Asymptotic spectra of large graphs with a uniform local structure

Davide Bianchi

Harbin Institute of Technology (Shenzhen) School of Science

Hagen, 27th of April 2022

Overview

- Preliminaries on graph theory.
- The Poisson problem.
 - Symbol of a sequence of matrices.
- Average sojourn time on a regular *d*-cycle.
- References

Preliminaries on graph theory

A graph is a quadruple $G=(X,w,\kappa,\mu),$ given by

• a countable set of nodes X;

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty);$

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty);$
- a positive node measure $\mu \colon X \to (0, +\infty)$

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty);$
- a positive node measure $\mu \colon X \to (0, +\infty)$

where the edge-weight function \boldsymbol{w} satisfies:

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty)$;
- a positive node measure $\mu\colon X\to (0,+\infty)$

where the edge-weight function w satisfies:

(A1) Symmetry: w(x,y) = w(y,x) for every $x, y \in X$;

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty)$;
- a positive node measure $\mu\colon X\to (0,+\infty)$

where the edge-weight function w satisfies:

- (A1) Symmetry: w(x, y) = w(y, x) for every $x, y \in X$;
- (A2) No self-loops: w(x, x) = 0 for every $x \in X$;

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty)$;
- a positive node measure $\mu \colon X \to (0, +\infty)$

where the edge-weight function \boldsymbol{w} satisfies:

$$\begin{array}{ll} ({\rm A1}) \ {\rm Symmetry:} \ w(x,y)=w(y,x) \ {\rm for \ every} \ x,y\in X; \\ ({\rm A2}) \ {\rm No \ self-loops:} \ w(x,x)=0 \ {\rm for \ every} \ x\in X; \\ ({\rm A3}) \ {\rm Finite \ sum:} \ \sum_{y\in X} w(x,y)<\infty \ {\rm for \ every} \ x\in X. \end{array}$$

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty)$;
- a positive node measure $\mu: X \to (0, +\infty)$ where the edge-weight function w satisfies:

(A1) Symmetry:
$$w(x, y) = w(y, x)$$
 for every $x, y \in X$;
(A2) No self-loops: $w(x, x) = 0$ for every $x \in X$;
(A3) Finite sum: $\sum_{y \in X} w(x, y) < \infty$ for every $x \in X$.

If $w(x,y) \neq 0$, we write $x \sim y$. Vice-versa, we write $x \nsim y$.

A graph is a quadruple $G = (X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative *edge-weight* function $w: X \times X \rightarrow [0, +\infty)$;
- a nonnegative killing term (or potential) $\kappa \colon X \to [0,\infty)$;
- a positive node measure $\mu: X \to (0, +\infty)$ where the edge-weight function w satisfies:

(A1) Symmetry:
$$w(x, y) = w(y, x)$$
 for every $x, y \in X$;
(A2) No self-loops: $w(x, x) = 0$ for every $x \in X$;
(A3) Finite sum: $\sum_{y \in X} w(x, y) < \infty$ for every $x \in X$.

If $w(x,y) \neq 0$, we write $x \sim y$. Vice-versa, we write $x \nsim y$.

$$\deg(x) := \sum_{y \in X} w(x, y) + \kappa(x) \quad \text{ and } \quad \operatorname{Deg}(x) := \frac{\deg(x)}{\mu(x)}.$$

If X is finite, we say that G is a finite graph.

If X is finite, we say that G is a finite graph. If for every pair $x, y \in X$ exists a finite sequence $\{x_k\}_{k=0}^m$ such that

$$x = x_0 \sim x_1 \sim \cdots \sim x_k = y$$

then G is said to be connected.

If X is finite, we say that G is a finite graph. If for every pair $x, y \in X$ exists a finite sequence $\{x_k\}_{k=0}^m$ such that

$$x = x_0 \sim x_1 \sim \cdots \sim x_k = y$$

then G is said to be connected. Define

$$C(X) \coloneqq \{u : X \to \mathbb{R}\}.$$

The (formal) graph Laplacian on G is defined in the following way:

The (formal) graph Laplacian on G is defined in the following way:

$$\operatorname{dom}\left(\Delta\right) \coloneqq \{ u \in C(X) \mid \sum_{y \in X} w(x, y) | u(y) | < \infty \quad \forall x \in X \},$$

The (formal) graph Laplacian on G is defined in the following way:

$$\operatorname{dom}\left(\Delta\right) \coloneqq \{ u \in C(X) \mid \sum_{y \in X} w(x, y) | u(y) | < \infty \quad \forall x \in X \},$$

$$\Delta u(x) \coloneqq \frac{1}{\mu(x)} \sum_{y \in X} w(x, y) \left(u(x) - u(y) \right) + \frac{\kappa(x)}{\mu(x)} u(x).$$

