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Abstract

In this paper we discuss the biological plausibility of the object recognition system described in detail
in (Krüger, Peters and v.d. Malsburg, 1996). We claim that this system realizes the following princi-
ples of cortical processing: hierarchical processing, sparse coding, and ordered arrangement of features.
Furthermore, our feature selection is motivated by response properties of neurons in striate cortex and
by Biederman’s theory of object representation on higher stages of visual processing (Biederman, 1987).
Inspired by the current discussion about aspects of cortical processing, we hope to derive more efficient
algorithms. By discussing the functional meaning of these aspects in our object recognition system, we
hope to attain a deeper understanding of their meaning for brain processing.

1 Introduction

It is an assumption of the neural computation community that the brain as the most successful pattern
recognition system is a useful model for deriving efficient algorithms on computers. But how can a useful
interaction between brain research and artificial object recognition be realized? We see two questionable ways
of interaction. On the one hand, a very detailed modelling of biological networks may lead to a disregard of
the task solved in the brain area being modelled. On the other hand, the neural network community may
loose credibility by a very rough simplification of functional entities of brain processing. This may result in a
questionable naming of simple functional entities as neurons or layers to pretend biological plausibility. In our
view, it is important to understand the brain as a tool solving a certain task and therefore it is important to
understand the functional meaning of principles of cortical processing such as, hierarchical processing, sparse
coding, and ordered arrangement of features. Some researchers (e.g., (Atick, 1992; Barlow, 1961; Földiák,
1990; Olshausen and Field, in press; Palm, 1980) have already made important steps in this direction. They
have given an interpretation of some of the above–mentioned principles in terms of information theory. Others
(e.g., (Hummel and Biederman, 1992; Lades et al., 1992)) have tried to initiate an interaction between brain
research and artificial object recognition by building efficient and biologically motivated object recognition
systems. Following these two lines of research, we suggest to look at a functional level of biological processing
and to utilize abstract principles of cortical processing in an artificial object recognition system.

In this paper we discuss the biological plausibility of the object recognition system described in detail in
(Krüger, Peters and v.d. Malsburg, 1996). We claim that this system realizes the above–mentioned principles.
Although the system’s performance is not comparable to the power of the human visual system, it is already
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Figure 1: Relationship between Gabor wavelets and banana wavelets. Left: four examples of Gabor wavelets
which differ in frequency and direction only. Right: 16 examples of banana wavelets which are related to
the Gabor wavelets on the left. Banana wavelets are described by two additional parameters (curvature and
elongation).

able to deal with difficult vision problems. The object recognition system is based on banana wavelets, which
are generalized Gabor wavelets. In addition to the parameters frequency and orientation, banana wavelets
have the attributes curvature and elongation (figure 1). The space of banana wavelet responses is much larger
compared to the space of Gabor wavelet responses, and an object can be represented as a configuration of a
few of these features (figure 2v); therefore it can be coded sparsely. The space of banana wavelet responses
can be understood as a metric space, its metric representing the similarity of features. This metric is utilized
for the learning of a representation of 2D–views of objects. The banana wavelet responses can be derived
from Gabor wavelet responses by hierarchical processing to gain speed and reduce memory requirements. A
set of examples of a certain view of an object class (figure 2i–iv) is used to learn a sparse representation of
the object class, which contains only the important features. This sparse representation allows for a quick
and efficient localization of objects.

By discussing the functional meaning of sparse coding, hierarchical processing, and order in the arrange-
ments of features, as well as the implication of our feature selection for our artificial object recognition system,
we hope to attain a deeper understanding of their meaning for brain processing. Following the discussion
of principles of cortical processing, we hope to be inspired to derive more efficient algorithms. In section 2
we give a short description of our system. In section 3 we discuss the above–mentioned principles of visual
processing in their biological context, as well as their algorithmic realization in our system. We compare
both aspects, and we claim that the utilization of the above–mentioned principles supports the strength of
our system. We close with a conclusion and an outlook in section 4.
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Figure 2: i–iv) Different examples of cans and faces used for learning. v) The learned representations.

