for
any g ∈ Cc(R, SB) of the form gt(r) = φ(r)ft for f ∈ SB and φ ∈ Cc(R). We will even proof that
||Lλ(g)− Lµ(g)||L1 → 0 which is enough by Proposition 4.14. Now, setting g̃t(r) = φ(r)f̃t, the equation

||g − g̃||L1 =

∫
sup
t∈R
||ft − f̃t||B · |φ(r)|dr

tells us that we may even suppose supp(f) to be compact, because |ft| → 0 as t → ∞,−∞ by formula
(87). Now, our cocycle t 7→ ut is uniformly continuous on the compact set [−1, 0] · supp(f). Thus, we
have sup

t∈supp(f)

||u−λt − u−µt||B = sup
t∈supp(f)

||u∗−λt − u∗−µt||B → 0 as λ→ µ. We infer

||Lλ(g)− Lµ(g)||L1 =

∫
sup

t∈supp(f)

||(u∗−λt − u∗−µt)ft||B · |g(s)|ds

≤
∫

sup
t∈supp(f)

||(u∗−λt − u∗−µt)||B · ||ft||B · |g(s)|ds

≤ sup
t∈supp(f)

||(u∗−λt − u∗−µt)||B · sup
t∈supp(f)

||ft||B

∫
|g(s)|ds.

(89)

As the constant sup
t∈supp(f)

||ft||B
∫
|g(s)|ds < ∞, we infer ||Lλ(g) − Lµ(g)||L1 → 0 as λ → µ. We then

have ||Lλ(a)− Lµ(a)||u → 0 and by taking adjoints, we infer

||Rλ(a)−Rµ(a)||u = ||Lλ(a∗)− Lµ(a∗)||u → 0.

Our claim now follows from the following estimate:

||Uλ(a)− Uµ(a)||u = ||Lλ(Rλ(a))− Lµ(Rµ(a))||u
≤ ||Lλ(Rλ(a))− Lµ(Rλ(a))||u + ||Lµ(Rλ(a))− Lµ(Rµ(a))||u
= ||Rλ(Lλ(a))−Rλ(Lµ(a))||u + ||Lµ(Rλ(a))− Lµ(Rµ(a))||u
≤ ||Lλ(a)− Lµ(a)||u + ||Rλ(a)−Rµ(a)||u

(90)

We can now infer that δ1 is surjective in the unital case.

Lemma 5.32. If A is unital, then the index map of the Wiener-Hopf extension

δ1 : K1(Aoα R) −→ K0(SAoτ⊗α R)

is surjective.

Proof. The formula ϕ̂(ep
(n))t(r) = u∗−tϕ̂(e(n))t(r)ur−t from Lemma 5.30 now becomes

ϕ̂(ep
(n)) = U1(ϕ̂(e(n))). (91)

Given λ ∈ [0, 1], we may take the limit n→∞ of Uλ(ϕ̂(e(n))) which evaluates to Uλ(ϕ̂(ωE(p))), because
Uλ is bounded in the universal norm.
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Lemma 5.31 now guaranties that λ 7→ Uλ(ϕ̂(ωE(p))) is a continuous path of projections, because Uλ is
a ∗-homomorphism and thus maps projections to projections. Taking the limit in formula (91), we infer
ϕ̂(ep) = U1(ϕ̂(ωE(p))) and U0(ϕ̂(ωE(p))) = ϕ̂(ωE(p)).
So we have

ϕ̂(ωE(p)) ∼h ϕ̂(ep).

in SB oτ⊗Id R. As ∗-isomorphisms respect homotopies, we have

ωE(p) ∼h ep

in SB oτ⊗α R. Since the map [p]0 − [q]0 7→ [ωE(p)]0 − [ωE(q)]0 for p, q ∈ P∞(A) is an isomorphism by
Lemma 5.12 and Proposition 3.13, we infer that δ1 is surjective, because p was chosen to be homotopic
to an arbitrary projection in M∞(A).

5.6 The non-unital Case

We are left with proving the non-unital case, so we now suppose that A has no unit.
Our argument is based on [1, Pages 152 and 153].

Lemma 5.33. The index map δ1 : K1(Aoα R) −→ K0(SAoτ⊗α R) is surjective.

