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Chapter 1

Introduction

One century ago, the french painter Claude Monet painted his great series “Rouen Cathe-
dral”. It consists of more than thirty paintings of the Cathedral at Rouen in the morning,
in full sunlight, during the night, at dawn, in the rain, in fog, from the front, and from
side viewpoints, and with different details like the portal or the steeple. Although these
paintings vary in color, illumination, scale, and viewpoint, and although in some paintings
parts of the cathedral are occluded, the beholder is able to recognize the cathedral in each
of them (see figure 1.1).

This example illustrates the fundamental mystery of visual perception. Each object
in our environment can cause considerably different patterns of excitation in our retinae
depending on the illumination or the observed viewpoint of the object. Despite this we
are able to perceive that the changing signals are produced by the same object. It is
a function of our brain to provide this constant recognition from such inconstant input
signals by establishing an internal representation of the object. The nature of such an
internal representation and the way how it can be acquired is the concern of scientists of
such different disciplines as biology, psychology, physics, mathematics, engineering, and
computer science. Since until today no artificial vision system exists that can compete
with even simple living systems this is still a highly relevant topic.

This thesis concentrates on a partial problem of object perception, the acquisition and
application of a viewpoint-invariant object representation. That is a representation which
allows the recognition of a three-dimensional object independently from the viewpoint,
which is displayed to the observer. There is a present argument about how the brain
is able to learn a three-dimensional notion of the environment although the source of
information consists of the views projected to the retina, which are only two-dimensional.
Two major theories about the nature of object representations are being discussed. On the
one hand, some researchers believe that a perceiving system has to establish an internal,
three-dimensional model of the object. On the other hand, many scientists are confident
that

An object representation in the form of a collection of a few, distin-
guished views which are connected is sufficient to perform perception
functions such as the recognition of the object and the estimation of its
pose.

This thesis provides a contribution to the debate which supports the latter model and the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Paintings from Monet’s Series “Rouen Cathedral”. These paintings show intense

changes in the appearance of the cathedral due to variations in color, illumination, scale and

viewpoint. Thus, each painting generates a different pattern of excitation in the eyes of the

observer. But our brain is able to generalize from these inconsistencies and to provide a reliable

recognition of the cathedral.

cursive phrase can be regarded as the main thesis of this work. In detail, the following
questions are dealt with.

Q1 Can human object perception be appropriately described by a two-dimensional, view-
based approach, which copes without an explicit three-dimensional model of the
object?

Q2 If the experience of single object views is sufficient to recognize an object from
any other viewpoint, are there distinguished views which may be better suitable
for perception than others? Maybe because they are more robust against slight
variations in their pose? Are there differences at all between views with respect to
their pose robustness?

Q3 If the view-based approach proves to be reasonable, how many views are sufficient
to represent a whole object? How are these views distributed on the viewing sphere
of the object? How large is the area of generalization within which an inference from
a sample view to an unfamiliar view is possible?

Q4 If a collection of a huge number of unconnected object views does not seem to be
an appropriate form of object representation, what are the strategies to combine
familiar views?

Chapter 2 (Theories of Three-Dimensional Object Perception) gives an overview of the
latest developments in the engineering and computer science disciplines as well as related
work in behavioral and physiological research concerning central aspects of this thesis. In
the summary of chapter 2 the questions Q1 to Q4 are gone through and answers from the
related disciplines are summarized. Related work concerning minor aspects of this thesis
is covered in the related chapters.

In a nutshell, the aim of this work is the development of an artificial, perceiving system
from which answers to these questions can be proposed. The system should be able
to independently learn view-based (first condition) and sparse (second condition) object
representations from sample views of real-world objects. Representations of unfamiliar
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Figure 1.2: Non-Valid Objects. The left and middle images display examples of degenerate

objects this thesis does not refer to. On the one hand, the appearance of the sphere is the same

for each viewpoint, which makes an estimation of its pose impossible. On the other hand, the core

of a digital sundial is an example of an object which rapidly changes its appearance depending on

the viewpoint. It projects different light patterns onto a screen depending on the angular position

of the sun, which results in a digital display of the time. For this kind of object it is difficult to

generalize from sample views to unfamiliar views. The digital sundial’s principle of operation is

exemplified in the picture taken from the book “Gödel, Escher, Bach” by Hofstadter [23] shown

on the right.

views should be derived from those of stored views and the system should be capable of
performing perception tasks such as estimating object poses (third condition).

To analyze the influence of the viewpoint of an object on the performance of the
artificial system it is crucial to use objects which are not degenerate with respect to their
appearance depending on the viewpoint. For instance, it would be counterproductive to
use objects with equal appearance from many viewpoints. A homogeneously textured
sphere is one extreme example of this case. Pose estimation, for instance, is not possible
for such objects. On the other hand, an object the views of which change rapidly with
the viewing angle would be as intractable. An extreme example of this case is a digital
sundial. For these objects a generalization from sample views to unfamiliar views would be
difficult (see figure 1.2). Thus, this thesis applies to non-degenerate, but in other respects
arbitrary, real-world objects as displayed in figure 1.3.

Chapter 3 (Preprocessing and Fundamental Techniques) describes the acquisition of
a densely sampled set of views of such objects and the preprocessing of these images. They
provide the data basis for the experiments. Here also some fundamental techniques and
concepts are introduced which are needed in later chapters, such as the Gabor wavelet
transform, graph matching, and the tracking of object features.

The idea behind representing a three-dimensional object by only a few two-dimensional
views is that the chosen views are representative for a preferably large area of surrounding,
non-chosen viewpoints. That raises the question of how these areas of pose robustness can
be determined. This and other questions from Q2 are treated in chapter 4 (Robustness
of Views Against Pose Variation), in which two methods to calculate robustness areas of
object views as well as correspondences between familiar views are compared. These are
essential for the later calculation of unfamiliar views.

Having found a method to determine a surrounding area for each view of an object,
where only slight changes in the object’s appearance occur, it is easy to derive a sparse,
view-based representation by a selection of views the areas of which cover the whole
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Figure 1.3: Valid Objects. These are examples of images of real-world objects, i.e. images

taken form real objects rather than CAD-generated virtual, ones. This thesis refers to this kind of

objetcs. In fact, these are the objects I have used for my experiments.

viewing sphere. The details of this procedure are described in chapter 5 (Sparse Object
Represention), which contributes to the questions Q3.

Question Q4 is covered by chapters 6 and 7. In chapter 6 (Morphed Views) unfamiliar
views of an object are generated from the sparse representation by a linear combination of
object point positions of stored views and a subsequent morphing of image intensities to
the calculated, new point positions. As this thesis does not lie in the domain of computer
graphics, view morphing only serves as an auxiliary means and technique of visualization
to prove the applicability of linear combinations of point positions and to evaluate the
sparseness of the object representation.

For the purpose of recognizing an object from an unfamiliar viewpoint the combination
of object point positions of familiar views is not sufficient. In addition to this, the features
which describe the local properties of the object point have to be combined as well. This
is done by an interpolation method specified in chapter 7 (Virtual Views).

The ability to calculate the representation of an unfamiliar view (by a linear combi-
nation of object point positions and an interpolation of object point features) provides
the possibility to estimate the pose of the object, which is displayed from an arbitrary
viewpoint, even if the presented test view is degraded by the addition of noise. This pro-
cedure is described in chapter 8 (Pose and Sequence Estimation). The results yielded
by the pose estimation also serve to evaluate the quality of the object representation and
combination of views.

Finally, in chapter 9 (Summary and Conclusions) I summarize my results and go
again through the questions Q1 to Q4, this time proposing answers which can be derived
from my experiments.



Chapter 2

Theories of Three-Dimensional

Object Perception

In this chapter current theories of the visual perception of three-dimensional form are
introduced (section 2.1). Their plausibility and limitations are discussed with respect to
results from behavioral and physiological research which are reviewed in section 2.2.

2.1 Theories

Most of the theories introduced in this section were derived from computer simulations,
artificial systems, or technical applications which represent work related to this thesis.
The process of acquiring object representations is addressed as well as object recognition
and pose estimation. The differences between volume- and view-based representations1

are explained and the concepts of canonical views, aspect graphs, interpolation, and linear
combination of views are introduced.

2.1.1 Volume-Based Representations

Over a long period of time one assumed in the field of cognitive sciences that an explicit
three-dimensional model is necessary to recognize an object. The authors argued that
most of the objects in the visual world can be divided into one or more volumetric parts,
thus it should be possible to represent them by these constituent parts and their spatial
relations. Representations based on this principle are called volume-based or model-based.
For example, Nevatia and Binford [42, 43] and Marr and Nishihara [35] were one of the
first to propose recognition by reconstruction. According to their model the visual input
is totally reconstructed and matched to a three-dimensional representation in memory.

At an earlier period of time Shepard and Metzler [67] already proposed their theory
of mental rotation. They designed a task in which subjects were shown two novel visual
stimuli (random block shapes which were rotated in depth). Their subjects were asked
to determine whether the stimuli had the same shape or different shapes. Shepard and

1The terms volume-based and view-based representations are mostly used synonymously to the ex-
pressions object-centered and viewer-centered representations, as well as synonymously to 3D- and 2D-

representations, respectively. A detailed description of these terms can be found in Peters [51].

5



6 CHAPTER 2. THEORIES OF THREE-DIMENSIONAL OBJECT PERCEPTION

Metzler argued that subjects, to make their judgment, mentally rotated the shapes in
their head until the two stimuli were oriented the same way. Volume-based models mostly
explain the generalization from familiar to unfamiliar views by recognition by alignment of
three-dimensional models, which is strongly connected to the notion of mental rotation.
It was proposed by Ullman [73]. During recognition by alignment each stored model
undergoes an aligning transformation after which it is compared to the input image. A
visual system, which utilizes aligned three-dimensional models, should recognize perfectly,
as long as all features used for the transformation are visible.

From a technical point of view, the rotation of a three-dimensional model in a computer
(followed by a matching routine) would be a very efficient method for object recognition.
However, this requires the availablitiy of a model of the object. It turned out that the
acquisition of such a three-dimensional model is either a difficult task which often requires
interaction from a user (as, for example, described by Francois and Medioni [19]) or
utilizes techniques which have nothing in common with current neuroscience theories.
For example, Nevatia and Binford [43] used a laser ranging technique to acquire three-
dimensional positions of points on the visible surface of an object.

As for this work biological plausibility is crucial volume-based models of three-dimen-
sional object perception are of minor importance for this thesis.

2.1.2 View-Based Representations

Besides volume-based representations, which seem to be very economical but require the
ability of the visual system to transform across views, many computational models have
been proposed in which two-dimensional views are combined into the equivalent of a three-
dimensional object representation.

The simplest of these view-based descriptions of an object is a densely sampled col-
lection of views which are treated independently. The addition of new views would not
increase the complexity of the description, but only increase the size of the search space.
Even for such a simple view-based representation the visual system would need the ability
to transform views to different viewing angles inside narrow ranges, otherwise an infinite
number of views would have to be stored. Simple representations in the form of a collection
of independent views are unlikely to be realized in the human brain, because otherwise it
would be difficult to explain humans’ ability to recognize novel views of familiar objects.

More plausible seems to be a representation of an object in the form of a (smaller)
collection of relevant views only and the spatial relations among them. The relations
would preserve the spatial information, which is lost in simpler view-based approaches.
Recognition of intermediate views with such a representation could be achieved, e.g., by
an interpolation or a linear combination of stored views (see subsection 2.1.4).