2 Object Recognition with Banana Wavelets

In this section we give a description of the basic entities of our system (for details see (Krüger, Peters and
v.d. Malsburg, 1996). We restrict ourselves to those aspects relevant to the discussion in section 3. In
our approach we limit ourselves to form processing and we ignore color, movement, texture, and binocular
information. In the literature (see e.g., (Treisman, 1986)) a largely independent processing of these different
clues is assumed with the shape clue as the most powerful one for higher level classification tasks. The object
recognition system is influenced by an older system developed in the von der Malsburg group (Lades et al.,
1992; Wiskott et al., 1997) and by Biederman’s criticism (Biederman and Kalocsai, in press) of this system.

The system introduced here differs from the older system in two main aspects: Firstly we introduce
curvature as a new feature. Secondly, and even more important, we introduce a sparse object representation:
we describe an object by an ordered arrangemant of a few binary features which can be interpreted as local
line segments. From this reduced representation the original image is not reconstructable but the object
is represented in its essential entities. In the older system, which is based on Gabor wavelets, an object is
described by a much larger amount of data representing the object as sets of local Gabor wavelet responses,
called “jets”, from which the original image is almost completely recoverable.

In (Biederman and Kalocsai, in press) it is shown that there is a high correlation of the older system’s
performance and human performance for face recognition but only low correlation for object recognition
tasks. As one of the main weaknesses Biederman and Kalocsai point to Gestalt principles not utilized by the
older system but by humans. We think the object recognition system described here represents an important
step towards an integration of higher perceptual grouping mechanisms.

2.1 The Banana Space

Banana Wavelets: A banana wavelet B~b is a complex–valued function, parameterized by a vector ~b of
four variables ~b = (f, α, c, s) expressing the attributes frequency (f), orientation (α), curvature (c), and
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Figure 3: A banana wavelet (real part) is the product of a curved Gaussian G
~b(x, y) and a curved wave

function F
~b(x, y) (only the real part of the kernel is shown).

elongation (s). It can be understood as a product of a curved and rotated complex wave function F
~b and a

stretched two–dimensional Gaussian G
~b bent and rotated according to F~b (figure 3):
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Our basic feature is the magnitude of the filter response of a banana wavelet extracted by a convolution
with an image:

AI
(
~x0,~b

)
=
∣∣∣∣∫ B

~b (~x0 − ~x) I (~x) d~x
∣∣∣∣ .

A banana wavelet B~b causes a strong response at pixel position ~x0 when the local structure of the image at
that pixel position is similar to B~b.
The Banana Space: The six–dimensional space of vectors ~c = (~x,~b) is called the banana (coordinate) space
with ~c representing the banana wavelet B~b(~x) with its center at pixel position ~x in an image. In (Krüger,
Peters and v.d. Malsburg, 1996) we define a metric d(~c1,~c2), two coordinates ~c1,~c2 are expected to have a
small distance d(~c1,~c2) when their corresponding kernels are similar, i.e., they represent similar features.
Approximation of Banana Wavelets by Gabor Wavelets: The banana response space contains a huge
amount of features, their generation requiring large computation and memory capacities. In (Krüger, Peters
and v.d. Malsburg, 1996) we define an algorithm to derive banana wavelets from Gabor wavelets which makes
it possible to derive banana wavelet responses from Gabor wavelet responses. This approximation can be
performed for all banana wavelet responses (we call it the complete mode) before matching (see below) starts.
Alternatively, the Gabor wavelet responses can be calculated in a virtual mode, which means that only the
much faster Gabor transformation is performed before matching, and only those banana wavelet responses
are evaluated during matching which are actually required. Because of the sparseness of our representations
of objects only a small subset of the banana space is used for matching and can therefore be evaluated very
quickly. In the complete mode the hierarchical processing leads to a speed–up of a factor 5 compared to the
computation of the banana wavelet responses directly from the image. In the virtual mode we can reduce
memory requirements by a factor 20. Figure 4 gives the idea of the approximation algorithm the hierarchical
processing is based on.
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Figure 4: The banana wavelet on the left is approximated by the weighted sum of Gabor wavelets on the
right.