Proof. We know that

0 SB CB C 0ι π

is a short exact sequence of C∗-algebras for any C∗-algebra B. By Proposition 3.26, the sequences

0 SA SB̃ SC 0Sι Sπ

and

0 CA CB̃ CC 0Cι Cπ

are also short exact sequences. So we obtain the following commutative diagram with exact rows and
columns

0 0 0

0 SAoτ⊗α R CAoτ⊗α R Aoα R 0

0 SÃoτ⊗α R CÃoτ⊗α R Ãoα R 0

0 S oτ R C oτ R C∗(R) 0

0 0 0

(92)

where we applied Proposition 4.22 6 times. The action α on Ã is given by α(a+ 1Ã) = α(a) + 1Ã. The
rows are Wiener-Hopf extensions and the columns come from equivariant short exact sequences. For
example, the third column comes from the sequence

0 A Ã C 0ι π

which is equivariant, because

αs(ι(a)) = αs(a+ 0 · 1Ã) = αs(a) + 0 · 1Ã = αs(ι(a))

and
Ids(π(a+ γ · 1Ã)) = Ids(γ) = γ = π(αs(a) + γ · 1Ã) = π(αs(a+ γ · 1Ã))
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for any a ∈ A, γ ∈ C. We now apply the six-term exact sequence 2 times to obtain the following
commutative diagram with exact columns:

K1(S oτ R)

K1(Aoα R) K0(SAoτ⊗α R)

K1(Ãoα R) K0(SÃoτ⊗α R)

K1(C∗(R)) K0(S oτ R)

δ1

δ1

δ1

δ1

(93)

The δ1-rows correspond to the index maps of the rows from (92). The columns correspond to the six-
term exact sequences of the last and first column from (92). Furthermore, the diagram commutes by
Proposition 3.32.
We know that the two bottom δ1-rows are surjective and we must show that the top δ1-row is surjective.
However, as S oτ R ∼= K(L2(R)), we infer from Proposition 3.22 that

K0(S oτ R) ∼= Z

and
K1(S oτ R) ∼= 0.

Proposition 4.32 now yields C∗(R) ∼= C0(R) = SC and thus

K1(C∗(R)) ∼= K1(SC) ∼= K0(C) ∼= Z

by Bott periodicity, Theorem 3.29. As a surjective homomorphism Z −→ Z needs to map 1 to 1, we
infer that the bottom index-map is an isomorphism. Also, K1(S oτ R) ∼= 0 yields that the middle map
in the right column is injective. The proof that the top δ1-row is surjective is thus completed by the next
Lemma.

Lemma 5.34. Suppose that G1, G2, H1, H2,K1,K2 are groups and that we have a commutative diagram
of group homomorphisms

G1 G2

H1 H2

K1 K2

δ1

ϕ1 ϕ2

δ2

ψ1 ψ2

δ3

(94)

such that ϕi(Gi) = ker(ψi) for i = 1, 2. Furthermore, assume that δ2 is surjective, δ3 an isomorphism
and ϕ2 injective. Then δ1 is surjective.

Proof. Let g2 ∈ G2. We must find g1 ∈ G1 with δ1(g1) = g2. Set h2 = ϕ2(g2). As δ2 is surjective, there
is h1 ∈ H1 with

δ2(h1) = h2.

Now, h2 lies in the image of ϕ2, so ψ2(δ2(h1)) = 0. The bottom square commutes, so we obtain
δ3(ψ1(h1)) = 0. But δ3 is an isomorphism, so we must necessarily have ψ1(h1) = 0. Now, because
ϕ1(G1) = ker(ψ1), there is g1 ∈ G1 with

ϕ1(g1) = h1.

We have δ2(ϕ1(g1)) = δ2(h1) = h2. But the top square commutes, so we have ϕ2(δ1(g1)) = h2. Now,
ϕ2(δ1(g1)) = h2 = ϕ2(g2), but ϕ2 is injective, so the only possibility left is δ1(g1) = g2.
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6 Applications and Further Topics

6.1 The Pimsner-Voiculescu Sequence

We are now concerned with crossed Products A oα Z for a C∗-dynamical system (A,Z, α). In this
situation, Z carries the discrete topology, so that α is automatically continuous in the strong topology.
Furthermore, α is determined by it’s value α1 as αn = αn1 . We will identify the action α with the single
automorphism α = α1.

Theorem 6.1 (Pimsner-Voiculescu Sequence). Suppose (A,Z, α) is a C∗-dynamical system. There is a
cyclic six-term exact sequence.

