Asymptotic spectra of large graphs with a uniform local structure

Davide Bianchi

Harbin Institute of Technology
(Shenzhen)
School of Science
Hagen, $27^{\text {th }}$ of April 2022

Overview

- Preliminaries on graph theory.
- The Poisson problem.
- Symbol of a sequence of matrices.
- Average sojourn time on a regular d-cycle.
- Refernces

Preliminaries on graph theory

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty)$;

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty)$;
- a positive node measure $\mu: X \rightarrow(0,+\infty)$

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty$);
- a positive node measure $\mu: X \rightarrow(0,+\infty)$ where the edge-weight function w satisfies:

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty$);
- a positive node measure $\mu: X \rightarrow(0,+\infty)$ where the edge-weight function w satisfies:
(A1) Symmetry: $w(x, y)=w(y, x)$ for every $x, y \in X$;

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty$);
- a positive node measure $\mu: X \rightarrow(0,+\infty)$
where the edge-weight function w satisfies:
(A1) Symmetry: $w(x, y)=w(y, x)$ for every $x, y \in X$;
(A2) No self-loops: $w(x, x)=0$ for every $x \in X$;

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty)$;
- a positive node measure $\mu: X \rightarrow(0,+\infty)$
where the edge-weight function w satisfies:
(A1) Symmetry: $w(x, y)=w(y, x)$ for every $x, y \in X$;
(A2) No self-loops: $w(x, x)=0$ for every $x \in X$;
(A3) Finite sum: $\sum_{y \in X} w(x, y)<\infty$ for every $x \in X$.

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty)$;
- a positive node measure $\mu: X \rightarrow(0,+\infty)$
where the edge-weight function w satisfies:
(A1) Symmetry: $w(x, y)=w(y, x)$ for every $x, y \in X$;
(A2) No self-loops: $w(x, x)=0$ for every $x \in X$;
(A3) Finite sum: $\sum_{y \in X} w(x, y)<\infty$ for every $x \in X$.
If $w(x, y) \neq 0$, we write $x \sim y$. Vice-versa, we write $x \nsim y$.

Graphs

A graph is a quadruple $G=(X, w, \kappa, \mu)$, given by

- a countable set of nodes X;
- a nonnegative edge-weight function $w: X \times X \rightarrow[0,+\infty)$;
- a nonnegative killing term (or potential) $\kappa: X \rightarrow[0, \infty)$;
- a positive node measure $\mu: X \rightarrow(0,+\infty)$
where the edge-weight function w satisfies:
(A1) Symmetry: $w(x, y)=w(y, x)$ for every $x, y \in X$;
(A2) No self-loops: $w(x, x)=0$ for every $x \in X$;
(A3) Finite sum: $\sum_{y \in X} w(x, y)<\infty$ for every $x \in X$.
If $w(x, y) \neq 0$, we write $x \sim y$. Vice-versa, we write $x \nsim y$.

$$
\operatorname{deg}(x):=\sum_{y \in X} w(x, y)+\kappa(x) \quad \text { and } \quad \operatorname{Deg}(x):=\frac{\operatorname{deg}(x)}{\mu(x)}
$$

Graphs

If X is finite, we say that G is a finite graph.

Graphs

If X is finite, we say that G is a finite graph.If for every pair $x, y \in X$ exists a finite sequence $\left\{x_{k}\right\}_{k=0}^{m}$ such that

$$
x=x_{0} \sim x_{1} \sim \cdots \sim x_{k}=y
$$

then G is said to be connected.

Graphs

If X is finite, we say that G is a finite graph.If for every pair $x, y \in X$ exists a finite sequence $\left\{x_{k}\right\}_{k=0}^{m}$ such that

$$
x=x_{0} \sim x_{1} \sim \cdots \sim x_{k}=y
$$

then G is said to be connected.Define

$$
C(X):=\{u: X \rightarrow \mathbb{R}\} .
$$

Graphs

Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

$$
\operatorname{dom}(\Delta):=\left\{u \in C(X)\left|\sum_{y \in X} w(x, y)\right| u(y) \mid<\infty \quad \forall x \in X\right\}
$$

Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

$$
\operatorname{dom}(\Delta):=\left\{u \in C(X)\left|\sum_{y \in X} w(x, y)\right| u(y) \mid<\infty \quad \forall x \in X\right\}
$$

$$
\Delta u(x):=\frac{1}{\mu(x)} \sum_{y \in X} w(x, y)(u(x)-u(y))+\frac{\kappa(x)}{\mu(x)} u(x) .
$$

Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

$$
\operatorname{dom}(\Delta):=\left\{u \in C(X)\left|\sum_{y \in X} w(x, y)\right| u(y) \mid<\infty \quad \forall x \in X\right\}
$$

$$
\Delta u(x):=\frac{1}{\mu(x)} \sum_{y \in X} w(x, y)(u(x)-u(y))+\frac{\kappa(x)}{\mu(x)} u(x) .
$$

Recalling that

$$
\operatorname{deg}(x):=\sum_{y \in X} w(x, y)+\kappa(x), \quad \operatorname{Deg}(x):=\frac{\operatorname{deg}(x)}{\mu(x)}
$$

Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

$$
\operatorname{dom}(\Delta):=\left\{u \in C(X)\left|\sum_{y \in X} w(x, y)\right| u(y) \mid<\infty \quad \forall x \in X\right\}
$$

$$
\Delta u(x):=\frac{1}{\mu(x)} \sum_{y \in X} w(x, y)(u(x)-u(y))+\frac{\kappa(x)}{\mu(x)} u(x) .
$$