2.2 Learning and Matching

Extracting Significant Features for one example: Our aim is to extract the local structure in an image I
in terms of curved lines expressed by banana wavelets. We define a significant feature for one example by
two qualities. Firstly, it has to cause a strong response (C1); secondly, it has to represent a local maximum
in the banana space (C2). Figure 5bi–iv shows the significant features for a set of cans (each banana wavelet
is described by a curve with same orientation, curvature, and elongation).

C1 represents the requirement that a certain feature or similar feature is present, whereas C2 allows
a more specific characterization of this feature. Banana responses vary smoothly in the coordinate space.
Therefore the six–dimensional function AI(~x,~b) is expected to have a properly defined set of local maxima.
We can formalize C1 and C2 as follows: A banana response AI( ~x0,~b0) represents a significant feature for one
example if

C1 AI(~x0,~b0) > T , for a certain threshold T and

C2 AI(~x0,~b0) ≥ AI(~xi,~bi) for all neighbours of (~x0,~b0).

Clustering: After extracting the significant features for different examples we apply an algorithm to extract
important local features for a class of objects. Here the task is the selection of the relevant features for the
object class from the noisy features extracted from our training examples. We assume the correspondence
problem to be solved, i.e., we assume the position of certain landmarks (such as the tip of the nose or the
middle of the right edge of a can) of an object to be known in images of different examples of these objects.
In our representation each landmark is represented by a node of a graph. In some of our simulations we
determined corresponding landmarks manually, for the rest we replaced this manual intervention by motor
controlled feedback (see (Krüger, Peters and v.d. Malsburg, 1996)). In a nutshell the learning algorithm
works as follows: For each landmark we divide the significant features of all training examples into clusters.
Features which are close according to our metric d are collected in the same cluster. A significant feature for
an object class is defined as a representative of a large cluster. That means this or a similar feature (according
to our metric d) occurs often in our training set. Small clusters are ignored by the learning algorithm. We end
up with a graph whose nodes are labeled with a set of banana wavelets representing the learned significant
features (see figure 5bv).
Matching: We use elastic graph matching (Lades et al., 1992) for the location and classification of objects.
To apply our learned representation we define a similarity function between a graph labeled with the learned
banana wavelets and a certain position in the image. A graph similarity simply averages local similarities. The
local similarity expresses the system’s confidence whether a pixel in the image represents a certain landmark
and is defined as follows (for details see (Krüger, Peters and v.d. Malsburg, 1996)): A local normalization
function transforms the banana wavelet response to a value in the interval [0, 1] representing the system’s
confidence of the presence or absence of a local line segment. For each learned feature and pixel position in
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b) 

i) ii) iii) iv) v) 
Figure 5: a: Pictures used for training. bi)–iv): Significant features for different cans describing, besides
relevant information, also accidental features such as background, shadow or surface textures. c: the learned
representation.

Figure 6: Face finding with banana wavelets. The mismatch (right) is caused by the person’s unusual arm
position.

the image we simply check whether the corresponding normalized banana response is high or low, i.e., the
corresponding feature is present or absent. During matching the graph is adapted in position and scale by
optimizing the graph similarity. The graph with the highest similarity determines size and position of the
object within the image.

For the problem of face finding in complex scenes with large size variation a significant improvement in
terms of performance and speed compared to the older system (Lades et al., 1992; Wiskott et al., 1997)
(which is based on Gabor wavelets) could be achieved. We also successfully performed matching with cans
and other objects, as well as various discrimination tasks.