K0(A) K0(A) K0(Aoα Z)

K1(Aoα Z) K1(A) K1(A)

1−α∗ ι∗

ι∗ 1−α∗

(95)

Theorem 6.1 thirst appeared in [3, Theorem 2.4]. The term 1 refers to IdKj(A) : Kj(A) −→ Kj(A). We
have not defined a ∗-homomorphism ι : A −→ Aoα Z. The term ι∗ comes from a short exact sequence

0 I C B 0ι π

with Kj(I) ∼= Kj(A) and Kj(C) ∼= Kj(A oα Z). (In the literature, ϕ∗ is often written instead of both
K0(ϕ) and K1(ϕ).)

6.2 Sketch of the Proof

The following proof is taken from [8, Sections 10.3 and 10.4]. One first needs to relate crossed products
by R with ones by Z. This is achieved by the following Proposition. Let T = {z ∈ C : |z| = 1} denote
the circle.

Proposition 6.2. There is an isomorphism Ẑ ∼= T that is also a homeomorphism.

Proof. See [10, Examples 3.1.3].

The above Proposition allows us to relate the discrete actions by Z to continuous ones using Takai duality.
We can identify T ∼= R/Z. This isomorphism comes from R −→ T, s 7→ ei2πs and is a homeomorphism
whenever we take the quotient topology on R/Z or give it the topology from T ⊆ C.
The following observation allows to reduce crossed products by the circle to ones by the real line.

Lemma 6.3. Suppose that B is a C∗-algebra.

(1) If β : R −→ B is an action and β(n) = IdAut(B) for n ∈ Z, then there is an action β : T −→ Aut(B)

with β(s+ Z) = β(s).

(2) Conversely, for any action β : T −→ Aut(B) there is an action β̃ : R −→ Aut(B) such that β̃ = β.

We will not further distinguish between β, β and β̃.

Definition 6.4. If A is a C∗-algebra and α ∈ Aut(A), we define the mapping torus of α in A as

Mα(A) = {f ∈ C([0, 1], A) : f(1) = α(f(0))}.

if (B, β,T) is C∗-dynamical system, we can again identify the dual action β̂ : Z −→ Aut(B oβ T) with
an automorphism of B oβ T.

Lemma 6.5. Suppose that (B, β,T) is a C∗-dynamical system. Then

B oβ R ∼= Mβ̂(B oβ T).
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Lemma 6.6. If (A,Z, α) is a C∗-dynamical system, there is a short exact sequence

0 SA Mα(A) A 0.ι π

Proof. There is an isomorphism SA ∼= C0((0, 1), A). This isomorphism comes from taking any home-
omorphism σ : (0, 1) −→ R and then sending SA 3 f 7→ f ◦ σ. Then ι is given as the inclusion map
f 7→ f ∈ Mα(A) which is well-defined because α(f(0)) = α(0) = 0 = α(f(1)). Now, π is given by
evaluation at 0, i.e. π(f) = f(0). One then calculates that the sequence above is exact.

Suppose now that (A,Z, α) is a C∗-dynamical system. We set B = Aoα Z. We get an action β = α̂ of
T on B and Boβ T ∼= A⊗maxK(L2(Z)). Furthermore, Boβ R ∼= Mβ̂(BoT). The short exact sequence
from Lemma 6.6 is now of the form

0 S(A⊗max K(L2(Z))) B oβ R A⊗max K(L2(Z)) 0.

We may apply the cyclic six-term exact sequence of K-theory to obtain the following exact sequence:

K0(S(A⊗max K(L2(Z)))) K0(B oβ R) K0(A⊗max K(L2(Z)))

K1(A⊗max K(L2(Z))) K1(B oβ R) K1(S(A⊗max K(L2(Z))))

(96)

The Connes-Thom isomorphism gives us Kj(B oβ R) ∼= K|j−1|(B) for j = 0, 1. Proposition 3.22 and
Bott periodicity, Theorem 3.29 and Proposition 3.28 give us

Kj(S(A⊗max K(L2(Z)))) ∼= K|j−1|(A)

and
Kj(A⊗max K(L2(Z))) ∼= Kj(A).

The sequence now becomes

K1(A) K1(Aoα Z) K0(A)

K1(A) K0(Aoα Z) K0(A)

ι∗

ι∗

Further analysis then shows that both, the index and exponential map are of the form 1− α∗. Rotating
the sequence, we get the Pimsner-Voiculescu sequence from Theorem 6.1.

6.3 Some Computations with the Pimsner-Voiculescu Sequence

In what follows, we conduct some simple applications of Theorem 6.1. These are taken from [8, Section
10.11] and [6, Section 11.3].

