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1 Introduction
The Rellich-Kondrachov compactness theorem says the embeddings

W j+m,q(Ω) ↪→ W j,r(Ω)

are compact embeddings of Sobolev spaces if Ω is a bounded open subset of the space
RN that has the cone property and if either mq ≥ N or if mq < N and 1 ≤ r < qN

N−mq
(cf. [1, Theorem 6.2]). In this case it follows for the Hilbert spaces Hk(Ω) = W k,2(Ω)
and Hk

0 (Ω) = W k,2
0 (Ω) that the embeddings

Hk(Ω) ↪→ H l(Ω), Hk
0 (Ω) ↪→ H l

0(Ω)

are compact if k > l. The Rellich-Kondrachov theorem is fundamental for the study of
elliptic boundary value problems. The sets of non-zero singular values of these compact
embeddings are discrete bounded sets. The result was improved by Maurin [17] in the
sense that the embeddings are of Hilbert-Schmidt class (that means the singular values
are even square summable) if k − l > N

2 and the boundary ∂Ω fulfills Sobolev conditions
(see also [1]). This was useful for eigenvalue distributions, eigenfunction expansions
corresponding to differential operators and integral representations of Green's functions
(cf. [13],[1]). From Maurin's theorem it follows immediately that these embeddings are
even of trace class if k − l > N , i.e. their singular values yield sequences in `1(N). The
question arises if there is a way to characterize the embeddings of Sobolev spaces with
singular values yielding sequences in `p(N) for 0 < p <∞. Classes of mappings with these
properties are called p-Schatten classes. p-Schatten classes were first studied by Robert
Schatten and John von Neumann as ideals of the ring of bounded linear operators on a
Hilbert space H. The characterization was achieved by Gramsch [13]: The embeddings
are of p-Schatten class for 0 < p <∞ if and only if k − l > N

p
. While Maurins proof is

based on Sobolev's Lemma Gramsch uses the knowledge of an orthogonal basis of the
Sobolev spaces on N -dimensional tori TN and then factorizes Ω over TN via a partition
of one.
In [14] Hanche-Olsen and Holden achieve a very simple characterization of totally bounded
subsets of the spaces `q(N) for 1 ≤ q <∞ thus characterizing the compact embeddings

X ↪→ `q(N)

where X is some metric space. In [21] Pietsch defines generalized p-Schatten classes
of mappings between Banach spaces. One would like to have a characterization of the
p-Schatten embeddings

X ↪→ `q(N)
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where X is some Banach space over C or at least a characterization of the classical
p-Schatten embeddings

H ↪→ `2(N)

where H is some complex separable Hilbert space. Our aim is to achieve this charac-
terization. We do this by applying a very general result on p-Schatten mappings to
embeddings.
In [11] Gohberg and Markus characterize the p-Schatten classes of operators on one
Hilbert space H. It is shown that a compact operator H on a Hilbert space H is of
p-Schatten class if and only if for all orthonormal bases (2 ≤ p <∞)/some orthonormal
basis (0 < p ≤ 2) {φj} of H one has∑

j

|Hφj|p <∞. (1.1)

Their proof is quite involved. We give a simpler proof for the characterization of p-Schatten
classes of compact mappings

A : H1 → H2

where H1 and H2 are complex separable Hilbert spaces showing that A is a p-Schatten
mapping if and only if for all orthonormal bases (2 ≤ p <∞)/some orthonormal basis
(0 < p ≤ 2) {φj} of H1 one has

{|Aφj|H2}∞j=1 ∈ `p(N) (1.2)

where |.|H2 is the norm induced by the inner product of H2.
In the range 2 ≤ p <∞ the proof involves ideas that are elaborated on by Simon in [25]
and are based on a theorem that is essentially due to Markus . In the range 0 < p < 2
an idea by Dunford and Schwartz [8] plays a major roll. This very general result can
be applied to embeddings. In this way it is possible to give a characterization of the
p-Schatten embeddings H1 ↪→ `2(N). However it is in general not possible to describe all
orthonormal bases of a space H1 ⊂ `2(N). If an orthonormal basis is known it turns out
to be useful especially in the range 0 < p ≤ 2 for what we give several examples.
At this point I would like to thank Professor Mugnolo for giving me this interesting topic
and for his idea to apply the theory to Sobolev spaces on sparse graphs (see section 7.3).
I would like to thank Dr. Kerner for many suggestions for improvement. Finally I want
to thank my family for their support.
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2 Preliminaries
In this chapter we present the basic notions that are needed to define p-Schatten
operators, p-Schatten mappings and p-Schatten embeddigs. Throughout this chapter and
the following chapters H, H1 and H2 are complex separable Hilbert spaces. Since our
focus is on infinite dimensional spaces we assume these spaces to be infinite dimensional.
Most results hold for finite dimensional spaces too. We assume that the inner products
are linear in the first and conjugate linear in the second factor and denote them by
(., .), (., .)H1 and (., .)H2 and the induced norms by |.|,|.|H1 and |.|H2 . We start with the
following definitions:

Definition 1: We say for a bounded linear operator H ∈ L(H) it is positive, in signs
H ≥ 0 , if (φ,Hφ) ≥ 0 for all φ ∈ H.

For the next definition we recall that since φ 7→ (Hφ,ψ) is a bounded linear functional
for each ψ Riesz's representation theorem implies the existence of the operator H∗ ∈ L(H)
satisfying (Hφ,ψ) = (φ,H∗ψ) and this operator is called the adjoint operator.

Definition 2: H ∈ L(H) is called self-adjoint if H = H∗.

The next lemma characterizes the self-adjoint operators by their diagonal values.

Lemma 1: H is self-adjoint if and only if (φ,Hφ) ∈ R for all φ ∈ H.

Proof: If H is self-adjoint we have:

(φ,Hφ) = (Hφ, φ) = (φ,Hφ)

for all φ ∈ H and thus (φ,Hφ) ∈ R for all φ ∈ H. If (φ,Hφ) ∈ R for all φ ∈ H we have:

(φ, (H −H∗)φ) = (φ,Hφ)− (φ,H∗φ) = (φ,Hφ)− (Hφ, φ) = (φ,Hφ)− (φ,Hφ) = 0

and by polarization:

(φ, (H −H∗)ψ) = 1
4((φ+ ψ, (H −H∗)(φ+ ψ))− (φ− ψ, (H −H∗)(φ− ψ)))

+ i

4((φ+ iψ, (H −H∗)(φ+ iψ))− (φ− iψ, (H −H∗)(φ− iψ))) = 0

for all φ, ψ ∈ H, e.g. φ = (H − H∗)ψ, thus |(H − H∗)ψ| = 0 for all ψ and so
H −H∗ = 0.

Hence every positive operator H ∈ L(H) is self-adjoint. Without proof we cite [23,
Theorem VI.9] the so called “square root lemma”:
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Theorem 2: For every positive operator H ∈ L(H) there is a unique positive operator
H1 ∈ L(H) satisfying H2

1 = H and H1 commutes with every H2 ∈ L(H), that commutes
with H.

Now let H1,H2 be two complex, separable Hilbert spaces and define in analogy to the
case of one Hilbert space:

Definition 3: For a bounded linear mapping A : H1 → H2 its adjoint mapping A∗ :
H2 → H1 is the bounded linear mapping satisfying

(Aφ, ψ)H2 = (φ,A∗ψ)H1

for all φ ∈ H1, ψ ∈ H2.

Though all separable Hilbert spaces are isomorphic, we follow Maurin [17] in distin-
guishing bounded linear mappings between Hilbert spaces from operators on one Hilbert
space. We observe:

Lemma 3: A∗A ∈ L(H1) is a positive operator, that is self-adjoint and has a positive
and thus self-adjoint square root.

Proof: This follows by Lemma 1 and Theorem 2.

Definition 4: For a bounded linear mapping A : H1 → H2 we define the positive
mapping |A| ∈ L(H1) by |A| = (A∗A) 1

2 .

We observe, that for every φ ∈ H1 :

||A|φ|2H1 = (|A|φ, |A|φ)H1 = (A∗Aφ, φ)H1 = (Aφ,Aφ)H2 = |Aφ|2H2 . (2.1)

In the next step we factorize A where one factor is |A| and the other factor is a partial
isometry. We recall that for a mapping U : H1 → H2 the kernel KernU is a closed
subspace, thus has an orthogonal complement that we denote by KernU⊥. We denote
the range of U by RanU .

Definition 5: We call U : H1 → H2 a partial isometry , if U |KernU⊥ : KernU⊥ → RanU
is an isometry.

In this case RanU is closed:

Lemma 4: If U : H1 → H2 is a partial isometry its range RanU is closed.

Proof: If {ψn} is a Cauchy sequence in RanU and ψn → ψ in H2, then {φn} given by
φn = (U |KernU⊥)−1ψn is a Cauchy sequence in KernU⊥ ⊆ H1, because

|φn − φm|H1 = |(U |KernU⊥)−1(ψn − ψm)|H1 = |ψn − ψm|H2 → 0, n,m→∞.

Thus {φn} has a limit φ in KernU⊥, which is closed. It follows:

|φ− φn|H1 = |U(φ− φn)|H2 = |Uφ− ψn|H2 → 0, n→∞,

and by uniqueness of the limit ψ = Uφ ∈ RanU .
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Now we are interested in the adjoint of a partial isometry. It turns out that it is again
a partial isometry.

Lemma 5: If U : H1 → H2 is a partial isometry its adjoint U∗ : H2 → H1 is a partial
isometry.

Proof: By what we have just seen:

H2 = RanU ⊕RanU⊥.

So for every ψ ∈ H2 there exist unique φ ∈ KernU⊥, ρ ∈ RanU⊥, such that

ψ = Uφ+ ρ. (2.2)

Now define U ′ : H2 → H1 by U ′(ψ) = φ, then KernU ′ = RanU⊥ or equivalently
RanU = KernU ′⊥ and (U ′(Uφ), U ′(Uφ)) = (φ, φ) = (Uφ, Uφ) for every Uφ ∈ RanU .
That means U ′|KernU ′⊥ is an isometry. We further have for ψ = Uφ + ρ ∈ H2 and
φ1 = φ1

1 + φ2
1 ∈ H1, where φ1

1 ∈ KernU⊥, φ2
1 ∈ KernU(H1 = KernU⊥ ⊕KernU):

(ψ,Uφ1)H2 = (Uφ+ ρ, Uφ1)H2 = (Uφ,Uφ1
1)H2 = (φ, φ1

1)H1 = (U ′ψ, φ1
1)H1 = (U ′ψ, φ1)H1 ,

where the latter identity follows from U ′ψ ∈ KernU⊥.
So U ′ = U∗ is a partial isometry with initial space KernU ′⊥ = RanU and final space
RanU ′ = KernU⊥.

Note that U∗U is an orthogonal projection on KernU⊥ ⊆ H1 and UU∗ is an orthogonal
projection on RanU ⊆ H2. We use these results to prove the existence of a polar
decomposition of a bounded linear mapping as described in the following theorem (cf. [23,
Theorem VI.10]). The polar decomposition will play an important roll in our discussion.

Theorem 6: For every bounded linear mapping A : H1 → H2 there exists a unique
partial isometry U : H1 → H2, such that A = U |A| and KernU = KernA

Proof: We first define U0 : Ran|A| → RanA by U0(|A|φ) = Aφ. If |A|φ = |A|ψ, i.e.
||A|(φ− ψ)|H1 = 0, it follows by equation 2.1 |A(φ− ψ)|H2 = 0, i.e. Aφ = Aψ, so U0 is
well-defined. And again by equation 2.1 U0 is an isometry.Because U0 is an isometry, it can
be extended to an isometry U1 : Ran|A| → RanA. Now sinceH1 = Ran|A|⊕Ran|A|⊥the
mapping U : H1 → H2 defined by U |Ran|A| = U1 and U |

Ran|A|
⊥ = 0 is a partial isometry

on H1.
If (|A|φ, ψ)H1 = 0 for all φ ∈ H1it follows (φ, |A|ψ)H1 = 0 and so |A|ψ = 0 and similarly ,
if |A|ψ = 0 it follows (|A|φ, ψ)H1 = 0 for all φ ∈ H1. So Ran|A|⊥ = Kern|A| and again
by 2.1 KernA = Kern|A|.Thus KernU = KernA and clearly A = U |A|.
H1 = Ran|A| ⊕Ran|A|⊥ together with this implies, that U is unique.

Note that |A| = U∗A.
We say a bounded linear mapping is of finite rank, if its image is finite dimensional.
We now consider compact mappings (cf. [7, Corollary 6.2]):
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Theorem 7: For a bounded linear mapping A : H1 → H2 the following two conditions
are equivalent:
(i) A is a limit (in the operator norm) of finite rank mappings
(ii) A({φ ∈ H1 : |φ|H1 ≤ 1}) is precompact in H2

Proof: It is well known, that the unit ball in a Banach space is precompact exactly if
this space is of finite dimension. Thus every finite rank mapping has property (ii). So if
A has property (i), for every ε > 0 there exist n(ε),m(ε) ∈ N, An(ε) : H1 → H2 of finite
rank and ψ1, ..., ψm(ε) ∈ H2 such that

||An(ε) − A|| <
ε

2
where ||.|| denotes the operator norm and

An(ε)(B1
H1(0)) ⊂

m(ε)⋃
j=1

B
ε
2
H2(ψj)

where Bα
Hi(η) is the ball of radius α centered at η in Hi. Then

A(B1
H1(0)) ⊂

m(ε)⋃
j=1

Bε
H2(ψj).

So A has property (ii).
Conversely if A has property (ii), i.e.

A(B1
H1(0)) ⊂

m(ε)⋃
j=1

Bε
H2(ψj)

for some arbitrarily small ε > 0 and n <∞, then let P be the projection on the finite
dimensional subspace spanned by ψ1, ..., ψn ∈ H2, then PA is of finite rank and for any
φ ∈ B1

H1(0) there is some jφ ∈ {1, ..., n} such that

|Aφ− ψjφ |H2 < ε

and thus
|PAφ− Pψjφ|H2 = |PAφ− ψjφ|H2 < ε,

because P is a contraction. This all together implies

||PA− A|| < 2ε,

i.e. A has property (i).

Since these two properties of bounded linear mappings between Hilbert spaces are
equivalent by the above theorem compactness might be defined by property (i) as well as
by property (ii). However in the more general case of Banach spaces (ii) does not imply
(i) and the problem is known as the “approximization problem”. ( For this see Remark 1
to Corollary 6.2 in [7] and Section 1.g in [15].) We choose property (i) to define compact
mappings.
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Definition 6: A mapping A : H1 → H2 is called compact if it is the limit of finite rank
mappings.

If J∞(H1,H2) denotes the set of compact linear mappings then the following Lemma
holds.