Recalling that

$$
\operatorname{deg}(x):=\sum_{y \in X} w(x, y)+\kappa(x), \quad \operatorname{Deg}(x):=\frac{\operatorname{deg}(x)}{\mu(x)}
$$

we can write

$$
\Delta u(x):=\operatorname{Deg}(x) u(x)-\frac{1}{\mu(x)} \sum_{y \in X} w(x, y) u(y)
$$

Graph Laplacian - finite case

Let us fix $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and define

$$
W \in \mathbb{R}^{n \times n} \quad \text { such that } \quad W_{i, j}:=w\left(x_{i}, x_{j}\right),
$$

Graph Laplacian - finite case

Let us fix $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and define

$$
W \in \mathbb{R}^{n \times n} \quad \text { such that } \quad W_{i, j}:=w\left(x_{i}, x_{j}\right),
$$

$D \in \mathbb{R}^{n \times n}$ such that $D_{i, j}:= \begin{cases}\operatorname{deg}\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise },\end{cases}$

Graph Laplacian - finite case

Let us fix $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and define

$$
W \in \mathbb{R}^{n \times n} \quad \text { such that } \quad W_{i, j}:=w\left(x_{i}, x_{j}\right)
$$

$D \in \mathbb{R}^{n \times n} \quad$ such that $\quad D_{i, j}:= \begin{cases}\operatorname{deg}\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise },\end{cases}$
$M \in \mathbb{R}^{n \times n} \quad$ such that $\quad M_{i, j}:= \begin{cases}\mu\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise } .\end{cases}$

Graph Laplacian - finite case

Let us fix $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and define

$$
W \in \mathbb{R}^{n \times n} \quad \text { such that } \quad W_{i, j}:=w\left(x_{i}, x_{j}\right)
$$

$D \in \mathbb{R}^{n \times n}$ such that $D_{i, j}:= \begin{cases}\operatorname{deg}\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise },\end{cases}$
$M \in \mathbb{R}^{n \times n} \quad$ such that $\quad M_{i, j}:= \begin{cases}\mu\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise. }\end{cases}$
Then, identifying $u \in C(X)$ with $\boldsymbol{u}:=\left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right)^{T} \in \mathbb{R}^{n}$, we can write Δ in matrix form,

$$
\Delta=M^{-1}(D-W)
$$

Graph Laplacian - finite case

Let us fix $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and define

$$
W \in \mathbb{R}^{n \times n} \quad \text { such that } \quad W_{i, j}:=w\left(x_{i}, x_{j}\right)
$$

$D \in \mathbb{R}^{n \times n}$ such that $D_{i, j}:= \begin{cases}\operatorname{deg}\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise },\end{cases}$
$M \in \mathbb{R}^{n \times n} \quad$ such that $\quad M_{i, j}:= \begin{cases}\mu\left(x_{i}\right) & \text { if } i=j, \\ 0 & \text { otherwise. }\end{cases}$
Then, identifying $u \in C(X)$ with $\boldsymbol{u}:=\left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right)^{T} \in \mathbb{R}^{n}$, we can write Δ in matrix form,

$$
\Delta=M^{-1}(D-W)
$$

W is called adjacency matrix, and D degree matrix.

Interior and boundary points

Let $A \subset X, A \neq \emptyset$. Then,

Interior and boundary points

Let $A \subset X, A \neq \emptyset$. Then,

$$
\AA:=\{x \in A \mid x \nsim y \text { if } y \in X \backslash A\} \quad \text { interior of } A,
$$

Interior and boundary points

Let $A \subset X, A \neq \emptyset$. Then,

$$
\AA:=\{x \in A \mid x \nsim y \text { if } y \in X \backslash A\} \quad \text { interior of } A,
$$

$\partial ̊ A:=\{x \in A \mid x \sim y$ for some $y \in X \backslash A\} \quad$ interior boundary of A,

Interior and boundary points

Let $A \subset X, A \neq \emptyset$. Then,

$$
\AA:=\{x \in A \mid x \nsim y \text { if } y \in X \backslash A\} \quad \text { interior of } A,
$$

$\grave{\partial} A:=\{x \in A \mid x \sim y$ for some $y \in X \backslash A\} \quad$ interior boundary of A,
$\dot{\partial} A:=\{x \in X \backslash A \mid x \sim y$ for some $y \in A\} \quad$ exterior boundary of A.

Interior and boundary points

Let $A \subset X, A \neq \emptyset$. Then,

$$
\AA:=\{x \in A \mid x \nsim y \text { if } y \in X \backslash A\} \quad \text { interior of } A,
$$

$\grave{\partial} A:=\{x \in A \mid x \sim y$ for some $y \in X \backslash A\} \quad$ interior boundary of A,
$\dot{\partial} A:=\{x \in X \backslash A \mid x \sim y$ for some $y \in A\} \quad$ exterior boundary of A.
Clearly, $A=\AA \sqcup \partial$ and $\dot{\partial} A \subseteq X \backslash A$.

Grafi e sottografi

Subgraphs

Definition (Induced subgraph)

$F=\left(A, w^{\prime}, \kappa^{\prime}, \mu^{\prime}\right)$ is the canoncial induced subgraph of
$G=(X, w, \kappa, \mu)$ if

- $A \subset X$;
- $w^{\prime} \equiv w_{\mid A \times A}$;
- $\mu^{\prime} \equiv \mu_{\mid A}$;
- $\kappa^{\prime}(x)=\kappa(x)$ for every $x \in A$.

Subgraphs

Definition (Induced subgraph)

$F=\left(A, w^{\prime}, \kappa^{\prime}, \mu^{\prime}\right)$ is an induced subgraph of $G=(X, w, \kappa, \mu)$ if

- $A \subset X$;
- $w^{\prime} \equiv w_{\mid A \times A}$;
- $\mu^{\prime} \equiv \mu_{\mid A}$;
- $\kappa^{\prime}(x)=\kappa(x)$ for every $x \in \AA$.