To improve the use of curvature in our approach we introduce a non–linear modification of the banana
wavelet response. Using similar criteria than C1 and C2 we reinforce the banana wavelet responses corre-
sponding to the detected local curvature by local feedback of banana wavelets with close distance d. For the
problem of face finding we could achieve a further improvement of performance by this non–linear modification
of the banana wavelet responses.
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3 Analogies to Visual Processing and Their Functional Meaning

In this section we discuss four analogies of our object recognition system to the visual system of primates
concerned with

• feature selection,

• feature coding and hierarchical processing,

• sparse coding, and

• ordered arrangement of features.

For each item we first give a short overview of the current knowledge about its occurrence and functional
meaning in brain processing as discussed in the literature. Then we describe the realization of the four
aspects in our approach. At the end of each subsection, we discuss the relationship of the functional meaning
of the aspects in the human visual system and the object recognition system. We are aware of the problem to
discuss four fundamental aspects of visual processing within such a limited space. However, such a compressed
description may enable the detection and characterization of important relationships between the different
aspects.

3.1 Feature selection

According to (Hubel and Wiesel, 1979) in the area V1 of primates there is a huge amount of local feature
detectors sensitive to orientated edges, movement, or color. A data extension seems to arise from the retina
to V1: for every position of the retina a large amount of features are extracted. In more recent studies also
neurons maximally sensitive to more complex stimuli, such as cross–like figures (Shevelev et al., 1995) or
curved lines (Dobbins and Zucker, 1987) were found in striate cortex. A contributory factor for curvature
as a feature computed preattentively (i.e., processed at very early stages of visual processing) arises from
psychophysical experiments in (Treisman, 1986) who showed that a curved line “pops out” in a set of straight
lines. A question that is still open is the role of feedback in early stages of visual processing. It has been
argued (Oram and Perrett, 1994) that the short recognition time humans need for unknown objects (in the
range of 100ms) makes computationally costly feedback loops unlikely. Others criticize this opinion, pointing
to the huge amount of feedback connections between adjacent areas or to context sensitivity of cell responses
(see, e.g., (Zipser, Lamme and Schiller, 1976; Kapadia et al., 1995)).

For a representation of objects on a higher level of cortical processing in (Biederman, 1987), psychophysical
evidence is given for an internal object representation based on volumetric primitives called “geons” (see figure
7a–c). A selection of geons combined by basic relations such as “on top” or “left of” and the relative sizes of
geons are used to specify objects.

In our object recognition system banana wavelets, i.e., “curved local lines detectors”, are used as basic
features which are given a priori. The restriction to banana wavelets gives us a significant reduction of the
search space. Instead of allowing, e.g., all linear filters as possible features, we restrict ourselves to a small
subset. We propose that a good feature has to have a certain complexity but an extreme increase of complexity
resulting in a specialization to a very narrow class of objects has to be avoided. Banana wavelets fit this
characterization well. They represent more complex features than Gabor wavelets but they are not restricted
to a certain class of objects. Considering the risk of a wrong feature selection it is necessary to give good
reasons for our decision. Firstly, the use of curvature improves matching because it is an important feature
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a) b) c) d) 

Figure 7: a–c) A subset of geons. d) A sparse representation of the geon in c) by banana wavelets.

for discrimination. Secondly, and even more important, our application of banana wavelets mediates between
a representation of objects in a grey level image and a more abstract, binary, and sparse representation.
The representation of the gray level image by the full set of continuous banana wavelet responses allows for
an almost complete reconstruction of the image, even a much smaller set of filters would be sufficient for
this purpose. A representation of an object by binarized banana wavelets, e.g., by the corresponding curves,
allows for a sparse representation of an object by its essential features. We think banana wavelets are a good
feature choice because they enable an efficient representation of almost any object, because almost any object
can be composed of localized curved lines. Aiming at a more abstract representation of objects embedded in
Biederman’s geon theory we argue that with an ordered set of curved lines we are able to represent the full
set of geons in a sparse and efficient way (see figure 7d). Therefore we suggest that banana wavelets represent
a suitable intermediate stage between lower and higher level representation of objects and we aim to define
a framework in which geon–like constellations of line segments can be learned by visual experience.