Lemma 8: For Hilbert spaces H0,H1,H2,H3 and bounded linear mappings B : H0 → H1,
A ∈ J∞(H1,H2) and a bounded linear mapping C : H2 → H3 we have AB ∈ J∞(H0,H2),
CA ∈ J∞(H1,H3) and CAB ∈ J∞(H0,H3). .

Proof: If A is compact there exist finite rank operators An : H1 → H2 so that

||A− An|| → 0, n→∞.

Clearly AnB : H0 → H2 are finite rank operators and

||AB − AnB|| ≤ ||A− An||||B|| → 0, n→∞.

The rest is shown in the same way.

So in the case of compact operators J∞(H,H) = J∞(H) is a two sided ideal in the
ring of bounded linear operators. This explains the notation. From Lemma 8 we see that
if A : H1 → H2 is compact then |A| = U∗A ∈ L(H1) is compact and if |A| is compact
then A = U |A| is compact. Moreover if A is compact |A| is a compact, positive and thus
self-adjoint linear operator. To such operators applies the following Theorem (cf. [7,
Theorem 6.8 and Theorem 6.11]).We recall that the spectrum of an operator H ∈ L(H)
is defined as the complement of its resolvent set, i.e. σ(H) = C\ρ(H) where

ρ(H) = {λ ∈ C : Kern(λidH −H) = {0} and Ran(λidH −H) = H}.

Note that by the open mapping theorem the operators λidH−H have a bounded inverse
for λ ∈ ρ(H).

Theorem 9: If H ∈ J∞(H) is self-adjoint then there exists an orthonormal basis of H
consisting of eigenvectors of H and the spectrum consists of 0 and the non-zero eigenvalues
of H and either

σ(H) = {0} i.e. H = 0

or
σ(H)\{0} is finite

or
σ(H)\{0} is a sequence converging to 0.

If σ(H)\{0} is finite there exists a basis consisting of eigenvectors where only a finite
number of these eigenvectors correspond to non-zero eigenvalues. By applying the operator
H to this basis one sees H is a finite rank operator.

9



We apply this theorem to the operator |A| ∈ L(H1) connected to the compact linear
mapping A : H1 → H2 as defined in Definition 4. Proofs can be found in almost every
book on functional analysis like in [7] as cited above . The following definition and the
following theorem are important for the discussion of p-Schatten mappings.

Definition 7: If A : H1 → H2 is a compact linear mapping then the elements of the
spectrum of |A| ∈ L(H1) are denoted σj(A) and are called the singular values of A.

In Definition 7 the index j is assumed to run through some set J . As we have seen |A|
is compact if A is compact and in this case the spectrum is discrete by Theorem 9. So
the index can be assumed to run through N. We will consider the sequence {σj(A)}∞j=1 as
the sequence of the singular values in non-increasing order and that implies we consider
the sequence of the non-zero singular values if σ(|A|)\{0} is infinite which in this case
is a sequence converging to 0. Note that since |A| is positive the singular values are
non-negative real numbers. Now we are able to expand A as described below (cf. [25,
Theorem 1.4] ).

Theorem 10: If A ∈ J∞(H1,H2) then A has a norm convergent expansion

A =
ω∑
j=1

σj(A)(., φj)H1ψj (2.3)

where ω ∈ N ∪ {0,∞}, σj(A) are the non-zero singular values of A in non-increasing
order counting multiplicities, σ2

j (A) are the non-zero eigenvalues of A∗A and AA∗ in
non-increasing order counting multiplicities, {φj}ωj=1 is an orthonormal family in H1
consisting of the corresponding eigenvectors of A∗A and {ψj}∞j=1 is an orthonormal family
in H2 consisting of the corresponding eigenvectors of AA∗.

Proof: If A = 0 we choose ω = 0 and the right hand side is understood as an empty
sum. If A 6= 0 then it follows from Theorem 9 that there is an expansion

|A| =
ω∑
j=1

σj(A)(., φj)H1φj

where 1 ≤ ω ≤ ∞, σj(A) are the non-zero singular values of A in non-increasing order
and φj the corresponding orthonormal eigenvectors. Applying the partial isometry
U : H1 → H2 derived from the polar decomposition of A to the equation yields

A = U |A| =
ω∑
j=1

σj(A)(., φj)H1Uφj

and because U is an isometry on Ran|A| and clearly φj ∈ Ran|A| it follows that {ψj}ωj=1
where ψj = Uφj defines an orthonormal family. Furthermore A∗Aφj = |A|2φj = σj(A)2φj
for j = 1, ..., ω shows {φj} are the orthonormal eigenvectors of A∗A to the eigenvalues
σj(A)2 and

AA∗ψj = U |A| A∗U︸ ︷︷ ︸
=(U∗A)∗=|A|∗=|A|

φj = U |A|2φj = σj(A)2Uφj = σj(A)2ψj
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for j = 1, ..., ω shows {ψj}ωj=1 are the orthonormal eigenvectors of AA∗ to the eigenvalues
σj(A)2 .

We are now able to define the p-Schatten classes for 0 < p <∞.

Definition 8: A compact linear mapping A : H1 → H2 is a p-Schatten mapping if
∞∑
j=1

σj(A)p <∞,

i.e. if {σj(A)}∞j=1 ∈ `p(N).
The p-Schatten class is the set of all p-Schatten mappings:

Jp(H1,H2) = {A : H1 → H2 : A is compact, linear and {σj(A)}∞j=1 ∈ `p(N)}.

An operator A ∈ Jp(H) is called a p-Schatten operator and an embedding A : H1 ↪→ H2,
i.e. an injective map where we identify the elements of H1 with their images under A is
called a p-Schatten embedding if A ∈ Jp(H1,H2). Finally J1(H1,H2) is called the trace
class and J2(H1,H2) is called the Hilbert-Schmidt class.

One can define more generally for two Banach spaces X and Y and a bounded
linear mapping A : X → Y the sets Lj(X, Y ) of all bounded linear mappings with a
j-dimensional range and the numbers

αj(A) = inf
B∈Lj(X,Y )

||A−B||, j = 0, 1, 2, ...

and then define the classes `p(X, Y ) as the sets of all bounded linear mappings A that
satisfy ∑∞j=1 αj(A)p < ∞ for 0 < p < ∞. Only if X and Y are Hilbert spaces and
1 ≤ p < ∞ one can show in general that these classes are Banach spaces. In this
case αj(A) = σj+1(A) for j = 0, 1, 2, ... where the singular values are numbered in
non-increasing order and `p(X, Y ) = Jp(X, Y ). For this see [13] , [21, Theorem 5] and
[2].
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3 Properties of the p-Schatten classes

3.1 General Properties
In this chapter we prove some results that describe the classes Jp. Many of the properties
of these classes mirror properties of the well known sequence spaces `p(N). By the
following definition the classes Jp(H1,H2) are equipped with a “ norm ”:

Definition 9: For 0 < p <∞ define the map |.|p : Jp(H1,H2)→ [0,∞) by

|A|p =
 ∞∑
j=1

σj(A)p
 1

p

.

We need to characterize the singular numbers using the minimax theorem which we
cite here for this purpose (cf. [8, Theorem X.4.3] ):

Theorem 11: For a compact self-adjoint operator H ∈ L(H) its eigenvalues λjin non-
increasing order are given by

λj+1 = min
φ1,...,φj∈H

max
|φ|=1

(φ,φ1)=...=(φ,φj)=0

(Hφ, φ), j ≥ 0.

Because A∗A ∈ J∞(H1) if A is compact this theorem can be applied to H = A∗A (cf.
[8, Lemma XI.9.2]and [25, Theorem 1.5] ).

Lemma 12: The singular values σj(A) of a compact linear mapping A : H1 → H2 in
non-increasing order are given by

σj+1(A) = min
φ1,...,φj∈H1

max
|φ|=1

(φ,φ1)=...=(φ,φj)=0

|Aφ|H2 (3.1)

j ≥ 0.

Proof: Equation 3.1 is clearly equivalent to

σ2
j+1(A) = min

φ1,...,φj∈H1
max
|φ|=1

(φ,φ1)=...=(φ,φj)=0

|Aφ|2H2

and because |Aφ|2H2 = (A∗Aφ, φ)H1 this is exactly the minimax theorem applied to
A∗A.
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This characterization is used to show the following lemma which in turn will be used to
prove a Hölder inequality, a not yet perfect “ triangle inequality ” and an “ ideal property
” (cf. [8, Corollary XI.9.3] and [25, Theorem 1.6 and Theorem 1.7] ). The inequalities
that are stated in the lemma go back to Fan (cf. [10, Theorem 2]).

Lemma 13: If H ∈ J∞(H1) and A ∈ J∞(H1,H2) then

σk+l+1(AH) ≤ σk+1(A)σl+1(H). (3.2)

If A1, A2 ∈ J∞(H1,H2) then

σk+l+1(A1 + A2) ≤ σk+1(A1) + σl+1(A2). (3.3)

If A ∈ J∞(H1,H2) and B : H0 → H1 and C : H2 → H3 are bounded then

σk(AB) ≤ σk(A)||B|| and σk(CA) ≤ ||C||σk(A), (3.4)

where ||.|| denotes the appropriate operator norms.

Proof: By equation 3.1 the inequalities

σk+l+1(AH) = min
φ1,...,φk+l∈H1

max
|φ|=1

(φ,φ1)=...=(φ,φk+l)=0

|AHφ|H2

≤ min
φ1,...,φk+l

max
|φ|=1

(φ,H∗φ1)=...=(φ,H∗φk)=...=
(φ,φk+1)=...=(φ,φk+l)=0

|AHφ|H2

= min
φ1,...,φk+l

max
(Hφ,φ1)=...=(Hφ,φk)=0|
(φ,φk+1)=...=(φ,φk+l)=0

|A(Hφ)|H2

|Hφ|H1

|Hφ|H1

|φ|H1

≤ ( min
φ1,...,φk

max
|ψ|=1

(ψ,φ1)=...=(ψ,φk)=0

|Aψ|H2)( min
φk+1,...,φk+l

max
|φ|=1

(φ,φk+1)=...=(φ,φk+l)=0

|Hφ|H1)

= σk+1(A)σl+1(H)
prove assertion 3.2.
Again by 3.1 the inequalities

σk+l+1(A1 + A2) = min
φ1,...,φk+l∈H1

max
|φ|=1

(φ,φ1)=...=(φ,φk+l)=0

|(A1 + A2)φ|H2

≤ min
φ1,...,φk+l∈H1

max
|φ|=1

(φ,φ1)=...=(φ,φk+l)=0

(|A1φ|H2 + |A2φ|H2)

≤ min
φ1,...,φk∈H1

max
|φ|=1

(φ,φ1)=...=(φ,φk)=0

|A1φ|H2 + min
φk+1,...,φk+l∈H1

max
|φ|=1

(φ,φk+1)=...=(φ,φk+l)=0

|A2φ|H2

= σk+1(A1) + σl+1(A2)

13



prove assertion 3.3.
Finally σk(CA) ≤ ||C||σk(A) for bounded C and compact A is clear from 3.1 and
|CAφ|H3 ≤ ||C|||Aφ|H2 for every φ ∈ H1.
From Theorem 10 it follows that A∗A and AA∗ have the same eigenvalues counting
multiplicities. This implies σk(A) = σk(A∗) and thus

σk(AB) = σk(B∗A∗) ≤ ||B∗||σk(A∗) = ||B||σk(A)

where we used the facts that A is compact if and only if A∗ is compact (a theorem due
to Schauder) and that ||A|| = ||A∗|| (cf. [3, Theorem 10.1 and Theorem 10.6] and [7,
Theorem 6.4] ).

One could have also used formula 3.1 to define singular values for non-compact
mappings. In this case 3.4 would have been a simple consequence of 3.2 as from 3.1 one
sees immediately σ1(A) = ||A|| (cf. [8, Corollary XI.9.4]).
From the inequalities given in Lemma 13 we can deduce the following theorem which
already gives some results concerning the algebraic structure of the p-Schatten classes
(cf. [8, Lemma XI.9.9])

Theorem 14: Let 0 < p1, p2 < ∞. If T ∈ Jp1(H1) and B ∈ Jp2(H1,H2) then A =
BT ∈ Jp(H1,H2) where 1

p
= 1

p1
+ 1

p2
and

|A|p ≤ 2
1
p |B|p1|T |p2 . (3.5)

If 0 < p <∞ and A1, A2 ∈ Jp(H1,H2) then A1 + A2 ∈ Jp(H1,H2) and

|A1 + A2|p ≤ 2
1
p |A1|p + 2

1
p |A2|p for p ≥ 1 (3.6)

and
|A1 + A2|pp ≤ 2|A1|pp + 2|A2|pp for 0 < p < 1. (3.7)

If 0 < p < ∞ , A ∈ Jp(H1,H2) and B : H0 → H1 and C : H2 → H3 are bounded then
AB ∈ Jp(H0,H2) and CA ∈ J (H1,H3) and

|AB|p ≤ |A|p||B|| and |CA|p ≤ ||C|||A|p. (3.8)

Proof: By Lemma 13 3.2 and the general Hölder inequality for sequences
 ∞∑
j=0

σ2j+1(A)p
 1

p

≤

 ∞∑
j=0

(σj+1(B)σj+1(T ))p
 1

p

≤

 ∞∑
j=0

σj+1(B)p1

 1
p1
 ∞∑
j=0

σj+1(T )p2

 1
p2

14



and  ∞∑
j=0

σ2j+2(A)p
 1

p

≤

 ∞∑
j=0

σj+1(B)p1

 1
p1
 ∞∑
j=0

σj+1(T )p2

 1
p2

.

This implies

∞∑
j=0

σ2j+1(A)p +
∞∑
j=0

σ2j+2(A)p ≤ 2
 ∞∑
j=0

σj+1(B)p1


p
p1
 ∞∑
j=0

σj+1(T )p2


p
p2

.

Taking the 1
p

'th power completes the proof of inequality 3.5.
By Lemma 133.3 and Minkowski's inequality we get

 ∞∑
j=0

σ2j+1(A1 + A2)p
 1

p

≤

 ∞∑
j=0

σj+1(A1)p
 1

p

+
 ∞∑
j=0

σj+1(A2)p
 1

p

and  ∞∑
j=0

σ2j+2(A1 + A2)p
 1

p

≤

 ∞∑
j=0

σj+1(A1)p
 1

p

+
 ∞∑
j=0

σj+1(A2)p
 1

p

and so
∞∑
j=1

σj(A1 + A2)p ≤ 2


 ∞∑
j=0

σj+1(A1)p
 1

p

+
 ∞∑
j=0

σj+1(A2)p
 1

p


p

.

Taking the 1
p

'th power completes the proof of inequality 3.6.
In the case 0 < p < 1 the same argument and the inequality |x+y|p`p(N) ≤ |x|

p
`p(N) + |y|p`p(N)

valid in the metric spaces `p(N) prove 3.7.
Finally by Lemma 133.3

∞∑
j=1

σj(AB)p ≤
∞∑
j=1

σj(A)p||B||p = ||B||p
∞∑
j=1

σj(A)p

and taking the 1
p

'th power proves the first inequality in 3.8.The second is shown in the
same way.