The (formal) graph Laplacian on G is defined in the following way:

dom (
$$\Delta$$
) := { $u \in C(X) \mid \sum_{y \in X} w(x, y) | u(y) | < \infty \quad \forall x \in X$ },

$$\Delta u(x) \coloneqq \frac{1}{\mu(x)} \sum_{y \in X} w(x, y) \left(u(x) - u(y) \right) + \frac{\kappa(x)}{\mu(x)} u(x).$$

Recalling that

$$\deg(x) \coloneqq \sum_{y \in X} w(x, y) + \kappa(x), \quad \operatorname{Deg}(x) \coloneqq \frac{\deg(x)}{\mu(x)},$$

The (formal) graph Laplacian on G is defined in the following way:

dom (
$$\Delta$$
) := { $u \in C(X) \mid \sum_{y \in X} w(x, y) | u(y) | < \infty \quad \forall x \in X$ },

$$\Delta u(x) \coloneqq \frac{1}{\mu(x)} \sum_{y \in X} w(x, y) \left(u(x) - u(y) \right) + \frac{\kappa(x)}{\mu(x)} u(x).$$

Recalling that

$$\deg(x) \coloneqq \sum_{y \in X} w(x, y) + \kappa(x), \quad \operatorname{Deg}(x) \coloneqq \frac{\deg(x)}{\mu(x)},$$

we can write

$$\Delta u(x) \coloneqq \mathrm{Deg}(x)u(x) - \frac{1}{\mu(x)}\sum_{y \in X} w(x,y)u(y).$$

Let us fix $X = \{x_1, \ldots, x_n\}$ and define

 $W \in \mathbb{R}^{n \times n}$ such that $W_{i,j} \coloneqq w(x_i, x_j)$,

Let us fix $X = \{x_1, \dots, x_n\}$ and define $W \in \mathbb{R}^{n \times n}$ such that $W_{i,j} \coloneqq w(x_i, x_j),$ $D \in \mathbb{R}^{n \times n}$ such that $D \mapsto = \int \deg(x_i)$ if i = 1

$$D \in \mathbb{R}^{n imes n}$$
 such that $D_{i,j} \coloneqq egin{cases} \deg(x_i) & ext{if } i=j, \ 0 & ext{otherwise}, \end{cases}$

Let us fix $X = \{x_1, \dots, x_n\}$ and define $W \in \mathbb{R}^{n \times n}$ such that $W_{i,j} \coloneqq w(x_i, x_j),$ $D \in \mathbb{R}^{n \times n}$ such that $D_{i,j} \coloneqq \begin{cases} \deg(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}, \end{cases}$ $M \in \mathbb{R}^{n \times n}$ such that $M_{i,j} \coloneqq \begin{cases} \mu(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}$

Let us fix $X = \{x_1, \dots, x_n\}$ and define $W \in \mathbb{R}^{n \times n}$ such that $W_{i,j} \coloneqq w(x_i, x_j)$, $D \in \mathbb{R}^{n \times n}$ such that $D_{i,j} \coloneqq \begin{cases} \deg(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}, \end{cases}$ $M \in \mathbb{R}^{n \times n}$ such that $M_{i,j} \coloneqq \begin{cases} \mu(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}$

Then, identifying $u \in C(X)$ with $\boldsymbol{u} \coloneqq (u(x_1), \ldots, u(x_n))^T \in \mathbb{R}^n$, we can write Δ in matrix form,

$$\Delta = M^{-1}(D - W)$$

Let us fix $X = \{x_1, \dots, x_n\}$ and define $W \in \mathbb{R}^{n \times n}$ such that $W_{i,j} \coloneqq w(x_i, x_j),$ $D \in \mathbb{R}^{n \times n}$ such that $D_{i,j} \coloneqq \begin{cases} \deg(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}, \end{cases}$ $M \in \mathbb{R}^{n \times n}$ such that $M_{i,j} \coloneqq \begin{cases} \mu(x_i) & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}$

Then, identifying $u \in C(X)$ with $\boldsymbol{u} \coloneqq (u(x_1), \dots, u(x_n))^T \in \mathbb{R}^n$, we can write Δ in matrix form,

$$\Delta = M^{-1}(D - W)$$

W is called adjacency matrix, and D degree matrix.