A description of three-dimensional objects by aspect graphs, proposed by Koenderink
and van Doorn [27, 28], is one example of such an advanced view-based representation.
The vertices of an aspect graph are constituted by views, which can be interpreted as
special points on a transparent viewing sphere with the object in its center. These stored
views represent distinct aspects, for which an “observer may execute any small movement
without affecting the aspect”. Relations between aspects are expressed by events. Events
occur, whenever changes in the viewpoint lead to qualitative changes in the appearance
of the object. Here “the aspect changes suddenly if small movements are made” (see
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Figure 2.1: Aspect Graph. This illustration of an aspect graph of a cube is taken from Khoh

and Kovesi [26]. The sides of the cube are tagged with letters for “left”, “right”, “top”, and so on.

Each vertex of the graph represents a single aspect of the cube. The graph edges represent the

events, which mark the possible transitions between aspects.

figure 2.1).

Aspect graphs have been applied, e.g., by Seibert and Waxman. In [62] they describe
the learning of representations for objects from arbitrary sequences of the rotating object.
Based on edge and corner detection, they cluster the views into different aspects. Each
object is then represented by a “transition matrix”, which contains the probability for the
transition from one aspect to another. Utilizing these transition matrices their system
is able to recognize objects, but pose estimation or the generation of intermediate (non-
experienced) views is not possible.

Another view-based approach, which does allow pose estimation, was proposed by
Murase and Nayar [41]. They represent objects by a manifold in eigenspace. An input
image of an object to be recognized is projected onto the eigenspace of the learned objects.
The object is recognized based on the manifold it lies on. The exact position of the
projection on the manifold determines the object’s pose. Manifolds became a very popular
idea in recent years for various kinds of applications which require dimensionality reduction
of large data sets. For instance, Roweis and Saul [60] applied it to arrange words extracted
from encyclopedia articles in a continuous semantic space. Especially for view-based object
recognition the manifold approach seems to be a promising method as, e.g., Tenenbaum
et al. [70] and Seung and Lee [66] suggest. A system which belongs to this category is
proposed by Wieghardt [81], who has shown that an object representation can be derived
from single views. The learned representation preserves the topology of the views and
allows a coherent description of the object’s appearance from unfamiliar view points.

Besides these algebraic methods general purpose learning methods have been applied
to view-based object recognition. Support vector machines, for example, are successful
in recognizing three-dimensional objects from two-dimensional views (Blanz et al. [6],
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Figure 2.2: Canonical Views. This example of a canonical and a non-canonical view of a tricycle

is taken from Bülthoff et al. [10].

Schölkopf [61]). Further view-based approaches, e.g., by Poggio and Edelman [56] and
Ullman and Basri [74], are described in subsection 2.1.4.

2.1.3 Canonical Views

Across the different models for three-dimensional object perception, the notion of a canon-
ical view is a prominent topic. It can be regarded as a view which is easier to recognize
than other views of the same object. A hard definition does not exist, even its properties
are controversial. Palmer et al. [45] describe canonical views as the ones that “humans
find easiest to recognize and regard as most typical”. Often the term characteristic view is
used synonymously (see figure 2.2). Many explanations have been provided as to why some
views are easy to recognize and others are not. Different features have been considered
for this classification. One aspect for defining canonical views might be the constellation
of visible corners and edges. For example, Gray [20] clustered the viewing sphere of line
drawings of geometrically facetted objects into regions of similar views based on corners
and edges. He obtained nine clusters, i.e., nine canonical views, which represent a whole
object.

Open questions concerning canonical views are the number of views necessary for dif-
ferent visual tasks and their statistical distribution on the viewing sphere. Malik and
Whangbo [34], for instance, have demonstrated that an uniform distribution is inappro-
priate. Weinshall and Werman [77] have shown that the likelihood to observe a certain
view of an object correlates with the view’s robustness against pose variation, i.e., how
little the image changes when the viewpoint is slightly changed. The most likely views are
often the “flattest” views of an object.

Although canonical views are more strongly connected with view-based models volume-
based models also have to explain the phenomenon of canonical views. One possibility is
the concept of salient or non-accidental features used, e.g., by Lowe [33] or Biederman [5].
In this scheme some parts of an object are particularly salient and their visibility facilitates
recognition. Accordingly, canonical views are not derived from a general procedure, rather
they highly depend on the specific object.
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2.1.4 Recognition of Unfamiliar Views

Starting from the assumption that canonical views play a dominant role in object recog-
nition the question arises how non-canonical views and views which have not been expe-
rienced before and are not stored in the representation can be recognized.

One widespread approach to the generalization from familiar to unfamiliar views is
the interpolation of unfamiliar views. Novel views can be generalized from stored views
by view approximation as described, e.g., by Poggio and Edelman [56]. According to this
theory, humans and other primates can achieve viewpoint-invariant recognition of objects
by a system that interpolates between a small number of stored sample views. This model
predicts that unfamiliar views lying between stored views are recognized easier than those
which are somewhere else on the viewing sphere. In addition, recognition rates should
deteriorate with an increasing distance of the novel view from a stored view. Seitz and
Dyer [63] have shown that under certain assumptions about visibility image interpolation
is a physically valid mechanism for view interpolation, which means that the interpolation
between two views of an object produces a physically valid intermediate view of it.

Another theory about the recognition of unfamiliar views, which also belongs to
the view-based approaches, is the recognition by a linear combination of views. Ull-
man and Basri [74] showed mathematically that, under orthographic projection, the two-
dimensional coordinates of an object point for a special view can be expressed as a linear
combination of its coordinates in a limited set of other viewpoints, provided that the cor-
respondences between points in all views are known and no self-occlusions occur. The
number of required views depends on the complexity of the object and the allowed three-
dimensional transformations. In contrast to the interpolation model, this model predicts
equally high recognition rates for unfamiliar views lying in the space spanned by the stored
views, independent of the distance beween novel and stored views. Among others, Beymer
and Poggio [4] used a linear combination approach to apply prior knowledge of an object
class (faces) to generate virtual views for face recognition.

2.2 Behavioral And Physiological Evidence

In this section results of studies with humans and monkeys are described which either
support or contradict the theories of three-dimensional object recognition introduced in
the last section.

2.2.1 Evidence for Volume-Based Representations

Behavioral and physiological evidence for a volume-based coding of objects is sparse.
There are nevertheless hints from physiological studies which contradict a purely view-
based approach. In the temporal cortex cells have been detected which exhibit object-
centered coding, i.e., they respond equally to a large number of views of an object. They
were detected in macaque brains, e.g., by Perrett et al. [48] for the coding of heads and
by Booth and Rolls [8] for the coding of small plastic objects. In [48] they found cells
selective to a large number of views of one individual’s head, but unresponsive to all
tested views of a different individual. In [8] neurons are described which were responsive
to all views of an object, providing evidence that these neurons were coding for objects,
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rather than for individual views. However, this is not necessarily an argument for a
volume-based coding of objects. These and other results reported in [48] and [8] as well
as results reported in the following subsections only suggest that three-dimensional object
recognition in the primate brain operates in a hierarchical fashion with increasing levels of
abstraction. Starting with size- and viewpoint-specific representations, to size-invariant,
but viewpoint-specific codings, up to viewpoint-invariant representations.

2.2.2 Evidence for View-Based Representations

There are uncountable bahavioral studies with primates that support the model of a view-
based description of three-dimensional objects by our visual system. For instance, if a
set of unfamiliar object views is presented to humans their response time and error rates
during recognition increase with increasing angular distance between the learned (i.e.,
stored) and the unfamiliar view, as Edelman and Bülthoff [16] point out. (This decrease
in recognition speed for unfamiliar views was already reported by Tarr and Pinker [69] and
quite early by Bartram [1]. For monkeys the ability to generalize from training views was
found by Logothetis et al. [30, 31] to deteriorate with increasing rotation angle.) However,
this angle effect on performance declines if intermediate views are experienced and stored,
as Tarr [68] reports. In addition, Cutzu and Edelman [14] analyzed the response time
and error rate scores and found out that they are not linearly dependent on the shortest
angular distance in three dimensions to the best-recognized view, as predicted by the
mental rotation theory. Rather, the performance was correlated with an “image-plane
feature-by-feature deformation distance” between the test view and the best view. This
leads them to the suggestion that the measurement of image-plane similarity to a few
feature patterns is an appropriate model for human three-dimensional object recognition.

Experiments with monkeys were made by Logothetis et al. [31] which showed that
familiarization with a “limited number” of views of a novel object can provide viewpoint-
independent recognition. Three views of a wire-like object, 120◦ apart, often were sufficient
for recognizing any view resulting from rotations around the same axis. For the entire
viewing sphere about 10 views were sufficient to achieve view-independent performance.
But the same study claims that the number of required views may depend on the object
class. It may reach a minimum for a novel object of a familiar class, e.g., for a new
individual face one view only may be sufficient. The inability of monkeys to recognize
objects rotated by more than approximately 40◦ from a single familiar view is also reported.

A similar result for human object recognition was published earlier by Rock and
DiVita [59]. Subjects performed very poorly in recognizing wire-like objects for view
distances larger than approximately 30◦. They could not even imagine how the objects
would look when rotated further.

In psychophysical studies Kellman [25] found out that adult humans are able to per-
ceive three-dimensional form from static views of objects. He suggests that this ability
leans on extrapolations to the whole form based on simplicity or symmetry considerations,
which may be products of learning. In [80] Wexler et al. report a psychophysical exper-
iment in which subjects were instructed to perform mental rotation, but they switched
spontaneously to landmark-based strategies, which turned out to be more efficient.

Numerous physiological studies also give evidence for the existence of a view-based pro-
cessing of the brain during object recognition. Some of them are listed in subsection 2.2.3
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about canonical views. Logothetis et al. [32], for example, made recordings of single neu-
rons in the inferior temporal cortex (IT) of monkeys, which is known to be concerned with
object recognition. The results of these recordings resemble those obtained by the behav-
ioral studies mentioned above. They found populations of IT neurons which responded
selectively to only some views of a previously unfamiliar object and their response declined
gradually as the object was rotated away from the preferred view.

2.2.3 Evidence for Canonical Views

The controversial properties of canonical views are reflected by two contradictory studies.
On the one hand, in a study by Palmer et al. [45] subjects had to choose canonical views
for several objects. In the views they selected, the object’s principal axis often was 45◦

to the line of sight. On the other hand, Perrett and Harries [46] found out that humans
prefer views with the principal axis of the object either parallel or perpendicular to the
line of sight. These views can be referred to as “side” and “end” views, respectively,
which are often “plan views”, equivalent to those drawn by an architect to represent an
object. (This result is consistent with Weinshall and Werman’s “flattest” views mentioned
in subsection 2.1.3.) The benefit of such views is the absence of perspective distortions in
the third dimension, as they point out.

Nevertheless, there is no doubt that most real objects possess views which are eas-
ier to recognize than others. This was confirmed early by a report of Warrington and
Taylor [76] who observed patients with lesions in the right parietal cortex. These pa-
tients performed worse than control subjects in recognizing objects from “unusual” views,
whereas “usual” views were not affected. This indicates a different processing of canonical
and non-canonical views in the brain.

Many experiments were carried out by Bülthoff et al. [16, 10]. They confirmed that
naming was fastest if a stimulus was in a canonical view. These views were established even
if in the training phase each view of an unfamiliar object appeared with equal frequency.
In later experiments carried out by Blanz et al. [7] participants had to mentally imagine
an object on the one hand and, on the other hand, had to adjust it to the viewpoint from
which they would take the “best” photograph to illustrate a brochure. Both tasks yielded
almost the same views and there was a large degree of consistency across the participants.

