Three Dimensional Elastic Frames: Rigid Joint Conditions In Variational And Differential Formulation

Mahmood Ettehad
Joint work with Gregory Berkolaiko
Institude of Mathematics and its Application (IMA)
University of Minnesota

March 10, 2021

Overview

(1) Introduction and Motivation

- Beam Structures in Practice
- Planar Frames and Matching Vertex Conditions
- Planar Frames and Matching Vertex Conditions
(2) General Three Dimensional Graphs
- Parameterization of Beam Deformation
- Full Description of Euler-Bernoulli Energy Functional
(3) Energy Form and Differential Operator
- Quadratic Form and Vertex Conditions
- Hamiltonian on Graph and Vertex Conditions
- Decoupling of Fields for Planar Graph

4) Symmetry and Irreduscible Representations

- Numerical Results and Discussion
- Numerical Results and Discussion

Section 1
(1) Introduction and Motivation

- Beam Structures in Practice
- Planar Frames and Matching Vertex Conditions
- Planar Frames and Matching Vertex Conditions
(2) General Three Dimensional Graphs
- Parameterization of Beam Deformation
- Full Description of Euler-Bernoulli Energy Functional
(3) Energy Form and Differential Operator
- Quadratic Form and Vertex Conditions
- Hamiltonian on Graph and Vertex Conditions
- Decoupling of Fields for Planar Graph
(4) Symmetry and Irreduscible Representations
- Numerical Results and Discussion
- Numerical Results and Discussion

Beam Structures in Practice

(1) Mathematical modeling of vibration of structures made of joined together beams is a topic of natural interest for engineers (pic from net).

Beam Structures in Practice

(1) Mathematical modeling of vibration of structures made of joined together beams is a topic of natural interest for engineers (pic from net).

(2) Each beam is described by (Euler-Bernoulli) energy functional considering energy of:

Matching Vertex Conditions in Planar Graph

(1) Energy functional corresponding to network of beams $\Gamma=(E, V)$ is given by

$$
\Pi=\frac{1}{2} \sum_{e \in E} \int_{e} a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2} d x
$$

- Domain of Π consists of functions $v \in \oplus_{e \in E} H^{2}(e)$ that satisfy certain vertex conditions.
- One way is to assign analogue of standard vertex conditions introduced for the Laplacian (e.g. see the work by B. Dekoninck and S. Nicaise, 2000)

Matching Vertex Conditions in Planar Graph

(1) Energy functional corresponding to network of beams $\Gamma=(E, V)$ is given by

$$
\Pi=\frac{1}{2} \sum_{e \in E} \int_{e} a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2} d x
$$

- Domain of Π consists of functions $v \in \oplus_{e \in E} H^{2}(e)$ that satisfy certain vertex conditions.
- One way is to assign analogue of standard vertex conditions introduced for the Laplacian (e.g. see the work by B. Dekoninck and S. Nicaise, 2000)
- In order to study the spectral gap, the following vertex conditions are assumed (see the work by P. Kurasov and J. Muller, 2020):

$$
\begin{aligned}
v_{i}(c) & =v_{j}(c) \quad \text { when } e_{i}, e_{j} \text { adjacent to } c \\
v_{i}^{\prime}(c) & =0
\end{aligned}
$$

(2) The corresponding Beam operators, mapping $v_{e} \mapsto a_{e} v_{e}^{\prime \prime \prime \prime}$, is defined from $v \in \oplus_{e \in E} H^{4}(e)$ satisfying at each vertex

$$
\begin{aligned}
& v_{i}(c)=v_{j}(c) \quad \text { when } e_{i}, e_{j} \text { adjacent to } c \\
& v_{i}^{\prime}(c)=0 \\
& \sum_{e_{i} \sim c} v_{i}^{\prime \prime \prime}(c)=0
\end{aligned}
$$

Matching Vertex Conditions in Planar Graph

Energy functional and corresponding vertex conditions

$$
\Pi=\frac{1}{2} \sum_{e \in E} \int_{e} a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2} d x
$$

(1) Vertex conditions on the quadratic form (see the work by J.C. Kiik, P. Kurasov, and M. Usman, 2015)

- $v_{1}(c)=v_{2}(c)=v_{3}(c)$
- $\sin \left(\theta_{1}\right) v_{1}^{\prime}(c)+\sin \left(\theta_{2}\right) v_{2}^{\prime}(c)+\sin \left(\theta_{3}\right) v_{3}^{\prime}(c)=0$

Matching Vertex Conditions in Planar Graph

Energy functional and corresponding vertex conditions

$$
\Pi=\frac{1}{2} \sum_{e \in E} \int_{e} a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2} d x
$$