Our feature selection is motivated by the functional advantages described above and the implicit necessity
to decrease the dimension of the learning task, i.e., to face the bias/variance dilemma (see, e.g., (Geman,
Bienenstock and Doursat, 1995)): If the starting configuration of the system is very general, it can learn
from and specialize to a wide variety of domains, but it will in general have to pay for this advantage by
having many internal degrees of freedom. This is a serious problem since the number of examples needed to
train a system scales very poorly with the system’s dimension, quickly leading to totally unrealistic learning
time — the “variance” problem. If the initial system has few degrees of freedom, it may be able to learn
efficiently but there is great danger that the structural domain spanned by those degrees of freedom does not
cover the given domain of application at all — the “bias” problem. Like any other learning system the brain
has to deal with the bias/variance dilemma. As a consequence, it has to have a certain amount of a priori
structure adapted to its specific input (the idea to overcome the bias/variance dilemma by appropriate a
priori knowlege is elaborated in more detail in (Krüger, 1997; Krüger, Pötzsch and von der Malsburg, 1997)).
Being aware of the risk of a wrong feature selection leading to a system unable to detect important aspects
of the input data — a wrong bias — and also being aware of the necessity to make such feature selection
in order to restrict the dimension of the learning task — to decrease variance — we have chosen banana
wavelets as a basic feature. We have justified this choice by the functional reasons given in the preceding
paragraph and by the performance of our system.

In our system, feedback in the sense of local interaction of banana wavelet responses is used by the criteria
C1 and C2 for sparsification and non–linear curvature enhancement. We also think that Gestalt principles
can be coded within our approach by a similar kind of interaction. In a recent work (Krüger, 1998) we could
give a mathematical characterization of the Gestalt principles collinearity and parallelism in natural images
within the framework of our object recognition system.

Gabor wavelets as a subset of banana wavelets can be learned from visual data by utilizing the abstract
principles sparse coding and information preservation (Olshausen and Field, 1996). But does this kind of
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learning happen postnatally? At least the experiment in (Wiesel and Hubel, 1974), which has shown that
an ordered arrangement of orientation columns develops in the visual cortex of monkeys with no visual
experience, contradicts this assumption. The fact that Gabor wavelets and not banana wavelets result from
an application of sparseness to natural images may support the objection that the suitability of curvature
as basic feature does not necessarily follow from the statistics of natural images. However, the more recent
results about single cell responses in V1 (see, e.g., (Shevelev et al., 1995)) suggest that a larger set of features
than Gabor Wavelet responses (such as, e.g., X–junctions or curvature) may be computed in V1.

To sum up this subsection, we have given references to biological and psychophysical findings which sup-
port the view that local curved lines are an important feature in early stages of visual processing. Furthermore,
we have justified our feature choice by functional advantages of these features, such as discriminative power
and the ability of an efficient representation of geons, for vision tasks. We have given reasons for the neces-
sity of such a feature choice by pointing to the bias/variance dilemma which has to be faced by any learning
system.

3.2 Feature Coding and Hierarchical Processing

In the visual cortex of primates hierarchical processing of features of increasing complexity and increasing
receptive field size occurs. As a functional reason for processing of this type the advantages of capacity
sharing, minimization of wiring length, and speed–up have been mentioned (see e.g., (Oram and Perrett,
1994)). Different coding schemes for features are discussed in the literature. The concept of “local coding”,
in which one neuron is responsible for one feature (Barlow, 1972) leads to problems: Because for each
possible feature a separate neuron has to be used, a large amount of neurons is required. Another concept
is called “assembly coding” (Braitenberg, 1978; Westheimer, Shimamura and McKee, 1976; Georgopoulus,
1990; Sparks et al., 1990), in which a feature is coded in the activity distribution of a set of neurons. Assembly
coding allows the coding of a larger amount of features for a given set of neurons, but the labeling of the set
of active neurons with a certain feature remains a problem (see, e.g., (Singer, 1995)).