Physiological studies also provide evidence for the existence of canonical views. Cells
in the temporal cortex of macaques have been found which respond selectively to faces,
hands, and other classes of biologically significant objects. The majority of these cells
exhibits a view-based response pattern, i.e., some of them respond selectively to face or
profile views of heads, as described by Perrett et al. [50], although at the same time they
generalize across image position, size, orientation in the image plane, color, and lighting
conditions (Hietanen et al. [22]). There are more cells optimally tuned to canonical views
like full face or profile views than to other views (Perrett et al. [48]). The tuning covers
views between 45◦ and 70◦ from the cells’ optimal views until the response is reduced to
half of its maximum. Interestingly, the same views seem to be important physiologically
and behaviorally. Also the relative importance of views is comparable. Face and profile
views appear more important than half-profile views, and all of these front views are more
important than rear views of a head, both in behavioral and physiological studies, as
reported by Perrett et al. [49].
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2.2.4 Evidence for View Interpolation

Bülthoff and Edelman [9] made psychophysical experiments to compare view interpolation,
linear combination of views, and alignment of three-dimensional models for the recognition
of unfamiliar views. Subjects were shown two training views of a computer-generated
three-dimensional wire-like object, which were 75◦ apart. In the test phase a novel view
was presented, which was either on the same rotation axis between the training views, or
on the same rotation axis beyond them, or on an axis orthogonal to the training axis. The
error rates during recognition mostly fit the predictions of the interpolation model, i.e.,
the error rates were lowest for the between condition, medium for the beyond condition
and highest for the orthogonal condition. According to the authors, this contradicts a
pure linear combination model, which predicts the same good performance for the between
and beyond condition and poor performance for the orthogonal condition. However, the
disavowal of the theory of a linear combination of views can be maintained only subject
to the assumptions of perfect correspondences between sample views and the absence of
self-occlusions, which are not necessarily fulfilled under realistic conditions.

The experiment carried out by Bülthoff and Edelman also contradicts alignment mod-
els, which predict uniformly good performance for all three test conditions. Anyway hu-
man perception of Euclidean metric structures is very limited, a general observation which
does not support the idea of precise recognition by alignment. For instance, Todd and
Reichel [72] have shown that humans perform poorly on estimating the precise distance
between two points in the environment, but are nevertheless able to determine which point
is closer to them.

Results similar to the ones reported by Bülthoff and Edelman were obtained in phys-
iological studies by Logothetis et al. [30]. They trained monkeys with two views of a
computer-rendered wire or spheroidal novel object, which were far apart, e.g., 120◦. The
monkeys were able to recognize all test views inside this interval, whereas the extrapolation
along either the same or an orthogonal axis was limited.

2.3 Summary And Conclusions

Many contradictory studies demonstrate the difficulty to put forward a clear statement
about the perception of three-dimensional objects. Probably the brain of humans and
other primates is able to perform both, recognition based on object-centered as well as
viewer-centered representations. The choice of the appropriate form may depend, e.g., on
the structure of the object and the task to be performed. For example, if an object is
to be grasped a volume-based representation is more appropriate than a view-based one.
However, concerning view-based representations the following answers to the questions
posed in the introduction (chapter 1) can be derived from the performances of artificial
and living systems.

Q1 Human object perception and that of other primates can be interpreted by a view-
based approach. Object representations in form of single, but connected views are
sufficient for a huge variety of situations and perception tasks such as object recog-
nition and pose estimation.
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Q2 Real-world objects possess canonical views, which are better suitable for recognizing
the object than other, non-distinguished, views. The robustness of views against
pose variation can be expressed in terms of aspects, which are surrounding areas on
the viewing sphere without qualitative changes in the object’s appearance.

Q3 The number of views which are sufficient to represent an object depends on the
specific object. The representing views are not distributed uniformly on the viewing
sphere, rather their distribution depends on the object. Primates are able to gen-
eralize from a reference view to surrounding, unfamiliar views. A lower bound of
about 30◦ and an upper bound of about 70◦ distance from the reference view can
be found in the literature for this generalization, but a distance of about 30 ◦ to 40 ◦

seems to be appropriate.

Q4 Presumably a kind of view interpolation occurs between familiar views when unfamil-
iar views have to be recognized. The disavowal of the theory of a linear combination
of views by psychophysical studies derives from experiments carried out with wire-
like objects. As these objects differ from real-world objects, e.g., with respect to
self-occlusions the linear combination approach is still worth to be explored in ob-
ject perception from images of real objects. Both combining techniques, nevertheless,
require correspondences between sample views.
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Chapter 3

Preprocessing and Fundamental

Techniques

In this chapter the choice of test objects used in this thesis and the acquisition and
preprocessing of the image data bases are described. In addition, some fundamental
techniques are introduced which are needed in the following chapters.

An appropriate choice of test objects is crucial to draw generally valid conclusions
from the results of experiments. The objects used throughout this thesis are introduced
in section 3.1. For the establishment of a sparse object representation as well as for
providing ground truth data for the evaluation of the quality of reconstructed morphed
and virtual views and estimated object poses a dense sampling of the viewing hemisphere
of an object is neccessary.1 The acquisition of such dense image data bases is described
in section 3.2. The image acquisition provides a large number of images of the object.
Each image displays a different view of it and parts of the background. Further processing
requires the generation of a description for each of the recorded images which represents
the view of the object without the background. For this purpose the object has to be
separated from the background in each image. This is described in section 3.3. After the
object has been isolated in an image a grid graph is put onto the segment which has been
assigned to the object (see figure 3.1). At each vertex of the graph Gabor filter responses
are extracted which describe the local surroundings of the vertex. The Gabor transform
is described in section 3.4 and the generation of grid graphs in section 3.5.

The representation of each view in form of a labeled grid graph provides the basis
for two techniques which are used later (matching and tracking of local object features).
They are described in the last two sections 3.6 and 3.7. Both techniques are applied
to assess the similarity between different object views and to find corresponding object
points in different views. With respect to these applications they will be compared later
in chapter 4. The tracking procedure will be used to establish the sparse representation
of a three-dimensional object, which is described in chapter 5. The matching technique
will be applied to the pose estimation of single views and sequences utilizing virtual views,
which is desrcibed in chapter 8.

1Throughout this thesis only the upper viewing hemisphere is considered, but the methods and results
can be generalized to the whole viewing sphere of an object.

15
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a) b) c)

d) e) f)

Figure 3.1: Preprocessing. a) Recorded original image, b) Result of the segmentation, c) Result

after eliminating wrong segments, d) Original image masked with resulting segment, e) Grid graph

covering the object, f) Grid graph shown on the original image.

3.1 Choice of Objects

As the acquisition of object views, which is described in the next section, is a very difficult
and time-consuming process, the results of this work have been derived from only two
test objects. Thus, the properties of the objects should provide challenging problems
to the perception system. The objects used in the experiments of this work have been
chosen with this in mind. They are shown in figure 3.2 and differ in the degree of their
complexity. The “dwarf” object is a simple object, whereas the “Tom” object is more
complex. “Simple” means that the views of the object do not change rapidly while the
object rotates. Such objects are often difficult to deal with as already mentioned in
chapter 1. The “dwarf” is a relatively convex object with a rather similar shape for all
viewing directions, whereas “Tom” is a more irregular object with faster changing views.
Both objects vary in the degree of self-occlusions, which occur earlier for the “dwarf”,
because of its sphere-like shape. This phenomenon is illustrated in figure 3.2 and will be
important in later chapters.

3.2 Image Acquisition

To acquire the views of the upper hemisphere of an object I used an anthropomorphic
robot, which has a redundant manipulator arm with seven degrees of freedom, kinematics
similar to a human arm and a parallel jaw gripper, described by Becker et al. [2]. The
object was fixed on a small piece of squared timber which was placed in the gripper of the
robot, while the squared timber and the gripper were covered by gray paper to achieve
a homogeneous background (see figure 3.3). I wrote a program which caused the arm to
move in a way that the object rotated around the center of its footpoint while a fixed
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view (16, 2)

view (16, 2)

view (0, 2)

view (0, 2)

object
"Tom"

object
"dwarf"

Figure 3.2: Self-Occlusions - Difference Between Object “Tom” and Object “Dwarf”. Self-

occlusions of parts of the object occur earlier during rotation for the “dwarf” object than for the

“Tom” object, because the “dwarf” is a more compact object. In these examples both objects

are rotated with the same angle from the frontal position to the right. The right hand marked by

circles has vanished for the “dwarf” object, whereas it is still visible for the “Tom” object.

PULNiX TM-9700 monochrome CCD camera recorded the views as gray level images of
size N ×M = 128× 128 pixels with 256 gray levels. The arm moved in a stepwise fashion
to cover the upper viewing hemisphere of an object by 2500 views: 25 equidistant views on
each line of longitude and 100 equidistant views on each line of latitude (with a distance
of 3.6◦). A view is denoted by its position index (p, q) and H denotes the set of all views:
H := { (p, q) | p = 0, . . . , 99, q = 0, . . . 24} (see figure 3.4).

3.3 Segmentation

The segmentation method is based on a system developed by Vorbrüggen [75] and de-
scribed by Eckes and Vorbrüggen [15]. The segmentation model contains Potts spins with
coarse-to-fine dynamics comparable to renormalisation methods often used in theoretical
physics. Average intensity is used as the only low-level cue, although the system is able
to make use of additional cues if they become available.

The segmentation model divides an incoming image of some fixed resolution into P
small patches Ii, i = {1, 2, ..., P}. Each patch receives a label si, i = {1, 2, ..., P} that
encodes its membership of one of several possible segments (see figure 3.5 a)–c)). Because
of the analogy between this label-based model and an interacting spin system in solid
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Figure 3.3: Robot Scene. The robot arm has the squared timber on which the “Tom” object

is fixed in its gripper. The timber and the gripper are covered by a gray background. (For the

recording of the images not the displayed stereo cameras were used but another single camera.)

state physics, such a label is called a spin. The range k of values allowed for a spin
si ∈ {1, 2, ..., k}, is a parameter of the system and is set to k = 2, because only two
segments have to be separated, the object and the background. P = 32 × 32 = 1024
patches are used, resulting in patches of 4× 4 = 16 pixels for the images of size 128× 128.
The aim now is to find the spin configuration which encodes the “correct” segmentation of
the given scene. Each spin si interacts with all other spins sj via an interaction matrix Wij.

The difference in mean intensity
∣∣∣Ii − Ij

∣∣∣ at the corresponding image regions is used to

compute the interaction Wij between the two spins si and sj assigned to these positions.
The desired segmentation is mapped onto the global minimum of the following energy
function:

E (s) = −1

2

P∑

i=1

P∑

j=1j 6=i

Wij · δsi,sj
with (3.1)

Wij = max
(
1 −

∣∣∣Ii − Ij
∣∣∣/α, 0

)
−W. (3.2)

The parameter α (α = 100 is used) in combination with the maximum function ensures
that the difference in average intensity on the interval [0, α] is mapped to [0, 1]. To
stress the Gestalt law of neighborhood introduced by Wertheimer [79], the interaction
is restricted to patches with distances below 7.1 patches. In order to map low similarity
to negative interaction and high similarity to positive one, the mean interaction W is
subtracted from all similarity values which provides the used interaction matrix Wij. The
Metropolis algorithm developed by Metropolis et al. [38] is used at zero temperature with
coarse-to-fine dynamics to let the system relax to a local energy minimum (see figure 3.5 d)
and [15] for details). Three stages and P (1) = 1024 have been used as the number of
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view (79, 14) view (6, 6) 

Tom Tom dwarf dwarf 

Figure 3.4: Viewing Hemisphere. The image data base for each object consists of 100 × 25

views which cover the upper viewing hemisphere. Each crossing of the grid stands for one view.

The dot in front marks view (p, q) = (0, 0). Two views of two sample objects are shown.

patches in the highest resolution. The number of patches in each resolution is given by
P (n) = P (1)/4(n−1).

The segmentation as described may also provide regions, which are erroneously re-
garded as belonging to the object due to their gray levels like shadows in the background.
If the segmentation process yields a non-contiguous object segment the wrong segments
are discarded by simply choosing that segment as object which is closest to the center of
the image. Figure 3.1 c) shows a typical result of this “centered segmentation”.

3.4 Gabor Wavelet Transform

To derive local descriptions for the recorded images each of the original images undergoes
a Gabor wavelet transform, i.e., it is convolved with a family of Gabor kernels.