Remark: we do not fix the values of κ^{\prime} on the interior boundary points $\partial{ }^{2} A$.

Subgraphs

Definition (Induced subgraph)

$F=\left(A, w^{\prime}, \kappa^{\prime}, \mu^{\prime}\right)$ is an induced subgraph of $G=(X, w, \kappa, \mu)$ if

- $A \subset X$;
- $w^{\prime} \equiv w_{\mid A \times A}$;
- $\mu^{\prime} \equiv \mu_{\mid A}$;
- $\kappa^{\prime}(x)=\kappa(x)$ for every $x \in \AA$.

Remark: we do not fix the values of κ^{\prime} on the interior boundary points $\grave{\partial} A$. Different choices of $\kappa_{\mid \partial ̇ A}^{\prime}$ produce different subgraphs.

Subgraphs

Definition (Induced subgraph)

$F=\left(A, w^{\prime}, \kappa^{\prime}, \mu^{\prime}\right)$ is an induced subgraph of $G=(X, w, \kappa, \mu)$ if

- $A \subset X$;
- $w^{\prime} \equiv w_{\mid A \times A}$;
- $\mu^{\prime} \equiv \mu_{\mid A}$;
- $\kappa^{\prime}(x)=\kappa(x)$ for every $x \in \AA$.

Remark: we do not fix the values of κ^{\prime} on the interior boundary points ∂A. Different choices of $\kappa_{\mid \partial{ }_{\partial}^{\prime}}^{\prime}$ produce different subgraphs. If necessary, we will indicate with Δ_{F} the graph Laplacian associated to the subgraph F.

Subgraphs

Definition (Dirichlet subgraph)

$F_{\text {dir }}=\left(A, w^{\prime}, \kappa_{\text {dir }}, \mu^{\prime}\right)$ is the Dirichlet subgraph of $G=(X, w, \kappa, \mu)$ if

- $A \subset X$;
- $w^{\prime} \equiv w_{\mid A \times A}$;
- $\mu^{\prime} \equiv \mu_{\mid A}$;
- $\kappa_{\mathrm{dir}}(x)=\kappa(x)+\sum_{y \in X \backslash A} w(x, y)$.

We will indicate with $\Delta_{\text {dir }}$ the graph Laplacian associated to $F_{\text {dir }}$.

Sottografi

Graph Laplacian of a Dirichlet subgraph

Let $\mathfrak{i}: C(A) \hookrightarrow C(X)$ be the canonical embedding

$$
\mathfrak{i} v(x)= \begin{cases}v(x) & \text { if } x \in A \\ 0 & \text { if } x \in X \backslash A\end{cases}
$$

Graph Laplacian of a Dirichlet subgraph

Let $\mathfrak{i}: C(A) \hookrightarrow C(X)$ be the canonical embedding

$$
\mathfrak{i} v(x)= \begin{cases}v(x) & \text { if } x \in A \\ 0 & \text { if } x \in X \backslash A\end{cases}
$$

Then

$$
\Delta_{\mathrm{di}} v(x)=\Delta \mathfrak{i} v(x)
$$

Graph Laplacian of a Dirichlet subgraph

Let $\mathfrak{i}: C(A) \hookrightarrow C(X)$ be the canonical embedding

$$
\mathfrak{i} v(x)= \begin{cases}v(x) & \text { if } x \in A \\ 0 & \text { if } x \in X \backslash A\end{cases}
$$

Then

$$
\Delta_{\mathrm{dir}} v(x)=\Delta \mathfrak{i} v(x)
$$

The Dirichlet graph Laplacian $\Delta_{\text {dir }}$ can be viewed as the restriction of Δ having imposed (zero) Dirichlet conditions on the exterior boundary $\dot{\partial} A$.

The Poisson problem

Solving the Poisson problem on (finite) graphs

Fix $G=(X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$.

Solving the Poisson problem on (finite) graphs

Fix $G=(X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$. Let us consider the following problem

$$
\begin{cases}\Delta u(x)=g(x) & \text { if } x \in A \\ u(x)=0 & \text { if } x \in \dot{\partial} A\end{cases}
$$

Solving the Poisson problem on (finite) graphs

Fix $G=(X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$. Let us consider the following problem

$$
\begin{cases}\Delta u(x)=g(x) & \text { if } x \in A \\ u(x)=0 & \text { if } x \in \dot{\partial} A\end{cases}
$$

It is equivalent to solve

$$
\Delta_{\operatorname{dir}} u(x)=g(x)
$$

on $F_{\text {dir }}=\left(A, w_{\mid A \times A}, \kappa_{\text {dir }}, \mu_{\mid A}\right)$.

Solving the Poisson problem on (finite) graphs

Fix $G=(X, w, \kappa \equiv 0, \mu)$ connected and a subset $\emptyset \neq A \subset X$. Let us consider the following problem

$$
\begin{cases}\Delta u(x)=g(x) & \text { if } x \in A \\ u(x)=0 & \text { if } x \in \dot{\partial} A\end{cases}
$$

It is equivalent to solve

$$
\Delta_{\operatorname{dir}} u(x)=g(x)
$$

on $F_{\text {dir }}=\left(A, w_{\mid A \times A}, \kappa_{\text {dir }}, \mu_{\mid A}\right)$.There exists a unique solution for every $g \in C(A)$.

Simple example of a graph with locally uniform structure

The path graph:

$$
G=\left(X_{n+2}, w, \kappa, \mu\right)
$$

where

- $X_{n+2}=\left\{x_{i} \mid i=0, \ldots, n+1\right\}$,
- $w\left(x_{i}, x_{j}\right)= \begin{cases}1 & \text { if }|i-j|=1, \\ 0 & \text { otherwise. }\end{cases}$
- $\kappa\left(x_{i}\right)=0$ and $\mu\left(x_{i}\right)=1$ for every $i=0, \ldots, n+1$.