Example 6.7. Let α be an automorphism of K = K(H) for some seperable Hilbert space H. Then

K1(K oα Z) ∼= Z

and
K0(K oα Z) ∼= Z.

Proof. We have K1(K) ∼= 0 and K0(K) ∼= Z by Proposition 3.22. The Pimsner-Voiculescu sequence
becomes

Z Z K0(K oα Z)

K1(K oα Z) 0 0

1−α∗ ι∗

ψϕ

ι∗ 1−α∗
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with group homomorphisms ϕ,ψ and we want to show that ϕ, ι∗ are isomorphisms.
The homomorphism 1 − α∗ = 1 − K0(α) : K0(K) −→ K0(K) needs to be 0. We must show that any
rank one projection E ∈ K gets mapped to 0 under 1−K0(α). We will show that E ∼ α(E) by showing
that α(E) is a rank one projection too. If α(E) is not rank one, then α(E) = P +Q for some non-zero
projections P,Q ∈ K. But then E = α−1(P ) + α−1(Q), so one of these terms has to be 0, because E
is rank-one which is a contradiction. The equivalence now comes from taking a unitary U ∈ B(H) that
maps the projecting space of E to the one of α(E). Then V = UE ∈ K and V ∗V = E, V V ∗ = α(E).
Now, ϕ is surjective, because ker(1−α∗) = Z. It is injective, because ker(ϕ) = ι∗(0) = 0. As 1−α∗ = 0,
ι∗ is injective. But ι∗(Z) = ker(ψ) = K0(K oα Z). Thus, ϕ and ι∗ are isomorphisms.

We will now use the Fourier transformation to calculate the K-theory of the circle.

Example 6.8. The K-theory of C(T) is Kj(C(T)) ∼= Z for j = 0, 1.

Proof. Apply Theorem 4.32, to get C(S1) ∼= CoId Z. The claim follows from Example 6.7.

We may extend this Example by using the Pimsner-Voiculescu sequence again to calculate the K-theory
of the n-torus Tn, see [15, Example 8.5.2].

Example 6.9. The K-theory of C(Tn) is Kj(C(Tn)) ∼= Z2n−1

.

Proof. We can write C(Tn) ∼= C(Tn−1) oId Z. indeed,

C(Tn−1) oId Z ∼= C(Tn−1)⊗max (CoId Z) ∼= C(Tn−1)⊗max C(T)

by Proposition 4.23. Furthermore, C(Tn−1)⊗maxC(T) ∼= C(Tn) by Proposition 2.20. Now, assume that
the statement is true for n. The Pimsner-Voiculescu sequence takes the form

Z2n−1 Z2n−1

K0(C(Tn+1))

K1(C(Tn+1)) Z2n−1 Z2n−1

1−Id∗ ι∗

ψϕ

ι∗ 1−Id∗

But 1− Id∗ = 0, so we may extract short exact sequences

0 Z2n−1

K0(C(Tn+1)) Z2n−1

0
ι∗ ψ

and

0 Z2n−1

K1(C(Tn+1)) Z2n−1

0
ι∗ ϕ

.

Both sequences are split exact. For example the upper one is, because we can find λ(ek) such that

ψ(λ(ek)) = ek for the canonical unit vectors ek ∈ Z2n−1

. Then λ extends to a homomorphism with

ψ ◦ λ = IdZ2n−1 . We can infer K0(C(Tn+1) ∼= Z2n−1 ⊕ Z2n−1 ∼= Z2n , see [6], Excercise 1.1. Also,

K1(C(Tn+1) ∼= Z2n follows from the same argument.

Given a C∗-algebra A, one can use that the map (0, 1) 3 s 7→ ei2πs ∈ T is a homeomorphism onto it’s
image in order to construct a split exact sequence

0 SA C(T, A) A 0

by using that R is homeomorphic to (0, 1). The split arrow comes from the missing point in the image.
Then Bott periodicity, Theorem 3.29 and Proposition 3.28 yield the example above using Lemma 3.11.
However, with the Pimsner-Voiculescu sequence we did not need to construct a sequence of C∗-algebras.
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Example 6.10. Let ϑ be an irrational number. We can define an action of Z on C(T) by rotating
around the angle ei2πϑ. That is α(f)(z) = f(e−2πiϑz). The crossed product Aϑ = C(T) oα Z is called
the irrational rotation algebra or the noncommutative 2-torus. It’s K-theory is

Kj(Aϑ) ∼= Z2

for j = 0, 1.

Proof. We use the Pimsner-Voiculescu sequence again.

