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Overview

• Preliminaries on graph theory.

• The Poisson problem.
◦ Symbol of a sequence of matrices.

• Average sojourn time on a regular d-cycle.

• Refernces
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Preliminaries on graph theory
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Graphs

A graph is a quadruple G = (X,w, κ, µ), given by

• a countable set of nodes X;
• a nonnegative edge-weight function w : X ×X → [0,+∞);
• a nonnegative killing term (or potential) κ : X → [0,∞);
• a positive node measure µ : X → (0,+∞)

where the edge-weight function w satisfies:

(A1) Symmetry: w(x, y) = w(y, x) for every x, y ∈ X;

(A2) No self-loops: w(x, x) = 0 for every x ∈ X;

(A3) Finite sum:
∑
y∈X

w(x, y) < ∞ for every x ∈ X.

If w(x, y) ̸= 0, we write x ∼ y. Vice-versa, we write x ≁ y.

deg(x) :=
∑
y∈X

w(x, y) + κ(x) and Deg(x) :=
deg(x)

µ(x)
.
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Graphs

If X is finite, we say that G is a finite graph.

If for every pair x, y ∈ X
exists a finite sequence {xk}mk=0 such that

x = x0 ∼ x1 ∼ · · · ∼ xk = y

then G is said to be connected.Define

C(X) := {u : X → R}.
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Graphs

x8
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µ(x3)

κ(x3)

w(x0, x7)
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Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:

dom (∆) := {u ∈ C(X) |
∑
y∈X

w(x, y)|u(y)| < ∞ ∀x ∈ X},

∆u(x) :=
1

µ(x)

∑
y∈X

w(x, y) (u(x)− u(y)) +
κ(x)

µ(x)
u(x).

Recalling that

deg(x) :=
∑
y∈X

w(x, y) + κ(x), Deg(x) :=
deg(x)

µ(x)
,

we can write

∆u(x) := Deg(x)u(x)− 1

µ(x)

∑
y∈X

w(x, y)u(y).
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Graph Laplacian - finite case

Let us fix X = {x1, . . . , xn} and define

W ∈ Rn×n such that Wi,j := w(xi, xj),

D ∈ Rn×n such that Di,j :=

{
deg(xi) if i = j,

0 otherwise,

M ∈ Rn×n such that Mi,j :=

{
µ(xi) if i = j,

0 otherwise.

Then, identifying u ∈ C(X) with u := (u(x1), . . . , u(xn))
T ∈ Rn, we

can write ∆ in matrix form,

∆ = M−1(D −W )

W is called adjacency matrix, and D degree matrix.
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Interior and boundary points

Let A ⊂ X, A ̸= ∅. Then,

Å := {x ∈ A | x ≁ y if y ∈ X \A} interior of A,

∂̊A := {x ∈ A | x ∼ y for some y ∈ X \A} interior boundary of A,

•
∂A := {x ∈ X \A | x ∼ y for some y ∈ A} exterior boundary of A.

Clearly, A = Å ⊔ ∂̊A and
•
∂A ⊆ X \A.
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Grafi e sottografi
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Subgraphs

Definition (Induced subgraph)

F = (A,w′, κ′, µ′) is the canoncial induced subgraph of
G = (X,w, κ, µ) if

• A ⊂ X;

• w′ ≡ w|A×A;

• µ′ ≡ µ|A;

• κ′(x) = κ(x) for every x ∈ A.
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• w′ ≡ w|A×A;

• µ′ ≡ µ|A;

• κ′(x) = κ(x) for every x ∈ Å.

Remark: we do not fix the values of κ′ on the interior boundary
points ∂̊A.

Different choices of κ′|∂̊A produce different subgraphs.

If necessary, we will indicate with ∆F the graph Laplacian associated
to the subgraph F .
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Subgraphs

Definition (Dirichlet subgraph)

Fdir = (A,w′, κdir, µ
′) is the Dirichlet subgraph of G = (X,w, κ, µ) if

• A ⊂ X;

• w′ ≡ w|A×A;

• µ′ ≡ µ|A;

• κdir(x) = κ(x) +
∑

y∈X\A

w(x, y).

We will indicate with ∆dir the graph Laplacian associated to Fdir.
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Sottografi
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Graph Laplacian of a Dirichlet subgraph

Let i : C(A) ↪→ C(X) be the canonical embedding

iv(x) =

{
v(x) if x ∈ A,

0 if x ∈ X \A.

Then
∆dirv(x) = ∆iv(x).

The Dirichlet graph Laplacian ∆dir can be viewed as the restriction of
∆ having imposed (zero) Dirichlet conditions on the exterior

boundary
•
∂A.
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The Poisson problem
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Solving the Poisson problem on (finite) graphs

Fix G = (X,w, κ ≡ 0, µ) connected and a subset ∅ ≠ A ⊂ X.