Simple example of a graph with locally uniform structure

The path graph:

$$
G=\left(X_{n+2}, w, \kappa, \mu\right)
$$

where

- $X_{n+2}=\left\{x_{i} \mid i=0, \ldots, n+1\right\}$,
- $w\left(x_{i}, x_{j}\right)= \begin{cases}1 & \text { if }|i-j|=1, \\ 0 & \text { otherwise. }\end{cases}$
- $\kappa\left(x_{i}\right)=0$ and $\mu\left(x_{i}\right)=1$ for every $i=0, \ldots, n+1$.

Fix $X_{n}:=\left\{x_{i} \mid i=1, \ldots, n\right\} \subset X_{n+2}$ and

$$
F_{\mathrm{dir}}=\left(X_{n}, w_{\mid X_{n} \times X_{n}}, \kappa_{\mathrm{dir}}, \mu_{\mid X_{n}}\right) \subset G
$$

Simple example of a graph with locally uniform structure

Let us complexify the example

From a single node

Let us complexify the example

From a single node

To a "mold/diamond" graph

Let us complexifying the example

Let us complexifying the example

$$
\begin{aligned}
& \boldsymbol{V}=\left(\begin{array}{|llll}
0 & w_{1} & w_{2} & w_{3} \\
w_{1} & 0 & 0 & 0 \\
w_{2} & 0 & 0 & 0 \\
w_{3} & 0 & 0 & 0
\end{array}\right) \\
& \boldsymbol{I}=\left(\begin{array}{|llll}
l_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & l_{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{l|llll|llllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12} \\
x_{1} & 0 & w_{1} & w_{2} & w_{3} & l_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{2} & w_{1} & 0 & 0 & 0 & 0 & 0 & 0 & l_{2} & 0 & 0 & 0 & 0 \\
x_{3} & w_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{4} & w_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{5} & l_{1} & 0 & 0 & 0 & 0 & w_{1} & w_{2} & w_{3} & l_{1} & 0 & 0 & 0 \\
x_{6} & 0 & 0 & 0 & 0 & w_{1} & 0 & 0 & 0 & 0 & 0 & 0 & l_{2} \\
x_{7} & 0 & 0 & l_{2} & 0 & w_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{8} & 0 & 0 & 0 & 0 & w_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{9} & 0 & 0 & 0 & 0 & l_{1} & 0 & 0 & 0 & 0 & w_{1} & w_{2} & w_{3} \\
x_{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & w_{1} & 0 & 0 & 0 \\
x_{11} & 0 & 0 & 0 & 0 & 0 & 0 & l_{2} & 0 & w_{2} & 0 & 0 & 0 \\
x_{12} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & w_{3} & 0 & 0 & 0 \\
\hline
\end{array}\right.
\end{aligned}
$$

Let us complexifying the example

$$
u(x)=0 \quad \Delta_{\text {dir }} u(x)=g(x) \quad u(x)=0
$$

$$
F_{\mathrm{dir}}=\left(X_{n}, w_{\mid X_{n} \times X_{n}}, \kappa_{\mathrm{dir}}, \mu_{\mid X_{n}}\right)
$$

Solving the Poisson problem on (finite) graphs

Suppose $\left|X_{n}\right|=d_{n}$. We need to solve the linear system

$$
\begin{equation*}
\Delta_{\mathrm{dir}} \boldsymbol{u}=\boldsymbol{g} \tag{1}
\end{equation*}
$$

Let

$$
\boldsymbol{u}^{(j+1)}:=S\left(\Delta_{\mathrm{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)}\right)
$$

be an iterative method for the solution of system (1).

Solving the Poisson problem on (finite) graphs

Suppose $\left|X_{n}\right|=d_{n}$. We need to solve the linear system

$$
\begin{equation*}
\Delta_{\mathrm{dir}} \boldsymbol{u}=\boldsymbol{g} \tag{1}
\end{equation*}
$$

Let

$$
\boldsymbol{u}^{(j+1)}:=S\left(\Delta_{\mathrm{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)}\right)
$$

be an iterative method for the solution of system (1). Given a fixed tolerance $\epsilon:=\left\|\boldsymbol{u}-\boldsymbol{u}_{\text {exact }}\right\|>0$, typically the number of iterations N to reach that tolerance depends on d_{n}, that is, $N=N\left(\epsilon, d_{n}\right)$.

Solving the Poisson problem on (finite) graphs

Suppose $\left|X_{n}\right|=d_{n}$. We need to solve the linear system

$$
\begin{equation*}
\Delta_{\mathrm{dir}} \boldsymbol{u}=\boldsymbol{g} \tag{1}
\end{equation*}
$$

Let

$$
\boldsymbol{u}^{(j+1)}:=S\left(\Delta_{\mathrm{dir}}, \boldsymbol{g}, \boldsymbol{u}^{(j)}\right)
$$

be an iterative method for the solution of system (1). Given a fixed tolerance $\epsilon:=\left\|\boldsymbol{u}-\boldsymbol{u}_{\text {exact }}\right\|>0$, typically the number of iterations N to reach that tolerance depends on d_{n}, that is, $N=N\left(\epsilon, d_{n}\right)$.
$w_{1}=1, \quad w_{2}=2, \quad w_{3}=3, \quad l_{1}=10, \quad l_{2}=1, \quad g\left(x_{k, i}\right)=\sin (k i)$.

d_{n}	Gauss-Seidel
1016	96
4088	>100
16376	>100

Solving the Poisson problem on (finite) graphs: TGM

We want to accelerate the convergence making N independent of d_{n}.

