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The Shallow Water Equations

The Shallow Water Equations

The one-dimensional shallow water equations describe the water
propagation in a canal with rectangular cross-section and constant slope:

∂th+ ∂x(hv) = 0 conservation of mass

∂t(hv) + ∂x(hv
2 + 1

2gh
2) = 0 conservation of momentum

(1)

I h(x, t) the water height

I v(x, t) the water velocity at time t and location x along the canal

I g the gravity constant

For the purpose of this talk, we have assumed a steady state friction on all
canals and horizontal canals with zero slope.

Maya Briani (IAC-CNR) Shallow water equations in channel networks May 5 - 2021 3 / 42



The Shallow Water Equations

The Shallow Water Equations

We reformulate system (1) in vector form as

∂tu+ ∂xf(u) = 0 (2)

where

u =

(
h
q

)
f(u) =

(
hv

hv2 + 1
2gh

2

)
(3)

and q = hv (discharge, it measures the flow rate of water past a point).

The Riemann Problem
∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ul if x < 0,
ur if x > 0.

(4)

Here u(x, 0) = (h(x, 0), q(x, 0)) and ul = (hl, ql) and ur = (hr, qr).
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The Riemann Problem for shallow water equations

The Riemann Problem

x

t

0

l-wave r-waveu∗

ul ur
↗ ↖

Figure: The solution to the Riemann problem. The intermediate state u∗ is constant in the
region delimited by l-wave and r-wave. l- and r-waves are shocks or rarefactions.

I The solution to this Riemann problem consists of the l-wave and the r-wave
separated by an intermediate state u∗ = (h∗, q∗).

I This intermediate state is connected to ul = (hl, ql) through a physically
correct l-waves, and to ur = (hr, qr) through a physically correct r-wave.
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The Riemann Problem for shallow water equations

The Shallow Water Equations - The Riemann Problem

For smooth solution, system (2) can equivalently be written in the
quasilinear form

∂tu+A(u)∂xu = 0
where the Jacobian matrix A(u) = f ′(u) is

A(u) =

(
0 1

−v2 + gh 2v

)
The eigenvalues of the matrix A(u) are

λ1(u) = v −
√
gh, λ2(u) = v +

√
gh

with the corresponding eigenvectors r1(u) = (1, v +
√
gh)T and

r2(u) = (1, v +
√
gh).
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The Riemann Problem for shallow water equations

The Riemann Problem

I The shallow water equations are genuinely nonlinear (∇λj(u) · rj(u) 6= 0,
j = 1, 2) and so the Riemann problem always consists of two waves, each of
which is a shock or rarefaction.

I The left and right characteristics are associated to λ1 and λ2 respectively.

I λ1 = v −
√
gh and λ2 = v +

√
gh can be of either sign.

I The ratio Fr = |v|/
√
gh is called the Froude number.

I When v = q/h is smaller than the speed
√
gh of the gravity waves:

|v| <
√
gh or Fr < 1

the fluid is said to be fluvial or subcritical.

If |v| >
√
gh the fluid is said to be torrential or supercritical.

I Under the fluvial regime
λ1 < 0 λ2 > 0

and there will be one left (with negative speed) and one right (with positive
speed) going wave.
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The Riemann Problem for shallow water equations

The solution always consists of two waves, each of which is a shock or
rarefaction:

(R) Centered Rarefaction Waves. Assume u+ lies on the positive
i-rarefaction curve through u−, then we get

u(x, t) =


u− for x < λi(u

−)t,
Ri(x/t;u

−) for λi(u
−)t ≤ x ≤ λi(u+)t,

u+ for x > λi(u
+)t,

(S) Shocks. Assume that the state u+ is connected to the right of u− by
an i-shock, then calling λ = λi(u

+, u−) the Rankine-Hugoniot speed
of the shock, the function

u(x, t) =

{
u− if x < λt
u+ if x > λt

provides a the solution to the Riemann problem. For strictly
hyperbolic systems, we have that

λi(u
+) < λ(u−, u+) < λi(u

−), λ(u−, u+) =
q+ − q−

h+ − h−
.
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The Riemann Problem for shallow water equations

The Riemann Problem - Lax curves

To find the intermediate state u∗ in general we can define two functions φl
and φr by

φl(h) =

{
vl − 2(

√
gh−

√
ghl) if h < hl (rarefaction)

vl − (h− hl)
√
g h+hl
2hhl

if h > hl (shock wave),

and

φr(h) =

{
vr + 2(

√
gh−

√
ghr) if h < hr (rarefaction)

vr + (h− hr)
√
g h+hr
2hhr

if h > hr (shock wave).