Let us
consider the following problem{

∆u(x) = g(x) if x ∈ A,

u(x) = 0 if x ∈
•
∂A.

It is equivalent to solve

∆diru(x) = g(x),

on Fdir = (A,w|A×A, κdir, µ|A).There exists a unique solution for
every g ∈ C(A).
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Simple example of a graph with locally uniform
structure

The path graph:
G = (Xn+2, w, κ, µ)

where

• Xn+2 = {xi | i = 0, . . . , n+ 1},

• w(xi, xj) =

{
1 if |i− j| = 1,

0 otherwise.

• κ(xi) = 0 and µ(xi) = 1 for every i = 0, . . . , n+ 1.

Fix Xn := {xi | i = 1, . . . , n} ⊂ Xn+2 and

Fdir = (Xn, w|Xn×Xn
, κdir, µ|Xn

) ⊂ G
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Simple example of a graph with locally uniform
structure

x0 x1 x2 x3 xn−2 xn−1 xn xn+1

G = (Xn+2, w, κ, µ)

x0 x1 x2 x3 xn−2 xn−1 xn xn+1

∆diru(xi) = g(xi)u(x0) = 0 u(xn+1) = 0

Fdir = (Xn, w|Xn×Xn
, κdir, µ|Xn

)
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Let us complexify the example

From a single node

x

To a “mold/diamond” graph

x1

x4 x2

x3
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Let us complexifying the example

x(2,1)
x5

x(2,4)
x8

x(2,2)
x6

x(2,3)
x7

x(3,4)
x12

x(3,3)
x11

x(3,2)
x10

x(3,1)
x9

x(1,2)
x2

x(1,3)
x3

x(1,4)
x4

x(1,1)
x1

w
3 w 1

w2

w
3

w2

w 1w 1
w
3

w2

l1l1

l 2
l2

21 of 43



Let us complexifying the example

W =
0 w1 w2 w3

w1 0 0 0

w2 0 0 0

w3 0 0 0





L =
l1 0 0 0

0 0 0 l2

0 0 0 0

0 0 0 0





x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 0 w1 w2 w3 l1 0 0 0 0 0 0 0

x2 w1 0 0 0 0 0 0 l2 0 0 0 0

x3 w2 0 0 0 0 0 0 0 0 0 0 0

x4 w3 0 0 0 0 0 0 0 0 0 0 0

x5 l1 0 0 0 0 w1 w2 w3 l1 0 0 0

x6 0 0 0 0 w1 0 0 0 0 0 0 l2

x7 0 0 l2 0 w2 0 0 0 0 0 0 0

x8 0 0 0 0 w3 0 0 0 0 0 0 0

x9 0 0 0 0 l1 0 0 0 0 w1 w2 w3

x10 0 0 0 0 0 0 0 0 w1 0 0 0

x11 0 0 0 0 0 0 l2 0 w2 0 0 0

x12 0 0 0 0 0 0 0 0 w3 0 0 0





x(2,1)
x5

x(2,4)
x8

x(2,2)
x6

x(2,3)
x7

x(3,4)
x12

x(3,3)
x11

x(3,2)
x10

x(3,1)
x9

x(1,2)
x2

x(1,3)
x3

x(1,4)
x4

x(1,1)
x1

w
3 w 1

w2

w
3

w2

w 1w 1
w
3

w2

l1l1

l 2
l2
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Let us complexifying the example

∆diru(x) = g(x)u(x) = 0 u(x) = 0

Fdir = (Xn, w|Xn×Xn
, κdir, µ|Xn

)
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Solving the Poisson problem on (finite) graphs

Suppose |Xn| = dn. We need to solve the linear system

∆diru = g. (1)

Let
u(j+1) := S(∆dir, g,u

(j))

be an iterative method for the solution of system (1).

Given a fixed
tolerance ϵ := ∥u− uexact∥ > 0, typically the number of iterations N
to reach that tolerance depends on dn, that is, N = N(ϵ, dn).

w1 = 1, w2 = 2, w3 = 3, l1 = 10, l2 = 1, g(xk,i) = sin(ki).

dn Gauss-Seidel

1016 96
4088 > 100
16376 > 100
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Solving the Poisson problem on (finite) graphs: TGM

We want to accelerate the convergence making N independent of dn.

A Two-Grid Method (TGM) is defined by the following algorithm

1. rn = ∆diru
(j) − g

2. rm = (Pm
n )Hrn

3. ∆′
dir = (Pm

n )H∆dir(P
m
n )

4. Solve∆′
diry = rm

5. û(j) = u(j) − Pm
n y

6. u(j+1) = S(∆dir, û
(j), g)

where Pm
n ∈ Cdn × Cm, with m < dn, is a full-rank matrix.