8 of 43

Let $A \subset X$, $A \neq \emptyset$. Then,

Let $A \subset X$, $A \neq \emptyset$. Then,

$$\mathring{A} \coloneqq \{x \in A \mid x \nsim y \text{ if } y \in X \setminus A\}$$
 interior of A ,

Let $A \subset X$, $A \neq \emptyset$. Then,

$$A := \{x \in A \mid x \nsim y \text{ if } y \in X \setminus A\}$$
 interior of A ,

 $\mathring{\partial} A \coloneqq \{ x \in A \mid x \sim y \text{ for some } y \in X \setminus A \} \quad \text{ interior boundary of } A,$

Let $A \subset X$, $A \neq \emptyset$. Then,

$$A := \{ x \in A \mid x \nsim y \text{ if } y \in X \setminus A \} \text{ interior of } A,$$

 $\mathring{\partial} A \coloneqq \{x \in A \mid x \sim y \text{ for some } y \in X \setminus A\} \quad \text{ interior boundary of } A,$

 $\dot{\partial}A := \{x \in X \setminus A \mid x \sim y \text{ for some } y \in A\}$ exterior boundary of A.

Let $A \subset X$, $A \neq \emptyset$. Then, $\mathring{A} := \{x \in A \mid x \nsim y \text{ if } y \in X \setminus A\}$ interior of A,

 $\mathring{\partial} A \coloneqq \{x \in A \mid x \sim y \text{ for some } y \in X \setminus A\} \quad \text{ interior boundary of } A,$

$$\dot{\partial}A \coloneqq \{x \in X \setminus A \mid x \sim y \text{ for some } y \in A\}$$
 exterior boundary of A .
Clearly, $A = \mathring{A} \sqcup \mathring{\partial}A$ and $\dot{\partial}A \subseteq X \setminus A$.

Grafi e sottografi

Subgraphs

Definition (Induced subgraph)

 $F=(A,w',\kappa',\mu')$ is the canoncial induced subgraph of $G=(X,w,\kappa,\mu)$ if

- $A \subset X$;
- $w' \equiv w_{|A \times A};$

•
$$\mu' \equiv \mu_{|A};$$

• $\kappa'(x) = \kappa(x)$ for every $x \in \mathbf{A}$.

Subgraphs

Definition (Induced subgraph)

 $F=(A,w',\kappa',\mu')$ is an induced subgraph of $G=(X,w,\kappa,\mu)$ if

- $A \subset X$;
- $w' \equiv w_{|A \times A};$
- $\mu' \equiv \mu_{|A};$
- $\kappa'(x) = \kappa(x)$ for every $x \in \mathring{A}$.

Remark: we do not fix the values of κ' on the interior boundary points $\mathring{\partial}A$.
Subgraphs

Definition (Induced subgraph)

 $F=(A,w',\kappa',\mu')$ is an induced subgraph of $G=(X,w,\kappa,\mu)$ if

- $A \subset X$;
- $w' \equiv w_{|A \times A};$
- $\mu' \equiv \mu_{|A};$
- $\kappa'(x) = \kappa(x)$ for every $x \in \mathring{A}$.

Remark: we do not fix the values of κ' on the interior boundary points $\mathring{\partial}A$.Different choices of $\kappa'_{|\mathring{\partial}A}$ produce different subgraphs.

Subgraphs

Definition (Induced subgraph)

 $F=(A,w',\kappa',\mu')$ is an induced subgraph of $G=(X,w,\kappa,\mu)$ if

- $A \subset X$;
- $w' \equiv w_{|A \times A};$
- $\mu' \equiv \mu_{|A};$
- $\kappa'(x) = \kappa(x)$ for every $x \in \mathring{A}$.

Remark: we do not fix the values of κ' on the interior boundary points $\mathring{\partial}A$.Different choices of $\kappa'_{|\mathring{\partial}A}$ produce different subgraphs. If necessary, we will indicate with Δ_F the graph Laplacian associated to the subgraph F.

Subgraphs

Definition (Dirichlet subgraph)

 $F_{\text{dir}} = (A, w', \kappa_{\text{dir}}, \mu')$ is the Dirichlet subgraph of $G = (X, w, \kappa, \mu)$ if • $A \subset X$:

- $w' \equiv w_{|A \times A};$
- $\mu' \equiv \mu_{|A};$

•
$$\kappa_{\operatorname{dir}}(x) = \kappa(x) + \sum_{y \in X \setminus A} w(x, y).$$

We will indicate with Δ_{dir} the graph Laplacian associated to F_{dir} .

Sottografi

Graph Laplacian of a Dirichlet subgraph

Let $\mathfrak{i} \colon C(A) \hookrightarrow C(X)$ be the canonical embedding

$$\mathbf{i}v(x) = \begin{cases} v(x) & \text{if } x \in A, \\ 0 & \text{if } x \in X \setminus A. \end{cases}$$

Graph Laplacian of a Dirichlet subgraph

Let $\mathfrak{i} \colon C(A) \hookrightarrow C(X)$ be the canonical embedding

$$\mathbf{i}v(x) = \begin{cases} v(x) & \text{if } x \in A, \\ 0 & \text{if } x \in X \setminus A. \end{cases}$$

Then

$$\Delta_{\mathsf{dir}} v(x) = \Delta \mathfrak{i} v(x).$$

Graph Laplacian of a Dirichlet subgraph

Let $\mathbf{i} \colon C(A) \hookrightarrow C(X)$ be the canonical embedding

$$\mathbf{i}v(x) = \begin{cases} v(x) & \text{if } x \in A, \\ 0 & \text{if } x \in X \setminus A. \end{cases}$$

Then

$$\Delta_{\mathsf{dir}} v(x) = \Delta \mathbf{i} v(x).$$

The Dirichlet graph Laplacian Δ_{dir} can be viewed as the restriction of Δ having imposed (zero) Dirichlet conditions on the exterior boundary $\dot{\partial}A$.