For a given state h

I the function φl(h) returns the value of v such that (h, hv) can be connected
to ul by a physically correct l-wave

I the function φr(h) returns the value of v such that (h, hv) can be connected
to ur by a physically correct r-wave.

I So, h∗ is such that φl(h
∗) = φr(h

∗)
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The Riemann Problem for shallow water equations

The Riemann Problem

h
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The Riemann Problem for shallow water equations

Example: Dam-Break and Riemann Problem

Consider the Riemann problem with

ul =

(
hl
ql

)
=

(
1
0

)
ur =

(
hr
qr

)
=

(
0.5
0

)
.

I hl > hr and ql = qr = 0. This Riemann problem models what happens in a
dam separating two levels of water breaks at time t = 0

I The solution consists of a l-rarefaction and a r-shock
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Water Flow in a Channel Network

Water Flow in a Canal Network
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Water Flow in a Channel Network

Water Flow in a Channel Network

−→

JCanal 1

Canal 2

Canal 3
On each canal

∂tui + ∂xf(ui) = 0

?y
#
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Water Flow in a Channel Network

Water Flow in a Channel Network

−→

JCanal 1

Canal 2

Canal 3
On each canal

∂tui + ∂xf(ui) = 0

?y
#

Maya Briani (IAC-CNR) Shallow water equations in channel networks May 5 - 2021 13 / 42



Water Flow in a Channel Network

Water Flow in a Channel Network
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Water Flow in a Channel Network

Water Flow in a Channel Network

−→

JCanal 1

Canal 2

Canal 3
On each canal

∂tui + ∂xf(ui) = 0

unknowns:


u∗1 = (h∗1, q

∗
1)

u∗2 = (h∗2, q
∗
2)

u∗3 = (h∗3, q
∗
3)y

#
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Water Flow in a Channel Network

Water Flow in a Channel Network

−→

JCanal 1

Canal 2

Canal 3
On each canal

∂tui + ∂xf(ui) = 0

Conservation of mass

Junction Riemann Problem

Closure conditionsy
#
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Water Flow in a Channel Network

Water Flow in Canal Network: 1-to-2 Junction

Assuming that the three canals are connected at x = 0:

Canal 1 (x < 0)

∂tu1 + ∂xf(u1) = 0

Canal 2 and 3 (x > 0)

∂tu2 + ∂xf(u2) = 0

∂tu3 + ∂xf(u3) = 0

Assuming the conservation of mass

q∗1(0
−, t) = q∗2(0

+, t) + q∗3(0
+, t)

To get a well-posed problem we need 5 additional conditions

Maya Briani (IAC-CNR) Shallow water equations in channel networks May 5 - 2021 16 / 42



Water Flow in a Channel Network

The Junction Riemann Problem

The solution is determined once one assigns a Riemann Solver at the
junction. Considering only subcritical states

I given constant initial conditions (u0i , u
0
j ) (i ranges over incoming

canals, j over outgoing ones);

I the Junction Riemann solution consists of intermediate states (u∗i , u
∗
j )

satisfying some other junction conditions

x

t

0

l-wave r-wave

u0i u0j

u∗i u∗j↗ ↖
←→

junction conditions
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Water Flow in a Channel Network

Left-half Riemann Problem (the case of an incoming canal)

We fix a left state and we look for the right states attainable by waves of
negative speed. ⇒ Fix ul = (hl, ql), we look for the set of points
u∗l = (h∗l , q