In our object recognition system the main advantage of hierarchical processing is speed–up and reduction
of memory requirements. We utilize hierarchical processing in two modes (see section 2.1): In the “complete
mode” we gain a speed–up but no memory reduction and in the “virtual mode” we additionally gain a
reduction of memory requirements.

In the virtual mode we utilize “local coding” and “assembly coding” for features of different complexity.
In the virtual transformation we may interpret the Gabor transformation as a first description of the data
(in a local coding). However, a response of a banana wavelet is coded in the distribution of Gabor wavelet
responses and is only calculated if requested by the actual task of the system, i.e., if the matched representation
comprises this specific feature. For frequently used low level features (such as Gabor wavelets) the advantage
of fast data access outweighs the disadvantage of increase of memory requirements in the “local coding”
concept. But for less frequently and more complex features (such as banana wavelet responses) the decrease
of memory requirements may outweigh the increase of costs for a dynamical extraction of these features from
lower level features (i.e., the costs of the interpretation of the current activity distribution in the assembly
coding). We do not claim that curvature is processed in the brain by assembly coding. Maybe curvature
is such a frequently used feature that it is more likely to be computed in a local coding. Nevertheless, the
general trade off between the two coding schemes can be exemplified.

To sum up, we have successfully applied hierarchical processing in our object recognition system resulting
in speed–up and reduction of memory requirements. Furthermore, in our algorithm we have demonstrated the
application of coding schemes which have analogies to coding schemes currently discussed in brain research
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and we have described their advantages and disadvantages within our object recognition system.

3.3 Sparse Coding

Sparse coding is discussed as a coding scheme of the first stages of visual processing of vertebrates (Field,
1994; Olshausen and Field, 1996). An important quality of this coding scheme is that “only a few cells respond
to any given input” (Field, 1994). If objects are considered as input this means that a certain feature is only
useful for coding a small subset of objects and is not applicable for most of the other objects. Sparse coding
has the biologically motivated advantage to minimize the wiring length for forming associations. (Palm, 1980;
Baum, Moody and Wilczek, 1988) point to the increase of associative memory capacity provided by a sparse
code. In (Olshausen and Field, in press) it is argued that the retinal projection of the three–dimensional
world has a sparse structure and therefore a sparse code meets the principle of redundancy reduction (Barlow,
1961) by reducing higher–order statistical correlations of the input.

In our object recognition system a certain view of an object is represented by a small number of banana
filters. The total amount of filters in the standard setting (2 levels of frequency, 12 orientations, 5 curva-
tures, and 3 elongations) is 360 filters per pixel (which can be reduced without loss of information in the
banana domain because especially the low frequency filters are oversampled). Sparse coding is achieved by
determining local maxima in the space of all filter responses (criterion C2), which leads to only about 60
responses remaining in an image of size 128×128, which means only 0.004 responses per pixel are needed (i.e.,
about 10−6 of all available features are required). Only these 60 responses are needed for the representation
of an object in a 2D–view which means 0 up to 3 responses are needed for each node of the graph. In a
setting without different curvatures and elongations, that is if binarized Gabor filters are applied, the total
number of responses is of same order compared to the above–mentioned standard setting.