From Theorem 14 it is easy to deduce that the p-Schatten classes Jp(H1,H2) are
C-vector spaces and that the operator classes Jp(H) are two sided ideals in the ring of
bounded operators L(H). For 1 ≤ p <∞ the p-Schatten classes are even Banach spaces
with respect to the norms |.|p. The difficulty here is to prove the triangle inequality. In
chapter 6 we will prove that the mappings |.|p are obtained by maximizing ( p ≥ 2 ) or
minimizing ( p<2 ) the expressions (∑∞j=1 |Aφj|

p
H2)

1
p where the maximum or minimum

is taken over all orthonormal systems {φj}. But this means the `p(N)-norms of the
sequences {Aφj} are maximized or minimized. For p ≥ 2 the triangle inequality follows
immediately from this and Minkowski's inequality. This idea doesn't work for 1 ≤ p < 2.
Since we don't need the Banach space property in our further discussion we will omit
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the proof of the triangle inequality for 1 ≤ p < 2. We will present the proof for the case
p ≥ 2 because it shows a nice application of Corollary 7 in chapter 6 which is one of the
main results of our discussion. For proofs of the triangle inequality for operators on one
Hilbert space see [8, Lemma XI.9.14] and [24, Satz 4.3.6].

Theorem 15: For p ≥ 2 the p-Schatten classes Jp(H1,H2) are Banach spaces.

Proof: By Corollary 7 in chapter 6 for p ≥ 2 we have

|A1 + A2|p = max |{(A1 + A2)φj}∞j=1|`p(N) = max |{A1φj}∞j=1 + {A2φj}∞j=1|`p(N)

≤ max(|{A1φj}∞j=1|`p(N) + |{A2φj}∞j=1|`p(N)) (3.9)
≤ max |{A1φj}∞j=1|`p(N) + max |{A2φj}∞j=1|`p(N) = |A1|p + |A2|p

where 3.9 is Minkowski 's inequality and the maximum is taken over all orthonormal
systems of H1.
Clearly αA ∈ Jp(H1,H2) and |αA|p = |α||A|p for α ∈ C and A ∈ Jp(H1,H2) because

|αA| = ((αA)∗(αA)) 1
2 = (ααA∗A) 1

2 = |α||A|

and thus σj(αA) = |α|σj(A).
Hence Jp(H1,H2) is equipped with a topology induced by the norm |.|p. It follows addition
+ : Jp(H1,H2)×Jp(H1,H2)→ Jp(H1,H2) and scalar multiplication : C×Jp(H1,H2)→
Jp(H1,H2) are continuous mappings with respect to this topology and the norm is
continuous.
We have to show Jp(H1,H1) is complete (cf. [8, Corollary XI.9.4 and Lemma XI.9.10]).
By 3.1 ||A|| = σ1(A) ≤ |A|p for 1 ≤ p <∞ and so every Cauchy sequence in Jp(H1,H2)
is a Cauchy sequence in J∞(H1,H2) which is complete (cf. [8, Corollary VI.5.5]). Thus
for every Cauchy sequence {An}∞n=1in Jp(H1,H2) there exists a mapping A ∈ J∞(H1,H2)
such that

||A− An|| → 0, n→∞,
i.e. A is a compact limit in the uniform topology. By 3.3 for compact linear mappings
A1, A2 we have

σk+j+1(A2) = σk+j+1(A1 + A2 − A1) ≤ σk+1(A1) + σj+1(A2 − A1).

For j = 0 and by symmetry in A1, A2 this yields

|σk+1(A1)− σk+1(A2)| ≤ ||A1 − A2||

for k ≥ 0. It follows for j, n,m ≥ 1 that

|σj(An − Am)− σj(An − A)| ≤ ||A− Am|| → 0,m→∞.

Thus limm→∞ σj(An − Am) = σj(An − A) for j, n ≥ 1 and this implies for N ≥ 1

(
N∑
j=1
|σj(An − A)|p)

1
p ≤ lim sup

m→∞
(
∞∑
j=1
|σj(An − Am)|p)

1
p = lim sup

m→∞
|An − Am|p.

16



So for N →∞ it follows

|An − A|p ≤ lim sup
m→∞

|An − Am|p

and this implies
lim
n→∞

|An − A|p ≤ lim
n,m→∞

|An − Am|p = 0.

So A is a limit in the topology induced by |.|p on Jp and by the triangle inequality

|A|p ≤ |An − A|p + |An|p (3.10)

for n ≥ 1. Because {An} is a Cauchy sequence it is bounded,say by C>0.Thus taking
the limit n→∞ in 3.10 yields

|A|p ≤ lim sup
n→∞

|An|p ≤ C <∞.

This means A ∈ Jp(H1,H2).

As already mentioned for 1 ≤ p ≤ 2 the classes Jp(H1,H2) are Banach spaces too.
Another analogue to the sequence spaces constitutes the following lemma.

Lemma 16: For 0 < p ≤ q <∞ we have the following inclusion of spaces

Jp(H1,H2) ⊆ Jq(H1,H2).

Proof: This is a direct consequence of the well known inclusion

`p(N) ⊆ `q(N).

3.2 The Hilbert-Schmidt Class
For a compact linear mapping A : H1 → H2 and two orthonormal bases {φj}∞j=1 and
{ψk}∞k=1 of H1 and H2 respectively the equation (cf. [17, Lemma 1])

∞∑
j=1
|Aφj|2H2 =

∞∑
j=1

∞∑
k=1
|(Aφj, ψk)|2H2 =

∞∑
k=1

∞∑
j=1
|(φj, A∗ψk)2|H1 =

∞∑
k=1
|A∗ψk|2H1 (3.11)

shows that the expression yields the same value for any orthonormal basis since the
right hand side does not depend on the choice of the basis {φj}∞j=1 of H1 and the left
hand side does not depend on the choice of the basis {ψj}∞j=1 of H2. In particular it
takes a finite value for one orthonormal basis if and only if it takes a finite value for
all orthonormal bases. Its square root is called the Hilbert-Schmidt norm of A and A
is called a Hilbert-Schmidt mapping if this norm is finite. By taking for {φj}∞j=1 the
completion of the orthonormal eigenvectors of A∗A the equation

∞∑
j=1
|Aφj|2H2 =

∞∑
j=1

(Aφj, Aφj)H2 =
∞∑
j=1

(A∗Aφj, φj)H1 =
∞∑
j=1

σ2
j (A)
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shows that the Hilbert-Schmidt mappings are exactly the compact linear mappings of
2-Schatten class and the Hilbert-Schmidt norm is exactly the norm |.|2 defined in the
above section. As we will see later in our discussion the Hilbert-Schmidt mappings
constitute a special case because they fit especially well to the Hilbert space structure.
We see from equation 3.11 that

|A|2 =
 ∞∑
j=1
|Aφj|2H2

 1
2

= |A∗|2 =
 ∞∑
j=1
|A∗ψj|2H2

 1
2

for an arbitrary basis {φj}∞j=1 of H1 and an arbitrary basis {ψj}∞j=1 of H2.
In [22] Pietsch defines absolutely p-summable mappings A : X → Y between normed

spaces X, Y as follows:
For 1 ≤ p <∞ a linear mapping A is absolutely p-summable if there exists a number
ρ ≥ 0 such that for every finite sytem {φ1, ..., φk} ⊂ X the inequality

 k∑
j=1
|Aφj|pY

 1
p

≤ ρ sup
|ψ|X≤1

 k∑
j=1
|(φj, ψ)pX

 1
p

holds. Then πp(A) is defined as the smallest possible number ρ and Πp(X, Y ) as the set
of all absolutely p-summable mappings. Pietsch proves (cf. [22, Theorem 1]) that if X
and Y are Hilbert spaces then

Π2(X, Y ) = J2(X, Y ) and π2(A) = |A|2

for every A ∈ J2(X, Y ), mentions that even

Πp(X, Y ) = J2(X, Y ) for 1 ≤ p ≤ 2

and asks if this even holds for 1 ≤ p <∞.
For the following space there is a special characterization of the Hilbert-Schmidt mappings
(cf. [7, Theorem 6.12]). Let H = L2(Ω) be the Hilbert space of square integrable functions
on a domain Ω ⊂ RN . Then A ∈ J2(H) if and only if there exists a function κ ∈ L2(Ω×Ω)
such that

Aφ(x) =
∫

Ω
κ(x, y)φ(y)dy.

for all x ∈ Ω.
The product of two Hilbert-Schmidt mappings belongs to an even “better” class that we
discuss in the next section.

3.3 The Trace Class
We recall that J1(H1,H2) is called the trace class.
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Definition 10: A is called nuclear if there exist sequences {γj}∞j=1 and {ηj}∞j=1 in H1
and H2 respectively such that

A =
∞∑
j=1

(., γj)H1ηj and
∞∑
j=1
|γj|H1|ηj|H2 <∞.

We have the following characterization of the trace class by nuclear operators (cf. [17]):

Lemma 17: A mapping A ∈ J∞(H1,H2) is of trace class if and only if it is nuclear.

Proof: If A is of trace class, i.e. in the 1-Schatten class, its polar decomposition

A =
∞∑
j=1

σj(A)(., φj)H1ψj

shows A is nuclear because if γj = σj(A)φj and ηj = ψj then
∞∑
j=1
|γj|H1|ηj|H2 =

∞∑
j=1

σj(A) <∞.

If A is nuclear it is compact, hence admits a polar decomposition A = ∑∞
j=1 σj(A)(., φj)ψj .

Then we simply compute

σk(A) = (Aφk, ψk)H2 =
∞∑
j=1

(φk, γj)H1(ηj, ψk)H2

to see ∞∑
k=1

σk(A) =
∞∑
k=1

∞∑
j=1

(φk, γj)H1(ηj, ψk)H2

≤
∞∑
j=1

( ∞∑
k=1
|(φk, γj)H1|2

) 1
2
( ∞∑
k=1
|(ηj, ψk)H2|2

) 1
2

=
∞∑
j=1
|γj|H1|ηj|H2 <∞

that A is in the trace class. So nuclear compact linear mappings are exactly those of
trace class.

We can characterize the trace class mappings by products of Hilbert-Schmidt mappings
(cf. [17, Satz 3] and [24, Remark 1. to 4.3.6.]).

Lemma 18: Let H3 be another infinite dimensional separable Hilbert space and B :
H2 → H3 another compact linear mapping. Then BA : H1 → H3 is of trace class if A
and B are Hilbert Schmidt mappings. If conversely A is of trace class it is a product of
two Hilbert-Schmidt mappings.

Proof: Let {φj}∞j=1 and {ψj}∞j=1 be orthonormal bases of H1 and H2 respectively. Then

Aφ =
∞∑
j=1

(Aφ, ψj)H2ψj
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for all φ ∈ H1 implies

(BA)φ =
∞∑
j=1

(Aφ, ψj)H2Bψj =
∞∑
j=1

(φ,A∗ψj)H1Bψj

and
∞∑
j=1
|A∗ψj|H1|Bψj|H3 ≤

 ∞∑
j=1
|A∗ψj|2H1

 1
2
 ∞∑
j=1
|Bψj|2H3

 1
2

<∞

since with A and B Hilbert-Schmidt A∗ and B are Hilbert-Schmidt. So BA is nuclear
and thus by Lemma 17 of trace class.
If A ∈ J1(H1,H2) consider its polar decomposition

A = U |A| = U |A|
1
2︸ ︷︷ ︸

=H1

|A|
1
2︸ ︷︷ ︸

=H2

where H2 = |A| 12 ∈ J2(H1) because σj(|A|
1
2 ) = σj(|A|)

1
2 and so

∞∑
j=1

σj(|A|
1
2 )2 =

∞∑
j=1

σj(|A|) =
∞∑
j=1

σj(A) <∞

and thus H1 ∈ J2(H1,H2) because of the ideal property.

To understand why J1(H1,H1) is called the trace class we define for a positive operator
H ∈ L(H) its trace:

Definition 11: For H ∈ L(H) with H ≥ 0 we define its trace tr with values in R∪{∞}
by

trH =
∞∑
j=1

(Hφj, φj) (3.12)

where {φj}∞j=1 is an orthonormal basis of H.

To see that the trace is well defined we have to show that 3.12 is independent of the
chosen basis. To see this let {ψj}∞j=1 be another basis and recall that since H ≥ 0 it has
a positive square root:

∞∑
j=1

(Hφj, φj) =
∞∑
j=1
|H

1
2φj|2 =

∞∑
j=1

∞∑
k=1
|(H 1

2φj, ψk)|2

=
∞∑
k=1

∞∑
j=1
|(φj, H

1
2ψk)|2 =

∞∑
k=1
|H

1
2ψk|2 =

∞∑
k=1

(Hψk, ψk).

We note some properties of the trace map that are easy to prove. Recall an operator
U ∈ L(H) is called unitary if U∗U = UU∗ = idH (cf. [24, 4.3.4]).
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Lemma 19: For positive bounded operators H1, H2,λ ≥ 0 and a unitary operator U we
have

tr(H1 +H2) = tr(H1) + tr(H2).

and
tr(λH1) = λtr(H1).

and
tr(UH1U

∗) = tr(H1).

A mapping A ∈ J∞(H1,H2) is in the trace class if and only if tr|A| < ∞. If
A ∈ J1(H1,H1) let {φj}∞j=1 be an orthonormal basis of H1 consisting of eigenvectors of
|A| then

tr|A| =
∞∑
j=1

(|A|φj, φj)H1 =
∞∑
j=1

σj(A) <∞ (3.13)

If for A ∈ J∞(H1,H2) the trace is finite, equation 3.13 shows A ∈ J1(H1,H2). For the
class J1(H) one can show that for all A ∈ J1(H) the expression

trA =
∞∑
j=1

(Aφj, φj)

is independent of the choice of the basis {φj} and the series converges absolutely. Then
this expression is called the trace and the function tr is linear and continuous on the
space J1(H) . Because our aim is to study Schatten class embeddings that do not contain
operators on one Hilbert space we give no proof for this and just cite [8, Lemma XI.9.13].

A characterization of the trace class operators on L2(Ω) as in the case of Hilbert-Schmidt
operators is not possible (cf. [24, Remark 3. to 4.3.6]).
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4 Compact embeddings
As mentioned in our introduction Hanche-Olsen and Holden characterized the totally
bounded sets in `q(N) for 1 ≤ q < ∞ (cf. [14]). In this way they characterized the
compact embeddings

X ↪→ `q(N)

where X is some metric space. Since the characterization of the p-Schatten embeddings
into `2(N) that we want to achieve is modeled on this result we present it here.
We recall the following notion:

Definition 12: A subset M of a metric space X is called totally bounded if it can be
covered by a finite number of balls with radii < ε and centers in M for every ε > 0.