(1) Vertex conditions on the quadratic form (see the work by J.C. Kiik, P. Kurasov, and M. Usman, 2015)

- $v_{1}(c)=v_{2}(c)=v_{3}(c)$
- $\sin \left(\theta_{1}\right) v_{1}^{\prime}(c)+\sin \left(\theta_{2}\right) v_{2}^{\prime}(c)+\sin \left(\theta_{3}\right) v_{3}^{\prime}(c)=0$

(2) Corresponding self-adjoint Beam operator, mapping $v_{e} \mapsto a_{e} v_{e}^{\prime \prime \prime \prime}$, on every edge $e \in E$ satisfying (in addition to above conditions)
- $\frac{v_{1}^{\prime \prime}(c)}{\sin \left(\theta_{1}\right)}=\frac{v_{2}^{\prime \prime}(c)}{\sin \left(\theta_{2}\right)}=\frac{v_{3}^{\prime \prime}(c)}{\sin \left(\theta_{3}\right)}$
- $v_{1}^{\prime \prime \prime}(c)+v_{2}^{\prime \prime \prime}(c)+v_{3}^{\prime \prime \prime}(c)=0$

Questions Regarding Generalization?

(1) Role of Degrees of Freedom

Figure: Eigenfunctions corresponding first and second eigenvalues.

Questions Regarding Generalization?

(1) Role of Degrees of Freedom

Figure: Eigenfunctions corresponding first and second eigenvalues.

From Scalar to Vector Quantities

lateral displacements

angular displacement

Introduction and Motivation General Three Dimensional Beam Structures in Practice Planar Frames and Matching

Questions Regarding Generalization?

(1) Generalization to three dimensional structures

Questions Regarding Generalization?

(1) Generalization to three dimensional structures

(2) Including all Degrees of Freedom

Section 2

(1) Introduction and Motivation

- Beam Structures in Practice
- Planar Frames and Matching Vertex Conditions
- Planar Frames and Matching Vertex Conditions
(2) General Three Dimensional Graphs
- Parameterization of Beam Deformation
- Full Description of Euler-Bernoulli Energy Functional
(3) Energy Form and Differential Operator
- Quadratic Form and Vertex Conditions
- Hamiltonian on Graph and Vertex Conditions
- Decoupling of Fields for Planar Graph
(9) Symmetry and Irreduscible Representations
- Numerical Results and Discussion
- Numerical Results and Discussion

Parameterization of Beam Deformation

(1) Euler-Bernoulli hypothesis:

- Plane sections remain plane,
- Geometry of the spatial beam is described by the centroid line and a family of the corresponding cross-sections.

Parameterization of Beam Deformation

(1) Euler-Bernoulli hypothesis:

- Plane sections remain plane,
- Geometry of the spatial beam is described by the centroid line and a family of the corresponding cross-sections.

(2) Description of problem in basis:
- Orthonormal basis $\left\{\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}\right\}$ span the physical space in which the beam is embedded,
- Orthonormal basis $\{\vec{i}, \vec{j}, \vec{k}\}$ describes orientation of the cross section of beam
(3) Deformed configuration fully described by:
- Position vector $\vec{g}(x)$ with x representing the arc-length coordinate,
- Family of orthonormal basis $\{\overrightarrow{\boldsymbol{i}}(x), \overrightarrow{\boldsymbol{j}}(x), \overrightarrow{\boldsymbol{k}}(x)\}$ which describe the orientation of the cross sections in the deformed configuration.

Parameterization of Beam Deformation

(1) Description of problem in basis:

- Orthonormal basis $\left\{\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}\right\}$ span the physical space in which the beam is embedded,
- Orthonormal basis $\{\vec{i}, \vec{j}, \vec{k}\}$ describes orientation of the cross section of beam
(2) Deformed configuration fully described by:
- Position vector $\vec{g}(x)$ with x representing the arc-length coordinate,
- Family of orthonormal basis $\{\overrightarrow{\boldsymbol{i}}(x), \overrightarrow{\boldsymbol{j}}(x), \overrightarrow{\boldsymbol{k}}(x)\}$ which describe the orientation of the cross sections in the deformed configuration.

