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The classical Li-Yau inequality

The classical Li-Yau inequality
Suppose u : [0,∞)× Rd → (0,∞) solves ∂tu −∆u = 0. Then

−∆(log u) ≤ d

2t
in (0,∞)× Rd . (1)

Since ∂t(log u)−∆(log u) = |∇(log u)|2, this is equivalent to

∂t(log u) ≥ |∇(log u)|2 − d

2t
in (0,∞)× Rd . (2)

• This extends to complete d-dimensional Riemannian manifolds M
with Ric(M) ≥ 0 (Li, Yau, Acta Math. 1986).

• (2) is sharp, one has equality for u(t, x) = (4πt)−d/2 exp
(−|x |2

4t

)
.

• Integration of (2) over a path connecting (t1, x1) and (t2, x2)
with 0 < t1 < t2 gives the sharp Harnack estimate

u(t1, x1) ≤ u(t2, x2)
( t2
t1

)d/2
exp
( |x1 − x2|2

4(t2 − t1)

)
.



Li-Yau inequalities for general non-local diffusion equations via reduction to the heat kernel

The classical Li-Yau inequality

The classical Li-Yau inequality
Suppose u : [0,∞)× Rd → (0,∞) solves ∂tu −∆u = 0. Then

−∆(log u) ≤ d

2t
in (0,∞)× Rd . (1)

Since ∂t(log u)−∆(log u) = |∇(log u)|2, this is equivalent to

∂t(log u) ≥ |∇(log u)|2 − d

2t
in (0,∞)× Rd . (2)

• This extends to complete d-dimensional Riemannian manifolds M
with Ric(M) ≥ 0 (Li, Yau, Acta Math. 1986).
• (2) is sharp, one has equality for u(t, x) = (4πt)−d/2 exp

(−|x |2
4t

)
.

• Integration of (2) over a path connecting (t1, x1) and (t2, x2)
with 0 < t1 < t2 gives the sharp Harnack estimate

u(t1, x1) ≤ u(t2, x2)
( t2
t1

)d/2
exp
( |x1 − x2|2

4(t2 − t1)

)
.



Li-Yau inequalities for general non-local diffusion equations via reduction to the heat kernel

The classical Li-Yau inequality

How can we prove Li-Yau? Basic idea: v := log u solves

∂tv −∆v = |∇v |2, (3)

by the chain rule ∆H(u) = H ′(u)∆u + H ′′(u)|∇u|2 with H = log.
So we need −∆v ≤ d

2t .

Apply ∆ to (3) and use Bochner’s identity.

∂t∆v −∆(∆v) = ∆
(
|∇v |2

)
= 2∇v · ∇∆v + 2|∇2v |2HS

(
+ 2Ric(∇v ,∇v)

)
.

Now, |∇2v |2HS ≥
1
d (∆v)2 (a CD-inequality), and thus

∂t∆v −∆(∆v) ≥ 2∇v · ∇∆v +
2
d

(∆v)2

ω(t) := − d
2t solves ∂tω = 2

dω
2. Comparison arg. ↪→ ∆v ≥ ω
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The fractional heat equation

The fractional heat equation

Let β ∈ (0, 2). We now consider

∂tu + (−∆)
β
2 u = 0 in (0,∞)× Rd . (4)

The fractional Laplacian can be defined by

−
(
−∆)

β
2 u(x) = cβ,d p.v.

∫
Rd

u(y)− u(x)

|x − y |d+β
dy .

Question: Does a Li-Yau inequality hold for (4)? If yes, how does
the bound depend on time?
Addressed in the survey by Garofalo, Fractional thoughts... (2019),
as a key open problem.
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The fractional heat equation

Difficulties:

• The chain rule fails for the fractional Laplacian.