∗
l ) such that the solution to the Riemann problem

∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ul if x < 0
u∗l if x > 0

contains only waves with negative speed (λ1(u
∗
l ) < 0).

x

t

0

l-wave

ul

u∗l↗
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Water Flow in a Channel Network

Right-half Riemann problem (the case of an outgoing
canal)

We fix a right state and we look for the left states attainable by waves of
positive speed.⇒ Fix ur = (hr, qr), we look for the set of points
u∗r = (h∗r , q

∗
r ) such that the solution to the Riemann problem

∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
u∗r if x < 0
ur if x > 0

contains only waves with positive speed (λ2(u
∗
r)) > 0).

x

t

0

r-wave

ur

ûr
↖
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Water Flow in a Channel Network

The Junction Riemann Problem
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∗
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|v∗l,r| <
√
gh∗l,r
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Water Flow in a Channel Network

Water Flow in a Canal Network - Junction Conditions

We have so far set 4 conditions:

q∗1 = q∗2 + q∗3 and

v∗1 = φl(h
∗;u01) v∗2 = φr(h

∗;u02) v∗3 = φr(h
∗;u03)

We need 2 additional conditions:

I Physical reasons motivate different choices of conditions that are
originally derived by engineers

I Which conditions are used often depends on if the flow is subcritical
or supercritical
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Water Flow in a Channel Network

Water Flow in Canal Network - Junction Conditions

The conservation of mass is usually coupled with the following:

I Equal water pressure (equal water heights)

1

2
gh2k =

1

2
gh2l ∀t > 0

I Energy continuity (equal of energy levels)

hk +
v2k
2g

= hl +
v2l
2g

∀t > 0

Other conditions which depend on the geometry:
I Preprint 2021 M. Briani, G. Puppo, M. Ribot, Angle dependence in
coupling conditions for shallow water equations at canal junctions
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Water Flow in a Channel Network

Water Flow in a Channel Network

−→

On each canal
∂tui + ∂xf(ui) = 0



h∗
1 = h∗

2 = h∗
3 = h∗,

v∗1 = v∗2 + v∗3,

v∗1 = φl(h
∗;u0

1),

v∗2 = φr(h
∗;u0

2),

v∗3 = φr(h
∗;u0

3),

|v∗k| <
√
gh∗

#

starting by Riemann data

u1(J
−) = u01, u2(J

+) = u02, u3(J
+) = u03.
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Water Flow in a Channel Network

The Junction Riemann Problem

The solution at the Junction then consists on solving the non-linear
system 

h∗1 = h∗2 = h∗3 = h∗,

v∗1 = v∗2 + v∗3,

v∗1 = φl(h
∗;u01),

v∗2 = φr(h
∗;u02),

v∗3 = φr(h
∗;u03),

(5)

with h∗ > 0 and the subcritical assumption |v∗k| <
√
gh∗, k = 1, 2, 3

I the system admits a unique solution (see for instance Marigo 2010)
... but the solution not always verifies the subcritical condition

I suitable initial data have to be given to ensure the fluvial regime to
the problem.
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Water Flow in a Channel Network

Fluvial and Torrential regime

What happens if we expand the domain to include the torrential regime?
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What happens if one of the states is in the torrential regime?
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Water Flow in a Channel Network

Fluvial and Torrential regime: the case of an incoming
canal

λ1 < 0

λ1 > 0

λ1 < 0

q = h
√
gh

hφl(h;u
0
i )

admissible junction values

u0
i
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Water Flow in a Channel Network

Fluvial and Torrential regime: the case of an incoming
canal

λ1 < 0

λ1 > 0

λ1 < 0

q = h
√
gh

admissible junction values

u0
i
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Water Flow in a Channel Network

Fluvial and Torrential regime: outgoing canal

u0
j

λ2 > 0

λ2 > 0

λ2 < 0

Figure: |Fr| < 1.Maya Briani (IAC-CNR) Shallow water equations in channel networks May 5 - 2021 28 / 42



Water Flow in a Channel Network

The case study of a simple network

We consider a fictitious network formed by two canals intersecting at one
single point, which artificially represents the junction.

u01 u02

J

(u∗1, u
∗
2)

I Conservation of Mass q∗1 = q∗2
I Junction Riemann Problem: u∗1 ∈ N (u01), u

∗
2 ∈ P(u02)

I we need ? additional conditions
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Water Flow in a Channel Network

The case study of a simple network: 1 → 1 Junction

I Conservation of Mass q∗1 = q∗2
I Junction Riemann Problem: u∗1 ∈ N (u01), u

∗
2 ∈ P(u02)

I we need additional conditions ...