Rigid Vertex Condition

(1) The relationship between the cross-section basis in the initial un-deformed and the deformed configurations can be expressed through $\mathcal{R}(x) \in \mathrm{SO}(3)$

$$
\overrightarrow{\boldsymbol{i}}(x)=\mathcal{R}(x) \vec{i}, \quad \overrightarrow{\boldsymbol{j}}(x)=\mathcal{R}(x) \vec{j}, \quad \overrightarrow{\boldsymbol{k}}(x)=\mathcal{R}(x) \vec{k}
$$

(2) Introduce (linearized)-rotation vector $\vec{\omega}(x):=\alpha \vec{\vartheta}(x)$

$$
\overrightarrow{\boldsymbol{i}}(x)=\vec{i}+\vec{\omega}(x) \times \vec{i}, \quad \overrightarrow{\boldsymbol{j}}(x)=\vec{j}+\vec{\omega}(x) \times \vec{j}, \quad \overrightarrow{\boldsymbol{k}}(x)=\vec{k}+\vec{\omega}(x) \times \vec{k}
$$

with unit rotation vector $\vec{\vartheta}(x)$ and angle of rotation $\alpha \in[0, \pi]$

Rigid Vertex Condition

(1) The relationship between the cross-section basis in the initial un-deformed and the deformed configurations can be expressed through $\mathcal{R}(x) \in \mathrm{SO}(3)$

$$
\overrightarrow{\boldsymbol{i}}(x)=\mathcal{R}(x) \vec{i}, \quad \overrightarrow{\boldsymbol{j}}(x)=\mathcal{R}(x) \vec{j}, \quad \overrightarrow{\boldsymbol{k}}(x)=\mathcal{R}(x) \vec{k}
$$

(2) Introduce (linearized)-rotation vector $\vec{\omega}(x):=\alpha \vec{\vartheta}(x)$

$$
\overrightarrow{\boldsymbol{i}}(x)=\vec{i}+\vec{\omega}(x) \times \vec{i}, \quad \overrightarrow{\boldsymbol{j}}(x)=\vec{j}+\vec{\omega}(x) \times \vec{j}, \quad \overrightarrow{\boldsymbol{k}}(x)=\vec{k}+\vec{\omega}(x) \times \vec{k}
$$

with unit rotation vector $\vec{\vartheta}(x)$ and angle of rotation $\alpha \in[0, \pi]$

Definition

A joint v with n incident beans $\left\{e_{i}\right\}_{i=1}^{n}$ is called rigid, if the displacement and rotation vectors on beams e_{i} satisfy

$$
\vec{g}_{1}(v)=\cdots=\vec{g}_{n}(v), \quad \text { and } \quad \vec{\omega}_{1}(v)=\cdots=\vec{\omega}_{n}(v)
$$

Towards General Graph $\Gamma=(V, E)$

(1) Kinematic Bernoulli assumptions for beam frame:

- no vertex energy, pre-sress, or external force

$$
\mathcal{U}^{(\Gamma)}=\frac{1}{2} \sum_{e \in E} \int_{e}\left(a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2}+b_{e}(x)\left|w_{e}^{\prime \prime}(x)\right|^{2}+c_{e}(x)\left|u_{e}^{\prime}(x)\right|^{2}+d_{e}(x)\left|\eta_{e}^{\prime}(x)\right|^{2}\right) d x .
$$

$v(x)$

$w(x)$

$\eta(x)$

(2) Associated to each edge $e \in E$ is a local orthonormal basis $\left\{\vec{i}_{e}, \vec{j}_{e}, \vec{k}_{e}\right\}$

- $\vec{g}_{e}(x)$ is displacement vector of edge e in global coordinate system at $x \in e$.

$$
\left(u_{e}, w_{e}, v_{e}\right)(x):=\left(\vec{g}_{e} \cdot \vec{i}_{e}, \vec{g}_{e} \cdot \vec{j}_{e}, \vec{g}_{e} \cdot \vec{k}_{e}\right)(x)
$$

- $\vec{\omega}_{e}(x)$ is (linearized) rotation vector of edge e in global coordinate system at $x \in e$

$$
\left(\eta_{e}, \psi_{e}, \phi_{e}\right)(x):=\left(\vec{\omega}_{e} \cdot \vec{i}_{e}, \vec{\omega}_{e} \cdot \vec{j}_{e}, \vec{\omega}_{e} \cdot \vec{k}_{e}\right)(x)
$$

Towards General Graph $\Gamma=(V, E)$

(1) Kinematic Bernoulli assumptions for beam frame:

- no vertex energy, pre-sress, or external force

$$
\mathcal{U}^{(\Gamma)}=\frac{1}{2} \sum_{e \in E} \int_{e}\left(a_{e}(x)\left|v_{e}^{\prime \prime}(x)\right|^{2}+b_{e}(x)\left|w_{e}^{\prime \prime}(x)\right|^{2}+c_{e}(x)\left|u_{e}^{\prime}(x)\right|^{2}+d_{e}(x)\left|\eta_{e}^{\prime}(x)\right|^{2}\right) d x .
$$