• The fractional Laplacian has infinite dimension, i.e. the
Bakry-Émery curvature condition CD(0, n) is violated for any
n ∈ (0,∞), see Spener, Weber, Z., Comm. PDE (2020).
Note that ∆ in Rd satisfies CD(0, d).
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Reduction to the heat kernel for the heat equation

Reduction to the heat kernel for the heat equation

Lemma 1: Let Pf (x) =
∫
Rd H(x , y)f (y) dy , for sufficiently regular,

positive functions H and f . Then∫
Rd

∣∣∇x logH(x , y)
∣∣2H(x , y)f (y) dy ≥

∣∣∇ logPf (x)
∣∣2Pf (x). (5)

Proof: By Hölder’s inequality we have

(∂xiPf (x))2 =
( ∫

Rd

∂xiH(x , y)f (y) dy
)2

≤
∫
Rd

(∂xiH(x , y))2

H(x , y)
f (y) dy

∫
Rd

H(x , y)f (y) dy ,

which directly leads to (5) by summing up and employing the chain
rule for the gradient (∇(log g) = ∇g

g ).
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Reduction to the heat kernel for the heat equation

For the heat kernel H(t, x , y) = (4πt)−
d
2 e−

|x−y|2
4t we have

−∆x

(
logH(t, x , y)

)
=

d

2t
=: ϕ(t). (6)

For any positive solution u of the heat equation,

∂tu − u∆(log u) = u|∇(log u)|2.

In particular,

∂tH(t, x , y) + H(t, x , y)ϕ(t) = H(t, x , y)|∇x(logH(t, x , y))|2
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Reduction to the heat kernel for the heat equation

Consider a positive solution u(t, x) =
∫
Rd H(t, x , y)u0(y) dy of the

heat equation (Widder’s type theorem!). Then

∂tu(t, x) + ϕ(t)u(t, x) =

∫
Rd

(
∂tH(t, x , y) + ϕ(t)H(t, x , y)

)
u0(y) dy

=

∫
Rd

(
|∇x(logH(t, x , y))|2H(t, x , y)

)
u0(y) dy

≥ |∇(log u(t, x))|2u(t, x) (by Lemma 1)
= ∂tu(t, x)− u(t, x)∆(log u(t, x)).

Hence
−∆(log u(t, x)) ≤ ϕ(t) =

d

2t
.

Note that we only need −∆x

(
logH(t, x , y)

)
≤ ϕ(t).

Conclusion: Li-Yau for heat kernel implies Li-Yau for pos. solutions.
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Reduction to the heat kernel for the fractional heat equation

Reduction to the heat kernel for the fractional heat equation
Question: Is there a similar argument for the fractional heat
equation (FHE)?

Let u be a positive solution of the FHE. Then

∂t(log u) + (−∆)
β
2 (log u) = ΨΥ(log u),

where

ΨΥ(v)(x) = cβ,d

∫
Rd

Υ
(
v(y)− v(x)

)
|x − y |d+β

dy

with Υ(z) = ez − 1− z (see Dier, Kassmann, Z., Ann. Sc. Norm.
Super. Pisa (2021)). Equivalently,

∂tu + u(−∆)
β
2 (log u) = uΨΥ(log u).
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Reduction to the heat kernel for the fractional heat equation

Non-local log-transform: follows from a simple rule for differences

log u(y)−log u(x) =
u(y)− u(x)

u(x)
−
(u(y)

u(x)
−1−

[
log u(y)−log u(x)

])
=

u(y)− u(x)

u(x)
−Υ

(
log u(y)− log u(x)

)
,

with Υ(z) = ez − 1− z . Thus, with L := −(−∆)
β
2 ,

L(log u)(x) =
Lu(x)

u(x)
− cβ,d

∫
Rd

Υ
(
log u(y)− log u(x)

)
|x − y |d+β

dy︸ ︷︷ ︸
ΨΥ(log u)(x)

Non-local analogue of

∆(log u)(x) =
∆u(x)

u(x)
−
∣∣∇(log u(x))

∣∣2
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Reduction to the heat kernel for the fractional heat equation

Recall the key inequality from the local case∫
Rd

∣∣∇x logH(x , y)
∣∣2H(x , y)f (y) dy ≥

∣∣∇ logPf (x)
∣∣2Pf (x),

where Pf (x) =
∫
Rd H(x , y)f (y) dy and H and f are sufficiently

regular, positive functions.

Lemma 2: (Weber, Z. (2021)) Let P,H, f be as before. Then∫
Rd

ΨΥ(logH(·, y))(x)H(x , y)f (y) dy ≥ ΨΥ(logPf )(x)Pf (x).

(7)
Proof: Use the convexity of r 7→ Υ(log r) = r − log r − 1.
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Reduction to the heat kernel for the fractional heat equation

Positive (strong) solutions u of the FHE can be expressed as

u(t, x) =

∫
Rd

G (β)(t, x − y)u0(y) dy , (8)

where G (β) is the fund. sol. of the FHE, see Barrios, Peral, Soria,
Valdinoci, ARMA (2014).