Z Z K0(Aθ)

K1(Aθ) Z Z

1−α∗ ι∗

ι∗ 1−α∗

The term 1−α∗ needs to be 0, as we can define a homotopy of automorphisms αt(f)(s) = f(ei2πθ(t−1)),
see Proposition 3.21 or compute that p ∼h α(p). We can again extract split-exact sequences

0 Z Kj(Aθ) Z 0

for j = 0, 1 and conclude that Kj(Aθ) ∼= Z2.

It is a striking feature of the Pimsner-Voiculescu sequence that we could compute the K-theory of Aθ in
Example 6.10 and of K oα Z in Example 6.7 without knowing anything about the internal structure of
these crossed product C∗-algebras.
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6.4 Further Topics

There are many further topics related to K-theory and crossed products. We will only mention a few.
In Example 6.10, we have computed the K-theory of irrational rotation algebras using the Pimsner-
Voiculescu sequence. In fact, Aθ is one of the most interesting C∗-algebras and a lot of work has been
devoted to determining the structure of Aθ in the past. For example Aθ is simple and thus a building
block of all the C∗-algebras, see [11, Proposition 2.56]. One may associate the so-called canonical trace
to Aθ. It is defined as

τ(f) =

∫
Tf(0)(z)dµT(z)

for f ∈ Cc(Z, C(T)). This functional can be extended to Mn(Aθ) by computing the usual matrix trace,
i.e. τ((fij)) =

∑
k

τ(fkk). If f, g ∈ Mn(Aθ), then τ(fg) = τ(gf). In particular, τ respects Murray-von

Neumann equivalence. One may then conclude that τ induces a homomorphism K0(τ) : K0(Aθ) −→ R,
see [6, Section 5.2]. In [3], the range of K0(τ) is being computed. It is Z+ θ ·Z ∼= Z2. In [16], a complete
classification of the Aθ is derived from that.
Our definition of crossed products is not the only possible one. Given a C∗-dynamical system (A,G, α),
one may form the reduced crossed product A or,α G. The norm is not given by the supremum over
all seminorms induced by covariant representations, but by a particular representation. Whenever G
is an amenable group, both crossed product definitions coincide. (One may take this as the definition
of amenability.) But in general, one can only conclude that there is a surjective ∗-homomorphism
π : Aoα G −→ Aor,α G. Many properties of universal crossed products carry over to reduced ones, see
[11, Section 7.2 and Appendix A].
A related notion that has been subject of research in recent years is the one of C∗-uniqueness. A
(discrete) group is called C∗-unique if there is exactly one C∗-norm on the convolution algebra Cc(G,C)
with respect to the trivial action on C. If a group G is C∗-unique, it is also amenable, but the converse
is not true. Indeed, the group Z is amenable, but it is not C∗-unique. That is, because the convolution
algebra of Z consists of (finite) formal sums

∑
n∈Z

a(n)δn with a(n) ∈ C. One may identify such a sum

with the function f(z) =
∑
n∈Z

a(n)zn, z ∈ T. By taking any infinite closed subset F ⊆ T and setting

||f ||F = sup
z∈F
|f(z)|, one obtains a C∗-norm on Cc(Z,C), because polynomials with an infinite 0-set are

identically 0. If G is finite, then Cc(G,C) is finite dimensional, so any C∗-norm is complete and the
C∗-norm is thus unique. A more interesting example may be found in [17].
Our notion of K-theory as a pair of groups associated to a C∗-algebra may be improved. One may form
a bivariant K-theory i.e. a theory that takes two C∗-algebras as input instead of just one. The groups
are KK0(A,B) and KK1(A,B) and the theory is often referred to as KK-theory or Kasparov-theory.
Ordinary K-theory is a special case of KK-theory and there is more structure in the bivariant version
than in the univariant one. Furthermore, there are generalizations of the Connes-Thom isomorphism
and the Pimsner-Voiculescu sequence. The theory was originally developed in [18] and a survey may be
found in [8, Chapter 8].
The K-theory of C∗-algebras is a generalization of K-theory for locally compact Hausdorff spaces. Of
course, it has been tried to develop noncommutative analogues of other cohomology theories. There is a
generalization of De-Rham cohomology called cyclic cohomology.
Cyclic cohomology is part of a much bigger framework called noncommutative geometry. This theory is
a noncommutative analogue of differential geometry. In noncommutative geometry, the C∗-algebra Aθ
functions as the prototype of a noncommutative Riemannian manifold. A survey may be found in [19].
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Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit der Abgabe der
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