$v(x)$

$w(x)$

$\eta(x)$

(2) Associated to each edge $e \in E$ is a local orthonormal basis $\left\{\vec{i}_{e}, \vec{j}_{e}, \vec{k}_{e}\right\}$

- $\vec{g}_{e}(x)$ is displacement vector of edge e in global coordinate system at $x \in e$.

$$
\left(u_{e}, w_{e}, v_{e}\right)(x):=\left(\vec{g}_{e} \cdot \vec{i}_{e}, \vec{g}_{e} \cdot \vec{j}_{e}, \vec{g}_{e} \cdot \vec{k}_{e}\right)(x)
$$

- $\vec{\omega}_{e}(x)$ is (linearized) rotation vector of edge e in global coordinate system at $x \in e$

$$
\left(\eta_{e}, \psi_{e}, \phi_{e}\right)(x):=\left(\vec{\omega}_{e} \cdot \vec{i}_{e}, \vec{\omega}_{e} \cdot \vec{j}_{e}, \vec{\omega}_{e} \cdot \vec{k}_{e}\right)(x)
$$

(3) A key ingredient of generalization to elastic frame is the property of vertex at which the incident edges are met.

Section 3

(1) Introduction and Motivation

- Beam Structures in Practice
- Planar Frames and Matching Vertex Conditions
- Planar Frames and Matching Vertex Conditions
(2) General Three Dimensional Graphs
- Parameterization of Beam Deformation
- Full Description of Euler-Bernoulli Energy Functional
(3) Energy Form and Differential Operator
- Quadratic Form and Vertex Conditions
- Hamiltonian on Graph and Vertex Conditions
- Decoupling of Fields for Planar Graph

4 Symmetry and Irreduscible Representations

- Numerical Results and Discussion
- Numerical Results and Discussion

Quadratic Form and Vertex Conditions

Theorem

Energy functional Π of the beam frame with free rigid joints is the quadratic form corresponding to the positive closed sesquilinear form

$$
h[\widetilde{\Psi}, \Psi]:=\sum_{e \in E} \int_{e}\left(a_{e} \overline{\bar{v}_{e}^{\prime \prime}} v_{e}^{\prime \prime}+b_{e} \overline{\widetilde{w}_{e}^{\prime \prime}} w_{e}^{\prime \prime}+c_{e} \overline{\widetilde{u}_{e}^{\prime}} u_{e}^{\prime}+d_{e} \overline{\bar{\eta}_{e}^{\prime}} \eta_{e}^{\prime}\right) d x
$$

densely defined on

$$
\mathcal{H}=\bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e),
$$

with the domain of h consisting of the vectors

$$
\Psi:=(v, \quad w, \quad u, \quad \eta)^{T} \in \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{1}(e) \times \bigoplus_{e \in E} H^{1}(e)
$$

Quadratic Form and Vertex Conditions

Theorem

Energy functional Π of the beam frame with free rigid joints is the quadratic form corresponding to the positive closed sesquilinear form

$$
h[\widetilde{\Psi}, \Psi]:=\sum_{e \in E} \int_{e}\left(a_{e} \overline{\bar{v}_{e}^{\prime \prime}} v_{e}^{\prime \prime}+b_{e} \overline{\widetilde{w}_{e}^{\prime \prime}} w_{e}^{\prime \prime}+c_{e} \overline{\bar{u}_{e}^{\prime}} u_{e}^{\prime}+d_{e} \overline{\bar{\eta}_{e}^{\prime}} \eta_{e}^{\prime}\right) d x
$$

densely defined on

$$
\mathcal{H}=\bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e) \times \bigoplus_{e \in E} L_{2}(e),
$$

with the domain of h consisting of the vectors

$$
\Psi:=(v, \quad w, \quad u, \quad \eta)^{T} \in \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{1}(e) \times \bigoplus_{e \in E} H^{1}(e)
$$

that satisfy, at every vertex $v \in V$, the "free rigid joint" conditions

- continuity of displacement,

$$
u_{1} \vec{i}_{1}+w_{1} \vec{j}_{1}+v_{1} \vec{k}_{1}=\cdots=u_{n} \vec{i}_{n}+w_{n} \vec{j}_{n}+v_{n} \vec{k}_{n}
$$

- continuity of rotation,

$$
\eta_{1} \vec{i}_{1}-v_{1}^{\prime} \vec{j}_{1}+w_{1}^{\prime} \vec{k}_{1}=\cdots=\eta_{n} \vec{i}_{n}-v_{n}^{\prime} \vec{j}_{n}+w_{n}^{\prime} \vec{k}_{n}
$$

where n is the degree of v.