We need to find a “good” Pm
n .
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5. û(j) = u(j) − Pm
n y

6. u(j+1) = S(∆dir, û
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Symbol of a sequence of matrices
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Asymptotic spectrum

Definition (Spectral symbol)

Let {An,ν}n be a sequence of matrices and let f : D → Cν×ν be a
measurable Hermitian matrix-valued function defined on the
measurable set D ⊂ Rm, with 0 < µm(D) < ∞.
We say that {An,ν}n is distributed like f in the sense of eigenvalues,
in symbols {An,ν}n ∼λ f, if

lim
n→∞

1

dn

dn∑
k=1

F (λk(An,ν)) =
1

µm(D)

∫
D

ν∑
k=1

F (λk(f(y))) dµm(y)

for all F ∈ Cc(R), where λ1(f(y)), . . . , λν(f(y)) are the eigenvalues
of f(y) and λ1(Xn,ν), . . . , λdn(Xn,ν) are the eigenvalues of {Xn,ν},
sorted in non-decreasing order.
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Definition (Monotone rearrangment)

Let f : Ω ⊂ Rd → R be measurable on a set Ω with 0 < µd(Ω) < ∞.
The monotone rearrangement of f is the function denoted by f † and
defined as follows:

f † : (0, 1) → R, f †(y) = inf

{
u ∈ R :

µd{f ≤ u}
µd(Ω)

≥ y

}
.

It holds that if {An}n ∼λ f , then {An}n ∼λ f †. Under suitable
assumptions (for example, continuity of f and f †), it can be proved
that if {An}n ∼λ f , then

max
k=1,...,n

{
|λk(An)− f †

(
k

n+ 1

)
|
}

→ 0 as n → ∞.

See:
• D. Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential

operators. Calcolo 58.38 (2021): pp. 1–47.

• G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions.
Expositiones Mathematicae 40.1 (2021).
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Asymptotic spectrum: Examples

Toeplitz matrix Tn ∈ Cn×n:

Tn =


t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0

 ,

{Tn}n ∼ t0 +

n−1∑
k=1

(tk + t−k) cos(kθ) + (tk − t−k)ı sin(kθ) θ ∈ [−π, π].

29 of 43



Fix: t1 = t−1 = 1, t2 = t−2 = −6, t3 = t−3 = 1, t4 = t−4 = 1,
and 0 all the other coefficients. Then

f(θ) = 2 cos(θ)− 12 cos(2θ) + 2 cos(3θ) + 2 cos(4θ).
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Asymptotic spectrum: Examples

∆
(n)
dir u(x) = g(x)u(x) = 0 u(x) = 0

{∆(n)
dir }n ∼λ f(θ) = D −

[
W + (L+ LT ) cos(θ) + (L− LT )ı sin(θ)

]
∈ R4×4,

where θ ∈ [−π, π]. See
• A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local

Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409–454.

• A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform
Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.

31 of 43



Asymptotic spectrum: Examples

∆
(n)
dir u(x) = g(x)u(x) = 0 u(x) = 0

{∆(n)
dir }n ∼λ f(θ) = D −

[
W + (L+ LT ) cos(θ) + (L− LT )ı sin(θ)

]
∈ R4×4,

where θ ∈ [−π, π]. See
• A. Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local

Structure (Part I): Theory. Milan Journal of Mathematics 88 (2020): pp. 409–454.

• A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform
Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859.

31 of 43



It is possible to check that 0 ≤ λ1(f(θ)) < λ2(f(θ)) < λ3(f(θ)) < λ4(f(θ)) for all θ ∈ [−π, π], and

det(f(θ)) = 292− 292 cos(θ).

Hence, we deduce that both the determinant and λ1(f(θ)) have a zero of order 2 in θ = 0.
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Solving the Poisson problem on (finite) graphs: TGM

Once we know that λ1(f(θ)) has only one zero of order 2 in θ = 0,
that is, f †(θ) has only one zero of order 2 in θ = 0, we can prescribe
a suitable grid transfer operator Pm

n for the TGM.

Fix k = n/g, g = 2
and a polynomial p. We choose

Pm
n = Tn(p)Kn

where Tn(p) is the Toeplitz matrix generated by the Fourier
coefficients of the polynomial p and Kn is the cutting matrix

Kn = [δi−gj ]i,j , i = 0, . . . , n− 1; j = 0, . . . , k − 1, δℓ =

{
1 if ℓ ≡ 0 (modn),

0 otherwise
.

Choose p : [0, π] → R such that

lim sup
θ→0

p2(π − θ)

f(θ)
< ∞, p2(θ) + p2(π − θ) > 0 ∀ θ ∈ [0, π].