Solving the Poisson problem on (finite) graphs: TGM

We want to accelerate the convergence making N independent of d_{n}.
A Two-Grid Method (TGM) is defined by the following algorithm

$$
\begin{aligned}
& \text { 1. } \boldsymbol{r}_{n}=\Delta_{\mathrm{dir}} \boldsymbol{u}^{(j)}-\boldsymbol{g} \\
& \text { 2. } \boldsymbol{r}_{m}=\left(P_{n}^{m}\right)^{H} \boldsymbol{r}_{n} \\
& \text { 3. } \Delta_{\text {dir }}^{\prime}=\left(P_{n}^{m}\right)^{H} \Delta_{\text {dir }}\left(P_{n}^{m}\right) \\
& \text { 4. Solve } \Delta_{\mathrm{dir}}^{\prime} \boldsymbol{y}=\boldsymbol{r}_{m} \\
& \text { 5. } \hat{\boldsymbol{u}}^{(j)}=\boldsymbol{u}^{(j)}-P_{n}^{m} \boldsymbol{y} \\
& \text { 6. } \boldsymbol{u}^{(j+1)}=S\left(\Delta_{\text {dir }}, \hat{\boldsymbol{u}}^{(j)}, \boldsymbol{g}\right)
\end{aligned}
$$

where $P_{n}^{m} \in \mathbb{C}^{d_{n}} \times \mathbb{C}^{m}$, with $m<d_{n}$, is a full-rank matrix.

Solving the Poisson problem on (finite) graphs: TGM

We want to accelerate the convergence making N independent of d_{n}.
A Two-Grid Method (TGM) is defined by the following algorithm

$$
\begin{aligned}
& \text { 1. } \boldsymbol{r}_{n}=\Delta_{\mathrm{dir}} \boldsymbol{u}^{(j)}-\boldsymbol{g} \\
& \text { 2. } \boldsymbol{r}_{m}=\left(P_{n}^{m}\right)^{H} \boldsymbol{r}_{n} \\
& \text { 3. } \Delta_{\mathrm{dir}}^{\prime}=\left(P_{n}^{m}\right)^{H} \Delta_{\mathrm{dir}}\left(P_{n}^{m}\right) \\
& \text { 4. Solve } \Delta_{\mathrm{dir}}^{\prime} \boldsymbol{y}=\boldsymbol{r}_{m} \\
& \text { 5. } \hat{\boldsymbol{u}}^{(j)}=\boldsymbol{u}^{(j)}-P_{n}^{m} \boldsymbol{y} \\
& \text { 6. } \boldsymbol{u}^{(j+1)}=S\left(\Delta_{\mathrm{dir}}, \hat{\boldsymbol{u}}^{(j)}, \boldsymbol{g}\right)
\end{aligned}
$$

where $P_{n}^{m} \in \mathbb{C}^{d_{n}} \times \mathbb{C}^{m}$, with $m<d_{n}$, is a full-rank matrix.
We need to find a "good" P_{n}^{m}.

Symbol of a sequence of matrices

Asymptotic spectrum

Definition (Spectral symbol)

Let $\left\{A_{\boldsymbol{n}, \nu}\right\}_{\boldsymbol{n}}$ be a sequence of matrices and let $\mathfrak{f}: D \rightarrow \mathbb{C}^{\nu \times \nu}$ be a measurable Hermitian matrix-valued function defined on the measurable set $D \subset \mathbb{R}^{m}$, with $0<\mu_{m}(D)<\infty$.
We say that $\left\{A_{\boldsymbol{n}, \nu}\right\}_{\boldsymbol{n}}$ is distributed like \mathfrak{f} in the sense of eigenvalues, in symbols $\left\{A_{\boldsymbol{n}, \nu}\right\}_{\boldsymbol{n}} \sim_{\lambda} \mathfrak{f}$, if

$$
\lim _{\boldsymbol{n} \rightarrow \infty} \frac{1}{d_{\boldsymbol{n}}} \sum_{k=1}^{d_{\boldsymbol{n}}} F\left(\lambda_{k}\left(A_{\boldsymbol{n}, \nu}\right)\right)=\frac{1}{\mu_{m}(D)} \int_{D} \sum_{k=1}^{\nu} F\left(\lambda_{k}(\mathfrak{f}(\boldsymbol{y}))\right) d \mu_{m}(\boldsymbol{y})
$$

for all $F \in C_{c}(\mathbb{R})$, where $\lambda_{1}(\mathfrak{f}(\boldsymbol{y})), \ldots, \lambda_{\nu}(\mathfrak{f}(\boldsymbol{y}))$ are the eigenvalues of $\mathfrak{f}(\boldsymbol{y})$ and $\lambda_{1}\left(X_{\boldsymbol{n}, \nu}\right), \ldots, \lambda_{d_{\boldsymbol{n}}}\left(X_{\boldsymbol{n}, \nu}\right)$ are the eigenvalues of $\left\{X_{\boldsymbol{n}, \nu}\right\}$, sorted in non-decreasing order.

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be measurable on a set Ω with $0<\mu_{d}(\Omega)<\infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$
f^{\dagger}:(0,1) \rightarrow \mathbb{R}, \quad f^{\dagger}(y)=\inf \left\{u \in \mathbb{R}: \frac{\mu_{d}\{f \leq u\}}{\mu_{d}(\Omega)} \geq y\right\}
$$

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be measurable on a set Ω with $0<\mu_{d}(\Omega)<\infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$
f^{\dagger}:(0,1) \rightarrow \mathbb{R}, \quad f^{\dagger}(y)=\inf \left\{u \in \mathbb{R}: \frac{\mu_{d}\{f \leq u\}}{\mu_{d}(\Omega)} \geq y\right\}
$$

It holds that if $\left\{A_{n}\right\}_{n} \sim_{\lambda} f$, then $\left\{A_{n}\right\}_{n} \sim_{\lambda} f^{\dagger}$.