Hamiltonian on Graph and Vertex Conditions

Theorem

Energy form Π on a beam frame with free rigid joints corresponds to the self-adjoint operator $H: \mathcal{H} \rightarrow \mathcal{H}$ acting as

$$
\Psi_{e}:=\left(\begin{array}{c}
v_{e} \\
w_{e} \\
u_{e} \\
\eta_{e}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{e} v_{e}^{\prime \prime \prime \prime} \\
b_{e} w_{e}^{\prime \prime \prime \prime} \\
-c_{e} u_{e}^{\prime \prime} \\
-d_{e} \eta_{e}^{\prime \prime}
\end{array}\right)
$$

on every edge $e \in E$ of the graph. The domain of the operator H consists of the functions

$$
\Psi \in \bigoplus_{e \in E} H^{4}(e) \times \bigoplus_{e \in E} H^{4}(e) \times \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{2}(e)
$$

that satisfy, at each vertex $v \in V$,

Hamiltonian on Graph and Vertex Conditions

Theorem

Energy form Π on a beam frame with free rigid joints corresponds to the self-adjoint operator $H: \mathcal{H} \rightarrow \mathcal{H}$ acting as

$$
\Psi_{e}:=\left(\begin{array}{c}
v_{e} \\
w_{e} \\
u_{e} \\
\eta_{e}
\end{array}\right) \mapsto\left(\begin{array}{c}
a_{e} v_{e}^{\prime \prime \prime \prime} \\
b_{e} w_{e}^{\prime \prime \prime \prime} \\
-c_{e} u_{e}^{\prime \prime} \\
-d_{e} \eta_{e}^{\prime \prime}
\end{array}\right)
$$

on every edge $e \in E$ of the graph. The domain of the operator H consists of the functions

$$
\Psi \in \bigoplus_{e \in E} H^{4}(e) \times \bigoplus_{e \in E} H^{4}(e) \times \bigoplus_{e \in E} H^{2}(e) \times \bigoplus_{e \in E} H^{2}(e)
$$

that satisfy, at each vertex $v \in V$,

- continuity of displacement and rotation conditions respectively

$$
\begin{aligned}
& u_{1} \vec{i}_{1}+w_{1} \vec{j}_{1}+v_{1} \vec{k}_{1}=\cdots=u_{n_{v}} \vec{i}_{n_{v}}+w_{n_{v}} \vec{j}_{n_{v}}+v_{n_{v}} \vec{k}_{n_{v}} \\
& \eta_{1} \vec{i}_{1}-v_{1}^{\prime} \vec{j}_{1}+w_{1}^{\prime} \vec{k}_{1}=\cdots=\eta_{n_{v}} \vec{i}_{n_{v}}-v_{n_{v}}^{\prime} \vec{j}_{n_{v}}+w_{n_{v}}^{\prime} \vec{k}_{n_{v}}
\end{aligned}
$$

- equilibrium of forces and moments, respectively

$$
\begin{aligned}
\sum_{e \sim v}\left(c_{e} u_{e}^{\prime} \vec{i}_{e}-b_{e} w_{e}^{\prime \prime \prime} \vec{j}_{e}-a_{e} v_{e}^{\prime \prime \prime} \vec{k}_{e}\right) & =\overrightarrow{0} \\
\sum_{e \sim v}\left(d_{e} \eta_{e}^{\prime} \vec{i}_{e}-a_{e} v_{e}^{\prime \prime} \vec{j}_{e}+b_{e} w_{e}^{\prime \prime} \vec{k}_{e}\right) & =\overrightarrow{0}
\end{aligned}
$$

Self-adjointness and Physics Behind Vertex Conditions

(1) Equilibrium of forces at vertex

$$
\sum_{e \sim v}(\underbrace{c_{e} u_{e}^{\prime}}_{N_{y}} \vec{i}_{e}-\underbrace{b_{e} w_{e}^{\prime \prime \prime}}_{V_{x}} \vec{j}_{e}-\underbrace{a_{e} v_{e}^{\prime \prime \prime}}_{V_{z}} \vec{k}_{e})=\overrightarrow{0}
$$

(2) Equilibrium of moments at vertex

$$
\sum_{e \sim v}(\underbrace{d_{e} \eta_{e}^{\prime}}_{M_{y}} \vec{i}_{e}-\underbrace{a_{e} v_{e}^{\prime \prime}}_{M_{x}} \vec{j}_{e}+\underbrace{b_{e} w_{e}^{\prime \prime}}_{M_{z}} \vec{k}_{e})=\overrightarrow{0}
$$