Without proof we cite (cf. [26]):

Theorem 20: A subset M of a complete metric space is precompact if and only if it is
totally bounded.

To see the importance of this chapter for our discussion we state:

Theorem 21: An embedding A : H1 → H2 of Hilbert spaces is compact if and only if
A({φ ∈ H1 : |φ|H1 ≤ 1}) is totally bounded.

Proof: This follows from Theorem 20 and 7.

Hanche-Olsen and Holden use a very simple lemma to prove several compactness
results (cf. [14, Lemma 1]):

Lemma 22: Let X be a metric space with metric dX . If for every ε > 0 there exists
δ(ε) > 0 and a metric space W (ε) with metric dW (ε) and a mapping Φ : X → W (ε)
such that Φ(X) is a totally bounded subset of W (ε) and dW (ε)(Φ(x),Φ(y)) < δ(ε) implies
dX(x, y) < ε for all x, y ∈ X then X is totally bounded.

Proof: For ε > 0 and Φ(X) ⊂ W (ε) choose a finite covering by balls with radii δ(ε)
and centers m1, ...,mn ∈ Φ(X) and denote them by Bδ(ε)(m1), ..., Bδ(ε)(mn). This is
possible since Φ(X) is a totally bounded subset of W (ε). Then by the assumption
Φ−1(Bδ(ε)(mj)) ⊂ Bε(xj) for some xj ∈ X and j = 1, ..., n where Bε(xj) are balls with
radii ε and centers xj. It follows X ⊂

⋃n
j=1B

ε(xj) i.e. X is covered by a finite number
of balls with radii ≤ ε. This implies X is totally bounded.
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Lemma 4 can be used to show the Arzelá-Ascoli theorem (cf. [14, Theorem 2]). We
will use it to prove the following characterization of the totally bounded subsets of `q(N),
i.e. of the precompact subsets for 1 ≤ q <∞.

Theorem 23: For 1 ≤ q <∞ a subset M ⊂ `q(N) is totally bounded if and only if

(i) for every j ∈ N there exists a number Cj > 0 so that |xj| < Cj for all x ∈M

i.e. M is pointwise bounded, and
(ii) for every ε > 0 there exists a number n(ε) ∈ N so that for all x ∈M ∞∑

j=n(ε)+1
|xj|q

 1
q

< ε.

Proof: If M ⊂ `q(N) satisfies (i) and (ii) then for every ε > 0 and n(ε) as in (ii) define
Φ : M → Rn(ε) by

Φ(x) = (x1, ..., xn(ε))T , x ∈M.

Clearly Rn(ε) is a metric space with the metric induced by the q-norm and by (i) for all
x ∈M :

|Φ(x)|q = (|x1|q + ...+ |xn(ε)|q)
1
q < max{C1, ..., Cn(ε)}.

Thus as a bounded subset of a finite dimensional space Φ(M) is totally bounded.
Furthermore |Φ(x)− Φ(y)|q = (∑n(ε)

j=1 |xj − yj|q)
1
q < ε implies

|x− y|q =
 ∞∑
j=1
|xj − yj|q

 1
q

≤

n(ε)∑
j=1
|xj − yj|q

 1
q

+
 ∞∑
n(ε)+1

|xi − yj|q
 1

q

≤

n(ε)∑
j=1
|xj − yj|q

 1
q

+
 ∞∑
n(ε)+1

|xi|q
 1

q

+
 ∞∑
n(ε)+1

|yj|q
 1

q

< ε+ ε+ ε = 3ε

where we used Minkowski's inequality. Thus the conditions of Lemma 4 are fulfilled and
so M is totally bounded.
For the converse let ε > 0 and assume M is totally bounded. Then choose a finite ε

4 -cover
by balls B ε

4 (x1), ..., B ε
4 (xn). For any sequences x, y ∈M we have

|x− y|q ≤ n
ε

2 .

Fix y ∈M and put |y|q = C to see

|x|q ≤ |x− y|q + |y|q ≤ n
ε

2 + C

for every x ∈M . So M is bounded and thus pointwise bounded. For every k ∈ {1, ..., n}
there exists a number Nk so that ∞∑

j=Nk+1
|xkj |q

 1
q

<
ε

2 .
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Put N = max{N1, ..., Nk}. Then for any x ∈M one has x ∈ B ε
2 (xk) for some k and so ∞∑

j=N+1
|xj|q

 1
q

≤ |x− xk|q +
 ∞∑
j=N+1

|xk|q
 1

q

<
ε

2 + ε

2 = ε.

Thus condition (ii) in Lemma 4 holds.
Since we are especially interested in the compact embeddings H ↪→ `2(N) we conclude:

Corollary 1: An embedding H ↪→ `2(N) of Hilbert spaces is compact if and only if

(i) for every j ∈ N there exists Cj > 0 so that |xj| < Cj for all x ∈ {x ∈ H : |x|H ≤ 1}

and
(ii) for every ε > 0 there exist a number n(ε) ∈ N so that for all x ∈ {x ∈ H : |x|H ≤ 1} ∞∑

j=n(ε)+1
|xj|2

 1
2

< ε.

Proof: This follows from Theorem 23 and Theorem 21.
Note that we identify the elements ofH with their images in `2(N) under the embedding.

Theorem 25 below shows another application of Lemma 4. We present its proof at this
point since it is of interest to our discussion that the same techniques are applied to
the Lebesgue spaces as to the sequence spaces. We will need Jensen's inequality (cf. [9,
Appendix B.1,Theorem 2]).
Theorem 24 (Jensen's inequality ): Let Ω ⊂ RN be an open, bounded subset of the
N -dimensional Euclidean space. For any convex function φ : R→ R and every summable
function f : Ω→ R we have

φ

(
1
|Ω|

∫
Ω
f(x)dλ

)
≤ 1
|Ω|

∫
Ω
φ(f(x))dλ.

Here λ is the Lebesgue measure and |Ω| = λ(Ω) =
∫

Ω dλ. The summability of f means∫
Ω f(x)dλ exists and is finite. The following Theorem 25 is known as the Kolmogorov

-Riesz theorem. For its history see [14, 4].
Theorem 25 (Kolmogorov Riesz): For 1 ≤ q < ∞ a subset M of Lq(RN) is totally
bounded if and only if
(i)M is bounded
(ii)for every ε > 0 there exists a radius R > 0 so that for every f ∈M(∫

RN\BR(0)
|f(x)|qdλ

) 1
q

< ε,

(iii)for every ε > 0 there exists a radius ρ > 0 so that for every f ∈M and y ∈ Bρ(0)(∫
RN
|f(x+ y)− f(x)|dλ(x)

) 1
q

< ε.
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Proof: Consider a subset M ⊂ Lq(RN) satisfying conditions (i),(ii),(iii) and a given
number ε > 0 and choose R and ρ as in (ii) and (iii).
LetQ be an open cube that is centered at the origin and is contained in the sphere B ρ

2 (0)
and let Qj = Q+ vj for vj ∈ RN and j = 1, ..., n be mutually non-overlapping translates
of Q so that

BR(0) ⊂
n⋃
j=1

Qj. (4.1)

We define the projection P : Lq(RN )→ span{χQ1 , ..., χQn} where χQj is the characteristic
function of the cube Qj by

Pf(x) =


1
Qj

∫
Qj
f(z)dλ if x ∈ Qj, j = 1, ..., n

0 otherwise.

For all f ∈M it follows from (ii) and 4.1 that

|f − Pf |qq < εq +
n∑
j=1

∫
Qj
|f(x)− Pf(x)|qdλ

= εq +
n∑
j=1

∫
Qj
| 1
|Qj|

∫
Qj

(f(x)− f(z))dλ(z)|qdλ(x)

by the definition of P and 1
|Qj |

∫
Qj
f(x)dλ(z) = f(x).

Now we observe that whenever two points are in the same cube Qj their difference is
in the cube obtained from Q by doubling its side length. Indeed if x, z ∈ Qj there exist
qx, qz ∈ Q such that x = qx + vj and z = qz + vj and so x − z = qx − qz ∈ Q − Q and
because Q is centered at the origin Q−Q = 2Q. A change of a variable of integration
by z = x+ y, the fact that |.|q is convex for q ≥ 1, Jensen's inequality 24 and (iii) yield

|f − Pf |qq < εq +
n∑
j=1

∫
Qj

1
|Qj|

∫
Qj
|f(x)− f(z)|qdλ(z)dλ(x)

≤ εq +
n∑
j=1

∫
Qj
| 1
|Qj|

∫
2Q
|f(x)− f(x+ y)|qdλ(y)|dλ(x)

≤ εq + 1
|Q|

∫
2Q

∫
RN
|f(x)− f(x+ y)|qdλ(x)dλ(y)

< εq + 1
|Q|

∫
2Q
εqdλ(y) = (2N + 1)εq

because clearly |2Q| = 2N |Q|. It follows |f − Pf |q < (2N + 1)
1
q ε and by the triangle

inequality |f |q < (2N + 1)
1
q ε+ |Pf |q. By the linearity of the integral P is linear and so

|Pf − Pg|q < ε implies |f − g| < ((2N + 1)
1
q + 1)ε.

As a projection on a finite dimensional subspace P is bounded and because M is bounded
by (i) this implies P (M) is bounded in a finite dimensional space and thus totally
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bounded. Hence it follows by Lemma 4 that M is totally bounded.
Now we assume M to be totally bounded. Then M is bounded. So condition (i) holds.
For ε > 0 choose g1, ..., gn ∈M so that

M ⊂
n⋃
j=1

Bε(gj)

and R > 0 so that (∫
RN\BR(0)

|gj(x)|qdλ
) 1
q

< ε, j = 1, ..., n.

This is possible because gj ∈ Lq(RN) for j = 1, ..., n. For every f ∈ M there exists
j ∈ {1, ..., n} so that f ∈ Bε(gj) and thus(∫

RN\BR(0)
|f(x)|qdλ

) 1
q

≤
(∫

RN\BR(0)
|f(x)− gj(x)|qdλ

) 1
q

+
(∫

RN\BR(0)
|gj(x)|qdλ

) 1
q

≤ |f − gj|q +
(∫

RN\BR(0)
|gj(x)|qdλ

) 1
q

< 2ε.

So condition (ii) holds.
The set of smooth functions with compact support , denoted by C∞c (RN ) is known to be
dense in Lq(RN ). So for every single function f ∈M there is a function φ ∈ C∞c (RN ) so
that |f − φ|q < ε for given ε. For smooth functions with compact support a radius ρ > 0
establishing the inequality of condition (iii) can clearly be found and so(∫

RN
|f(x+ y)− f(x)|qdλ(x)

) 1
q

≤
(∫

RN
|f(x+ y)− φ(x+ y)− (f(x)− φ(x))|qdλ(x)

) 1
q

+
(∫

RN
|φ(x+ y)− φ(x)|qdλ(x)

) 1
q

≤ 2|f − φ|q + (
∫
RN
|φ(x+ y)− φ(x)|qdλ(x))

1
q ≤ 3ε

for every y ∈ Bρ(0). It follows that there exists a radius ρ > 0 so that(∫
RN
|gj(x+ y)− gj(x)|qdλ(x)

) 1
q

< ε for y ∈ Bρ(0), j = 1, ..., n

where gj are the centers of the ε-cover given above. Then for every f ∈ M there is
j ∈ {1, ..., n} so that f ∈ Bε(gj) and so(∫

RN
|f(x+ y)− f(x)|qdλ(x)

) 1
q

≤
(∫

RN
|f(x+ y)− gj(x+ y)|qdλ(x)

) 1
q

+
(∫

RN
|gj(x+ y)− gj(x)|qdλ(x)

) 1
q

+
(∫

RN
|gj(x)− f(x)|qdλ(x)

) 1
q

< 3ε

for every y ∈ Bρ(0). So condition (iii) holds.
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The Kolmogorov-Riesz theorem can be used to show several corollaries and a simpler
version of the Rellich-Kondrachov theorem. For this see [14, Corollary 7,8,9 and Theorem
10].
We observe that the proofs of Theorem 23 and of Theorem 25 use the same techniques.
The compact embeddings of metric spaces X in `q(N) or Lq(RN) are characterized by
very similar summability conditions that the elements of images of bounded sets of X
must fulfill. Of course all elements of an orthonormal basis of a Hilbert space that is
embedded in `2(N) or L2(RN ) must fulfill these conditions to yield a compact embedding.
We will find summability conditions that orthonormal bases of the embedded Hilbert
spaces must fulfill to yield p-Schatten embeddings and the techniques we use can be
applied to any separable Hilbert space. The disadvantage is that it is in general not
possible to describe all orthonormal bases. In the next chapter we will present results by
Maurin and Gramsch that allow to characterize certain embeddings of Sobolev spaces.
The techniques used there don't seem to apply to the discrete setting as described in [19,
chapter 3.1].
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5 Embeddings of Sobolev spaces
In this chapter we will present results by Maurin [17] and Gramsch [13] concerning the
embeddings of Sobolev spaces. Gramsch's result is a direct generalization of Maurin's
result but we will see that Maurin's proof is very short whilst Gramsch's proof is quite
involved . A reason for this is that the sum

∞∑
j=1
|Aφj|2H2

for a compact linear mapping A : H1 → H2 does not depend on the orthonormal basis of
H1 while this is in general the case for p 6= 2. Another reason is that the Hilbert-Schmidt
class fits especially well to the Hilbert space structure which allows a very convenient
use of Riesz's representation theorem. In the first section we will recall the definition of
Sobolev spaces and some facts concerning them. In the second and third section we will
present Maurin's and Gramsch's results respectively.

5.1 Sobolev Spaces
We recall the important notion of a weak derivative (cf. [9, 5.2.1]). Let Ω ⊆ RN be open.
As a motivation we observe that for a function f ∈ C1(Ω) and a test function φ ∈ C∞c (Ω)
, i.e. a smooth function with compact support in Ω one has by integration by parts∫

Ω
f(x)∂φ(x)

∂xj
dλ = −

∫
Ω

∂f(x)
∂xj

φ(x)dλ, j = 1, ..., N

where there is no boundary term because φ has compact support in Ω. For a multiindex
α = (α1, ..., αN) ∈ NN

0 we say it is of order k if |α| = α1 + ...+ αN = k and we write for
f ∈ Ck(Ω):

Dαf = ∂α1

∂xα1
1
...
∂αN

∂xαNN
f.