Gabor wavelets are used in computer vision because they seem to approximate the
response patterns of neurons in the visual cortex of mammals as proposed by Jones and
Palmer [24]. Burr et al. [11] found out that in the early stages of visual processing neurons
display sensitivity profiles in pairs with even and odd symmetry which can be related to
the real and imaginary part of a Gabor wavelet.

A formal definition of Gabor wavelets is given in the next subsection, then a description
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A                                 B                               C                                 Da) b) c) d) 

Figure 3.5: Segmentation Model. a) Complex scene to be segmented, b) Scene divided into

32× 32 = 1024 patches, c) Corresponding randomly initialized spin image for k = 3, in which each

spin value is displayed as the appropriate gray level, d) Renormalisation of the interaction between

spins on different resolution levels (arrows on left) and coarse-to-fine dynamics (arrows on right).

(adapted from [15])

of the convolution of an image follows (including the introduction of the fundamental jet
concept), and finally some similarity functions are introduced, which are used later. The
technical descriptions in this section are partly taken from Lades et. al. [29].

3.4.1 Gabor Wavelets

The Gabor kernels in image coordinates take the form of a plane wave restricted by a
Gaussian envelope function:

ψ~k
(~x) =

~k2

σ2
exp

(
−
~k2~x2

2σ2

) [
exp

(
i~k~x

)
− exp

(
−σ2/2

)]
. (3.3)

The parameter ~k determines the wavelength and orientation of the kernel ψ~k
and the

width of the Gaussian window. The parameter σ determines the ratio of window width
to wavelength, i.e., the number of oscillations under the envelope function. The first term
in the square brackets determines the oscillatory part of the kernel. The second term
compensates for the dc-value of the kernel, to avoid unwanted dependence of the filter
response on the absolute intensity of the image. The complex valued ψ~k

combine an even
(cosine-type) and odd (sine-type) part (see figure 3.6). The kernels can be sampled with
L frequencies and D orientations according to

~kνµ = kν ·
(
cos φµ

sin φµ

)
with kν =

kmax

f ν
, φµ =

πµ

D
, (3.4)

ν ∈ {0, · · · , L − 1}, µ ∈ {0, · · · ,D − 1}, kmax = π/2 and f =
√

2, which is the spacing
factor between kernels in the frequency domain. For the Gabor transform of the recorded
images I chose a family of kernels with L = 4, D = 8, and σ = 2π.
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a) b)

Figure 3.6: Shape of a Gabor Wavelet. a) Real part (cosine phase). b) Imaginary part (sine

phase). All kernels have the same shape except for size and orientation. (adapted from [29])

3.4.2 Gabor Transform

If I(~x) is the gray level distribution of the input image, the operator W symbolizes the
convolution:

(WI)~k (~x0) :=

∫
ψ~k

(~x0 − ~x) I (~x) d2x =
(
ψ~k

∗ I
)

(~x0) . (3.5)

Accordingly, at each image coordinate a filter responses for each of the L × D Gabor
wavelets is obtained.2 Filter responses at one image coordinate ~x0 form a jet

J~k
(~x0) := (WI)~k (~x0) . (3.6)

As the result of the convolution is complex, the ith component of a jet can be expressed
in terms of amplitude ai and phase φi: Ji = (ai, φi) for i = 1, ..., L · D. A jet can be
regarded as a descriptor of the local surroundings of the point ~x0 in the input image (see
figure 3.7).

Jets provide the basis for further processing of object views, e.g., they are use for
comparing different views of one object (section 3.6), or for tracking object points along
changing viewpoints (section 3.7). They are the fundamental data structure on which I
base the sparse object representation (chapter 5). Furthermore, virtual views are generated
by varying two parameters, the positions of object points and the features describing the
surroundings of these points (chapter 7). These features are jets, too. In addition, the
reconstruction of views (subsection 7.1.2) and pose and sequence estimation (section 8)
are founded on jets.

In many of these applications it is neccessary to determine the similarity between two
jets. For this purpose similarity functions have been proposed, which are introduced in
the next subsection.

2To reduce processing time the computations are performed in Fourier space, i.e., the kernels are
computed in the frequency domain, the input image is transformed via FFT (fast fourier transform),
then, according to the convolution theorem, only a multiplication of image by kernel is required instead of
solving an integral. Finally, the result of the multiplication is backward transformed via FFT−1.
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Jet Labeled Grid Graph

Figure 3.7: Jet and Labeled Grid Graph. This jet is generated from a family of Gabor kernels

with 3 frequencies and 4 directions. Each vertex of a graph will be labeld with such a jet. This is

described in section 3.5.

3.4.3 Similarity Functions

Two similarity functions between two jets J and J ′ have been suggested by Lades et al.
and Wiskott [29, 82]. Whereas Sabs uses the magnitudes of the jets only, Spha takes the
phases of the jets into account as well:

Sabs(J , J ′) =

∑
i aia

′
i√∑

i a
2
i

∑
i a

′
i
2
, (3.7)

Spha(J , J ′) =
1

2
·


∑

i aia
′
i cos(φi − φ′i)√∑
i a

2
i

∑
i a

′2
i

+ 1


 . (3.8)

Both similarity functions have the range [0.0, 1.0]. Sabs provides rather similar values for
neighbouring jets, if the position of one of the jets is shifted only slightly in the image.
In contrast, Spha provides rapidly changing values in this situation, because the phases of
filter responses change significantly even in close neighbourhoods.

3.5 Labeled Grid Graphs

As described earlier each view of the densely sampled viewing hemisphere of an object is
to be represented by a labeled grid graph.

In section 3.3 it has been described how an object is separated from the background
by a segmentation algorithm. Given the result from the “centered segmentation” I mask
the original image with it (see figure 3.1 d)) and cover the masked image with a grid graph
with equidistant X × Y vertices starting at pixel position (0, 0) with a distance of ⌊N−1

X−1⌋
pixels in x− and ⌊M−1

Y −1 ⌋ pixels in y−direction. X × Y = 13 × 13 is chosen.
Then all vertices of the graph are deleted which lie on the background and have a

distance to the object segment which is ≥ ⌊N
X ⌋ pixels. The deletion of vertices leads to a
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graph G which covers the object in the image, including its outline, which carries much
structural information, while at the same time incorporating only little information on the
background (see figure 3.1 e) and f)). Each of the remaining vertices is then labeled with
the jet Jk (~x), which corresponds to the position ~x of the vertex k in the original image,
as described in subsection 3.4.2. In other words, each vertex of graph G is positioned on
an object point and equipped with a description of the local surroundings of this point
(except a few vertices which lie on the background).

For display purposes the vertices of the resulting graph are connected by a minimal
spanning tree (see figure 3.1 e) and f)). These edges are not used for computations. The
computationally relevant aspects of graphs throughout this thesis are the positions ~xk of
the vertices k in the image and the features Jk attached to the vertices for k = 1, . . . , n if n
is the number of vertices of the graph. A graph which represents view (p, q) on the viewing
hemisphere is denoted by G(p,q) for p = 0, . . . , 99 and q = 0, . . . 24. It can be expressed in
the following way:

G(p,q) =
〈
X(p,q),F(p,q)

〉
(3.9)

with X(p,q) = {~xk}k=1,...,n the set of vertex positions and F(p,q) = {Jk}k=1,...,n the set of
the corresponding feature vectors.

3.6 Matching Local Object Features

In this section one of the techniques is described which is used to measure the similarity
between different object views. Elastic Graph Matching has initially been developed for
object recognition. It is described in detail in [29]. Given a graph G with vertices labeled
with jets J G , the aim of matching this graph to an image I is to find new vertex positions
which optimize the similarity of the vertex labels to the features extracted at the new
positions. During the matching process graph G is distorted resulting in a graph called
GI . If its jets extracted from the image are called J I the total similarity between G and
GI is computed as averaged similarity for each vertex:

Stot(G, GI) =
1

n
·

n∑

k=1

S(J G
k ,J I

k ) (3.10)

where the jet similarity S is either Sabs or Spha (see equations 3.7 and 3.8).

The process of graph matching is divided into two stages. In the first stage the graph is
shifted across the image while keeping its form rigid. Steps of one pixel in either direction
are used for this rigid shift. For each position of the graph jets are extracted from the
image at the vertex positions and the total similarity of the newly positioned graph GI

to the original graph G is calculated. This global move is able to position the graph
on the object. The position with the highest similarity is the starting position for the
second stage, which permits small graph distortions, i.e., the vertices are shifted locally
and independently a small distance from their starting position. A region of 5 × 5 pixels
is chosen for each vertex, which is scanned in steps of one pixel in either direction. Again,
jets are extracted and the total similarity is calculated for each step. After this local move
the optimal position of the graph is found at the position which provides the highest total
similarity (see figure 3.8 for an example).
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grid graph global move local move 

Figure 3.8: Matching Local Object Features. The grid graph which represents view (91, 4)

is matched on view (96, 6). After the global move the rigid graph has found its optimal position

on the object. After the local move the graph has been deformed to optimize the positions of the

single vertices.

3.7 Tracking Local Object Features

In this section another technique is described which is used to measure the similarity
between neighboring object views. In addition, it provides pixel positions of corresponding
object points for different views. The tracking of local object features along a sequence of
a moving or rotating object is described by Maurer and von der Malsburg [36] and based
on an idea of Fleet and Jepson [18] and Theimer and Mallot [71]. Given a sequence of a
rotating object and the pixel position of an object point for view r of the sequence, the
aim is to find the corresponding position of the object point in view r + 1. As a visual
feature Gabor wavelet responses are used again. For tracking a local feature from one
view to another, a similarity function between two jets J and J ′ is defined, which differs
slightly from the similarity function 3.8:

Stra(J , J ′, ~d) =

∑
i aia

′

i cos
(
φi − φ

′

i − ~d~ki

)

√∑
i a

2
i

∑
i a

′2
i

(3.11)

with ~d being the displacement vector of the two jets and ~ki being the wave vectors of the
Gabor filters. If J and J ′ are extracted at same pixel positions in the views r and r+ 1,
~d (and thus the new position of the object point) can be found by maximizing S in its
Taylor expansion with respect to ~d. Because the estimation of ~d is precise for a small
displacement only, i.e., a large overlap of the Gabor jets, large displacement vectors are
treated as a first estimate only and the process is iterated. Four iterations are used. In
this way displacements up to half the wavelength of the kernel with the lowest frequency
can be computed (see [82] for details).

For each vertex of the graph of view r the displacements are calculated for view r+ 1.
Then a graph is created with its vertices at the new corresponding positions in frame r+1,
and the labels of the new vertices are extracted from the new positions. But although the
displacement vectors have been determined as decimal numbers, the jets can be extracted
at (natural number) pixel positions only. This would result in a systematic rounding
error. To compensate for this subpixel error ∆~d the phases of the Gabor filter responses
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Figure 3.9: Tracking Local Object Features. These results taken from Maurer and

von der Malsburg [36] show the views 1, 10, 20, 30, 40, and 50 of a tracked sequence.

are shifted according to ∆φi = ∆~d · ~ki. Then they take on values very similar to those
that would be extracted at the correct subpixel positions (see figure 3.9).
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Chapter 4

Robustness of Views Against Pose

Variation

In this chapter the question will be treated in which direction and to which extent a three-
dimensional object can be rotated so that no big differences occur between the starting
view and the new views arising by rotation. I begin in section 4.1 by defining for a given
view a surrounding area of viewpoints called view bubble, which is an essential part of
this thesis. Inside its view bubble a given view is robust against pose variation. The
remaining sections of this chapter deal with the question of choosing a suitable technique
to determine view bubbles for a concrete object. For that purpose the matching and
the tracking techniques introduced in sections 3.6 and 3.7 are compared with respect to
essential requirements on view bubbles.