In this simple junction, the natural assumption (consistent with the
dynamic of shallow-water equations on a single canal) should be to assume
the conservation of the momentum:

(q∗1)
2

h∗1
+

1

2
g(h∗1)

2 =
(q∗2)

2

h∗2
+

1

2
g(h∗1)

2.
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Water Flow in a Channel Network

The case study of a simple network: 1 → 1 Junction

From the conservation of the momentum and q∗1 = q∗2(
h2
h1

)3

−
(
2F2

1 + 1
)(h2

h1

)
+ 2F2

1 = 0

and we have two possible relations for the heights values at the junction:

h∗1 = h∗2 (equal heigths) or
h∗2
h∗1

=
1

2

(
−1 +

√
1 + 8F2

1

)
Let us assume equal water heights, no jump at the junction

h∗1 = h∗2

Then u∗1 = u∗2 = u∗ and the solution is identified (if exists) by the
intersection between the two admissible regions N (u01) and P(u02)!
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Water Flow in a Channel Network

1 → 1 Junction: Fluvial → Fluvial

ur

ul
u∗↙

NB(ul)

PB(ur)
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Water Flow in a Channel Network

1 → 1 Junction: Torrential → Fluvial

ur

ul ûl

↑
u∗

NB(ul)

PA(ur)
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Water Flow in a Channel Network

1 → 1 Junction: Torrential → Fluvial

ur
ul

ul ∈ P(ur)

ûl

N (ul)

P(ur)
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Water Flow in a Channel Network

1 → 1 Junction: Torrential → Torrential

ur

ul

ul /∈ P(ur)
ûl

N (ul)

P(ur)

No solution!
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Water Flow in a Channel Network

The case study of a simple network: 1 → 1 Junction

Assuming h∗1 = h∗2 the solution does not always exist ...

I Assuming h∗1 = h∗2 the solution does not always exist ...

I For h∗1 6= h∗2 we get new possible solutions at the junction ... the
cases Torrential→ Fluvial and case Torrential→ Torrential may admit
solution even if their admissible regions have empty intersection in the
subcritical region.

Consistency with the case of a single canal:
for appropriate values of (hl, ql), for Torrential→ Fluvial we get the same
solution considering our simple network as a simple canal, i.e. we get a
stationary shock at the virtual junction called hydraulic jump characterized
indeed by the conservation of the momentum in the transition from a
supercritical to subcritical flow.
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Water Flow in a Channel Network

Fr > 1 Fr < 1→

Fr > 1 Fr < 1

Figure: Numerical test case for the configuration given in Fig. ??.
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Water Flow in a Channel Network

The extension to more complex network is still an Open Problem!
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Water Flow in a Channel Network

Conclusion

I Two regimes exist for this hyperbolic system of balance laws: the
fluvial, corresponding to eigenvalues with different sign, and the
torrential, corresponding to both positive eigenvalues

I After analyzing the Lax curves for incoming and outgoing canals, we
provide admissibility conditions for Riemann solvers, describing
possible solutions for constant initial data on each canal.

I The simple case of one incoming and outgoing canal is treated
showing that, already in this simple example, regimes transitions
appear naturally at junctions.
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Water Flow in a Channel Network

Further work

I Open canals flow with fluvial to torrential phase transitions on more
complex networks

I Condition at the node depending on the geometry of the network and
comparison with 2D simulations (joint work with M. Ribot and G.
Puppo)

I Problems with non constant bottom level and non constant width
channels on networks
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Water Flow in a Channel Network
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Thank you very much for your attention
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