We observe that for f ∈ Ck(Ω) and φ ∈ C∞c (Ω):∫
Ω
f(x)Dαφ(x)dλ = (−1)|α|

∫
Ω
Dαf(x)φ(x)dλ. (5.1)

We recall that locally integrable functions are functions that are integrable on compact
sets contained in Ω and the set of all locally integrable functions is denoted L1

loc(Ω). Now
we can define weak derivatives:
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Definition 13: Assume f ∈ L1
loc(Ω) and a multiindex α are given. Then g ∈ L1

loc(Ω) is
called the α'th weak derivate of f if∫

Ω
f(x)Dαφ(x)dλ = (−1)|α|

∫
Ω
g(x)φ(x)dλ

for all φ ∈ C∞c (Ω).
It is easy to prove that weak partial derivatives are unique up to a set of measure

zero (cf. [9, 5.2.1 Lemma]). We denote the α'th partial derivative of a locally integrable
function f by Dαf . We define the Sobolev spaces :
Definition 14: Let Ω ⊆ RN be open. For k ∈ N0 and 1 ≤ q <∞ the Sobolev space

W k,q(Ω)

is defined as the space of all functions f ∈ L1
loc(Ω) so that Dαf exists for all multiindices

α with |α| ≤ k and belongs to Lq(Ω).We define the norm

|f |Wk,q(Ω) =
 ∑
|α|≤k

∫
Ω
|Dαf(x)|qdλ

 1
q

.

Without proof we cite (cf. [9, 5.2.3 Theorem 2]):
Theorem 26: The mapping |.|Wk,q(Ω) is a norm on W k,q(Ω) and W k,q(Ω) is a Banach
space with this norm.

We denote by W k,q
0 the closure of C∞c (Ω) in W k,q(Ω) and write Hk(Ω) = W k,2(Ω) and

Hk
0 (Ω) = W k,2

0 (Ω). We note:
Corollary 2: For k ∈ N0 the Sobolev space Hk(Ω) is a Hilbert space with the inner
product

(f, g)Hk(Ω) =
∑
|α|≤k

∫
Ω

(Dαf(x))Dαg(x)dλ, f, g ∈ Hk(Ω).

Hk
0 (Ω) is a Hilbert space where the inner product (., .)Hk

0 (Ω) is obtained by restricting
(., .)Hk(Ω) to Hk

0 (Ω)×Hk
0 (Ω).

Because it can be considered as a starting point for the discussion in this chapter
we will cite the Rellich-Kondrachov compactness theorem. We will need the Sobolev
embedding theorem in the next section too. To achieve these embeddings it is necessary
that the boundary ∂Ω fulfills certain conditions. The most important regularity property
that we want the domain Ω to have is the cone property (cf. [1, 4.1]).
Definition 15: For a point x ∈ RN , a ball Br(x) and a ball B0 that does not contain x
we define the finite cone C with vertex x by

C = Br(x) ∩ {x+ λ(y − x) : y ∈ B0, λ > 0}

For an open domain Ω ⊆ RN we say it has the cone property if there exists a finite cone
C so that for every x ∈ Ω there is a cone Cx with vertex x that is contained in Ω and
congruent to C.
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It is clear that the boundary ∂Ω must have some regularity properties so that Ω has
the cone property. It is not clear how this concept could be transferred in a reasonable
way to the discrete setting as described in [19, chapter 3.1]. The Sobolev embedding
theorem includes three cases. We will only consider the case where m > N

2 and we embed
Hm+k(Ω) in Ck

b (Ω) = {f ∈ Ck(Ω) : Dαf is bounded on Ω for|α| ≤ k}(cf.[1, 5.3 Part I
Case C]).
Theorem 27: For a bounded domain that has the cone property and m > N

2 there is a
continuous embedding

Hm+k(Ω) ↪→ Ck
b (Ω).

For the full Sobolev embedding theorem and a proof see [1, 5.3]. It follows by the
definition of the space Ck

b (Ω) (cf. [17]):
Lemma 28: Let Ω be a bounded domain that has the cone property and m > N

2 . Then
the mappings

Hm+k(Ω)
Tαy→ C

u 7→ Dαu(y)
are bounded linear functionals satisfying

|Tαy |(Hm+k(Ω))∗ ≤ C (5.2)
for all α with |α| ≤ k and all y ∈ Ω.
Here |.|(Hm+k(Ω))∗ denotes the operator norm on the dual space of Hm+k(Ω) and C

does depend on k and Ω but not on the multiindex α if |α| ≤ k and not on y. The
same lemma holds for Hm+k

0 (Ω) instead of Hm+k(Ω). In this case one doesn't need cone
property of Ω. We don't cite the Rellich-Kondrachov theorem in its most general form
since we are primarily interested in its applications to the Hilbert spaces. For a more
general form see [1, Theorem 6.2].
Theorem 29: Let Ω be a bounded subdomain of RN that has the cone property. Then
the embeddings

W j+m,q(Ω) ↪→ W j,r(Ω)
are compact if either mq ≥ N or if mq < N and 1 ≤ r < qN

N−mq .
It follows

Lemma 30: Let Ω be a bounded subdomain of RN that has the cone property. Then the
embeddings

Hk(Ω) ↪→ H l(Ω)
are compact if k − l > 0.
Proof: We have by the Rellich-Kondrachov compactness theorem that for q = r = 2
the embedding

Hj+m(Ω) ↪→ Hj(Ω)
is compact if 2m ≥ N or if 2m < N and 1 ≤ 2 < 2N

N−2m where the latter inequality is
trivial . Thus all embeddings are compact for m > 0. Put k = j +m and l = j.
In the next section this result will be improved.
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5.2 Maurin's Theorem
For the first time in our discussion we encounter Schatten class embeddings (cf. [17, Satz
4]):

Theorem 31: Let Ω ⊂ RN be a bounded domain that has the cone property , k a
non-negative integer and m > N

2 . Then the embeddings

Hm+k(Ω) ↪→ Hk(Ω)

Hm+k
0 (Ω) ↪→ Hk

0 (Ω)

are Hilbert-Schmidt embeddings

Proof: By Lemma 28 and Riesz's representation theorem for any point y ∈ Ω and every
multiindex α there exists an element gαy ∈ Hm+k(Ω) such that

Tαy (u) = (u, gαy )Hm+k(Ω)

for all u ∈ Hm+k(Ω) and
|Tαy |(Hm+k(Ω))∗ = |gαy |Hm+k(Ω).

For an orthonormal basis {φj}∞j=1 of Hm+k(Ω) we thus have

|Tαy |2(Hm+k(Ω))∗ = |gαy |2Hm+k(Ω) =
∞∑
j=1
|(φj, gαy )Hm+k(Ω)|2 =

∞∑
j=1
|Dαφj(y)|2 ≤ C2

by inequality 5.2.
Since C does not depend on |α| ≤ k and y ∈ Ω we can sum up over |α| ≤ k and integrate
over Ω to get

∫
Ω

 ∑
|α|≤k

∞∑
j=1
|Dαφj(y)|2

 dy =
∞∑
j=1

∑
|α|≤k

∫
Ω
|Dαφj(y)|2 =

∞∑
j=1
|φj|2Hk(Ω) ≤ |Ω|ν(k)C2 <∞

since Ω is bounded and ν(k) (- the number of multi-indices of order ≤ k) is finite. This
shows the assertion. The proof is the same for Hm+k

0 (Ω) ↪→ Hk
0 (Ω) where we don 't need

the cone property condition.

By what we have seen in 18 the composition of two Hilbert-Schmidt embeddings is of
trace class i.e. nuclear. Applying this to the composite embeddings

H2m+k(Ω) ↪→ Hm+k(Ω) ↪→ Hk(Ω)

H2m+k
0 (Ω) ↪→ Hm+k

0 (Ω) ↪→ Hk
0 (Ω)

yields (cf. [17, Korollar])
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Corollary 3: Let Ω ⊂ RN a bounded domain,that has the cone property k a non-negative
integer and m > N

2 Then the embeddings

H2m+k(Ω) ↪→ Hk(Ω)

H2m+k
0 (Ω) ↪→ Hk

0 (Ω)
are of trace class.

Again one does not need the cone property condition in the second case.
It follows from Theorem 31 and its Corollary 3 that the embeddings

Hk(Ω) ↪→ H l(Ω)

are of Hilbert-Schmidt class i.e. of 2-Schatten class if k − l > N
2 and of trace class i.e.

1-Schatten class if k − l > N
1 . Now one might conjecture that the embeddings are of

p-Schatten class if k − l > N
p
. This will be achieved in the next section. We see that

Maurin's proof is remarkably short. The result had far reaching consequences. For its
applications to elliptic boundary value problems and eigenfunction expansions see [17,
sections 3 and 4].

5.3 Gramsch 's Theorem
In his proof of the characterization of p-Schatten embeddings of the Sobolev spaces on
tori Hm(T n) ↪→ Hl(T n) in [13] Gramsch uses a method that can be generalized in the
following way:

Theorem 32: Let ε : H1 ↪→ H2 be a compact embedding. If there exists an orthogonal
basis {φj}∞j=1 of H1 and H2 then ε is a p-Schatten embedding if and only if

∞∑
j=1

(
|φj|H2

|φj|H1

)p
<∞ (5.3)

Proof: Define ε∗ : H2 → H1 by

ε∗(φj) = |φj|H2
2

|φj|2H1

φj, j = 1, 2, ...

Then because εφj = φj and {φj}∞j=1 is orthogonal we have on the one hand

(εφj, φk)H2 = δjk(φj, φk)H2 (5.4)

where δjk is the Kronecker symbol and on the other hand

(φj, ε∗φk)H1 = (φj,
|φk|2H2

|φk|2H1

φk)H1 = (φj, φk)H1

|φk|2H1︸ ︷︷ ︸
=δjk

|φk|2H2 = δjk(φj, φk)H2 . (5.5)
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Comparing 5.4 and 5.5 shows that ε∗ is the adjoint of the embedding ε. Furthermore

ε∗ε
φj
|φj|H1

= ε∗
φj
|φj|H1

= |φj|H2
2

|φj|2H1

φj
|φj|H1

shows that { φj
|φj |H1

}∞j=1 is an orthonormal basis of eigenvectors of ε∗ε ∈ J∞(H1) and

εε∗
φj
|φj|H2

= |φj|H2
2

|φj|2H1

φj
|φ|H2

shows that { φj
|φj |H2

}∞j=1 is an orthonormal basis of eigenvectors of εε∗ ∈ J∞(H2) .Thus

ε =
∞∑
j=1

|φj|H2

|φj|H1

(., φj
|φj|H1

) φj
|φj|H2

is a polar decomposition of ε and the singular numbers are given by

σj(ε) = |φj|H2

|φj|H1

.

This completes the proof.

In the case of the Hilbert spaces H1 = Hk(TN) and H2 = H l(TN) where TN is the
N -dimensional torus we are in the lucky situation that the assumption of Theorem 32
is given, i.e. that one orthogonal basis of both spaces exists and is known. To achieve
a result for Sobolev spaces on certain manifolds Ω Gramsch uses a partition of one
to factorize Ω over TN . The method requires quite complicated techniques that are
described in detail in [20, pp. 162-172]. We define the N -dimensional torus TN (cf. [20,
p.156]).

Definition 16: For N ∈ N the N-dimensional torus TN is defined by

TN = RN/2πZN .

The set {x ∈ RN : −π ≤ xj < π, j = 1, ..., N} is called the fundamental cube.

Clearly every element of TN has a representative in the fundamental cube. Sobolev
functions on TN resemble functions with a period in 2πZ in every variable and integrals
over TN should be thought of as integrals over the fundamental cube (cf. [20, p.156]).
We consider the following set of functions:

Definition 17: For ν ∈ ZN we define φν : RN → C by

φν(t) = (2π)−N2 exp(i(ν1t1 + ...+ νN tN)), t ∈ RN.

Clearly the functions φν are 2πZ-periodic in every variable. We define a new norm on
the closure of their span:
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Definition 18: For k ≥ 1 and
f =

∑
ν∈ZN

cνφν (5.6)

put

|f |k =
 ∑
ν∈ZN

(1 + (ν, ν)2)k|cν |2
 1

2

where (., .)2 is the usual euclidean product in ZN and the sum 5.6 is understood to converge
with respect to the Sobolev norm |.|Hk(TN ).

Now we see that the norms |.|k are Hilbert norms that are equivalent to |.|Hk(TN ) (cf.
[5, p.166]) , that

Hk(Ω) = span{φν : ν ∈ ZN}

and {φν}ν∈ZN is an orthogonal basis for Hk(TN) with respect to |.|k and to |.|Hk(TN ) for
every k ≥ 1 and

|φν |k = (1 + (ν, ν)2) k2 .

Now Theorem 32 applies: The embedding Hk(TN) ↪→ H l(TN) is of p-Schatten class if
and only if ∑

ν∈ZN

(
|φν |l
|φν |k

)p
=

∑
ν∈ZN

(
1

(1 + ν2
1 + ...+ ν2

N) k−l2

)p
<∞.

Let VN = {ν ∈ ZN : νj 6= 0, j = 1, ..., N}. By the inequality of arithmetic and geometric
means: ∑

ν∈VN

(
1

(1 + ν2
1 + ...+ ν2

N) k−l2

)p
≤

∑
ν∈ZN

(
1

(ν2
1 + ...+ ν2

N) k−l2

)p

≤
∑
ν∈VN

1
ν2

1 ...ν
2
N

k−l
2N p

=
∑
ν∈VN

1
|ν1...νN |

k−l
N
p

≤

 ∑
ν1∈Z\{0}

( 1
ν1

) k−lN p

 ...
 ∑
νN∈Z\{0}

( 1
νN

) k−lN p


and these sums converge for k − l > N

p
.

For Vm = {ν ∈ ZN : |{j : νj 6= 0}| = m} where 0 ≤ m < N the same argument yields
convergence for k − l > m

p
. So the sum over ZN = ⋃N

m=0 Vm converges for k − l > N
p
.

This implies the embedding of the Hilbert spaces Hk(TN) ↪→ H l(TN) equipped with
the norms |.|k, |.|l are of p-Schatten class and because the norms are equivalent to the
Sobolev norms we have ∑

ν∈ZN

(
|φν |Hl(TN )

|φν |Hk(TN )

)p
<∞.

Because {φν} is an orthogonal basis of Hk(TN) and H l(TN) with respect to |.|Hk(TN )
and |.|Hl(TN ) Theorem 32 applies again. It follows the embedding of the Sobolev spaces
Hk(TN) ↪→ H l(TN) is of p-Schatten class.
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For k − l ≤ N
p
the embedding HK(Ω) ↪→ H l(Ω) is not of p-Schatten class: By what we

have seen it is clear that for the sum of the p-th powers of the singular numbers σν of
this embedding we have

∑
ν∈ZN

σpν =
∞∑
m=0

∑
ν∈ZN ,|ν|1=m

(
1

(1 + ν2
1 + ...+ ν2

N) k−l2

)p
(5.7)

where |ν|1 = |ν1|+ ...|νN |. For |ν|1 = m we have

σν ≥ ( 1
2Nm2 )

k−l
2 ,m > 0

and for m sufficiently large |{ν ∈ ZN : |ν|1 = m}| ≥ ( m
N3 )N−1. We get

∑
ν∈ZN

σpν ≥
∞∑
m=1

( m
N3 )N−1( 1

2Nm2 )
k−l

2 p ≥ C(N)
∞∑
m=1

mN−1−(k−l)p

where C(N) is some constant dependent onN . For k−l ≤ N
p
it followsN−1−(k−l)p ≥ −1

and thus that the sum 5.7 does not converge. It follows:

Lemma 33: The embedding Hk(TN) ↪→ H l(TN) is of p-Schatten class if and only if
k − l > N

p
.