The Poisson problem

Fix $G = (X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$.

Fix $G = (X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$. Let us consider the following problem

$$\begin{cases} \Delta u(x) = g(x) & \text{if } x \in A, \\ u(x) = 0 & \text{if } x \in \dot{\partial}A. \end{cases}$$

Fix $G = (X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$.Let us consider the following problem

$$\begin{cases} \Delta u(x) = g(x) & \text{if } x \in A, \\ u(x) = 0 & \text{if } x \in \dot{\partial}A. \end{cases}$$

It is equivalent to solve

$$\Delta_{\mathsf{dir}} u(x) = g(x),$$

on $F_{\text{dir}} = (A, w_{|A \times A}, \kappa_{\text{dir}}, \mu_{|A}).$

Fix $G = (X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$. Let us consider the following problem

$$\begin{cases} \Delta u(x) = g(x) & \text{if } x \in A, \\ u(x) = 0 & \text{if } x \in \dot{\partial}A. \end{cases}$$

It is equivalent to solve

$$\Delta_{\mathsf{dir}} u(x) = g(x),$$

on $F_{dir} = (A, w_{|A \times A}, \kappa_{dir}, \mu_{|A})$. There exists a unique solution for every $g \in C(A)$.

Simple example of a graph with locally uniform structure

The path graph:

$$G = (X_{n+2}, w, \kappa, \mu)$$

where

•
$$X_{n+2} = \{x_i \mid i = 0, \dots, n+1\},$$

• $w(x_i, x_j) = \begin{cases} 1 & \text{if } |i-j| = 1, \\ 0 & \text{otherwise.} \end{cases}$
• $\kappa(x_i) = 0 \text{ and } \mu(x_i) = 1 \text{ for every } i = 0, \dots, n+1.$

Simple example of a graph with locally uniform structure

The path graph:

$$G = (X_{n+2}, w, \kappa, \mu)$$

where

•
$$X_{n+2} = \{x_i \mid i = 0, ..., n+1\},\$$

• $w(x_i, x_j) = \begin{cases} 1 & \text{if } |i-j| = 1, \\ 0 & \text{otherwise.} \end{cases}$
• $\kappa(x_i) = 0 \text{ and } \mu(x_i) = 1 \text{ for every } i = 0, ..., n+1.$
Fix $X_n \coloneqq \{x_i \mid i = 1, ..., n\} \subset X_{n+2} \text{ and}$
 $F_{\text{dir}} = (X_n, w_{|X_n \times X_n}, \kappa_{\text{dir}}, \mu_{|X_n}) \subset G$

Simple example of a graph with locally uniform structure

Let us complexify the example

From a single node

Let us complexify the example

Let us complexifying the example

Let us complexifying the example

Let us complexifying the example

 $F_{\mathsf{dir}} = (X_n, w_{|X_n \times X_n}, \kappa_{\mathsf{dir}}, \mu_{|X_n})$

Suppose $|X_n| = d_n$. We need to solve the linear system

$$\Delta_{\mathsf{dir}} \boldsymbol{u} = \boldsymbol{g}.$$
 (1)

Let

$$\boldsymbol{u}^{(j+1)} \coloneqq S(\Delta_{\mathsf{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)})$$

be an iterative method for the solution of system (1).

Suppose $|X_n| = d_n$. We need to solve the linear system

$$\Delta_{\mathsf{dir}} \boldsymbol{u} = \boldsymbol{g}.$$
 (1)

Let

$$\boldsymbol{u}^{(j+1)} \coloneqq S(\Delta_{\mathsf{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)})$$

be an iterative method for the solution of system (1). Given a fixed tolerance $\epsilon := ||\boldsymbol{u} - \boldsymbol{u}_{\text{exact}}|| > 0$, typically the number of iterations N to reach that tolerance depends on d_n , that is, $N = N(\epsilon, d_n)$.