4.1 View Bubbles - A Measure of Pose Robustness

If a three-dimensional object should be represented sparsely by only some two-dimensional
views of it - which is the main goal of this thesis - it is reasonable to choose such views
which are representative for an area of viewpoints as large as possible. On the other hand,
as object views which will not be chosen for the representation should be recoverable
by interpolation it is necessary that the positions of corresponding object points in the
chosen views are known. To facilitate an advantageous selection of views for the object
representation first a surrounding area of robustness against pose variation is determined
for each view. This area is called view bubble. The view bubble of view (p, q) is defined
as the largest possible surrounding area of views on the viewing hemisphere for which the
following two conditions hold:

c1 The views constituting the view bubble are similar to view (p, q).

c2 Corresponding object points are known or can be inferred for each view of the view
bubble.

These conditions guarantee the robustness of view (p, q) against pose variation within its
bubble.

An ideal view bubble, which meets both conditions, may have an irregular shape. To
simplify the determination of a view bubble I approximate it by a rectangle with view

27
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��

a) b) c)

(p−i, q) (p, q)

(p, q−j)


(p+i, q)

(p, q+j)

(p, q) (p, q)

Figure 4.1: View Bubble and its Approximation. The ideal view bubble for a view (p, q) might

have an irregular shape as depicted in part a). It can be approximated by a rectangle as shown in

part b). Four border views define the rectangle (part c)).

(p, q) in its center (see figure 4.1 a) and b)). In the following the term view bubble is also
used for this rectangular area. The set of views enclosed by the rectangle is denoted by
B(p,q).

To determine the view bubble B(p,q) for view (p, q), first views on the line of latitude
of view (p, q) are compared. I begin with the views (p − 1, q) and (p + 1, q), taking the
wrap-around topology of the viewing hemisphere into account. If both views provide a
sufficiently high similarity to view (p, q) the algorithm goes on with the views (p − 2, q)
and (p+2, q). This procedure is stopped if one of both tested views becomes too dissimilar
to view (p, q). For the line of longitude this procedure stops for the same condition and in
addition it stops if the top view for q = 24 or the bottom view for q = 0 is reached. Thus,
for each view (p, q) on the hemisphere four border views (p − i, q), (p + i, q), (p, q − j),
and (p, q + j) are obtained which provide a sufficiently high similarity to the center view
(p, q) and which define the view bubble B(p,q) for it (see figure 4.1 c)). The similarity
between views is measured by using similarity function 3.10 with either the jet similarity
Sabs or Spha. In this chapter function Spha is used, whereas in the following chapters the
generation of view bubbles is performed using the coarser function Sabs, because it showed
itself to provide sufficient results.

Because each view (p, q) is represented by a labeled graph G(p,q), I define the represen-
tation of the view bubble B(p,q) of view (p, q) by the graphs of the center view and the four
border views and denote it by B(p,q):

B(p,q) :=
〈
G(p,q),Gw

(p,q),Ge
(p,q),Gs

(p,q),Gn
(p,q)

〉
(4.1)

The letters w, e, s, and n stand for west, east, south, and north. Graph G(p,q) of the
center view is the graph which is generated from the original image I(p,q) as described in
section 3.5, whereas the graphs Gw

(p,q),Ge
(p,q),Gs

(p,q), and Gn
(p,q) are derived from graph G(p,q)

by either matching or tracking its jets to the border views. Stot(G(p,q), Gw
(p,q)) ≥ τ holds

for a preset similarity threshold τ (see equation 3.10). Accordingly, the same inequality
with the same threshold τ holds for the east, south, and north graphs as well.

To determine B(p,q) for a given view (p, q) by matching, graph G(p,q) is matched suc-
cessively in the neighboring views on the lines of latitude and longitude as described in
section 3.6. The total similarity Stot(G(p,q), G(p′,q′)) of the center graph to the graph ex-



4.2. METHODS OF COMPARING MATCHING WITH TRACKING 29

tracted from the new view (p′, q′) is calculated for each new tested view using similarity
function Spha (equation 3.8).

In this chapter smaller grid graphs are used as those described in section 3.5. They are
generated by deleting all vertices which lie on the background or which lie on the object
but are too close to the background. The minimal allowed distance of an object vertex
to the background segment is a fraction of 10% of the width σ/kν of the Gaussian of the
largest Gabor kernel. The reason for this is to prevent vertices from incorporating too
much information on the background. Another drawback of larger graphs is the possibil-
ity of tracked vertices clinging to the outline of the object while it rotates. This could
be disadvantagous especially if the quality of the tracking procedure is to be analyzed.
All further studies outside this chapter are carried out utilizing the larger grid graphs
introduced in 3.5 because they incorporate more information about the object.

If the view bubble B(p,q) for view (p, q) should be determined by tracking I start with
graph G(p,q), which is tracked to all directions (west, east, south, and north) as described
in section 3.7. For this chapter, after each tracking step, i.e., after each new tested view,
the same total graph similarity is computed as for the matching procedure. The difference
between tracking and matching lies in the fact that during matching each view is treated
independently, whereas the tracking procedure utilizes the continuity of neighboring views.
This leads to the question which method is more appropriate to determine areas of pose
robustness for views of real objetcs. The remaining sections of this chapter deal with this
question and have already been reported by Peters et al. [55].

4.2 Methods of Comparing Matching With Tracking of Lo-

cal Object Features

The defining conditions c1 and c2 of a view bubble provide two criteria to judge the ap-
propriateness of the matching and tracking procedure for the generation of view bubbles.
To compare the similarity measure of both procedures one has to look at the sizes of the
view bubbles. For a preset similarity threshold the sizes of the view bubbles resulting from
matching and tracking are compared. This quantitative criterion is described in subsec-
tion 4.2.1. The second criterion consists in a qualitative assessment of the correspondences
provided by both methods. This is described in subsection 4.2.2. For both procedures the
same similarity threshold τ = 0.77 has been used. (The average similarity between two
randomly chosen views of the “dwarf” object was 0.68, determined for 15 matched pairs
of views.)

4.2.1 Quantitative Comparison

For the quantitative comparison I determined the view bubble area for each view on the
hemisphere by calculating the area of the approximating rectangle which is defined by the
four border views of the view bubble, i.e., the view bubble area is 4 · i · j (see figure 4.1).
Simulations have been made for both objects and both procedures, matching and tracking.
For each object a t-test has been carried out to prove the hypothesis of different means
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of the areas of view bubbles for the samples “view bubbles generated by matching” and
“view bubbles generated by tracking”.1

4.2.2 Qualitative Comparison

For the qualitative comparison four sequences of successive views on the hemisphere (from
a starting view to a destination view) were chosen for both objects. For each of these
sequences the matching and the tracking procedures have been perfomed, respectively. The
sequences were selected arbitrarily and their length was determined by the last tracking
step which provided good correspondences. They have an average length of about 8 views,
which means they cover a rotation angle of 25.2 degrees. The longest sequence covers 43.2
degrees and consists of 13 views. To assess the correspondences by visual inspection,
the resulting matched and tracked graphs are displayed for each view and the calculated
similarities are plotted in diagrams. The results are described in subsection 4.3.2.

4.3 Results

4.3.1 Quantitative Comparison

Diagrams which show the distributions of view bubble areas are depicted in figure 4.2 for
the “Tom” object and in figure 4.3 for the “dwarf” object. In both figures the first diagram
shows the results from the tracking procedure and the second diagram the ones from the
matching procedure. Light colors encode large areas, dark colors encode small areas of
view bubbles. To compare the results for tracking and matching the third diagram shows
the difference between the first and second diagram. Dark areas in the third diagram are
areas on the hemisphere where tracking provides larger view bubbles than matching.

From the diagrams the following results can be derived. The tracking procedure pro-
vides larger view bubbles than the matching procedure for the majority of views for the
more complex “Tom” object, whereas for the simpler “dwarf” object it is the other way
around. Here the matching procedure provides larger view bubbles than the tracking pro-
cedure for the majority of views. The one-tailed t-test, with which the mean values have
been compared, was significant with α = 1% for each case. Some statistical values are
summarized in the tables 4.1 and 4.2.

1In a report by Peters et al. [54] another criterion for a quantitative comparison is described. For each
view it is counted in how many other view bubbles it is contained. This criterion provides results similar
to those reported in this chapter.
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Figure 4.2: Object “Tom”, Area of View Bubbles.
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Figure 4.3: Object “Dwarf”, Area of View Bubbles.



4.3. RESULTS 33

object “Tom”, area of view bubbles

tracking matching

mean = 42.60 mean = 37.84
standard deviation = 29.31 standard deviation = 29.00
minimum value = 0.00 minimum value = 0.00
maximum value = 168.00 maximum value = 168.00

t-test with α = 1.0% : T = 5.77 =⇒ meantrack > meanmatch

Table 4.1: Statistics for Object “Tom”

object “dwarf”, area of view bubbles

tracking matching

mean = 52.22 mean = 69.94
standard deviation = 33.80 standard deviation = 52.70
minimum value = 0.00 minimum value = 0.00
maximum value = 168.00 maximum value = 336.00

t-test with α = 1.0% : T = 14.16 =⇒ meanmatch > meantrack

Table 4.2: Statistics for Object “Dwarf”

4.3.2 Qualitative Comparison

In figure 4.5 the results for one sequence of the “Tom” object are shown, in figure 4.6 for
one sequence of the “dwarf” object. The results for the other sequences can be found in
appendix A.

In the first part of each figure the views of the object with the graphs resulting from
the tracking procedure (first row of images) and the views of the object with the graphs
resulting from the matching procedure (second row of images) are displayed. Both rows
start with the starting view of the sequence with its original grid graph on the object. The
next two images are chosen according to the quality of the matching, which is measured
by visual inspection. The view with its graph where the matching provided the last
successfully matched graph of the sequence is shown. The subsequent image depicts the
view with the first mismatched graph of the sequence. Arrows point to the mismatched
vertices. The last images of the rows show the last views of the sequence where the tracked
graph still keeps the corresponding points, whereas the matched graph does not. In the
headers of the images the indices of the views can be read. “Tr” means “tracked”, “Mt”
means “matched”. These images only show a part of the complete sequences, the complete
sequences with their tracked and matched graphs are depicted in appendix A as well.

The second part of each figure shows a diagram where the similarity of each view of
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good matching poor matching

good tracking

tracking
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Figure 4.4: Qualitative Similarity Diagram. “Good” and ”poor” is meant in the sense of

correct, respectively incorrect, correspondences. See description in the text for details.

the sequence to the starting view is plotted for the tracked as well as the matched graphs.
The similarities decrease monotonously while the object rotates away from the starting
view, for the tracking as well as for the matching procedure.

From the assessment of the positions of the vertices of the tracked and matched graphs
I can make the statement that for each view of each sequence the tracking procedure
provides the same or better correspondences than the matching procedure. For the last
view of each sequence the tracking procedure provides considerably better correspondences
than the matching procedure.

From the similarity diagrams I get the following result. At the beginning of a sequence
the tracking procedure always provides slightly higher similarities than the matching pro-
cedure. This relationship is reversed at that point of the sequence where the matching
starts to provide poor correspondences, whereas tracking provides good correspondences
until the end of the sequence (see figure 4.4).
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Figure 4.5: Object “Tom”, First Sequence With Similarity Diagram.
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view (47, 6) view (6, 5) view (10, 20) view (80, 21) 
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Figure 4.7: Canonical and Non-Canonical Views for Object “Tom”. View (47, 6) is the view

which provides the global maximum of its view bubble area (generated by the tracking procedure).

Its view bubble covers an angle of 50.4 degrees on the line of latitude and 43.2 degrees on the line of

longitude. Thus, view (47, 6) can be regarded as canonical view. The same is true for view (6, 5).