As we already mentioned this result can be generalized to certain compact manifolds,
for example to the closure of bounded domains with a smooth boundary. Since the proof
and even the proper formulation of this requires some effort and the involved techniques
and concepts are really marginal for our further conclusions we just refer to [13, pp.84-85]
and [20, pp.162-172]. Like Maurin's theorem Gram's theorem has applications to elliptic
differential operators, see [13, pp.85-86].
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6 Characterization of the p-Schatten
classes

In this chapter we will characterize the p-Schatten classes and thus the p-Schatten
embeddings. As mentioned in the introduction Gohberg and Markus (cf. [11]) achieved
a characterization of the p-Schatten classes Jp(H) on one Hilbert space H . Their proof
involves some complicated arguments, e.g. transfinite induction. For two separable
Hilbert spaces H1 and H2 we characterize the classes Jp(H1,H2). We will see that there
are essentially two cases to consider. In the case 0 < p < 2 the set

 ∞∑
j=1
|Aφj|pH2

 1
p

: {φj}∞j=1 an orthonormal basis


turns out to be unbounded and to contain∞ for all A ∈ J∞(H1,H2)\{0} . It is necessary
and sufficient for A to be a p-Schatten mapping that this set is not identical to {∞} i.e.
that there exists an orthonormal basis so that the sum converges. In the case 2 ≤ p <∞
the set may be bounded and it is necessary and sufficient for A to be a p-Schatten
mapping that this set does not contain∞ i.e. that the sum converges for all orthonormal
bases. We will see that this implies its boundedness by the p-Schatten norm of A. In the
case p = 2 we know that the set shrinks to a singleton set that contains either ∞ or the
Hilbert-Schmidt norm of the mapping. We start with the case 0 < p < 2. The proof of
the following theorem is due to Dunford and Schwartz (see [8, XI.9.32 Lemma]). See
also [25, remarks to Theorem 1.18] and [12, p.95].

Theorem 34: If 0 < p < 2 and A : H1 → H2 is a compact mapping then ∑∞j=1 σj(A)p <
∞, i.e. A is of p-Schatten class if and only if

∞∑
j=1
|Aφj|pH2 <∞

for some orthonormal basis {φj}∞j=1 of H1.

Proof: If A is of p-Schatten class then the eigenvectors of A∗A yield such an orthonormal
basis. To see this let {φj}∞j=1 be an orthonormal basis consisting of eigenvectors and
simply compute

∞∑
j=1
|Aφj|pH2 =

∞∑
j=1

(Aφj, Aφj)
p
2
H2

=
∞∑
j=1

(A∗Aφj, φj)
p
2
H1 =

∞∑
j=1

σj(A)p <∞.
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Now suppose ∑∞j=1 |Aφj|
p
H2 <∞ for some orthonormal basis {φj}∞j=1 of H1. Define the

mapping B : H1 → H2 by Bφj = |Aφj|
p
2−1
H2 Aφj for j if Aφj 6= 0 and Bφj = 0 otherwise.

Then ∞∑
j=1
|Bφj|2H2 =

∞∑
j=1
|Aφj|p <∞

i.e. B is a Hilbert-Schmidt operator and thus of 2-Schatten class. Now define T : H1 → H1
by Tφj = |Aφj|1−

p
2φj for j = 1, 2, .... Then T is obviously self-adjoint and of q-Schatten

class where q(1− p
2) = p since σj(T ) = |Aφj|1−

p
2 and

∞∑
j=1
|Aφj|

q(1− p2 )
H2 =

∞∑
j=1
|Aφj|pH2 <∞.

By Theorem 14 it follows that A = BT belongs to the r-Schatten class where 1
r

= 1
2 + 1

q
=

1
2 + 1− p2

p
= 1

p
, i.e. A is of p-Schatten class.

We note that the positivity of 1− p
2 is essential for the existence of q > 0. Thus the

existence of an orthonormal basis {φj} of H1 so that {|Aφj|H2} ∈ `p(N) is sufficient for
A ∈ Jp(H1,H2). If we think the other way around the question arises if for 0 < p < 2
there always exists an orthonormal basis {γj}∞j=1 so that {|Aγj|H2}∞j=1 /∈ `p(N). The
answer is positive if A 6= 0 (cf. [11, Theorem 3]).

Lemma 35: For 0 < p < 2 and a non-zero bounded linear mapping A : H1 → H2 there
always exists an orthonormal basis {γj}∞j=1 so that

∞∑
j=1
|Aγj|pH2 =∞.

Proof: If A is not compact then for all orthonormal bases {ηj}∞j=1 we have

∞∑
j=1
|Aηj|2H2 =∞ (6.1)

because otherwise for γ ∈ H1

∞∑
j=1
|(γ, ηj)H1 ||Aηj|H2 ≤ (

∞∑
j=1
|(γ, ηj)H1|2) 1

2

︸ ︷︷ ︸
=|γ|

(
∞∑
j=1
|Aηj|2H2) 1

2

︸ ︷︷ ︸
<∞

<∞

implied that A is the limit of the finite rank mappings ∑N
j=1 |(., ηj)H1||Aηj|H2 for N →∞,

i.e. A is compact. Thus for all non-compact A:
∞∑
j=1
|Aηj|pH2 =∞
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for all 0 < p < 2 and all orthonormal bases {η}∞j=1 of H1.
If A is compact it admits a polar decomposition:

A =
∞∑
j=1

σj(A)(., φj)H1ψj.

Now we fix some orthonormal basis {ηj}∞j=1 of H1. Then s1 = {(ηj, φ1)H1}∞j=1 is a
sequence of length 1 in `2(N). The sequence s = { 1

i
1
p
} is in `2(N). Thus s2 = 1

|s|`2
s is

a sequence of length 1 in `2(N). Whence there exists a map α : `2(N) → `2(N) that
respects the inner product on `2(N) and maps s1 to s2. It can be represented by an
orthogonal matrix {αij}∞i,j=1 so that

∞∑
j=1

αijαjk = δik (6.2)

and ∞∑
j=1

αij(ηj, φ1)H1 = 1
|s|`2

1
i

1
p

. (6.3)

Now define γi = ∑∞
j=1 αijηj. Then by 6.2 it follows that {γi}∞i=1 is an orthonormal

system and by 6.3 for i = 1, 2, .. one has (γi, φ1)H1 = 1
|s|`2

1
i

1
p
. For every i using the polar

decomposition

|Aγi|2H2 =
∞∑
j=1

σ2
j (A)|(γi, φj)H1|2 ≥ σ2

1(A)|(γi, φ1)H1 |2

so |Aγi|H2 ≥ σ1(A)|(γi, φ1)H1| and so for 0 < p < 2
∞∑
i=1
|Aγi|pH2 ≥

∞∑
i=1

σp1(A)|(γi, φ1)H1|p = σp1(A)
|s|p`2︸ ︷︷ ︸
>0

∞∑
i=1

1
i

=∞

This completes the proof.

We see that by Theorem 34 we obtain a characterization of the p-Schatten embeddings
for 0 < p < 2:

Corollary 4: For 0 < p < 2 a compact embedding H1 ↪→ H2 is a p-Schatten embedding
if and only if {|φj|H2}∞j=1 ∈ `p(N) for some orthonormal basis {φj}∞j=1 of H1.

The case 2 ≤ p needs some more effort. In the border case p = 2 we know that
{|Aφj|H2} ∈ `2(N) for an orthonormal basis {φj} of H1 if and only if {|Aφj|H2} ∈ `2(N)
for all orthonormal bases {φj} of H1. For 2 ≤ p the function x 7→ x

p
2 is convex and we

will use the convexity of this function. We define doubly substochastic matrices.

Definition 19: {αjk}∞j,k=1 is called a doubly substochastic matrix if αjk ≥ 0 and
∞∑
j=1

αjk ≤ 1, k = 1, 2, ... and
∞∑
k=1

αjk ≤ 1, j = 1, 2, ...
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We use the following technical lemma due to Fan (cf. [10, Lemma 1A] and [25,
Proposition 1.12] ):

Lemma 36: Let {αjk}∞j,k=1 be a doubly substochastic matrix and b = {bj}∞j=1 a non-
negative, non-increasing sequence,such that {αjkbk}∞k=1 ∈ `1(N) for each j ∈ N then

m∑
j=1

∞∑
k=1

αjkbk ≤
m∑
j=1

bj

for any m ∈ N.

Proof: Let cj = ∑∞
k=1 αjkbk for j ∈ N and dk = ∑m

j=1 αjk for k ∈ N and for some fixed
integer m. Then 0 ≤ dk ≤ 1 and

∞∑
k=1

dk =
m∑
j=1

∞∑
k=1

αjk︸ ︷︷ ︸
≤1

≤ m.

This and the fact that b is non-increasing imply

∞∑
k=1

dkbk ≤
m−1∑
k=1

dkbk + (m−
m−1∑
k=1

dk)bm ≤
m−1∑
k=1

dk(bk − bm) +mbm ≤
m−1∑
k=1

(bk − bm) +mbm

since dk ≤ 1 and so
∞∑
k=1

dkbk =
m∑
j=1

∞∑
k=1

αjkbk ≤
m−1∑
k=1

(bk − bm) +mbm =
m∑
j=1

bj.

We use this lemma to prove (cf. [10, Theorem 1]):

Theorem 37: For H = H∗ a compact, non-negative operator on H1,{λj}∞j=1 the sequence
of its eigenvalues in non-increasing order we have:

max
m∑
j=1

(Hψj, ψj) =
m∑
j=1

λj for any m ∈ N (6.4)

where the maximum is taken over all finite orthonormal sets {ψ}mj=1 of order m in H1.

Proof: Let {ψj} be an arbitrary orthonormal set in H1. By the spectral theorem there
exists an orthonormal family of eigenvectors {φj}∞j=1, i.e. Hφj = λjφj for j = 1, 2, ....
({φj}∞j=1 is not necessarily a basis, because we leave out the eigenvectors in the kernel, if
there are infinitely many non-zero eigenvectors.) We have ∑m

j=1(Hφj, φj) = ∑m
j=1 λj for

every m ∈ N.
We have for 1 ≤ j ≤ m :

(Hψj, ψj) =
∞∑
k=1

λk|(ψj, φk)|2.
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By Bessel's inequality {|(ψj, φk)|2}j,k is a doubly substochastic matrix and so Lemma 36
implies:

m∑
j=1

(Hψj, ψj) ≤
m∑
j=1

λj for any m ∈ N.

In our application of this theorem we will put H = A∗A and use (A∗Aψ,ψ) = |Aψ|2.
For a sequence α ∈ c0, where c0 is the space of sequences of complex numbers tending to
zero let α∗ be the sequence of its absolute values in non-increasing order. We define (cf.
[11]) the relations ≺≺ and ≺ on the spaces c0 and `1(N) respectively.

Definition 20: We write β ≺≺ α for α, β ∈ c0 if

k∑
j=1

β∗j ≤
k∑
j=1

α∗j for k = 1, 2, ... (6.5)

We write β ≺ α for α, β ∈ `1(N) if

β ≺≺ α and
∞∑
j=1

β∗j =
∞∑
j=1

α∗j . (6.6)

For H as above Theorem 37 shows that for any orthonormal basis {φj}∞j=1:

{(Hφj, φj)}∞j=1 ≺≺ {λj}∞j=1

and if {λj}∞j=1 ∈ `1(N)
{(Hφj, φj)}∞j=1 ≺ {λj}∞j=1

because tr(H) = ∑∞
j=1(Hφj, φj) does not depend on the basis for a non-negative operator.

Note that the sets {|αj|} and {α∗j} need not be identical, as the example α = {1, 0, 1
2 , 0,

1
3 , 0, ..}

, α∗ = {1, 1
2 ,

1
3 , ...} shows, whereas the sets {|αj|}−{0} and {α

∗
j}−{0} are identical, even

counting multiplicities. Also note that for α, β non-increasing sequences of non-negative
numbers α ≺ β implies inf ∑k

m=1 αjm ≥ inf ∑k
m=1 βjm , where the infimum is taken over

all sets of k different integers {j1, ..., jk}. When we say for a non-negative compact
operator H, let {λj(H)} be its non-increasing sequence of eigenvalues, we actually mean
{λ∗j(H)}, for some sequence {λj(H)} of its eigenvalues, counting multiplicities, but then
0 appears in this sequence, only if there are finitely many non-zero eigenvalues, counting
multiplicities. We want to show that if β ≺≺ α for non-negative sequences of real
numbers and a convex function f : [0,∞) → [0,∞) we have ∑k

j=1 f(βj) ≤
∑k
j=1 f(αj)

for k = 1, 2, ..., i.e. {f(βj)}∞j=1 ≺≺ {f(αj)}∞j=1, so that convex f respect the relation ≺≺.
This needs some preparation.
We fix an integer N and for a vector α ∈ CN we define the vector α∗ ∈ [0,∞)N as
the vector of absolute values |αj| renumbered, so that α∗1 ≥ α∗2 ≥ ... ≥ α∗N . Then the
following lemma holds (cf. [25, Lemma 1.8]).
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Lemma 38: For α, β ∈ CN

N∑
j=1
|αjβj| ≤

N∑
j=1

α∗jβ
∗
j .

Proof: Without loss of generality we can renumber the coordinates of α and β so that
|α1| ≥ |α2| ≥ ...|αN |. We compute

N∑
j=1
|αjβj| = |αN |

N∑
j=1
|βj|+ (|αN−1| − |αN |)

N−1∑
j=1
|βj|+ ...+ (|α1| − |α2|)|β1|. (6.7)

By definition of the ∗-operation we have

k∑
j=1
|βj| ≤

k∑
j=1

β∗j k=1,2,...,N. (6.8)

6.7 and 6.8 imply
N∑
j=1
|αjβj| ≤

N∑
j=1

α∗jβ
∗
j .

We will use this lemma in the proof of the following theorem that according to Simon
is essentially due to Markus while the proof is due to Mityagin. Our classification in the
case p ≥ 2 is primarily based on this theorem (cf. [25, Theorem 1.9] and [16] and[18]).

Theorem 39: If α ∈ [0,∞)N with α1 ≥ α2 ≥ .... ≥ αN and β ∈ CN satisfy

k∑
j=1

β∗ ≤
k∑
j=1

αj for k=1,2,...,N (6.9)

then there exist points α(1), ..., α(m) ∈ CN ,m ∈ N with α(l)∗ = α for l = 1, ...,m and
0 ≤ λl ≤ 1 with ∑m

l=1 λl = 1 such that

β =
m∑
l=1

λlα
(l).