Then the TGM is optimal. See
• A. Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform

Local Structure (Part II): Numerical Applications. Preprint (2021), arXiv: 2111.13859. (And all references therein.)
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Solving the Poisson problem on (finite) graphs: TGM

Fix p(θ) = 2 + 2 cos(θ).

dn Gauss-Seidel TGM

1016 96 9
4088 > 100 9
16376 > 100 9
65528 > 100 9
262136 > 100 9
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Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians.

For example,
• fix a graph G with ν nodes and adjacency matrix W ∈ Rν×ν

+ ;
• Make a number m of copies of G;
• fix r integers 0 < t1 < t2 < · · · < tr ≤ m− 1;
• Choose a fixed number of (not necessarily symmetric) connections
Ltk ∈ Rν×ν

+ such that Ltk , L
T tk ̸= 0 if and only if

|i− j| ∈ {t1, . . . , tr};
• Gi and Gj are connected if and only if |i− j| ∈ {t1, . . . , tr}.
Then {W (n)} ∼λ f(θ),

f(θ) = W +
r∑

k=1

(
Ltk + LT

tk

)
cos(tkθ) +

m∑
k=1

(
Ltk − LT

tk

)
ı sin(tkθ).
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general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
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+ ;
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Asymptotic spectrum: Examples

It is possible to compute explicitly the symbol functions for subgraphs
too.

A grid graph inside a sphere
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Asymptotic spectrum: Examples

A graph inside a triangle
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Average sojourn time on a regular d-cycle
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Consider a sequence of graphs {Gn}n with number of nodes nd and
zero killing term, and the correspondent sequence of graph Laplacians
{∆n}n. Fix α ∈ (0, 2].

If

{∆n}n ∼λ f(θ), θ ∈ [0, π]d,

then

{∆α/2
n }n ∼λ

1

(f(θ))α/2
, θ ∈ [0, π]d

and

lim
nd→∞

1

nd

nd∑
k=2

1

λ
α/2
k

=
1

πd

∫
[0,π]d

1

(f(θ))α/2
dθ.

This can be helpful to compute the average sojourn time, on a
departure node x0, of a discrete random walk for a regular graph,

T0 = lim
nd→∞

1

nd

nd∑
k=2

1

λ
α/2
k

.

See• T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau. Recurrence of random
walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic
lattices. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.
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Consider a cycle Gn with n nodes

x0

x1

x2

xn

1

w(x2, xn)w(x1, x2)

1

1

w(x0, x1)

1

w(x0, xn)

and Gd
n be the d-dimensional cycle, with d ∈ N. Then

(f(θ))α/2 =

 d∑
j=1

2− 2 cos(θj)

α
2

.
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T0 is then finite if and only if∫
[0,π]d

1(∑d
j=1 2− 2 cos(θj)

)α
2

dθ < ∞.

Therefore, by standard calculus, T0 is finite if and only if∫
[0,π]d

1(∑d
j=1 θ

2
j

)α
2

dθ < ∞,

that is, by passing to spherical coordinates, if and only if∫ π

0

ρd−1

(ρ2)
α
2

dρ < ∞,

which is true if and only if 0 < α < d. It follows then that we have
recurrence if and only if α ≥ d and transience if and only if 0 < α < d.

41 of 43



T0 is then finite if and only if∫
[0,π]d

1(∑d
j=1 2− 2 cos(θj)

)α
2

dθ < ∞.

Therefore, by standard calculus, T0 is finite if and only if∫
[0,π]d

1(∑d
j=1 θ

2
j

)α
2

dθ < ∞,

that is, by passing to spherical coordinates, if and only if∫ π

0

ρd−1

(ρ2)
α
2

dρ < ∞,

which is true if and only if 0 < α < d. It follows then that we have
recurrence if and only if α ≥ d and transience if and only if 0 < α < d.

41 of 43



T0 is then finite if and only if∫
[0,π]d

1(∑d
j=1 2− 2 cos(θj)

)α
2

dθ < ∞.

Therefore, by standard calculus, T0 is finite if and only if∫
[0,π]d

1(∑d
j=1 θ

2
j

)α
2

dθ < ∞,

that is, by passing to spherical coordinates, if and only if∫ π

0

ρd−1

(ρ2)
α
2

dρ < ∞,

which is true if and only if 0 < α < d. It follows then that we have
recurrence if and only if α ≥ d and transience if and only if 0 < α < d.

41 of 43



Possible future directions of research

• Study the nonlinear Poisson equation ∆Φu = g on large/infinite
graphs;

• Study recurrence properties of “diamond” graphs with complex
structures;

• Applications? Chemistry, Biology, etc.
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