By contrast, the views (10, 20) and (80, 21), for example, provide very small view bubbles only and

they can be declared as non-canonical views. Please, compare these views with the first diagram

of figure 4.2, where the canonical views are located in light areas whereas the non-canonical views

are located in dark areas.

4.3.3 Canonical Views

Besides the differences between the distributions of view bubble areas for the “Tom”
object and the “dwarf” object, respectively, which were described in subsection 4.3.1,
they have something in common. For both objects the distribution of view bubble areas
is qualitatively similar for the tracking procedure and for the matching procedure. The
back view seen from slightly above and the front view provide the largest bubbles, and
they can be regarded as canonical views as they have been introduced in subsection 2.1.3.
In general, a view can be defined as canonical view, if its view bubble area is a local
maximum and if it is larger as a preset threshold (see figure 4.7 for examples).

4.4 Discussion

In this chapter two procedures for finding areas of pose robustness on the viewing hemi-
sphere of a three-dimensional object have been compared. For each view on the viewing
hemisphere a view bubble is defined, which is a surrounding area of robustness against
pose variation. During the investigations the question was pursued whether one of the
procedures, tracking or matching of local object features, outperforms the other in the
determination of view bubbles. At first glance both procedures are suitable for this task.
Areas of large and small view bubbles arise on the viewing hemisphere. Views in the cen-
ters of areas of large view bubbles are more robust against pose variations than other views
and can be regarded as canonical views. This result provides an answer to the questions
Q2 formulated in the introduction (chapter 1).

As pose robustness is defined by a quantitative and a qualitative property (the largest
area which preserves correspondences) I have two comparison criteria. With regard to
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the quantitative criterion I have detected no difference between matching and tracking
concerning the size of the view bubbels given a fixed similarity threshold. But with regard
to the qualitative criterion I found that much more precise correspondences were provided
by tracking than by matching.

In detail, from both test objects no statement was possible about the superiority of one
procedure in terms of the size of the view bubbles, because for the more complex “Tom”
object tracking provided larger view bubbles, whereas matching outperformed tracking for
the simpler “dwarf” object. (For the difference between both objects refer to section 3.1.)
A possible explanation for this result could be that the rapidly changing views of the
“Tom” object cannot be matched over larger distances, because the matching procedure
is looking for the same appearance of the object features, whereas the tracking procedure
reacts more sensitively when views are changing during the rotation of the object. A
hypothesis derived from the statistics is that the tracking procedure leads to larger view
bubbles than the matching procedure for “complex” objects, whereas matching is superior
to tracking for “simple” objects. This hypothesis should be verified by analyzing more
examples. The minimum size of view bubble areas is zero for both objects and both
procedures. It occurs for views in the north pole and on the equator, because for those
views j = 0 is fulfilled. Although this is an artefact of the proposed method I suppose
that it has no effect on the comparisons, because it occurs for both procedures and both
objects alike.

The results of the qualitative comparison have been obtained from the analysis of the
test sequences. These sequences have been chosen arbitrarily and are located in different
positions on the viewing hemisphere. They display the objects from front, back, and side
views and the object points are tracked in different directions. Thus, I assume that the
results obtained from these test sequences are representative and can be generalized to
any sequence on the viewing hemisphere. A reason for the more precise correspondences
found by tracking could be the fact that an object feature changes its appearence while the
object rotates. The feature in the tracking procedure adapts to this change, whereas the
matching procedure always searches for the same starting feature. The more the rotation
proceeds the more difficult it is for the matching procedure to find the correct point. The
advantage of tracking of object features is that it “joins in” the rotation. Continuous
information is used by the tracking procedure in contrast to the matching procedure.
Matching is the more appropriate method if the task is to find features with the same
appearance, tracking is the more appropriate method if changes of the features should be
followed.

A disadvantage of the automatical processing of the images is that in some cases a
relatively poor result of the segmentation of the images leads to a representing grid graph
which does not cover the whole object (as, for example, in figure 4.6) or which covers larger
parts of the background. But as these problems occur for both compared procedures alike,
I claim that they did not influence the results.

Even if it turns out that matching is superior to tracking for simple objects in terms
of the size of the view bubbles I consider the qualitative requirement more important.
Precise correspondences should take priority over larger view bubbles, particularly for
further processing. For the generation of unfamiliar views, for example, as described in
the following chapters 6 and 7, precise correspondences in the familiar views are necessary,
and to establish these correspondences the continuity information of successive views has
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to be utilized. Accordingly, my conclusion for this chapter is that the tracking of object
features is superior to matching for the determination of areas of pose robustness for a
three-dimensional object, especially for complex objects. Thus, for the remaining chapters
of this thesis view bubbles are determined by tracking. Comming back to formula 4.1
this means that the graphs Gw

(p,q),Ge
(p,q),Gs

(p,q), and Gn
(p,q) are derived from graph G(p,q) by

tracking its jets to the border views.

4.5 Parallels to Primate Object Perception

My data suggest that the tracking procedure provides more precise correspondences in
neighbouring views of a three-dimensional object than the matching procedure. In other
words, good correspondences are derived from the continuity of successive views and not
from disconnected static views. This result is supported by the research of P. J. Kell-
man [25]. His experiments with infants suggest that they have the ability to perceive the
three-dimensional form of an object only if information about continuous optical transfor-
mations given by motion is available. They are not able to apprehend the overall form of
an object from static views, even if they are multiple or sequential. This holds for even
eight months old infants. Adults, however, are able to perceive a three-dimensional form
from static views, as already mentioned in subsection 2.2.2.

That context in general (not necessarily temporal) can improve the recognition of
novel views was shown by Christou et. al. [12]. However, temporal context seems to be of
special importance for object perception. Numerous psychophysical experiments support
this. For example, T. Niemann et al. [44] report on experiments with parts of statues of
human figures on a turntable. They recorded the eye movements of subjects watching the
rotating objects and found the eye movements often directed to the same details seen from
different vantage points. This also supports the relevance of tracking of local features.

Another argument is furnished by K. L. Harman and G. K. Humphrey [21]. They
claim that different object representations are generated, depending on the presentation
of either regular or random sequences of views of the object. When a sequence of rotation is
encoded, the associated temporal context may lead to the construction of a linked, higher-
order system of representations for a given object, whereas, without temporal context, a
single representation of each object view may be constructed.

Also some physiological reasons emphasize the importance of the successive appearance
of views for the learning of an object representation. Miyashita [39] trained monkeys to
match complex fractal patterns, which were presented successively in a fixed series of
100 items. After training some cells in the anterior temporal cortex were found to show
selectivity for a small number of patterns which had been presented successively. This
gives evidence for learning based on temporal associations rather than on pattern overlap.

Perrett et. al. [47] already observed that an object representation in the form of a
collection of stored views is structured in the sense, that views belonging together be-
cause of their successive appearance are more closely associated with each other in the
representation. This was confirmed in a later study by Edelman and Weinshall [17].
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Chapter 5

Sparse Object Representation

“The knowledge of only some views of a three-dimensional object is sufficient to solve
perception problems such as estimating the pose of the object.” As this is the main thesis
of this work, it is time now to think about the composition of an object representation
which meets these requirements. As already mentioned in the introduction (chapter 1) the
following conditions should hold for such a representation of a three-dimensional object:

1. It should be constituted from two-dimensional views of the object.

2. It should be sparse, i.e., it should consist of representations of as few views as possible.

3. It should be capable of performing perception tasks.

In section 5.1 I propose an object representation which meets these conditions. Sec-
tion 5.2 gives some examples of sparse representations for concrete objects. The sparseness
of the proposed representation is checked in the chapters 6 and 7, whereas the third con-
dition is examined in chapter 8.

5.1 Generation of a Sparse Object Representation

In the last chapters the representation of a single object view by a labeled graph (sec-
tion 3.5) and the assignment of an area of pose robustness (view bubble) to each view on
the viewing hemisphere (section 4.1) have been described.

To meet the first two conditions of a representation the aim is now to choose sin-
gle object views (in the form of labeled graphs) to constitute the representation. The
distribution of the view bubbles can function as a decision criterion. Starting from this
distribution it is obvious that having one view bubble for each view on the viewing hemi-
sphere they overlap each other to a large extent (see figure 5.1). The idea is to reduce this
large number of view bubbles and to choose as few of them as possible which nevertheless
cover the whole viewing hemisphere.

For the selection of the view bubbles I use a greedy set cover algorithm proposed by
Chvatal [13], which is described in subsection 5.1.1. The set cover algorithm will provide
a set of view bubbles which covers the whole viewing hemisphere. Its representation R
will then constitute the sparse object representation.
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Figure 5.1: Overlap of View Bubbles. As a view bubble is determined for each view on

the viewing hemisphere, they are overlapping on a large scale. This figure shows a part of the

hemisphere with some view bubbles.

5.1.1 Set Cover Algorithm

In the set cover problem as it applies to this thesis the data consists of finite sets
B1, B2, . . . , Bn.

⋃
j∈J Bj is denoted by H with H = {1, 2, . . . ,m}, J = {1, 2, . . . , n}. A

subset R of J is called a cover if
⋃

j∈RBj = H. The problem is to find a cover with a
minimal number of elements. This problem is known to be NP-complete.

A binary matrix A of size m × n can be laid down where the columns encode the
sets B1, B2, . . . , Bn, i.e., aij = 1 ⇔ i ∈ Bj. Then the sought subset R of J is the set
of indices of chosen columns. A selection of columns can be expressed by ones in a bi-
nary vector ~v = (v1, v2, . . . , vn). The problem consists in minimizing

∑n
j=1 vj subject to∑n

j=1 aijvj ≥ 1 ∀ i = 1, . . . ,m. The last inequality guarantees the covering of all rows of
matrix A, i.e., of all elements of H. The greedy heuristic algorithm proposed in [13] for
solving the set cover problem does not necessarily find the true optimum but usually a
feasible solution:

R = ∅
while (number of ones in matrix A > 0)

find a column k with the largest number of ones

R := R ∪ {k}
set each row of matrix A to zero where column k has a one

end while

R is a cover

Applied to the problem of covering the viewing hemisphere by view bubbles the sets
B1, B2, . . . , Bn are the rectangular bubbles as introduced in section 4.1 with n = 25001.
Accordingly, H is the set of all views, thus m = 2500 as well. J is the set of indices of the
view bubbles. The above algorithm can now be expressed in the following way:

1The double subscript (p, q) used there is reindexed here by a single subscript.
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R = ∅
while (there are still uncovered views on the hemisphere)

find the view bubble which covers the largest number of uncovered views

add this view bubble to the cover R

mark the views covered by this view bubble

end while

R is a cover

The set R contains the indices of the view bubbles which cover the viewing hemisphere.
I define now the sparse representation R of a three-dimensional object as the set which
consists of the representations Bi, i ∈ R, of the view bubbles of set R:

R := {Bi}i∈R . (5.1)

As the representation of one view bubble consists of the graphs of its center and border
views (see equation 4.1), the sparse object representation consists of a collection of graphs
which represent single views of the object: R = {〈Gi,Gw

i ,Ge
i ,Gs

i ,Gn
i 〉}i∈R. Neighboring

views of the sparse representation are “connected” by known corresponding object points
(the correspondences between center and border views). The letter ν is used for the
denotation of the number of view bubbles which constitute the sparse representation:
ν = |R|. In the next section some examples of sparse representations of concrete objects
are given.

5.2 Results

For both objects introduced in figure 1.3 view bubbles are generated for each view on the
viewing hemisphere as described in the previous chapters. For each view graphs are used
as described in section 3.5 and the view bubbles are generated by tracking using the jet
similarity function Sabs as described in section 4.1. After that the set cover algorithm
described in the previous section is applied, resulting in a sparse object representation
for each object. As the size of the view bubbles and the resulting object representation
strongly depend on the similarity threshold τ for tracking (see section 4.1), I varied this
threshold using five different values: 0.75, 0.8, 0.85, 0.9, and 0.95.