Proof: Let A = {γ ∈ CN : γ∗ = α} and conv(A) its convex hull. The statement of
the theorem is then: If β ∈ CN obeys 6.9, then β ∈ conv(A). We prove that for each
complex linear function ` the following holds

|`(β)| ≤ maxγ∈conv(A)Re(`(γ)). (6.10)

If we define ηj = (δjk)Nk=1 for j = 1, ..., N , where δjk is the Kronecker symbol and
`j = `(ηj) for j = 1, ..., N then `(β) = ∑N

j=1 `jβj and

|`(β)| ≤
N∑
j=1
|`jβj| ≤

N∑
j=1

`∗jβ
∗
j (6.11)
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by Lemma 38. Furthermore

N∑
j=1

`∗jβ
∗
j = `∗N

N∑
j=1

β∗j + (`∗N−1 − `∗N)
N−1∑
j=1

β∗j + ...+ (`∗1 − `∗2)β∗1 (6.12)

≤ `∗N

N∑
j=1

αj + (`∗N−1 − `∗N)
N−1∑
j=1

αj + ...+ (`∗1 − `∗2)α1 =
N∑
j=1

`∗jαj

by 6.9. But there exists an element α̂ ∈ A so that `(α̂) = ∑N
j=1 `

∗
jαj. This together

with 6.11 and 6.12 imply 6.10. To see the existence of α̂ put `∗j = |`kj | and define α̂ by
α̂kj = αj if |`kj | = 0 and α̂kj = `−1

kj
|`kj |αj otherwise. Then α̂∗ = α, i.e. α̂ ∈ A and

`(α̂) =
∑
kj

`kj α̂kj =
∑

kj ,|`kj |6=0
`kj`

−1
kj
|`kj |αj =

∑
kj ,|`kj |6=0

|`kj |αj =
N∑
j=1

`∗jαj.

Now suppose that β /∈ conv(A). Since conv(A) is closed, convex and bounded, there is a
hyperplane E = {γ ∈ CN : `(γ) = s} separating conv(A) and β:

`(γ) < s for γ ∈ conv(A) and `(β) > s (6.13)

for a real valued functional ` and s > 0 that can be chosen so that 6.13 contradicts 6.10.
It follows β ∈ conv(A).

The importance of Theorem 39 for our purpose consists in the following two corollaries.

Corollary 5: If F̂ : [0,∞)N → R is a function so that F : CN → R, γ 7→ F̂ (γ∗) is
convex and β ∈ CN and α ∈ [0,∞)N obey 6.9 then

F (β) ≤ F (α).

Proof: We have

F (β) = F̂ ((
m∑
l=1

λlα
(l))∗) ≤

m∑
l=1

λlF̂ (α(l)∗) =
m∑
l=1

λlF (α) = F (α).

Corollary 6: If f : [0,∞)→ [0,∞) is a monotone and convex function then F : CN →
[0,∞), β 7→ ∑N

j=1 f(β∗j ) is a convex function and if α = {αj}∞j=1 and β = {βj}∞j=1 are
non-increasing sequences of non-negative real numbers, satisfying β ≺≺ α then

k∑
j=1

f(βj) ≤
k∑
j=1

f(αj) for k = 1, 2, ...

, i.e. {f(βj)}∞j=1 ≺≺ {f(αj)}∞j=1.
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Proof: For α, β ∈ CN and 0 ≤ θ ≤ 1 we have

F (θα + (1− θ)β) =
N∑
j=1

f((θα + (1− θ)β)∗j) =
N∑
j=1

f(|θαj + (1− θ)βj|)

≤
N∑
j=1

f(θ|αj|+ (1− θ)|βj|) ≤
N∑
j=1

θf(|αj|) + (1− θ)f(|βj|) = θF (α) + (1− θ)F (β).

Now consider a mapping A : H1 → H2 as mentioned at the beginning and its canonical
decomposition. Let p ≥ 2. Then the map f : [0,∞) → [0,∞), x 7→ x

p
2 is convex.The

following holds:

Theorem 40: If A : H1 → H2 is a compact mapping and 1 ≤ N <∞ then

max
N∑
j=1
|Aφj|pH2 =

N∑
j=1

σpj (A)

where the maximum is taken over all orthonormal systems {φj}Nj=1.

Proof: Clearly H = A∗A is self-adjoint and non-negative. By Theorem 37 we have for
any orthonormal system {φj}Nj=1 in H1:

k∑
j=1

(Hφj, φj)H1 ≤
k∑
j=1

λj(H) for k = 1, 2, ..., N (6.14)

but since (Hφj, φj)H1 = |Aφj|2H2 and λj(H) = σ2
j (A) where σj(A) are the singular values

of A relation 6.14 becomes
k∑
j=1
|Aφj|2H2 ≤

k∑
j=1

σ2
j (A) for k = 1, 2, ..., N (6.15)

and then the convexity of f(x) = x
p
2 (p ≥ 2) and Corollary 6 imply

k∑
j=1
|Aφj|pH2 ≤

k∑
j=1

σpj (A) for k = 1, 2, ..., N (6.16)

and we get equality in 6.15 and thus in 6.16 , if we take for {φj}Nj=1 the eigenvectors of
A∗A in (1).

As a direct consequence of Theorem 40 we get:

Corollary 7: If A : H1 → H2 is a compact mapping then

max
∞∑
j=1
|Aφj|pH2 =

∞∑
j=1

σpj (A)

where the maximum is taken over all orthonormal bases {φj}∞j=1 of H1.
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Proof: By Theorem 40 for all orthonormal bases {φj}∞j=1 we have

∞∑
j=1
|Aφj|pH2 ≤

∞∑
j=1

σpj (A) (6.17)

and so taking a completion of the eigenvectors for A∗A , equation 6.17 becomes an
equality.

Finally we apply this result to embeddings:

Corollary 8: For 2 ≤ p a compact embedding H1 ↪→ H2 is a p-Schatten embedding if
and only if {|φj|H2}∞j=1 ∈ `p(N) for every orthonormal basis {φj}∞j=1 of H1.

In this Corollary we assumed H to be infinite dimensional. Of course every finite
dimensional space can be embedded via a p-Schatten embedding. It catches one's
eye that the methods used for 0 < p < 2 and 2 ≤ p differ completely. This is not
the case in the proof given by Gohberg and Markus but they use a theorem (cf. [11,
Theorem 1]) whose proof is not easy to understand. The characterization of the p-
Schatten embeddings bases upon summability conditions on orthonormal bases whilst
the characterization of compact embeddings in `2(N) given by Hanche-Olsen and Holden
bases upon summability conditions on elements of bounded sets. Furhtermore one has to
know at least one orthonormal basis to get a vivid description. We will encounter such
applications in the next chapter. In respect of our aim to characterize the p-Schatten
embeddings H ↪→ `2(N) we just apply our general result:

Corollary 9: A compact embedding H ↪→ `2(N) is a p-Schatten embedding if and only
if for every (2 ≤ p)/for some (0<p<2) orthonormal basis {fk}∞k=1 of H:

∞∑
k=1

 ∞∑
j=1
|fkj |2


p
2

<∞.
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7 Applications
In this chapter we apply the result of the preceding chapter to several spaces. As we
already mentioned we need to know an orthonormal basis. In the first section we study
spaces that we construct by imitating Sobolev spaces on the discrete set N. In the second
section we study the embeddings of discrete Sobolev spaces on weighted graphs. In the
third section we embed Sobolev spaces on sparse graphs.

7.1 The spaces s∗,α
For the construction of the following spaces we recall the definition of the right shift
operator and the left shift operator on `2(N):
Definition 21: For a sequence a = {aj}∞j=1 ∈ `2(N) the right shift operator S is defined
by

Sa = {aj−1}∞j=1 where a0 = 0
and the left shift operator T is defined by

Ta = {aj+1}∞j=1.

Recall that the left shift operator is the adjoint of the right shift operator: T = S∗.
Note that the right and left shift operator resemble creation and annihilation operators in
quantum physics that are weighted forward and backward shifts defined on an orthonormal
basis of a Hilbert space. For this see [4, 2.1.2.10 and 2.2.1.2.].

We consider a Sobolev like norm on the space `2(N), where the left shift operator acts
similar to a derivative. To “approach the boundary of N” we apply it infinitely many
times:

|a|∗ =
( ∞∑
n=0
|(S∗)na|22

) 1
2

for a ∈ `2(N), where |.|2 is the usual `2-norm and S∗ is the adjoint of the shift operator,
the left shift operator.
It is associated with the inner product

(a, b)∗ =
∞∑
n=0

((S∗)na, (S∗)nb)2

where a, b ∈ `2(N) and (., .)2 is the usual inner product on `2.
We compute:

|a|2∗ =
∞∑
j=1
|aj|2 +

∞∑
j=1
|aj+1|2 + ... =

∞∑
j=1

j|aj|2 = |{j 1
2aj}∞j=1|22
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and define more generally for α ≥ 0 and a, b ∈ `2(N):

Definition 22:
|a|∗,α = |{jαaj}∞j=1|2,

(a, b)∗,α = ({jαaj}∞j=1, {jαbj}∞j=1)2 and

s∗,α = {a ∈ `2(N)||a|∗,α <∞}.

We have |.|∗ = |.|∗, 1
2
and |.|2 = |.|∗,0. The following theorem holds:

Theorem 41: s∗,α are Hilbert spaces and
s∗,α ↪→ `2(N) are compact embeddings if α > 0 and
s∗,α ↪→ `2(N) are p-Schatten embeddings for 0 < p ≤ 2 if pα > 1.

Proof: |.|∗,α is a norm because |.|2 is a norm and thus s∗,α are normed linear spaces.
The norm is induced by the inner product (., .)∗,α that is an inner product because (., .)2
is an inner product. Thus s∗,α are pre-Hilbert spaces. If {an}∞n=1 is a Cauchy sequence in
s∗,α, there exists a sequence â in `2(N) such that

|â− {jαanj }∞j=1|2 → 0, n→∞, |â|2 <∞

because {jαanj }∞j=1 for n = 1, 2, ... constitute a Cauchy sequence with respect to |.|2 and
`2(N) is a Hilbert space. Define a by aj = j−αâj then,

|a− an|∗,α → 0, n→∞,

and |a|∗,α <∞ by a standard argument and thus s∗,α are Hilbert spaces.
To show the second assertion we apply Corollary 1 in chapter 4. Let α > 0. We denote by
B1
∗,α(0) the unit ball {a ∈ s∗,α : |a|∗,α ≤ 1} . Clearly all elements of B1

∗,α(0) are pointwise
bounded. We have to show that for every ε > 0 there exists a number n(ε) ∈ N so that
all a ∈ B1

∗,α(0) satisfy
∞∑

j=n(ε)+1
|aj|2 < ε2.

Assume on the contrary that there exists a number ε > 0 so that for all n ∈ N there
exists a sequence a ∈ B1

∗,α(0) so that

∞∑
j=n+1

|aj|2 ≥ ε2.

Choose N = bε− 1
α c+ 1 then by our assumption there exists a sequence a ∈ B1

∗,α(0) so
that

|a|2∗,α =
∞∑
j=1

j2α|aj|2 ≥
∞∑
N+1

j2α|aj|2

>︸︷︷︸
α>0

N2α
∞∑

j=N+1
|aj|2 > ε−2ε2 = 1
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a contradiction. Thus by Corollary 1 s∗,α ↪→ `2(N) is a compact embedding for α > 0.
If we define em,α by em,αj = m−αδm,j for j = 1, 2, ... then {em,α}∞m=1 is an orthonormal

basis for s∗,α. Thus by Corollary 4 the equation
∞∑
m=1
|em,α|p2 =

∞∑
m=1

m−pα,

shows the third assertion since the above sum converges if pα > 1.

In particular: s∗,α ↪→ `2(N) is a Hilbert-Schmidt embedding for α > 1
2 and

s∗,α ↪→ `2(N) is of trace class for α > 1. If for some p ≥ 2 one has pα ≤ 1 then it follows
by Corollary 8 that the embedding s∗,α ↪→ `2(N) is no p-Schatten embedding and thus
by Lemma 16 no p1-Schatten embedding for all 0 < p1 ≤ p.
In exactly the same way one proves that if s∗,α ↪→ s∗,β are compact for α− β > 0 then
s∗,α ↪→ s∗,β are p-Schatten embeddings for 0 < p ≤ 2 if (α− β)p > 1.
Note the analogy to the result by Gramsch where the condition for the embeddings

Hk(Ω)→ H l(Ω) to be p-Schatten embeddings was (k − l)p > N .

7.2 Discrete Sobolev spaces on weighted graphs
There are other spaces where an orthonormal basis is not easily obtained. As an example
we consider discrete Sobolev spaces on graphs. We will need some preparation to
understand this setting. We define a directed graph (cf. [19, Definition A.1]):

Definition 23: For a finite or countable set V and a subset E ⊂ V ×V the set G = (V,E)
is called a directed graph, the elements of V are called the vertices of the graph and the
elements of E its edges. G is called simple if for all v, w ∈ V

at most one of the pairs (v, w) and (w, v) is an element of E,

(v, v) /∈ E.
For an edge e = (v, w) we call einit = v its initial endpoint and eterm = w its terminal
endpoint.

Now we consider weights on vertices and edges and define function spaces on V and E
(cf. [19, Definition 3.1 and 3.2]):

Definition 24: For ν : V → (0,∞) and ρ : E → (0,∞) and 1 ≤ q <∞ we define the
spaces `qν(V ) and `qρ(E) by

`qν(V ) = {f : V → C :
(∑
v∈V
|f(v)|qν(v)

) 1
q

<∞} and

`qρ(E) = {u : E → C :
(∑
e∈E
|u(e)|qρ(e)

) 1
q

<∞}

respectively.
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We are now able to define discrete Sobolev spaces of first order on directed graphs (cf.
[19],):

Definition 25: For a function f ∈ `qν(V ) we define its derivative f ′ on E by

f
′(e) = f(eterm)− f(einit).

The Sobolev space w1,q
ρ,ν is defined by

w1,q
ρ,ν(V ) = {f ∈ `qν(V ) : f ′ ∈ `qρ(E)}.

Without proof we cite [19, Lemma 3.6]:

Lemma 42: For 1 ≤ q < ∞ the space w1,q
ρ,ν(V ) is a Banach space with respect to the

norm defined by
|f |q

w1,q
ρ,ν(V ) =

∑
v∈V
|f(v)|qν(v) +

∑
e∈E
|f ′(e)|qρ(e).

From 42 it follows immediately that w1,2
ρ,ν(V ) is a Hilbert space with respect to the

inner product (., .)w1,2
ρ,ν(V ) defined by

(f, g)w1,2
ρ,ν(V ) =

∑
v∈V

f(v)g(v)ν(v) +
∑
e∈E

f
′(e)g′(e)ρ(e).