Decoupling of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

$$
\mathcal{H}^{(\Gamma)}(v, \eta, w, u)=\left(\mathcal{H}_{1}^{(\Gamma)}(v, \eta)\right) \oplus\left(\mathcal{H}_{2}^{(\Gamma)}(w, u)\right)
$$

where $\mathcal{H}_{1}^{(\Gamma)}$ and $\mathcal{H}_{2}^{(\Gamma)}$ are differential operators with action

$$
\left.\mathcal{H}_{1}^{(\Gamma)}(v, \eta)\right|_{e}=\left(\begin{array}{cc}
a_{e} \frac{d^{4}}{d x^{4}} & 0 \\
0 & -d_{e} \frac{d^{2}}{d x^{2}}
\end{array}\right), \quad \text { and }\left.\quad \mathcal{H}_{2}^{(\Gamma)}(w, u)\right|_{e}=\left(\begin{array}{cc}
b_{e} \frac{d^{4}}{d x^{4}} & 0 \\
0 & -c_{e} \frac{d^{2}}{d x^{2}}
\end{array}\right)
$$

Decoupling of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

$$
\mathcal{H}^{(\Gamma)}(v, \eta, w, u)=\left(\mathcal{H}_{1}^{(\Gamma)}(v, \eta)\right) \oplus\left(\mathcal{H}_{2}^{(\Gamma)}(w, u)\right)
$$

where $\mathcal{H}_{1}^{(\Gamma)}$ and $\mathcal{H}_{2}^{(\Gamma)}$ are differential operators with action

$$
\left.\mathcal{H}_{1}^{(\Gamma)}(v, \eta)\right|_{e}=\left(\begin{array}{cc}
a_{e} \frac{d^{4}}{d x^{4}} & 0 \\
0 & -d_{e} \frac{d^{2}}{d x^{2}}
\end{array}\right), \quad \text { and }\left.\quad \mathcal{H}_{2}^{(\Gamma)}(w, u)\right|_{e}=\left(\begin{array}{cc}
b_{e} \frac{d^{4}}{d x^{4}} & 0 \\
0 & -c_{e} \frac{d^{2}}{d x^{2}}
\end{array}\right)
$$

- $\mathcal{H}_{1}^{(\Gamma)}$ satisfying at each vertex v

$$
\begin{gathered}
v_{1}=\cdots=v_{n_{v}}, \quad \text { and } \quad \eta_{1} \vec{i}_{1}-v_{1}^{\prime} \vec{j}_{1}=\cdots=\eta_{n_{v}} \vec{i}_{n_{v}}-v_{n_{v}}^{\prime} \vec{j}_{n_{v}}, \\
\sum_{e \sim v} d_{e} \eta_{e}^{\prime} \vec{i}_{e}-a_{e} v_{e}^{\prime \prime} \vec{j}_{e}=\overrightarrow{0}, \quad \text { and } \quad \sum_{e \sim v} a_{e} v_{e}^{\prime \prime \prime}=0 .
\end{gathered}
$$

- $\mathcal{H}_{2}^{(\Gamma)}$ satisfying at each vertex v

$$
\begin{gathered}
w_{1}^{\prime}=\cdots=w_{n_{v}}^{\prime}, \quad \text { and } \quad u_{1} \vec{i}_{1}+w_{1} \vec{j}_{1}=\cdots=u_{n_{v}} \vec{i}_{n_{v}}+w_{n_{v}} \vec{j}_{n_{v}}, \\
\sum_{e \sim v} c_{e} u_{e}^{\prime} \vec{i}_{e}-b_{e} w_{e}^{\prime \prime \prime} \vec{j}_{e}=\overrightarrow{0}, \quad \text { and } \quad \sum_{e \sim v} b_{e} w_{e}^{\prime \prime}=\overrightarrow{0} .
\end{gathered}
$$

Example: Planar Graph

Figure: Eigenfuctions corresponding to first and second eigenvalues for parameters $a=d=d_{0}=1$. Color bar shows value of in-axis torsion of edges.

Figure: Eigenfuctions corresponding to first and second eigenvalues for parameters $b=1$ and $d=d_{0}=10^{3}$. Color bar shows value of in-axis torsion of edges.

Section 4

(1) Introduction and Motivation

- Beam Structures in Practice
- Planar Frames and Matching Vertex Conditions
- Planar Frames and Matching Vertex Conditions
(2) General Three Dimensional Graphs
- Parameterization of Beam Deformation
- Full Description of Euler-Bernoulli Energy Functional
(3) Energy Form and Differential Operator
- Quadratic Form and Vertex Conditions
- Hamiltonian on Graph and Vertex Conditions
- Decoupling of Fields for Planar Graph

4) Symmetry and Irreduscible Representations

- Numerical Results and Discussion
- Numerical Results and Discussion

Irreduscible Representations

(c) The graph $\Gamma_{A T}$ is invariant under the symmetry group $G=D_{3}$, the dihedral group of degree 3 .