Figure 5.2 shows five different partitionings of the hemisphere for the “Tom” object
depending on the value of the tracking threshold. For example, for τ = 0.75 the set cover
algorithm provides a cover consisting of 6 view bubbles. The diagrams show the covered
hemisphere seen from above, the dots mark the center views of the cover bubbles. A larger
threshold τ leads to smaller view bubbles, resulting in a cover with a larger number of
bubbles which overlap to a smaller extent than for a smaller tracking threshold. Figure 5.3
shows the same for the “dwarf” object.

Each of the angle values given in the figures 5.2 and 5.3 indicates half of the width of
view bubbles averaged over all bubbles of a cover, i.e., the average distance between the
center and the east (or the west) views for all view bubbles. These values are summarized
for both objects in table 5.1.
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Object "Tom" 

threshold 0.75 threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95 

6 view bubbles 13 view bubbles 29 view bubbles 76 view bubbles 289 view bubbles 

half width 58 half width 32 half width 19 half width 11 half width 9

Figure 5.2: Five Different Covers for Object “Tom”. See text for a description.

average angles between center and east views

threshold 0.75 0.8 0.85 0.9 0.95

object “Tom” 58.29◦ 32.14◦ 19.32◦ 11.40◦ 8.84◦

object “dwarf” 62.51◦ 38.64◦ 23.41◦ 13.32◦ 6.61◦

Table 5.1: Average Angle Between Center and East View

Figure 5.4 shows that the algorithm provides similar but not the same results for both
objects. Here the covered hemispheres are depicted from a different viewpoint.

Figure 5.5 shows for both objects the experimentally derived numbers ν of view bubbles
plotted against the threshold τ used for generating the view bubbles. The same exponential
fitting function

ν = f(τ) = r · es·(τ−t), (5.2)

τ ∈ [0.75, 0.95], is drawn in the diagrams for both objects. It has been determined by
using an iterative least squares algorithm for non-linear parameter fitting - the Levenberg-
Marquardt method described by More [40] - for the “Tom” and “dwarf” data sets sepa-
rately and then taking the average value of each fitted parameter, in this case of r, s, and
t. The data sets for both objects fit rather well to the fitting function, thus an exponential
function seems to be an appropriate description of the correlation between the number
of view bubbles and the similarity threshold. The slightly larger number of view bubbles
for the “Tom” object for each similarity threshold can be explained by the fact that the
“dwarf” object is a “simpler” object, whereas the views of the “Tom” object are changing
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half width 63 half width 39 half width 23 half width 13 half width 7

threshold 0.75 threshold 0.8 threshold 0.85 threshold 0.9 threshold 0.95

4 view bubbles

Object "dwarf"

9 view bubbles 26 view bubbles 66 view bubbles 255 view bubbles

Figure 5.3: Five Different Covers for Object “Dwarf”. See text for a description.

more quickly. Thus more view bubbles are needed for the representation of “Tom”.

The graphs of the views which are depicted in figure 5.6 constitute the sparse repre-
sentation for the “Tom” object for a tracking threshold of τ = 0.75. The six view bubbles
which constitute the representation are enclosed in boxes with their center and border
views. Compare this figure with the first diagrams in the figures 5.2 and 5.4.

5.3 Discussion

The view bubbles which constitute the sparse representation for the medium partitionings
of τ = 0.8, 0.85, and 0.9 can be regarded as aspects, which have been introduced in sub-
section 2.1.2. Small changes of the viewpoint inside the range of a view bubble affect the
appearance of the object only slightly, whereas the transitions between view bubbles are
distinguished by qualitative changes in the object’s appearance, thus they can be regarded
as events. This does not necessarily hold for the extreme covers of τ = 0.75 and 0.95. For
τ = 0.75 the constituting view bubbles are still overlapping to a large extent and cannot be
regarded as distinct aspects separated by events. For the other extreme of τ = 0.95 surely
not each transition between neighboring view bubbles represents a significant change in
the appearance of the object. Thus, I would only regard the medium partitionings as being
convincing. Figure 5.6 demonstrates that the view bubbles constituting R for τ = 0.75
cannot be regarded as distinct aspects. Three of the six constituting view bubbles (b), c),
and d)) are almost identical. This can be explained by the fact that none of them can be
omitted to cover all views which are covered by the union of them. There is no smaller
view bubble in the set of all view bubbles which would be able to cover the small number
of views which would not be covered if one of the three bubbles in question was omitted.

The average distances between the center and the east (or the west) views listed in
table 5.1 can be interpreted as average distances within which a generalization from the
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hemisphere covering 

tracking 
threshold 

object 0.75 0.85 0.95 

Tom 

dwarf 

6 29 289 

4 26 225 

Figure 5.4: Different Covers for Both Objects. The numbers next to the hemispheres are the

numbers ν of view bubbles constituting the cover. See text for a description.

center view is possible. For τ = 0.8 this distance lies between 30 ◦ and 40 ◦, which is consis-
tent with results from physiology and psychology as summarized in section 2.3 concerning
questions Q3. Although similar for both test objects, these distances as well as the num-
ber and the distribution of the view bubbles seem to depend on the specific properties of
the object.
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Figure 5.5: Correlation between Number of View Bubbles and Similarity Threshold. The

small circles depict the measured values. The parameters of the fitting curve are calculated from

the data sets for boh objects and have the values r = 926.297, s = 24.351, and t = 1.003.
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view  (79, 12)

view  (79, 24)

view (79, 0)

view (97, 12)view (61, 12)

view (61, 11)view  (37, 11)view (13, 11)

view  (37, 22)

view (37, 0)

view  (40, 14)

view  (40, 24)

view (40, 4)

view (60, 14)view (20, 14)

view  (97, 12) view (15, 12)view (79, 12)

view  (97, 24)

view (97, 0)

view  (0, 21)

view  (0, 24)

view (0, 18)

view (16, 21)view (84, 21)

view  (37, 12) view (57, 12)view (17, 12)

view (37, 0)

view  (37, 24)

f)e)

c) d)

b)a)

Figure 5.6: Sparse Representation of Object “Tom”. The graphs which represent these views

constitute the sparse object representation R of the “Tom” object for a tracking threshold of

τ = 0.75. See text for more details.



Chapter 6

Morphed Views

The last chapter described how a view-based representation R of a three-dimensional ob-
ject can be obtained. One of the requirements claimed there was sparseness. In this chapter
the sparseness of the representation is verified by checking the possibility to generate ar-
bitrary, unfamiliar views of the represented object from the few views which constitute
R. Unfamiliar views are calculated from familiar views by a view morphing technique
desribed in section 6.1. This requires the calculation of object point positions for unfa-
miliar views from available information about views stored in the representation. Object
point positions for an unfamiliar view are determined by a linear combination of the cor-
responding point positions in views of the representation. As this linear combination of
point positions is essential for techniques used in subsequent chapters as well, the morph-
ing of object views also serves as a test for the quality of the linear combinations. View
morphing as described in this chapter is not the main goal of this thesis, rather it serves
as an auxiliary means and visualization tool. In section 6.2 the view morphing technique
introduced in section 6.1 is assessed by an error analysis and a statistical description of a
large set of morphed views.

6.1 Morphing of Unfamiliar Views

The term morphing originates from the word metamorphosis and describes smooth tran-
sitions between images as described by Beier and Neely [3, 65]. I will use this term for
the transformation of sample views of the representation R into unfamiliar views. As
R consists of graphs of center and border views of view bubbles which completely cover
the viewing hemisphere it is possible to reconstruct any view from selected views of R
provided that the corresponding object points in the selected views are known. For that
reason view morphing takes place exclusively inside a view bubble because only here the
necessary correspondences between sample views are given.

Unfamiliar views of an object are computed from two as well as from three sample
views. In the case of three sample views the unfamiliar view is calculated depending on
its position in one of the four quadrants of the rectangle which defines the view bubble
it belongs to. If the view to be generated lies in the first quadrant of its view bubble
(including the axes) it is reconstructed from the center, the east, and the north view of
the bubble, if it lies in the second quadrant it can be morphed from the center, the west,

49
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WarpingLinear Combination χ

χχ χne I

I
^ ^

Figure 6.1: Flowchart of View Morphing From Three Sample Views. A novel view of an

object is morphed in two steps. Firstly, the positions X ,X e and Xn of object points in sample

views are linearly combined (see equations 3.9 and 4.1). Secondly, the gray level image I of a

sample view is morphed according to its own object point positions X and the newly calculated

positions X̂ resulting in the gray level image Î of the unfamiliar view. See also figure 6.2.

and the north view, and so on. If the unfamiliar view lies on the vertical axis of its view
bubble the east view is always a source view, if it lies on the horizontal axis the north view
is always a source view. In the case of two sample views the source views for morphing
are either the center and the east view or the center and the west view of the bubble,
depending on the position of the unfamiliar view to the right (including the axis) or the
left of its view bubble’s center view without regarding its vertical position in the view
bubble.
View morphing proceeds in two steps (see figures 6.1 and 6.2):

1. In the first step linear combinations of the vertex positions of the graphs which
represent the sample views are calculated. The resulting coordinates constitute the
new vertex positions of the unfamiliar view to be reconstructed. For the example of
three source views with the unfamiliar view lying in the first quadrant of its view
bubble the problem can be formulated as follows:
given: the sets X(p,q),X e

(p,q), and X n
(p,q) of object point positions in the sample views

and the positions of the sample views and the unfamiliar view on the viewing hemi-
sphere,
sought: the set X̂(p̂,q̂) of object point positions in an unfamiliar view (p̂, q̂) which lies
in the first quadrant of view bubble B(p,q).
For the case of other quadrants or only two sample views the given point sets vary
accordingly. In subsection 6.1.1 a solution for this problem is proposed.

2. In the second step the given gray level image I(p,q) of the center view (p, q) is warped

from its original object point positions X(p,q) to the object point positions X̂(p̂,q̂)

calculated in step one resulting in the final morphed image Î(p̂,q̂) of the unfamiliar
view (p̂, q̂). This is described in more detail in subsection 6.1.2.

6.1.1 Linear Combination of Object Point Positions

In this subsection formulas are given for step one of the morphing algorithm. They have
already been reported by Peters and von der Malsburg [53]. The development of the
formulas was strongly motivated by Ullman and Basri’s linear combination approach for
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χ e

(p,q)

χ
(p,q)

n

^(p,q)^χ̂

I (p,q)

^(p,q)^I^
χ

(p,q)

Figure 6.2: Morphing from Three Sample Views. See text and figure 6.1 for a description.

combining object views [74] already mentioned in subsection 2.1.4. Ullman and Basri
proved theoretically the possibility to represent any unfamiliar, two-dimensional view of
a three-dimensional object by a linear combination of a set of familiar, two-dimensional,
sample views of the object under orthographic projection and provided that the same set
of object points is visible in the sample views (consequently, no self-occlusions are allowed).
As the application of their calculations to images of real objects bears some difficulties,
they applied their algorithm to artificially created images, like line drawings of cars which
consist of sets of two-dimensional contours. Difficulties of the application to real objects
derive from the facts that the nature of the used object features has to be considered,
that the correspondences in sample views have to be known, and that singularities due
to self-occlusions can occur. Especially these visibility issues are crucial to understand
which views can be synthesized. In my approach the correspondences are provided by the
tracking algorithm and singularities are avoided by an appropriate choice of sample views.
A detailed derivation of my formulas is given in appendix B. Under perfect conditions
these formulas predict the same results for the view reconstruction from two as well as
three sample views.

A view (p, q) can be identified with the pair (ϕ, λ) of its longitude and latitude angles
on the viewing hemisphere with (i) 0 ≤ ϕ < 2π and (ii) 0 ≤ λ ≤ π

2 (see figure 6.3).