The aim of our system is to solve a certain task, namely the recognition of a class of objects, such as
human heads or cans. The representation of an object class by sparse banana responses is validated by the
success with which the system solves this task, as measured by the recognition rate. The principles of our
approach differ from those in Olshausen’s and Field’s approach (Olshausen and Field, 1996), who demand
information preservation in addition to sparseness to create Gabor-like filters1. We doubt that information
preservation is a suitable criterion for higher visual processing. The aim of human visual processing is to
extract the information which is needed to survive and react in the environment by solving tasks such as
interpreting a scene and recognizing an object or a facial expression, that means the aim is not reconstruction
but interpretation. We believe that task driven principles should substitute the principle of information
preservation for learning features of higher complexity. Our system creates abstract representations (see
figure 2v) of a class of objects by reducing the information of a local area to line-like features from which
graylevel images cannot be reconstructed. Since these representations can be recognized by humans and since
linedrawings in general can be recognized as fast as graylevel images (Biederman and Ju, 1988) this kind of
abstract representation seems to contain the information needed to solve the recognition task.

In addition to the advantages of sparse coding already mentioned, we now discuss the following advantages:
reduction of memory requirements, speed-up of the matching process, and simplification of determining
relations among the features. A sparse code leads to representations with low memory requirements. In
the former system (Lades et al., 1992; Wiskott et al., 1997) (from which our system is derived) an object
is represented by a graph whose nodes are labeled by jets, where a jet contains the responses of a set
of Gabor filters (all centered at the same pixel position). This kind of representation stores all the filter

1Since the filters are not learned but only valued in our system, only the principles of both approaches and not the algorithms
themselves can be compared.
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responses independent of whether they are needed to describe the considered object or not. Our representation
only contains those responses which have high values before sparsification and thus represent the salient
information of a 2D–view of an object in a specific scene. For the representation of one view of a specific
object the required memory is reduced by a factor 40 compared to the former system and for the representation
of classes of objects the reduction is even in the order of factor 1500.2

A functional advantage of a sparse representation is a fast matching process, since the time needed to
compare a representation with the features at a certain position in an image goes nearly linearly with the
number of features in the representation. This functional advantage is achieved on a sequential computer.
Requiring only a small amount of processing capacities may be advantageous even for parallel systems, such
as the brain, if many potential objects are tested in parallel.

Among others, (Biederman, 1987) suggests that it is not a single feature which is important in the
representation of an object but the relations among features. At the present stage of our approach only
topographic relations expressed in the graph structure are represented. Banana wavelets represent features
with certain complexity which describe suitable abstract properties (e.g., orientation and curvature). In
future work we will aim to utilize these abstract properties to define Gestalt relations between banana
wavelets, such as parallelism, symmetry, and connectivity. These abstract properties of our features enable
the formalization of these relations. Furthermore, sparse coding leads to a decrease in the number of possible
relations for an object description (only the relations between the few “active” features have to be taken into
account). Therefore, the reduction of the space of relations and the describable abstract properties of these
features make the space of those relations manageable. In the reduction of the space of relations we see an
additional advantage of sparse coding which, to our knowledge, has not been mentioned in the literature.

In summary, sparse coding allows for representations with low memory requirements, which lead to a
speed-up in the matching process. Furthermore, sparse coding potentially simplifies the determination of
relations among features.

3.4 Ordered Arrangement of Features

The order in the arrangement of features is a major principle applied throughout the brain, both in the early
stages of signal processing (Hubel and Wiesel, 1979) and in the higher stages (Tanaka, 1993). It is realized
by computational maps (Knudsen, Lac and Esterly, 1987). These maps are organized in a columnar fashion.
According to (Oram and Perrett, 1994; Tanaka, 1993) the columnar organization enables the assignment of
a feature to a more general feature class (generalization) and also to discriminate between fine differences
within a feature class (specialization).