Suppose $|X_n| = d_n$. We need to solve the linear system

$$\Delta_{\mathsf{dir}} \boldsymbol{u} = \boldsymbol{g}.$$
 (1)

Let

$$\boldsymbol{u}^{(j+1)} \coloneqq S(\Delta_{\mathsf{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)})$$

be an iterative method for the solution of system (1). Given a fixed tolerance $\epsilon := \|\boldsymbol{u} - \boldsymbol{u}_{\text{exact}}\| > 0$, typically the number of iterations N to reach that tolerance depends on d_n , that is, $N = N(\epsilon, d_n)$.

$$w_1 = 1$$
, $w_2 = 2$, $w_3 = 3$, $l_1 = 10$, $l_2 = 1$, $g(x_{k,i}) = \sin(ki)$.

d_n	Gauss-Seidel
1016	96
4088	> 100
16376	> 100

We want to accelerate the convergence making N independent of d_n .

We want to accelerate the convergence making N independent of d_n .

A Two-Grid Method (TGM) is defined by the following algorithm

1.
$$\boldsymbol{r}_n = \Delta_{\text{dir}} \boldsymbol{u}^{(j)} - \boldsymbol{g}$$

2. $\boldsymbol{r}_m = (P_n^m)^H \boldsymbol{r}_n$
3. $\Delta'_{\text{dir}} = (P_n^m)^H \Delta_{\text{dir}} (P_n^m)$
4. Solve $\Delta'_{\text{dir}} \boldsymbol{y} = \boldsymbol{r}_m$
5. $\hat{\boldsymbol{u}}^{(j)} = \boldsymbol{u}^{(j)} - P_n^m \boldsymbol{y}$
6. $\boldsymbol{u}^{(j+1)} = S(\Delta_{\text{dir}}, \hat{\boldsymbol{u}}^{(j)}, \boldsymbol{g})$

where $P_n^m \in \mathbb{C}^{d_n} \times \mathbb{C}^m$, with $m < d_n$, is a full-rank matrix.

We want to accelerate the convergence making N independent of d_n .

A Two-Grid Method (TGM) is defined by the following algorithm

1.
$$\boldsymbol{r}_n = \Delta_{\text{dir}} \boldsymbol{u}^{(j)} - \boldsymbol{g}$$

2. $\boldsymbol{r}_m = (P_n^m)^H \boldsymbol{r}_n$
3. $\Delta'_{\text{dir}} = (P_n^m)^H \Delta_{\text{dir}}(P_n^m)$
4. Solve $\Delta'_{\text{dir}} \boldsymbol{y} = \boldsymbol{r}_m$
5. $\hat{\boldsymbol{u}}^{(j)} = \boldsymbol{u}^{(j)} - P_n^m \boldsymbol{y}$
6. $\boldsymbol{u}^{(j+1)} = S(\Delta_{\text{dir}}, \hat{\boldsymbol{u}}^{(j)}, \boldsymbol{g})$

where $P_n^m \in \mathbb{C}^{d_n} \times \mathbb{C}^m$, with $m < d_n$, is a full-rank matrix.

We need to find a "good" P_n^m .

Symbol of a sequence of matrices

Asymptotic spectrum

Definition (Spectral symbol)

Let $\{A_{n,\nu}\}_n$ be a sequence of matrices and let $\mathfrak{f}: D \to \mathbb{C}^{\nu \times \nu}$ be a measurable Hermitian matrix-valued function defined on the measurable set $D \subset \mathbb{R}^m$, with $0 < \mu_m(D) < \infty$. We say that $\{A_{n,\nu}\}_n$ is distributed like \mathfrak{f} in the sense of eigenvalues, in symbols $\{A_{n,\nu}\}_n \sim_{\lambda} \mathfrak{f}$, if

$$\lim_{\boldsymbol{n}\to\infty}\frac{1}{d_{\boldsymbol{n}}}\sum_{k=1}^{d_{\boldsymbol{n}}}F(\lambda_k(A_{\boldsymbol{n},\nu}))=\frac{1}{\mu_m(D)}\int_D\sum_{k=1}^{\nu}F(\lambda_k(\boldsymbol{\mathfrak{f}}(\boldsymbol{y})))\,d\mu_m(\boldsymbol{y})$$

for all $F \in C_c(\mathbb{R})$, where $\lambda_1(\mathfrak{f}(\boldsymbol{y})), \ldots, \lambda_{\nu}(\mathfrak{f}(\boldsymbol{y}))$ are the eigenvalues of $\mathfrak{f}(\boldsymbol{y})$ and $\lambda_1(X_{\boldsymbol{n},\nu}), \ldots, \lambda_{d_{\boldsymbol{n}}}(X_{\boldsymbol{n},\nu})$ are the eigenvalues of $\{X_{\boldsymbol{n},\nu}\}$, sorted in non-decreasing order.