Set H(t, x , y) = G (β)(t, x − y). Using Lemma 2 we can argue as
before to see the implication

(−∆)
β
2 (logG (β))(t, x) ≤ ϕ(t)⇒ (−∆)

β
2 (log u)(t, x) ≤ ϕ(t).

Question: For which function ϕ do we have

(−∆)
β
2 (logG (β))(t, x) ≤ ϕ(t) ?
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Reduction to the heat kernel for the fractional heat equation

Lemma 3: For all β ∈ (0, 2), t > 0, and x ∈ Rd , we have

(−∆)
β
2 (logG (β))(t, x) ≤ CLY (β, d)

t
, (9)

where the finite constant CLY (β, d) > 0 is given by

CLY (β, d) =
cβ,d
2

sup
y∈Rd

∫
Rd

log
(

Φβ(y)2

Φβ(y+σ)Φβ(y−σ)

)
|σ|d+β

dσ, (10)

with Φβ(y) = G (β)(1, y), y ∈ Rd .

Note that G (β)(t, x) = t−
d
β Φβ

(
xt−

1
β
)
. CLY (1, d) = d(d+1)

2B
(

d+1
2 , 12

) .
CLY (β, d) is the smallest constant among all C > 0 satisfying

(−∆)
β
2 (logG (β))(t, x) ≤ C

t
, t > 0, x ∈ Rd .
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Reduction to the heat kernel for the fractional heat equation

Proof:

(−∆)
β
2 (logG (β))(t, x)

=
cβ,d
2

∫
Rd

2 logG (β)(t, x)− logG (β)(t, x + h)− logG (β)(t, x − h)

|h|d+β
dh

=
cβ,d
2

∫
Rd

log
(

G (β)(t,x)2

G (β)(t,x+h)G (β)(t,x−h)

)
|h|d+β

dh.

Using G (β)(t, x) = t−
d
β Φβ

(
xt−

1
β
)
and setting y = xt−

1
β , we get

that

∫
Rd

log
(

G (β)(t,x)2

G (β)(t,x+h)G (β)(t,x−h)

)
|h|d+β

dh =
1
t

∫
Rd

log
(

Φβ(y)2

Φβ(y+σ)Φβ(y−σ)

)
|σ|d+β

dσ,

where we have substituted σ = ht−
1
β .
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Reduction to the heat kernel for the fractional heat equation

Next, we write

J(y) :=

∫
Rd

log
(

Φβ(y)2

Φβ(y+σ)Φβ(y−σ)

)
|σ|d+β

dσ

=

∫
Rd\B1(0)

. . . dσ +

∫
B1(0)

. . . dσ =: J1(y) + J2(y).

To see boundedness of J1(y) we use

G (β)(t, x) � t(
t
2
β + |x |2

) d+β
2

, (t, x) ∈ (0,∞)× Rd ,

for J2(y) we also use log r ≤ r − 1, apply Taylor and employ the
bounds

|∇Φβ(x)| . 1
|x |d+β+1 , ‖∇2Φβ(x)‖ . 1

|x |d+β+2 , |x | ≥ 1.
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Reduction to the heat kernel for the fractional heat equation

Theorem 4: (Weber, Z. (2021))
Let β ∈ (0, 2) and u : [0,∞)× Rd → (0,∞) be a strong solution
of the FHE

∂tu + (−∆)
β
2 u = 0 in (0,∞)× Rd .

Then the Li-Yau type inequality

(
−∆

)β
2 (log u)(t, x) ≤ CLY (β, d)

t
(11)

holds for all (t, x) ∈ (0,∞)× Rd .
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Reduction principle for more general non-local operators

Reduction principle for more general non-local operators
Setting: (M, d) metric space, B(M) the Borel σ-algebra on M. We
consider

Lf (x) =

∫
M\{x}

(
f (y)− f (x)

)
k(x , dy), (12)

where the kernel is s.t. k(x , ·) defines a σ-finite measure on
B(M \ {x}) for any x ∈ M and f : M → R is s.t. the integral
exists. We also include the singular case (as with the fractional
Laplacian), replace then

∫
M\{x} by lim

ε→0+

∫
M\Bε(x).

Important example: L is generator of a continuous-time Markov
chain on a discrete (countable) state space M with natural graph
structure; M is the set of vertices.