We need to define the distance of two vertices (cf. [19, Definition 3.8] ) :

Definition 26: A path from the vertex v ∈ V to the vertex w ∈ V is a sequence of edges
e1, ..., ek where e1

init = v,ejterm = ej+1
init for j = 1, ..., k − 1 and ekterm = w. Its length is

defined by ρ(e1) + ...+ ρ(ek) and the distance of two vertices distρ(v, w) is defined as the
infimum of the lenghts of all paths from v to w. A graph is connected if for any pair of
vertices v 6= w there exists a path from v to w. Finally the ball of radius r > 0 centered
at v ∈ V is defined by

Br
ρ(v) = {w ∈ V : distρ(v, w) < r}.

The conditions of Hanche-Olsen and Holden lead to a compactness criterion (cf. [19,
Proposition 3.8] ):

Theorem 43: If G is a connected directed graph and 1 ≤ q < ∞ the embedding
w1,q
ν,ρ(V ) ↪→ `qν(V ) is compact if for every ε > 0 there exist a vertex v ∈ V and a radius

r > 0 so that
(i)Br

ρ(v) is finite and

(ii)
 ∑
w/∈Brρ(v)

|f(w)|qν(w)
 1

q

< ε

for all f in the unit ball of w1,q
ν,ρ(V ).
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Using our results achieved in chapter 6 we want to give summability conditions for the
embedding w1,2

ρ,ν(V ) ↪→ `2
ν(V ) to be a p-Schatten embedding where 0 < p ≤ 2 for some

simple graphs. From the preceding chapter we get:

Corollary 10: A compact embedding w1,2
ρ,ν(V ) ↪→ `2

ν(V ) is a p-Schatten embedding if for
every (2 ≤ p)/for some (0<p<2) orthonormal basis {fk}∞k=1 with respect to (., .)w1,2

ρ,ν(V ):

∞∑
k=1

(∑
v∈V
|fk(v)|2ν(v)

) p
2

<∞.

Since in general there is no obvious orthonormal basis of the space w1,q
ρ,ν(V ) our

strategy will be to apply the Gram-Schmidt orthogonalization method to a standard
basis. Consider the following weighted path Γ:

•
v1

ρ(e1)−→ •
v2

ρ(e2)−→ •
v3
−→ ...

For a further simplification assume ν ≡ 1. We write the Sobolev functions f ∈ w1,2
ρ (V )

as vectors :
f = (f(v1), ....), fj = f(vj).

By applying the Gram-Schmidt orthogonalization method to the basis {ek}∞k=1 where
ek = {δkj}∞j=1 one obtains the following recursive definition of an orthogonal basis of
w1,2
ρ (Γ):

f 1 = (1, 0, ...),

fk = ( ρ(e1)...ρ(ek−1)
|f 1|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

,
ρ(e2)...ρ(ek−1)

|f 2|2
w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

, ...,
ρ(ek−1)
|fk−1|2

w1,2
ρ (V )

, 1, 0, ...) k = 2, ...

We see that:

|fk|2
w1,2
ρ (V ) =

k−1∑
j=1

 ρ(ej)...ρ(ek−1)
|f j|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

2

+ 1 (7.1)

+
k−1∑
j=1

 ρ(ej)...ρ(ek−1)
|f j|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

− ρ(ej−1)...ρ(ek−1)
|f j|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

2

ρ(ej−1)

+
1− ρ(ek−1)

|fk−1|2
w1,2
ρ (V )

2

ρ(ek−1) + 1ρ(ek).

Assume ω : N→ R is a lower bound for this expression:

|fk|2
w1,2
ρ
≥ ω(k) > 1 , k = 1, 2, ...

Then if for 0 < p ≤ 2

∞∑
k=1

∣∣∣∣∣∣ fk

|fk|w1,2
ρ (V )

∣∣∣∣∣∣
p

`2(V )

≤
∞∑
k=1

ω(k)−
p
2

k−1∑
j=1

 ρ(ej)...ρ(ek−1)
|f j|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

2

+ 1


p
2

<∞ (7.2)
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it follows that w1,2
ρ (V ) ↪→ `2(V ) is a p-Schatten embedding.

For p ≥ 2
∞∑
k=1

∣∣∣∣∣∣ fk

|fk|w1,2
ρ (V )

∣∣∣∣∣∣
p

`2(V )

<∞

is necessary for w1,2
ρ (V ) ↪→ `2(V ) to be a p1-Schatten embedding for all 0 < p1 ≤ p. Even

if no suitable lower bound is known 7.1 and 7.2 (put ω(k) = |fk|2
w1,2
ρ
) provide a method

that yields a summability condition that only depends on the weight ρ.
The border case p = 2 yields:
Corollary 11: The embedding w1,2

ρ (V ) ↪→ `2(V ) is a Hilbert-Schmidt embedding if and
only if

∞∑
k=1
|fk|−2

w1,2
ρ (V )

k−1∑
j=1

 ρ(ej)...ρ(ek−1)
|f j|2

w1,2
ρ (V )...|f

k−1|2
w1,2
ρ (V )

2

+ 1

 <∞.

7.3 Discrete Sobolev spaces on sparse graphs
For this section we adopt the definition of a graph in the preceding section but we assume
the set of edges E to be symmetric, i.e. we have (v, w) ∈ E if and only if (w, v) ∈ E
and in this case we say that v and w are adjacent and write v ∼ w. We also assume
the graph G = (V,E) to contain no loops, i.e. (v, v) /∈ E for all v ∈ V and to be locally
finite, i.e. |{w ∈ V : w ∼ v}| <∞ for every v ∈ V . We define:
Definition 27: For a graph G = (V,E) where E is symmetric and that contains no
loops the degree function deg : V → N ∪ {0} is defined by

deg(v) = |{w ∈ V : w ∼ v}|.

For a subset W ⊆ V we denote the induced subgraph by GW = (W,EW ) where
EW = E ∩ (W ×W ). In this section we consider unweighted graphs, i.e. we put ν ≡ 1
and ρ ≡ 1 and we denote the spaces `2

1(V ) and w1,2
1,1(V ) as defined in the preceding

section by `2(V ) and w1,2(V ) respectively. For a function g : V → C we denote the
multiplication operator on `2(V ) given by f 7→ gf i.e. by pointwise multiplication again
by g, e.g. in the case g = deg.
We define the discrete Schrödinger operator ∆ + q where q : V → [0,∞) is a non-negative
function (cf. [6]):
Definition 28: On the domain

D(∆ + q) =
{
f ∈ `2(V ) :

(
v 7→

∑
w∼v

(f(v)− f(w)) + q(v)f(v)
)
∈ `2(v)

}

we define the Schrödinger operator ∆ + q : `2(V )→ `2(V ) by

(∆ + q)f(v) =
∑
w∼v

(f(v)− f(w)) + q(v)f(v)

for all f ∈ `2(V ), v ∈ V .
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In their paper [6] Bonnefont, Golénia and Keller show for sparse graphs a functional
inequality for the Schrödinger operator. Intuitively a graph is understood to be sparse if
it has few edges. Bonnefont, Golénia and Keller give the following definition:

Definition 29: A graph G = (V,E) is k-sparse if for finite W ⊆ V

|EW | ≤ k|W |.

By T1 ≤ T2 for two operators T1, T2 on a Hilbert space we mean that the operator
T2 − T1 is positive. For a real valued function g : V → R we define

lim inf
|v|→∞

g(v) = sup
W⊆V
|W |<∞

inf
v∈V \W

g(v), lim sup
|v|→∞

g(v) = inf
W⊆V
|W |<∞

sup
v∈V \W

g(v).

We cite [6, Theorem 1.1]:

Theorem 44: If G = (V,E) is a k-sparse graph, we have
(i) for all 0 < ε ≤ 1

(1− ε)(deg +q)− k

2(1
ε
− ε) ≤ ∆ + q ≤ (1 + ε)(deg +q) + k

2(1
ε
− ε)

on Cc(V ), the space of real valued functions with finite support on V ,

(ii) ∆ + q has purely discrete spectrum if and only if

lim inf
|v|→∞

(deg(v) + q(v)) =∞.

We remark that purely discrete means that the operator has a discrete spectrum
consisting of eigenvalues of finite multiplicity.
We see that for a function f ∈ `2(V ) one has

((∆ + q)f, f)`2(V ) =
∑
v∈V

∑
w∼v

(f(v)− f(w))f(v) +
∑
v∈V

q(v)f(v)f(v)

and rearranging the terms in the first sum and noting that

(f(v)− f(w))f(v) + (f(w)− f(v))f(w) = (f(v)− f(w))(f(v)− f(w)) = |f(v)− f(w)|2

we see that for q ≡ 1:

((∆ + 1)f, f)`2(V ) = 1
2

∑
(v,w)∈E

|f(v)− f(w)|2 +
∑
v∈V
|f(v)|2

and thus by
1
2 |f |

2
w1,2(V ) ≤ ((∆ + 1)f, f)`2(V ) ≤ |f |2w1,2(V )

that ((∆ + 1)., .)`2(V ) induces a norm that is equivalent to |.|w1,2(V ). We define another
space:
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Definition 30: For a locally finite graph G = (V,E) where E is symmetric and that
contains no loops we define for f ∈ `2(V ):

|f |deg =
(∑
v∈V
|f(v)|2(deg(v) + 1)

) 1
2

and
`2

deg(V ) = {f ∈ `2(V ) : |f |deg <∞}.

It follows by Theorem 44 (i) (cf. [6, Theorem 1.1 (a)]) that for finitely supported real
valued functions f the norm |f |deg is finite if and only if |f |w1,2(V ) is finite. Noting that
this property for norms |.|1, |.|2 on a real valued function space is inherited by the norms√
|Re(.)|21 + |Im(.)|21,

√
|Re(.)|22 + |Im(.)|22 on the corresponding complex valued function

space and by extending the supports we can conclude that

`2
deg(V ) = w1,2(V ). (7.3)

as sets. In the same way as for the spaces s∗,α one can show that `2
deg(V ) are Hilbert

spaces endowed with the inner product

(f, g) =
∑
v∈V

(deg(v) + 1)f(v)g(v)

for f, g ∈ `2
deg(V ) and we know that w1,2(V ) are Hilbert-spaces. By 44 (i) (cf. [6, Theorem

1.1 (a)]) one has ∆ + 1 ≤ 2(deg +1) and arguing as above we see that the embedding

`2
deg(V ) ↪→ w1,2(V )

is continuous. Since the sets are identical it follows this embedding is surjective and thus
by the open mapping theorem it is an isomorphism of Hilbert spaces. Now for convenience
we suppose that the vertices are numbered in such a way that deg(j) = deg(vj) (we
denote the function on N by deg again) is non-decreasing. We are now able to apply
Theorem 41:

Corollary 12: (i) If there exists α > 0 so that j2α ≤ deg(j) + 1 for all but finitely many
j the embedding w1,2(V ) ∼= `2

deg(V ) ↪→ `2(V ) is compact, and:
(ii) If 0 < p ≤ 2 and j2α ≤ deg(j) + 1 for all but finitely many j and pα > 1 the
embedding w1,2(V ) ∼= `2

deg(V ) ↪→ `2(V ) is a p-Schatten embedding.

Proof: Suppose there exists a number α > 0 so that j2α ≤ deg(j) + 1 for all but finitely
many j. If we denote for f ∈ `2(V ) the sequence {f(vj)}∞j=1 by f̂ there clearly exists a
constant C > 0 so that

|f̂ |2∗,α =
∞∑
j=1

j2α|f(vj)|2 ≤ C
∞∑
j=1

(deg(j) + 1)|f(vj)|2 (7.4)

= C
∑
v∈V

(deg(v) + 1)|f(v)|2 = C|f |2deg.
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We have the following composition of embeddings:

`2
deg(V ) ↪→ s∗,α ↪→ `2(N) ∼= `2(V )

where the first one is bounded by 7.4 and the second is compact by Theorem 41. By the
ideal property of the classes J∞ as shown in Lemma 8 it follows that

w1,2(V ) ∼= `2
deg(V ) ↪→ `2(V )

is compact. If 0 < p ≤ 2 and pα > 1 the second embedding is of p-Schatten class by
Theorem 41 and by Theorem 143.8 it follows that

w1,2(V ) ∼= `2
deg(V ) ↪→ `2(V )

is of p-Schatten class.
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8 Open problems
The notion of an orthonormal basis was crucial to our discussion. It is not clear if there
is a similar characterization of p-Schatten classes for mappings between Banach spaces
X1 → X2 in the sense of [21] for example via Schauder bases or more specifically a
characterization of p-Schatten embeddings X ↪→ `q(N) for q ∈ [1,∞)\{2}.
In [13] Gramsch defines generalized p-Schatten embeddings but as we saw in section
5.3 his discussion is restricted to the Hilbert spaces Hk(Ω). One might ask if there is
a characterization of the generalized p-Schatten embeddings W k,q(Ω) ↪→ W l,q(Ω) for
q ∈ [1,∞)\{2}.
The question asked by Pietsch in [22] that we mentioned in section 3.2 seems to be
unanswered: Is the set of p-summable mappings Πp(X, Y ) identical to the Hilbert-Schmidt
class for p > 2.
In [11] Gohberg and Markus prove that if H = H∗ is a non-negative compact operator
on H1 with {λj(H)}∞j=1 ∈ `1(N) its sequence of eigenvalues in non-increasing order and
{αj}∞j=1 a non-increasing sequence of non-negative numbers satisfying the condition

{αj}∞j=1 ≺ {λj(H)}∞j=1. (8.1)

there is a number m (0 ≤ m ≤ ∞) and an orthonormal basis, consisting of orthonormal
systems {φj}∞j=1 and {fj}mj=1 such that

(Hφj, φj) = αj j = 1, 2, ...

(Hfj, fj) = 0 j = 1, ...,m.

One would like to have a simple proof for this theorem because it would provide another
proof of both Theorem 34 and Theorem 40 and thus Corollary 7 (see [11]).
For a simple path Γ we found sufficient (0 < p ≤ 2) and necessary (2 ≤ p < ∞)
summability conditions for the embeddings of the discrete Sobolev spaces w1,2

ν,ρ ↪→ `2
ν(V )

to be p-Schatten embeddings, that only depend on the weights , but could not write them
down explicitly because they are bound to a recursive definition of the underlying basis.
The question is still open if there is a simple characterization of the p-Schatten embeddings
w1,2
ν,ρ(V ) ↪→ `2

ν(V ) for certain broader classes of graphs or even a characterization of the
generalized p-Schatten embeddings w1,q

ν,ρ(V ) ↪→ `qν(V ) where q ∈ [1,∞). Finally we
conjecture that the embeddings s∗,α ↪→ s∗,β are compact for α− β > 0 and of p-Schatten
class for 0 < p <∞ if and only if (α− β)p > 1.
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