Definition (Monotone rearrangment)

Let $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be measurable on a set Ω with $0<\mu_{d}(\Omega)<\infty$. The monotone rearrangement of f is the function denoted by f^{\dagger} and defined as follows:

$$
f^{\dagger}:(0,1) \rightarrow \mathbb{R}, \quad f^{\dagger}(y)=\inf \left\{u \in \mathbb{R}: \frac{\mu_{d}\{f \leq u\}}{\mu_{d}(\Omega)} \geq y\right\}
$$

It holds that if $\left\{A_{n}\right\}_{n} \sim_{\lambda} f$, then $\left\{A_{n}\right\}_{n} \sim_{\lambda} f^{\dagger}$. Under suitable assumptions (for example, continuity of f and f^{\dagger}), it can be proved that if $\left\{A_{n}\right\}_{n} \sim_{\lambda} f$, then

$$
\max _{k=1, \ldots, n}\left\{\left|\lambda_{k}\left(A_{n}\right)-f^{\dagger}\left(\frac{k}{n+1}\right)\right|\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

See:

- D. Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo 58.38 (2021): pp. 1-47.
- G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions. Expositiones Mathematicae 40.1 (2021).

Asymptotic spectrum: Examples

Toeplitz matrix $T_{n} \in \mathbb{C}^{n \times n}$:

$$
T_{n}=\left(\begin{array}{cccc}
t_{0} & t_{-1} & \cdots & t_{1-n} \\
t_{1} & t_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t_{-1} \\
t_{n-1} & \cdots & t_{1} & t_{0}
\end{array}\right)
$$

$\left\{T_{n}\right\}_{n} \sim t_{0}+\sum_{k=1}^{n-1}\left(t_{k}+t_{-k}\right) \cos (k \theta)+\left(t_{k}-t_{-k}\right) \imath \sin (k \theta) \theta \in[-\pi, \pi]$.

Fix: $t_{1}=t_{-1}=1, \quad t_{2}=t_{-2}=-6, \quad t_{3}=t_{-3}=1, \quad t_{4}=t_{-4}=1$, and 0 all the other coefficients. Then

$$
\mathfrak{f}(\theta)=2 \cos (\theta)-12 \cos (2 \theta)+2 \cos (3 \theta)+2 \cos (4 \theta)
$$

Asymptotic spectrum: Examples

$$
u(x)=0
$$

$$
\Delta_{\mathrm{dir}}^{(n)} u(x)=g(x) \quad u(x)=0
$$

Asymptotic spectrum: Examples

$$
u(x)=0 \quad \Delta_{\mathrm{dir}}^{(n)} u(x)=g(x) \quad u(x)=0
$$

$\left\{\Delta_{\text {dir }}^{(n)}\right\}_{n} \sim_{\lambda} \boldsymbol{f}(\theta)=D-\left[W+\left(L+L^{T}\right) \cos (\theta)+\left(L-L^{T}\right) \imath \sin (\theta)\right] \in \mathbb{R}^{4 \times 4}$, where $\theta \in[-\pi, \pi]$. See

- A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409-454.
- A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.

It is possible to check that $0 \leq \lambda_{1}(\boldsymbol{f}(\theta))<\lambda_{2}(\boldsymbol{f}(\theta))<\lambda_{3}(\boldsymbol{f}(\theta))<\lambda_{4}(\boldsymbol{f}(\theta))$ for all $\theta \in[-\pi, \pi]$, and

$$
\operatorname{det}(\boldsymbol{f}(\theta))=292-292 \cos (\theta)
$$

Hence, we deduce that both the determinant and $\lambda_{1}(\boldsymbol{f}(\theta))$ have a zero of order 2 in $\theta=0$.

Solving the Poisson problem on (finite) graphs: TGM

Once we know that $\lambda_{1}(\boldsymbol{f}(\theta))$ has only one zero of order 2 in $\theta=0$, that is, $\boldsymbol{f}^{\dagger}(\theta)$ has only one zero of order 2 in $\theta=0$, we can prescribe a suitable grid transfer operator P_{n}^{m} for the TGM.

Solving the Poisson problem on (finite) graphs: TGM

Once we know that $\lambda_{1}(\boldsymbol{f}(\theta))$ has only one zero of order 2 in $\theta=0$, that is, $\boldsymbol{f}^{\dagger}(\theta)$ has only one zero of order 2 in $\theta=0$, we can prescribe a suitable grid transfer operator P_{n}^{m} for the TGM.Fix $k=n / \mathfrak{g}, \mathfrak{g}=2$ and a polynomial p. We choose

$$
P_{n}^{m}=T_{n}(p) K_{n}
$$

where $T_{n}(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_{n} is the cutting matrix

$$
K_{n}=\left[\delta_{i-\mathfrak{g} j}\right]_{i, j}, \quad i=0, \ldots, n-1 ; j=0, \ldots, k-1, \quad \delta_{\ell}= \begin{cases}1 & \text { if } \ell \equiv 0(\bmod n) \\ 0 & \text { otherwise }\end{cases}
$$