Lf (x) =
∑
y∈M

k(x , y)
(
f (y)− f (x)

)
.
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Reduction principle for more general non-local operators

Setting ΨΥ(f )(x) =
∫
M\{x}Υ

(
f (y)− f (x)

)
k(x , dy), we find again

that for (suitable) positive functions f

L(log f ) =
Lf

f
−ΨΥ(log f ).

The key lemma, Lemma 2, extends to the more general case.

Lemma 5: (Weber, Z. (2021))
Let Pf (x) =

∫
M H(x , y)f (y) dν(y), where ν : B(M)→ [0,∞] is a

σ-finite measure, and f and H are positive functions satisfying
appropriate measurability and integrability conditions. Then we
have for any x ∈ M that∫

M
ΨΥ(logH(·, y))(x)H(x , y)f (y)dν(y) ≥ ΨΥ(logPf )(x)Pf (x).
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Reduction principle for more general non-local operators

Theorem 6: (Weber, Z. (2021))
Let u : [0,∞)×M → (0,∞) be a solution of ∂tu − Lu = 0 of the
form (p and u0 are positive)

u(t, x) =

∫
M
p(t, x , y)u0(y) dµ(y).

Assume certain technical assumptions and the estimate

− L
(
log p(t, ·, y)

)
(x) ≤ ϕ(t, x), (13)

for all (t, x) ∈ (0,∞)×M and µ−a.e. y ∈ M, where
ϕ : (0,∞)×M → R. Then

− L(log u(t, ·))(x) ≤ ϕ(t, x) (14)

holds true for all (t, x) ∈ (0,∞)×M.
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Reduction principle for more general non-local operators

A discrete example
Consider the (unweighted) complete graph Kn. Here
M = {1, 2, . . . , n} and Lf (x) =

∑
y∈M k(x , y)

(
f (y)− f (x)

)
, where

k(x , y) = 1 for all x , y ∈ M, x 6= y . The heat kernel reads

p(t, x , y) =

{
1−e−nt

n : x 6= y ,
1+(n−1)e−nt

n : x = y .

−L
(
log p(t, ·, y)

)
(x) =

{
(n − 1) log

(1+(n−1)e−nt

1−e−nt

)
: x = y

log
( 1−e−nt

1+(n−1)e−nt

)
: x 6= y .

Thus −L
(
log p(t, ·, y)

)
(x) is maximal if x = y for any fixed t > 0.

We obtain the sharp Li-Yau inequality

−L
(
log u(t, ·))(x) ≤ (n − 1) log

(1 + (n − 1)e−nt

1− e−nt
)
.
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Harnack inequalities

Harnack inequalities

Question: Do the non-local Li-Yau inequalities lead to Harnack
inequalities?

Note that the Li-Yau inequality −L(log u(t, ·))(x) ≤ ϕ(t, x) is
equivalent to the differential Harnack inequality

∂t log u(t, x) ≥ ΨΥ(log u)(t, x)− ϕ(t, x), t > 0, x ∈ M. (15)

Discrete case (graphs): yes, see Dier, Kassmann, Z., Ann. Sc.
Norm. Super. Pisa (2021), where (15) is used with ϕ(t).

See also Bauer, Horn, Lin, Lippner, Mangoubi, Yau, J. Differential
Geom. (2015) and Münch, J. Math. Pures Appl. (2018)
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Harnack inequalities

The Harnack inequality for the fractional heat equation
Turns out to be much more involved! We have to replace
integration along continuous paths with appropriate jumps. By
means of the Li-Yau inequality(

−∆
)β
2 (log u)(t, x) ≤ CLY (β, d)

t
, (t, x) ∈ (0,∞)× Rd

one can show

Theorem 7: (Weber, Z. (2021))
Let β ∈ (0, 2) and u : [0,∞)× Rd → (0,∞) be a strong solution
to the FHE. Then there exists a constant C = C (β, d) > 0 s.t. for
all 0 < t1 < t2 <∞ and x1, x2 ∈ Rd there holds

u(t1, x1) ≤ u(t2, x2)
( t2
t1

)CLY

exp

(
C

[
1 +
|x1 − x2|β+d

(t2 − t1)1+ d
β

])
. (16)



Li-Yau inequalities for general non-local diffusion equations via reduction to the heat kernel

Harnack inequalities

Known results on the parabolic Harnack inequality for the space
fractional heat equation:

• Bass, Levin, Trans. Amer. Math. Soc. (2002); Chen, Kumagai,
Stochastic Process. Appl. (2003): local solutions, probabilistic
methods

• Chang-Lara, D’avila, J. Differential Equations (2016): local
solutions in a rough setting, purely analytic proof

• Bonforte, Sire, Vázquez, Nonlinear Anal. (2017); Dier,
Kemppainen, Siljander, Z., Math. Z. (2020): global solutions,
estimates based on fundamental solution, no time gap is required
between t1 and t2
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Harnack inequalities

Proof: For any s ∈ [t1, t2] we have

log
u(t1, x1)

u(t2, x2)
= −

∫ s

t1

∂t log u(t, x1)dt + log
u(s, x1)

u(s, x2)

−
∫ t2

s
∂t log u(t, x2)dt.

Combining this with the differential Harnack inequality

∂t log u(t, x) ≥ ΨΥ(log u)(t, x)− CLY (β, d)

t
, t > 0, x ∈ Rd ,

gives

log
u(t1, x1)

u(t2, x2)
≤
∫ t2

t1

CLY (β, d)

t
dt + log

u(s, x1)

u(s, x2)

−
∫ s

t1

ΨΥ(log u)(t, x1)dt −
∫ t2

s
ΨΥ(log u)(t, x2)dt, s ∈ [t1, t2].

(17)
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Harnack inequalities

Setting v = log u and

f (t) := v(t, x1)−v(t, x2)−
∫ t

t1

ΨΥ(v)(t, x1)dt−
∫ t2

t
ΨΥ(v)(t, x2)dt,

for t ∈ [t1, t2], the idea is to choose s s.t. f (s) = mint∈[t1,t2] f (t).
We select a suitable (positive) weight function η(t) and estimate

min
t∈[t1,t2]

f (t) ≤ 1∫ t2
t1
η(t)dt

∫ t2

t1

η(t)f (t)dt

=
1∫ t2

t1
η(t)dt

[ ∫ t2

t1

(
η(t)A1(t)−ΨΥ(v)(t, x1)

∫ t2

t
η(τ)dτ

)
dt

+

∫ t2

t1

(
η(t)A2(t)−ΨΥ(v)(t, x2)

∫ t

t1

η(τ)dτ
)
dt
]
,

A1(t) =
1
|Qt |

∫
Qt

(
v(t, x1)− v(t, y)

)
dy , A2(t) =

1
|Qt |

∫
Qt

(
v(t, y)− v(t, x2)

)
dy .
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Here, assuming that |x1 − x2| ≤ 1, we take Qt = Br(t)(x1) with
radius

r(t) =
(ωdcβ,d
1 + α

(t2 − t)
) 1
β
,

with fixed parameter α > 1
2 max{0, dβ − 1}. Setting t∗ = t1+t2

2 , we
choose the weight function

η(t) =

{
(t − t1)α , t ∈ [t1, t∗)
(t2 − t)α , t ∈ [t∗, t2].

Recall that Υ(z) = ez − 1− z and

ΨΥ(v)(t, x) = cβ,d

∫
Rd

Υ
(
v(t, y)− v(t, x)

)
|x − y |d+β

dy .

Use z ≤ Υ(−z) + 1, z ∈ R, for the A1-term, and Υ(z) ≥ 1
2z

2,
z ≥ 0, for the A2-term. General case: scaling argument.
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The Γ-calculus of Bakry and Émery (1985)
Let L be a Markov generator. For u, v ∈ D(L) suff. smooth,

Γ(u, v) =
1
2
(
L(uv)− uLv − vLu

)
, (carré du champ operator)

Γ2(u, v) =
1
2
(
LΓ(u, v)− Γ(u,Lv)− Γ(v ,Lu)

)
. (Gamma deux)

Set Γ(v) = Γ(v , v) and Γ2(v) = Γ2(v , v).

L is said to satisfy the
curvature-dimension condition CD(ρ, d), for ρ ∈ R and d ∈ (0,∞],
if for every function v from a sufficiently rich subspace of D(L),

Γ2(v) ≥ 1
d

(Lv)2 + ρ Γ(v), µ− a.e., (18)

where µ is a fixed invariant and reversible measure for eLt .
See Bakry, Gentil, Ledoux: Analysis and Geometry of Markov
diffusion operators, Springer 2014.
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