- R : rotation of Γ by $\theta=2 \pi / 3$ with axis of rotation along E_{3}
- F : reflection with respect to the planes passing through vertices x_{1}, x_{0} and c.
(2) The group G then can be described as

$$
G=\left\langle R, F \mid R^{3}=I, F^{2}=I, F R F R=I\right\rangle
$$

with I to be the identity element. This implies that G contains the elements

$$
G=\left\{I, R, R^{2}, F, F R, F R^{2}\right\}
$$

Decomposition of \mathcal{H}

Theorem

The Hamiltonian operator H of the beam frame $\Gamma_{A T}$ is reduced by the decomposition

$$
\mathcal{H}=\mathcal{H}_{\mathrm{id}} \oplus \mathcal{H}_{\mathrm{alt}} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}
$$

where

$$
\begin{aligned}
\mathcal{H}_{\mathrm{id}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=\eta_{0}=0, w_{s}=\eta_{s}=0, v_{1}=v_{2}=v_{3}, u_{1}=u_{2}=u_{3}\right\}, \\
\mathcal{H}_{\mathrm{alt}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=u_{0}=0, u_{s}=v_{s}=0, w_{1}=w_{2}=w_{3}, \eta_{1}=\eta_{2}=\eta_{3}\right\}, \\
\mathcal{H}_{\omega} & :=\left\{\Psi \in \mathcal{H}: u_{0}=\eta_{0}=0, w_{0}=\mathrm{i} v_{0}, \Psi_{3}=\omega \Psi_{2}=\omega^{2} \Psi_{1}\right\}=\overline{\mathcal{H}_{\bar{\omega}}},
\end{aligned}
$$

where $s \in\{1,2,3\}$ labels the legs, $\Psi_{s}:=\left(v_{s}, w_{s}, u_{s}, \eta_{s}\right)^{T}$, and $\omega=e^{2 \pi \mathrm{i} / 3}$.

Decomposition of \mathcal{H}

Remark

A decomposition $\mathcal{H}=\bigoplus_{\alpha} \mathcal{H}_{\alpha}$ is reducing for an operator H if

- H is invariant on each of the subspaces, and
- the operator domain $\operatorname{Dom}(H)$ is aligned with respect to the decomposition, namely

$$
\operatorname{Dom}(H)=\bigoplus_{\alpha}\left(\mathcal{H}_{\alpha} \cap \operatorname{Dom}(H)\right)
$$

Decomposition of \mathcal{H}

Remark

A decomposition $\mathcal{H}=\bigoplus_{\alpha} \mathcal{H}_{\alpha}$ is reducing for an operator H if

- H is invariant on each of the subspaces, and
- the operator domain $\operatorname{Dom}(H)$ is aligned with respect to the decomposition, namely

$$
\operatorname{Dom}(H)=\bigoplus\left(\mathcal{H}_{\alpha} \cap \operatorname{Dom}(H)\right)
$$

- This means that we can restrict H to each subspace in turn and every aspect of the spectral data of the operator H is the sum (or union) of the spectral data of the restricted parts.
- In particular, since $\mathcal{H}_{\omega}=\overline{\mathcal{H}_{\bar{\omega}}}$, the eigenvalues of the corresponding restrictions are equal and thus each eigenvalue of the restriction $H_{\omega}=\left.H\right|_{\mathcal{H}_{\omega}}$ enters the spectrum of H with multiplicity two.
- Kinematically, these eigenvalues correspond to the rotational wobbles of the antenna beam.

Decomposition of \mathcal{H}

Theorem

The Hamiltonian operator H of the beam frame $\Gamma_{A T}$ is reduced by the decomposition

$$
\mathcal{H}=\mathcal{H}_{\mathrm{id}} \oplus \mathcal{H}_{\mathrm{alt}} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}
$$

Figure: Variation of determinant of matrices corresponding irreducible representations and their corresponding eigenvalues: (left) trivial $M_{\text {tri }}$ (m middle) alternative $M_{\text {alt }}$, and (right) standard M_{ω}. All the results are based on unit materials parameters and beams lengths.