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ be measurable on a set Ω with $0 < \mu_d(\Omega) < \infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$f^{\dagger}:(0,1) \to \mathbb{R}, \qquad f^{\dagger}(y) = \inf\left\{u \in \mathbb{R}: \frac{\mu_d \{f \le u\}}{\mu_d(\Omega)} \ge y\right\}.$$

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ be measurable on a set Ω with $0 < \mu_d(\Omega) < \infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$f^{\dagger}:(0,1) \to \mathbb{R}, \qquad f^{\dagger}(y) = \inf \left\{ u \in \mathbb{R} : \frac{\mu_d \{ f \le u \}}{\mu_d(\Omega)} \ge y \right\}.$$

It holds that if $\{A_n\}_n \sim_{\lambda} f$, then $\{A_n\}_n \sim_{\lambda} f^{\dagger}$.

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ be measurable on a set Ω with $0 < \mu_d(\Omega) < \infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$f^{\dagger}:(0,1) \to \mathbb{R}, \qquad f^{\dagger}(y) = \inf\left\{u \in \mathbb{R}: \frac{\mu_d\{f \le u\}}{\mu_d(\Omega)} \ge y\right\}.$$

It holds that if $\{A_n\}_n \sim_{\lambda} f$, then $\{A_n\}_n \sim_{\lambda} f^{\dagger}$. Under suitable assumptions (for example, continuity of f and f^{\dagger}), it can be proved that if $\{A_n\}_n \sim_{\lambda} f$, then

$$\max_{k=1,\dots,n} \left\{ |\lambda_k(A_n) - f^{\dagger}\left(\frac{k}{n+1}\right)| \right\} \to 0 \quad \text{as } n \to \infty$$

See:

- D. Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo 58.38 (2021): pp. 1–47.
- G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions. Expositiones Mathematicae 40.1 (2021).

Asymptotic spectrum: Examples

Toeplitz matrix $T_n \in \mathbb{C}^{n \times n}$:

$$T_n = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{1-n} \\ t_1 & t_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{-1} \\ t_{n-1} & \cdots & t_1 & t_0 \end{pmatrix},$$

$$\{T_n\}_n \sim t_0 + \sum_{k=1}^{n-1} (t_k + t_{-k}) \cos(k\theta) + (t_k - t_{-k}) \imath \sin(k\theta) \ \theta \in [-\pi, \pi].$$

Fix: $t_1 = t_{-1} = 1$, $t_2 = t_{-2} = -6$, $t_3 = t_{-3} = 1$, $t_4 = t_{-4} = 1$, and 0 all the other coefficients. Then

$$\mathfrak{f}(\theta) = 2\cos(\theta) - 12\cos(2\theta) + 2\cos(3\theta) + 2\cos(4\theta).$$

Asymptotic spectrum: Examples

Asymptotic spectrum: Examples

- A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409–454.
- A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.

It is possible to check that $0 \leq \lambda_1(\boldsymbol{f}(\theta)) < \lambda_2(\boldsymbol{f}(\theta)) < \lambda_3(\boldsymbol{f}(\theta)) < \lambda_4(\boldsymbol{f}(\theta))$ for all $\theta \in [-\pi, \pi]$, and

$$\det(\boldsymbol{f}(\theta)) = 292 - 292\cos(\theta).$$

Hence, we deduce that both the determinant and $\lambda_1(f(\theta))$ have a zero of order 2 in $\theta = 0$. 32 of 43
Once we know that $\lambda_1(f(\theta))$ has only one zero of order 2 in $\theta = 0$, that is, $f^{\dagger}(\theta)$ has only one zero of order 2 in $\theta = 0$, we can prescribe a suitable grid transfer operator P_n^m for the TGM.

Once we know that $\lambda_1(f(\theta))$ has only one zero of order 2 in $\theta = 0$, that is, $f^{\dagger}(\theta)$ has only one zero of order 2 in $\theta = 0$, we can prescribe a suitable grid transfer operator P_n^m for the TGM.Fix $k = n/\mathfrak{g}$, $\mathfrak{g} = 2$ and a polynomial p. We choose

$$P_n^m = T_n(p)K_n$$

where $T_n(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_n is the cutting matrix

 $K_n = [\delta_{i-\mathfrak{g}j}]_{i,j}, \quad i = 0, \dots, n-1; \ j = 0, \dots, k-1, \qquad \delta_\ell = \begin{cases} 1 & \text{if } \ell \equiv 0 \pmod{n}, \\ 0 & \text{otherwise} \end{cases}.$

Once we know that $\lambda_1(f(\theta))$ has only one zero of order 2 in $\theta = 0$, that is, $f^{\dagger}(\theta)$ has only one zero of order 2 in $\theta = 0$, we can prescribe a suitable grid transfer operator P_n^m for the TGM.Fix $k = n/\mathfrak{g}$, $\mathfrak{g} = 2$ and a polynomial p. We choose

$$P_n^m = T_n(p)K_n$$

where $T_n(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_n is the cutting matrix

$$K_n = [\delta_{i-\mathfrak{g}j}]_{i,j}, \quad i = 0, \dots, n-1; \ j = 0, \dots, k-1, \qquad \delta_\ell = \begin{cases} 1 & \text{if } \ell \equiv 0 \pmod{n}, \\ 0 & \text{otherwise} \end{cases}$$