In our system, the ordered arrangement of the banana features is achieved by the metric described in
section 2.1. This metric defines a similarity between two features in the six-dimensional banana space. The
metric organization of the banana responses is essential for learning in our object recognition system, because
it allows to cluster similar features and thus to determine representatives for such clusters (section 2.2). By
this kind of generalization we are able to reduce redundancies in our representation. A columnar organization
is not yet defined in our system and thus general and special feature responses as described above are not

2In the former system (Lades et al., 1992; Wiskott et al., 1997) a typical graph with 30 nodes and 40 complex-valued entries
in every jet contains 2400 real values. If a representation of a class of objects is considered, even about 105 real values are needed
because a bunch of about 50 object graphs is taken to represent a class of, e.g., human heads in frontal pose. For single objects
the 2400 real values have to be compared with the about 60 integer values needed for our sparse representation (every of the
about 60 binary features has to be stored by one index specifying the six labels frequency, orientation, curvature, elongation, x-
and y-position). For classes of objects the 105 real values have also to be compared with about 60 integer values because our
sparse representations of classes of objects require an amount of binary features which is similar to the amout for single objects.
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distinguished. However, if columns may be defined as small local areas in the banana space, the criterion C2
utilized for the extraction of ‘significant features for one example’ may represent an intercolumnar competition
giving a more specific coding of the unspecific response of the whole small region.

In summary, in our system an ordered arrangement of features is achieved by a metric in banana space.
This metric enables a competition of neighboring features resulting in sparsified responses. Furthermore, the
metric is essential to learn representations of object classes.

4 Conclusion and Outlook

We have discussed the biological plausibility of the artificial object recognition system described in (Krüger,
Peters and v.d. Malsburg, 1996). We were not interested in the detailed modelling of certain brain areas,
we did not even utilize “neurons” or “hebbian plasticity” in our algorithm. Instead, we tried to apply
principles of biological processing, i.e., we tried a modelling of the brain on a more functional level. As our
system is already able to solve difficult vision tasks with high performance (not comparable to the human
visual system but comparable to other artificial object recognition systems) we can evaluate the quality of
our system by the performance for a certain task. This enables us to justify modifications of our system
not by biological plausibility but by efficiency. As the human visual system is the best visual pattern
recognition system we believe that biological plausibility and efficiency are not contradictory qualities but
can be increased simultaneously. However, for this kind of interaction it is necessary to look at the brain as a
system solving a certain task, i.e., as an algorithm. We think that the insight in abstract principles of cortical
processing as utilized in our artificial object recognition system helps to create efficient artificial systems,
and the understanding of the functional meaning of these principles in the artificial system can support the
understanding of their role in cortical processing.

Following that line of thinking we have applied such principles within an object recognition system and
have decribed their functional meaning: the bias/variance dilemma and the ability of a representation of
objects on a higher level leads to a certain feature choice; local feedback is used for the processing of curvature
and for sparsification; with hierarchical processing and a sparse representation we could reduce time for
matching and memory requirements; the value of a sparse coding for the detection and utilization of Gestalt
principles was discussed; the trade off between memory requirements and speed of processing for coding
schemes such as “local coding” and “assembly coding” could be exemplified; and we have utilized an ordered
arrangement of features for learning and redundancy reduction.

We claim that in the current state the object recognition system gives a reasonable model of the form
path of lower levels of the visual system. We have demonstrated an efficient application of a biologically
plausible feature selection utilizing sparse coding, hierarchical processing, and ordered arrangement of fea-
tures. Concerning higher level processing, i.e., on a higher level than V1, we do not claim that our object
recognition has the same plausibility. Giving just one example of an aspect of higher visual processing not
covered by our system, we point to the Gestalt principles utilized by humans for the interpretation of natural
scenes. However, we assume our system is also a good basis to model higher stages of visual processing,
because it is a plausible approximation of lower stages of visual processing. In section 3 we already discussed
a possible representation of geon–like primitives based on banana wavelets as well as a possible formalization
of Gestalt principles utilizing sparse coding and the abstract properties of our features. Furthermore, the
ability to give a characterization of the Gestalt principles collinearity and parallelism within the framework
of our object recognition system (Krüger, 1998) encourages us to merge biological plausibility and effectivity
in an artificial systems with even better performance than in its current state.
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