Solving the Poisson problem on (finite) graphs: TGM

Once we know that $\lambda_{1}(\boldsymbol{f}(\theta))$ has only one zero of order 2 in $\theta=0$, that is, $\boldsymbol{f}^{\dagger}(\theta)$ has only one zero of order 2 in $\theta=0$, we can prescribe a suitable grid transfer operator P_{n}^{m} for the TGM.Fix $k=n / \mathfrak{g}, \mathfrak{g}=2$ and a polynomial p. We choose

$$
P_{n}^{m}=T_{n}(p) K_{n}
$$

where $T_{n}(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_{n} is the cutting matrix

$$
K_{n}=\left[\delta_{i-\mathfrak{g} j}\right]_{i, j}, \quad i=0, \ldots, n-1 ; j=0, \ldots, k-1, \quad \delta_{\ell}=\left\{\begin{array}{ll}
1 & \text { if } \ell \equiv 0(\bmod n), \\
0 & \text { otherwise }
\end{array} .\right.
$$

Choose $p:[0, \pi] \rightarrow \mathbb{R}$ such that

$$
\limsup _{\theta \rightarrow 0} \frac{p^{2}(\pi-\theta)}{f(\theta)}<\infty, \quad p^{2}(\theta)+p^{2}(\pi-\theta)>0 \forall \theta \in[0, \pi] .
$$

Solving the Poisson problem on (finite) graphs: TGM

Once we know that $\lambda_{1}(\boldsymbol{f}(\theta))$ has only one zero of order 2 in $\theta=0$, that is, $\boldsymbol{f}^{\dagger}(\theta)$ has only one zero of order 2 in $\theta=0$, we can prescribe a suitable grid transfer operator P_{n}^{m} for the TGM.Fix $k=n / \mathfrak{g}, \mathfrak{g}=2$ and a polynomial p. We choose

$$
P_{n}^{m}=T_{n}(p) K_{n}
$$

where $T_{n}(p)$ is the Toeplitz matrix generated by the Fourier coefficients of the polynomial p and K_{n} is the cutting matrix

$$
K_{n}=\left[\delta_{i-\mathfrak{g} j}\right]_{i, j}, \quad i=0, \ldots, n-1 ; j=0, \ldots, k-1, \quad \delta_{\ell}=\left\{\begin{array}{ll}
1 & \text { if } \ell \equiv 0(\bmod n), \\
0 & \text { otherwise }
\end{array} .\right.
$$

Choose $p:[0, \pi] \rightarrow \mathbb{R}$ such that

$$
\limsup _{\theta \rightarrow 0} \frac{p^{2}(\pi-\theta)}{f(\theta)}<\infty, \quad p^{2}(\theta)+p^{2}(\pi-\theta)>0 \forall \theta \in[0, \pi] .
$$

Then the TGM is optimal. See

- A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859. (And all references therein.)

Solving the Poisson problem on (finite) graphs: TGM

Fix $p(\theta)=2+2 \cos (\theta)$.

d_{n}	Gauss-Seidel	TGM
1016	96	9
4088	>100	9
16376	>100	9
65528	>100	9
262136	>100	9

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians.

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number m of copies of G;

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number m of copies of G;
- fix r integers $0<t_{1}<t_{2}<\cdots<t_{r} \leq m-1$;

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number m of copies of G;
- fix r integers $0<t_{1}<t_{2}<\cdots<t_{r} \leq m-1$;
- Choose a fixed number of (not necessarily symmetric) connections $L_{t_{k}} \in \mathbb{R}_{+}^{\nu \times \nu}$ such that $L_{t_{k}}, L^{T} t_{k} \neq 0$ if and only if $|i-j| \in\left\{t_{1}, \ldots, t_{r}\right\} ;$

Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in general possible to compute the symbol function f associated to the (sequence of) adjacency matrices and graph Laplacians. For example,

- fix a graph G with ν nodes and adjacency matrix $W \in \mathbb{R}_{+}^{\nu \times \nu}$;
- Make a number m of copies of G;
- fix r integers $0<t_{1}<t_{2}<\cdots<t_{r} \leq m-1$;
- Choose a fixed number of (not necessarily symmetric) connections $L_{t_{k}} \in \mathbb{R}_{+}^{\nu \times \nu}$ such that $L_{t_{k}}, L^{T} t_{k} \neq 0$ if and only if
$|i-j| \in\left\{t_{1}, \ldots, t_{r}\right\} ;$
- G_{i} and G_{j} are connected if and only if $|i-j| \in\left\{t_{1}, \ldots, t_{r}\right\}$.

Then $\left\{W^{(n)}\right\} \sim_{\lambda} \boldsymbol{f}(\theta)$,

$$
\boldsymbol{f}(\theta)=W+\sum_{k=1}^{r}\left(L_{t_{k}}+L_{t_{k}}^{T}\right) \cos \left(t_{k} \theta\right)+\sum_{k=1}^{m}\left(L_{t_{k}}-L_{t_{k}}^{T}\right)_{1} \sin \left(t_{k} \theta\right)
$$

Asymptotic spectrum: Examples

It is possible to compute explicitly the symbol functions for subgraphs too.

A grid graph inside a sphere

Asymptotic spectrum: Examples

A graph inside a triangle

Average sojourn time on a regular d-cycle

Consider a sequence of graphs $\left\{G_{n}\right\}_{n}$ with number of nodes n_{d} and zero killing term, and the correspondent sequence of graph Laplacians $\left\{\Delta_{n}\right\}_{n}$. Fix $\alpha \in(0,2]$.