$\mathcal{H}=\mathcal{H}_{\text {id }} \oplus \mathcal{H}_{\text {alt }} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{id}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=\eta_{0}=0, w_{s}=\eta_{s}=0, v_{1}=v_{2}=v_{3}, u_{1}=u_{2}=u_{3}\right\} \\
\mathcal{H}_{\mathrm{alt}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=u_{0}=0, u_{s}=v_{s}=0, w_{1}=w_{2}=w_{3}, \eta_{1}=\eta_{2}=\eta_{3}\right\}, \\
\mathcal{H}_{\omega} & :=\left\{\Psi \in \mathcal{H}: u_{0}=\eta_{0}=0, w_{0}=\mathrm{i} v_{0}, \Psi_{3}=\omega \Psi_{2}=\omega^{2} \Psi_{1}\right\}=\overline{\mathcal{H}_{\bar{\omega}}}
\end{aligned}
$$

$\mathcal{H}=\mathcal{H}_{\text {id }} \oplus \mathcal{H}_{\text {alt }} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

$\mathcal{H}_{\mathrm{id}}:=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=\eta_{0}=0, w_{s}=\eta_{s}=0, v_{1}=v_{2}=v_{3}, u_{1}=u_{2}=u_{3}\right\}$,

Figure: Plot of the components of the first eigenfuction from $\mathcal{H}_{\text {id }}$. Plots are obtained from a finite elements numerical computation and are displayed in the local coordinate system of the corresponding edge. All the results are based on unit materials parameters and beams lengths.

$\mathcal{H}=\mathcal{H}_{\text {id }} \oplus \mathcal{H}_{\text {alt }} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{id}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=\eta_{0}=0, w_{s}=\eta_{s}=0, v_{1}=v_{2}=v_{3}, u_{1}=u_{2}=u_{3}\right\}, \\
\mathcal{H}_{\mathrm{alt}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=u_{0}=0, u_{s}=v_{s}=0, w_{1}=w_{2}=w_{3}, \eta_{1}=\eta_{2}=\eta_{3}\right\}, \\
\mathcal{H}_{\omega} & :=\left\{\Psi \in \mathcal{H}: u_{0}=\eta_{0}=0, w_{0}=\mathrm{i} v_{0}, \Psi_{3}=\omega \Psi_{2}=\omega^{2} \Psi_{1}\right\}=\overline{\mathcal{H}_{\bar{\omega}}},
\end{aligned}
$$

$\mathcal{H}=\mathcal{H}_{\text {id }} \oplus \mathcal{H}_{\text {alt }} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

$$
\mathcal{H}_{\mathrm{alt}}:=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=u_{0}=0, u_{s}=v_{s}=0, w_{1}=w_{2}=w_{3}, \eta_{1}=\eta_{2}=\eta_{3}\right\}
$$

Figure: Plot of the components of the first eigenfuction from $\mathcal{H}_{\text {alt }}$. Plots are obtained from a finite elements numerical computation and are displayed in the local coordinate system of the corresponding edge. All the results are based on unit materials parameters and beams lengths.

$\mathcal{H}=\mathcal{H}_{\text {id }} \oplus \mathcal{H}_{\text {alt }} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{id}} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=\eta_{0}=0, w_{s}=\eta_{s}=0, v_{1}=v_{2}=v_{3}, u_{1}=u_{2}=u_{3}\right\} \\
\mathcal{H}_{\text {alt }} & :=\left\{\Psi \in \mathcal{H}: v_{0}=w_{0}=u_{0}=0, u_{s}=v_{s}=0, w_{1}=w_{2}=w_{3}, \eta_{1}=\eta_{2}=\eta_{3}\right\}, \\
\mathcal{H}_{\omega} & :=\left\{\Psi \in \mathcal{H}: u_{0}=\eta_{0}=0, w_{0}=\mathrm{i} v_{0}, \Psi_{3}=\omega \Psi_{2}=\omega^{2} \Psi_{1}\right\}=\overline{\mathcal{H}_{\bar{\omega}}}
\end{aligned}
$$

Figure: Plot of (first) eigenfunction fields corresponding to the eigenvalue of multiplicity two in edge's local coordinate system by finite element approximation.

$$
\mathcal{H}=\mathcal{H}_{\mathrm{id}} \oplus \mathcal{H}_{\mathrm{alt}} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}
$$

Figure: Plot of (left) first, and (right) second displacement eigenfunction corresponding to eigenvalue of standard representation in global coordinate system by finite element approximation. Color bar shows value of in-axis rotation of edges.

Introduction and Motivation General Three Dimensional Numerical Results and Discussion Numerical Results and $\mathcal{H}=\mathcal{H}_{\mathrm{id}} \oplus \mathcal{H}_{\mathrm{alt}} \oplus \mathcal{H}_{\omega} \oplus \mathcal{H}_{\bar{\omega}}$

Thanks for your attention!