Choose $p: [0, \pi] \to \mathbb{R}$ such that

$$\limsup_{\theta \to 0} \frac{p^2(\pi - \theta)}{f(\theta)} < \infty, \quad p^2(\theta) + p^2(\pi - \theta) > 0 \; \forall \, \theta \in [0, \pi].$$

Once we know that $\lambda_1(f(\theta))$ has only one zero of order 2 in $\theta = 0$, that is, $f^{\dagger}(\theta)$ has only one zero of order 2 in $\theta = 0$, we can prescribe a suitable grid transfer operator P_n^m for the TGM.Fix $k = n/\mathfrak{g}$, $\mathfrak{g} = 2$ and a polynomial p. We choose

$$P_n^m = T_n(p)K_n$$

where $T_n(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_n is the cutting matrix

$$K_n = [\delta_{i-\mathfrak{g}j}]_{i,j}, \quad i = 0, \dots, n-1; \ j = 0, \dots, k-1, \qquad \delta_\ell = \begin{cases} 1 & \text{if } \ell \equiv 0 \pmod{n}, \\ 0 & \text{otherwise} \end{cases}$$

Choose $p: [0, \pi] \to \mathbb{R}$ such that

$$\limsup_{\theta \to 0} \frac{p^2(\pi - \theta)}{f(\theta)} < \infty, \quad p^2(\theta) + p^2(\pi - \theta) > 0 \; \forall \, \theta \in [0, \pi].$$

Then the TGM is optimal. See

 A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859. (And all references therein.) 33 of 43

Fix $p(\theta) = 2 + 2\cos(\theta)$.

d_n	Gauss-Seidel	TGM
1016	96	9
4088	> 100	9
16376	> 100	9
65528	> 100	9
262136	> 100	9

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

• fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_+^{\nu \times \nu}$;

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_+^{\nu \times \nu}$;
- Make a number *m* of copies of *G*;

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number *m* of copies of *G*;
- fix r integers $0 < t_1 < t_2 < \cdots < t_r \le m 1$;

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number *m* of copies of *G*;
- fix r integers $0 < t_1 < t_2 < \cdots < t_r \le m 1$;
- Choose a fixed number of (not necessarily symmetric) connections $L_{t_k} \in \mathbb{R}_+^{\nu \times \nu}$ such that $L_{t_k}, L^T t_k \neq 0$ if and only if $|i-j| \in \{t_1, \ldots, t_r\};$

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number *m* of copies of *G*;
- fix r integers $0 < t_1 < t_2 < \cdots < t_r \le m 1$;
- Choose a fixed number of (not necessarily symmetric) connections $L_{t_k} \in \mathbb{R}_+^{\nu \times \nu}$ such that $L_{t_k}, L^T t_k \neq 0$ if and only if $|i-j| \in \{t_1, \ldots, t_r\};$
- G_i and G_j are connected if and only if $|i j| \in \{t_1, \dots, t_r\}$. Then $\{W^{(n)}\} \sim_{\lambda} f(\theta)$,

$$\boldsymbol{f}(\theta) = W + \sum_{k=1}^{r} \left(L_{t_k} + L_{t_k}^T \right) \cos(t_k \theta) + \sum_{k=1}^{m} \left(L_{t_k} - L_{t_k}^T \right) \sin(t_k \theta).$$

It is possible to compute explicitly the symbol functions for subgraphs too.

A graph inside a triangle

Average sojourn time on a regular d-cycle

Consider a sequence of graphs $\{G_n\}_n$ with number of nodes n_d and zero killing term, and the correspondent sequence of graph Laplacians $\{\Delta_n\}_n$. Fix $\alpha \in (0, 2]$.

Consider a sequence of graphs $\{G_n\}_n$ with number of nodes n_d and zero killing term, and the correspondent sequence of graph Laplacians $\{\Delta_n\}_n$. Fix $\alpha \in (0, 2]$. If

 $\{\Delta_n\}_n \sim_{\lambda} f(\boldsymbol{\theta}), \qquad \boldsymbol{\theta} \in [0, \pi]^d,$