Consider a sequence of graphs $\left\{G_{n}\right\}_{n}$ with number of nodes n_{d} and zero killing term, and the correspondent sequence of graph Laplacians $\left\{\Delta_{n}\right\}_{n}$. Fix $\alpha \in(0,2]$. If

$$
\left\{\Delta_{n}\right\}_{n} \sim_{\lambda} f(\boldsymbol{\theta}), \quad \boldsymbol{\theta} \in[0, \pi]^{d}
$$

Consider a sequence of graphs $\left\{G_{n}\right\}_{n}$ with number of nodes n_{d} and zero killing term, and the correspondent sequence of graph Laplacians $\left\{\Delta_{n}\right\}_{n}$. Fix $\alpha \in(0,2]$. If

$$
\left\{\Delta_{n}\right\}_{n} \sim_{\lambda} f(\boldsymbol{\theta}), \quad \boldsymbol{\theta} \in[0, \pi]^{d}
$$

then

$$
\left\{\Delta_{n}^{\alpha / 2}\right\}_{n} \sim_{\lambda} \frac{1}{(f(\boldsymbol{\theta}))^{\alpha / 2}}, \quad \boldsymbol{\theta} \in[0, \pi]^{d}
$$

and

$$
\lim _{n_{d} \rightarrow \infty} \frac{1}{n_{d}} \sum_{k=2}^{n_{d}} \frac{1}{\lambda_{k}^{\alpha / 2}}=\frac{1}{\pi^{d}} \int_{[0, \pi]^{d}} \frac{1}{(f(\boldsymbol{\theta}))^{\alpha / 2}} d \boldsymbol{\theta}
$$

Consider a sequence of graphs $\left\{G_{n}\right\}_{n}$ with number of nodes n_{d} and zero killing term, and the correspondent sequence of graph Laplacians $\left\{\Delta_{n}\right\}_{n}$. Fix $\alpha \in(0,2]$. If

$$
\left\{\Delta_{n}\right\}_{n} \sim_{\lambda} f(\boldsymbol{\theta}), \quad \boldsymbol{\theta} \in[0, \pi]^{d}
$$

then

$$
\left\{\Delta_{n}^{\alpha / 2}\right\}_{n} \sim_{\lambda} \frac{1}{(f(\boldsymbol{\theta}))^{\alpha / 2}}, \quad \boldsymbol{\theta} \in[0, \pi]^{d}
$$

and

$$
\lim _{n_{d} \rightarrow \infty} \frac{1}{n_{d}} \sum_{k=2}^{n_{d}} \frac{1}{\lambda_{k}^{\alpha / 2}}=\frac{1}{\pi^{d}} \int_{[0, \pi]^{d}} \frac{1}{(f(\boldsymbol{\theta}))^{\alpha / 2}} d \boldsymbol{\theta}
$$

This can be helpful to compute the average sojourn time, on a departure node x_{0}, of a discrete random walk for a regular graph,

$$
T_{0}=\lim _{n_{d} \rightarrow \infty} \frac{1}{n_{d}} \sum_{k=2}^{n_{d}} \frac{1}{\lambda_{k}^{\alpha / 2}}
$$

See

T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic
39 dptaifes. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.

Consider a cycle G_{n} with n nodes

Consider a cycle G_{n} with n nodes

and G_{n}^{d} be the d-dimensional cycle, with $d \in \mathbb{N}$. Then

$$
(f(\boldsymbol{\theta}))^{\alpha / 2}=\left(\sum_{j=1}^{d} 2-2 \cos \left(\theta_{j}\right)\right)^{\frac{\alpha}{2}} .
$$

T_{0} is then finite if and only if

$$
\int_{[0, \pi]^{d}} \frac{1}{\left(\sum_{j=1}^{d} 2-2 \cos \left(\theta_{j}\right)\right)^{\frac{\alpha}{2}}} d \boldsymbol{\theta}<\infty .
$$

T_{0} is then finite if and only if

$$
\int_{[0, \pi]^{d}} \frac{1}{\left(\sum_{j=1}^{d} 2-2 \cos \left(\theta_{j}\right)\right)^{\frac{\alpha}{2}}} d \boldsymbol{\theta}<\infty
$$

Therefore, by standard calculus, T_{0} is finite if and only if

$$
\int_{[0, \pi]^{d}} \frac{1}{\left(\sum_{j=1}^{d} \theta_{j}^{2}\right)^{\frac{\alpha}{2}}} d \boldsymbol{\theta}<\infty
$$

T_{0} is then finite if and only if

$$
\int_{[0, \pi]^{d}} \frac{1}{\left(\sum_{j=1}^{d} 2-2 \cos \left(\theta_{j}\right)\right)^{\frac{\alpha}{2}}} d \boldsymbol{\theta}<\infty
$$

Therefore, by standard calculus, T_{0} is finite if and only if

$$
\int_{[0, \pi]^{d}} \frac{1}{\left(\sum_{j=1}^{d} \theta_{j}^{2}\right)^{\frac{\alpha}{2}}} d \boldsymbol{\theta}<\infty
$$

that is, by passing to spherical coordinates, if and only if

$$
\int_{0}^{\pi} \frac{\rho^{d-1}}{\left(\rho^{2}\right)^{\frac{\alpha}{2}}} d \rho<\infty
$$

which is true if and only if $0<\alpha<d$. It follows then that we have recurrence if and only if $\alpha \geq d$ and transience if and only if $0<\alpha<d$.

Possible future directions of research

- Study the nonlinear Poisson equation $\Delta \Phi u=g$ on large/infinite graphs;
- Study recurrence properties of "diamond" graphs with complex structures;
- Applications? Chemistry, Biology, etc.

References

- A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409-454.
- A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.
- D. Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. Calcolo 58.38 (2021): pp. 1-47.
- G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions. Expositiones Mathematicae 40.1 (2021).
- D. Bianchi, M. Donatelli, F. Durastante, and M. Mazza, Compatibility, embedding and regularization of non-local random walks on graphs. Journal of Mathematical Analysis and Applications 511.1 (2022).
- D. Bianchi, A. G. Setti, and R. K. Wojciechowski, The generalized porous medium equation on graphs: existence and uniqueness of solutions with ℓ^{1} data. Preprint (2022). arXiv: 2112.01733.
- T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau, Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.