Consider a sequence of graphs $\{G_n\}_n$ with number of nodes n_d and zero killing term, and the correspondent sequence of graph Laplacians $\{\Delta_n\}_n$. Fix $\alpha \in (0, 2]$. If

$$\{\Delta_n\}_n \sim_{\lambda} f(\boldsymbol{\theta}), \qquad \boldsymbol{\theta} \in [0, \pi]^d,$$

then

$$\{\Delta_n^{\alpha/2}\}_n \sim_\lambda \frac{1}{(f(\boldsymbol{\theta}))^{\alpha/2}}, \qquad \boldsymbol{\theta} \in [0,\pi]^d$$

and

$$\lim_{n_d \to \infty} \frac{1}{n_d} \sum_{k=2}^{n_d} \frac{1}{\lambda_k^{\alpha/2}} = \frac{1}{\pi^d} \int_{[0,\pi]^d} \frac{1}{(f(\theta))^{\alpha/2}} \, d\theta.$$

Consider a sequence of graphs $\{G_n\}_n$ with number of nodes n_d and zero killing term, and the correspondent sequence of graph Laplacians $\{\Delta_n\}_n$. Fix $\alpha \in (0, 2]$. If

$$\{\Delta_n\}_n \sim_{\lambda} f(\boldsymbol{\theta}), \qquad \boldsymbol{\theta} \in [0, \pi]^d,$$

then

$$\{\Delta_n^{\alpha/2}\}_n \sim_\lambda \frac{1}{(f(\boldsymbol{\theta}))^{\alpha/2}}, \qquad \boldsymbol{\theta} \in [0,\pi]^d$$

and

$$\lim_{n_d \to \infty} \frac{1}{n_d} \sum_{k=2}^{n_d} \frac{1}{\lambda_k^{\alpha/2}} = \frac{1}{\pi^d} \int_{[0,\pi]^d} \frac{1}{(f(\boldsymbol{\theta}))^{\alpha/2}} d\boldsymbol{\theta}.$$

This can be helpful to compute the average sojourn time, on a departure node x_0 , of a discrete random walk for a regular graph,

$$T_0 = \lim_{n_d \to \infty} \frac{1}{n_d} \sum_{k=2}^{n_d} \frac{1}{\lambda_k^{\alpha/2}}.$$

See

T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic 30 drtgfrees. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.

and G_n^d be the *d*-dimensional cycle, with $d \in \mathbb{N}$. Then

$$(f(\boldsymbol{\theta}))^{\alpha/2} = \left(\sum_{j=1}^{d} 2 - 2\cos(\theta_j)\right)^{\frac{\alpha}{2}}.$$

 T_0 is then finite if and only if

$$\int_{[0,\pi]^d} \frac{1}{\left(\sum_{j=1}^d 2 - 2\cos(\theta_j)\right)^{\frac{\alpha}{2}}} d\theta < \infty.$$

 T_0 is then finite if and only if

$$\int_{[0,\pi]^d} \frac{1}{\left(\sum_{j=1}^d 2 - 2\cos(\theta_j)\right)^{\frac{\alpha}{2}}} d\theta < \infty.$$

Therefore, by standard calculus, T_0 is finite if and only if

$$\int_{[0,\pi]^d} \frac{1}{\left(\sum_{j=1}^d \theta_j^2\right)^{\frac{\alpha}{2}}} \, d\boldsymbol{\theta} < \infty,$$

 T_0 is then finite if and only if

$$\int_{[0,\pi]^d} \frac{1}{\left(\sum_{j=1}^d 2 - 2\cos(\theta_j)\right)^{\frac{\alpha}{2}}} d\theta < \infty.$$

Therefore, by standard calculus, T_0 is finite if and only if

$$\int_{[0,\pi]^d} \frac{1}{\left(\sum_{j=1}^d \theta_j^2\right)^{\frac{\alpha}{2}}} \, d\boldsymbol{\theta} < \infty,$$

that is, by passing to spherical coordinates, if and only if

$$\int_0^\pi \frac{\rho^{d-1}}{(\rho^2)^{\frac{\alpha}{2}}} \, d\rho < \infty,$$

which is true if and only if $0 < \alpha < d$. It follows then that we have recurrence if and only if $\alpha \ge d$ and transience if and only if $0 < \alpha < d$.

Possible future directions of research

- Study the nonlinear Poisson equation $\Delta \Phi u = g$ on large/infinite graphs;
- Study recurrence properties of "diamond" graphs with complex structures;
- Applications? Chemistry, Biology, etc.

References

- A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409–454.
- A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.
- D. Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo 58.38 (2021): pp. 1–47.
- G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions. Expositiones Mathematicae 40.1 (2021).
- D. Bianchi, M. Donatelli, F. Durastante, and M. Mazza, Compatibility, embedding and regularization of non-local random walks on graphs. Journal of Mathematical Analysis and Applications 511.1 (2022).
- D. Bianchi, A. G. Setti, and R. K. Wojciechowski, The generalized porous medium equation on graphs: existence and uniqueness of solutions with l¹ data. Preprint (2022). arXiv: 2112.01733.
- T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau, Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.