Let ϕ1, ϕ2, ϕ3, and ϕ̂ denote the longitude angles and λ1, λ2, λ3, and λ̂ denote the latitude
angles of the sample views and the unfamiliar view, respectively. The order of the numera-
tion is chosen such that (iii) ϕ1 = ϕ3 and (iv) λ1 = λ2 hold. This is achieved by assigning
index one to the center view of the view bubble and numbering the other views according
to (iii) and (iv), e.g., view (ϕ1, λ1) is the center view, view (ϕ2, λ2) the east view and view
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Figure 6.3: Longitude and Latitude Angles. ϕ and λ are measured for all views as depicted in

this schema.

(ϕ3, λ3) the north view. (For the case of reconstruction from two views only condition
(iv) has to be fulfilled.) The following equations are given for only one object point, the
position of which is to be determined for the unfamiliar view. The coordinates of this
point in the sample views are given by (xi, yi) for i = 1, 2, 3. Its coordinates (x̂, ŷ) in the
unfamiliar view are to be found.

Two Sample Views

x-coordinate: If

(b1 i) ϕ1 and ϕ2 are not 180◦ apart and

(b1 ii) ϕ1 and ϕ2 are not equal,

the x-coordinate x̂ is a linear combination of x1 and x2. The coefficients of this linear
combination are simple functions in ϕ1, ϕ2, and ϕ̂. In detail:

x̂ =
2∑

i=1

aixi (6.1)

with

a1 = − csc(ϕ1−ϕ2) · sin(ϕ2−ϕ̂), (6.2)

a2 = csc(ϕ1−ϕ2) · sin(ϕ1−ϕ̂). (6.3)

y-coordinate: The y-coordinate ŷ is a linear combination of x1, x2, and y1 if, again, (b1 i)
and (b1 ii) are fulfilled and

(b2iii) the center view is not positioned in the north pole of the viewing hemisphere.
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The coefficients of this linear combination are more complex. Two of them depend on
ϕ1, ϕ2, ϕ̂, λ1, and λ̂. The third of them depends on λ1 and λ̂ only. In detail:

ŷ =
2∑

i=1

bi · xi + b3 · y1 (6.4)

with

b1 = cos(ϕ2−ϕ̂) · csc(ϕ1−ϕ2) · sin(λ̂) − cos(λ̂) · cot(ϕ1−ϕ2) · tan(λ1), (6.5)

b2 = csc(ϕ1−ϕ2) ·
(
cos(λ̂) · tan(λ1) − cos(ϕ1−ϕ̂) · sin(λ̂)

)
, (6.6)

b3 = cos(λ̂) · sec(λ1). (6.7)

Three Sample Views

x-coordinate: For three sample views the linear combination for the x-coordinate x̂ is the
same as for two sample views. It depends only on x1 and x2 if the same conditions (b1 i)
and (b1 ii) as for two sample views hold.

y-coordinate: The y-coordinate ŷ is a linear combination of y1, y2, and y3 if (b1 i), (b1 ii),

(b4iii) λ1 and λ3 are not equal and

(b4 iv) the center view is not positioned on the equator of the viewing hemisphere.

The coefficients depend on ϕ1, ϕ2, ϕ̂, λ1, λ3, and λ̂. In detail:

ŷ =
3∑

i=1

biyi (6.8)

with

b1 = csc(λ1−λ3) · csc(ϕ1−ϕ2) ·[
cos(ϕ̂) · sin(λ̂) ·

(
cos(λ3) · sin(ϕ2) − cot(λ1) · sin(λ3) · sin(ϕ1)

)
+

sin(λ̂) · sin(ϕ̂) ·
(
cos(λ3) · cos(ϕ2) − cos(ϕ1) · cot(λ1) · sin(λ3)

)
−

cos(λ̂) · sin(λ3) · sin(ϕ1−ϕ2)
]
, (6.9)

b2 = csc(λ1) · csc(ϕ2−ϕ1) · sin(λ̂) · sin(ϕ1+ϕ̂), (6.10)

b3 = csc(λ1−λ3) · csc(ϕ1−ϕ2) ·(
cos(λ̂) · sin(λ1) · sin(ϕ1−ϕ2) +

cos(λ1) · sin(λ̂) ·
(
sin(ϕ1+ϕ̂) − sin(ϕ2+ϕ̂)

)
. (6.11)

The calculation of only one point position (x̂, ŷ) of the set of object point positions
for an unfamiliar view has been described now. These calculations are performed for
all points. After rounding to integer values this results in the set X̂(p̂,q̂) of object point

positions for the unfamiliar view (p̂, q̂) = (ϕ̂, λ̂).
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Figure 6.4: Triangulation. The Delaunay triangulation of the set X̂(p̂,q̂) ∪ Ŷ(p̂,q̂) is superimposed

on the original image of view (p̂, q̂) = (7, 11) of the “Tom” object, which is to be morphed (compare

with figure 6.6).

6.1.2 Warping From Familiar to Unfamiliar Views

In this subsection the second step of the view morphing algorithm is described. Given
the original gray level image I(p,q) of the center view (p, q) of the view bubble in question

together with its original object point positions X(p,q) and given the set X̂(p̂,q̂) of object
point positions for the unfamiliar view (p̂, q̂) the task is now to derive the final morphed
image Î(p̂,q̂) of the unfamiliar view (p̂, q̂). This morphed image is obtained by warping image

I(p,q) according to the transformation which is provided by X(p,q) and X̂(p̂,q̂). Wolberg [83]
defines the term digital image warping as “geometric transformation of digital images”. It
means the redefinition of the spatial relationship between points in an image.

To obtain Î(p̂,q̂), sets Y(p,q) and Ŷ(p̂,q̂) of auxiliary vertices are inserted at the boundaries

of I(p,q) and Î(p̂,q̂), respectively. The subjoined vertices are positioned for both images at
the same locations, that is to say, equidistantly and starting at position (0, 0) in accordance
with the generation of grid graphs described in section 3.5. Then the point set X̂(p̂,q̂)∪Ŷ(p̂,q̂)

is triangulated by applying an algorithm proposed by Mehlhorn and Näher [37], which
starts with an arbitrary triangulation and afterwards performs Delaunay flips to obtain
a Delaunay triangulation (see figure 6.4). The triangulation of X̂(p̂,q̂) ∪ Ŷ(p̂,q̂) is conferred
to the corresponding vertices in the set X(p,q) ∪ Y(p,q). Both triangulations then allow a
simple, linear interpolation of pixel positions inside corresponding triangles yielding the
sought morphed view Î(p̂,q̂). This last step is described now.

Triangle Interpolation for View Morphing

To each pixel of image Î the gray value of the corresponding pixel in image I should
be assigned. Each pixel of Î lies in one triangle provided by the preceding Delaunay
triangulation of X̂ ∪ Ŷ. The following derivation is described for one triangle only (see
figure 6.5).

For each v̂ in a triangle (̂s, t̂, û) in Î the corresponding position v in the corresponding
triangle (s, t,u) in I is to be located with ŝ, t̂, û ∈ X̂ ∪ Ŷ , and s, t,u ∈ X ∪Y. To this end

v̂ = (
v̂1

v̂2

1
) can be expressed as linear combination of ŝ, t̂, and û with coefficients c1, c2, c3

with
∑3

i=1 ci = 1, which means that c1, c2, and c3 are the areal coordinates of v̂ with
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Figure 6.5: Corresponding triangles in I and Î. See text for a description.

respect to the triangle (̂s, t̂, û):
v̂ = M̂ · c (6.12)

with

M̂ =



ŝ1 t̂1 û1

ŝ2 t̂2 û2

1 1 1


 . (6.13)

detM̂ 6= 0 is met for the non-degenerated triangles (as they are provided by the applied
triangulation algorithm). This allows the notation

c = M̂−1 · v̂. (6.14)

In the same manner one can express the sought vector v as linear combination of s, t, and
u with the same coefficients ci:

v = M · c (6.15)

with

M =



s1 t1 u1

s2 t2 u2

1 1 1


 . (6.16)

Along with equation 6.14 this provides v by

v = M · M̂−1 · v̂. (6.17)

Finally, after rounding v to integer values, the pixel at position v̂ in Î gets the gray
level value of the pixel at position v in image I. As the whole image is partitioned into
triangles this procedure yields the morphed image Î. Figures 6.6 and 6.7 give two examples
of morphed views.

6.2 Evaluation of Morphed Views

In the previous section was described how an arbitrary unfamiliar view of an object can be
generated from two or three sample views of the object. Now I will turn to the question of
the quality of such a morphed view. For that purpose a relative error between a morphed
view and its referring original view is calculated. This is described in subsection 6.2.1. In
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morphed view (7, 11)

original view (7, 11)

center view (3, 7) east view (14, 7)

north view (3, 14)

Figure 6.6: Example of Morphed View for Object “Tom”. View (7, 11) is morphed from the

three sample views (3, 7), (14, 7), and (3, 14).

the remaining subsections the dependency of the relative errors of morphed views on the
numbers of view bubbles which constitute the object representation and on the tracking
threshold which is used to generate the view bubbles is examined by a statistical description
of large data sets of errors obtained experimentally.

6.2.1 Relative Errors

Usually in error calculation one is interested in the relative error between the true value
of a quantity (in this case I(p̂,q̂)) and a measured or inferred value (in this case Î(p̂,q̂)). The
relative error is defined by the difference between the true and the measured value devided
by the true value without taking the absolute value of this quotient [78]. However, often
only the absolute value of the relative error is of interest. For one pixel of the images

in question this absolute relative error is defined by
∣∣∣(i− î)/i

∣∣∣ if i and î are the gray

values of corresponding pixels in I and Î. As this definition comprises a disadvantageous
dependency of the error on the intensity of the concerned pixel, the error is calculated not
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morphed view (14, 16)

original view (14, 16)north view (8, 17)

center view (8, 10) east view (15, 10)

Figure 6.7: Example of Morphed View for Object “Dwarf”. View (14, 16) is morphed from

the three sample views (8, 10), (15, 10), and (8, 17).

relative to the true value i but relative to the range of values of the images:

emax(I, Î) = max
i∈I,̂i∈Î

∣∣∣i− î
∣∣∣ (6.18)

where i and î are gray values of arbitrary pixels in I and Î, rather than gray values of
corresponding pixels. Now a (preliminary) relative error between I and Î can be defined
by

ǫ′morph(I, Î) :=
1

N·M · 1

emax(I, Î)
·

N ·M∑

j=1

∣∣∣ij − îj
∣∣∣ (6.19)

where N·M is the size of the images. To be robust against slight translations of the object
in the image plane Î is shifted across I with a small offset (13 pixels) in all four directions.
For all shifting positions ǫ′morph is calculated. Then the final relative error between Î and
I is defined as the minimal ǫ′morph over all shifting positions:

ǫmorph(I, Î) := min
shift pos.

ǫ′morph(I, Î). (6.20)

6.2.2 Methods

In the last chapter the sparse representation R of an object has been introduced, which
depends on the similarity threshold τ of the tracking algorithm and examples of R for
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Figure 6.8: Positions of Unfamiliar Views Which are Morphed for Statistics. For each view

bubble of a particular partitioning of the viewing hemisphere, which is given by a sparse represen-

tation R, a morphed version of the unfamiliar views marked by dots is generated. As described in

section 6.1 in the case of three sample views the object point positions of each unfamiliar view are

calculated from the point positions in the center, the north and the east border view of the view

bubble, which are marked by small squares (compare with figure 6.2) whereas in the case of two

sample views only the center and east views are used.

five different values of τ have been given in section 5.2. For each of these partitionings
of the viewing hemisphere unfamiliar views are morphed now. For each view bubble of a
particular partitioning views are morphed in the first quadrant as depicted in figure 6.8.
Only every second view is generated, and that from two and from three sample views as
described in section 6.1.1 Then for each morphed view Î the relative error ǫmorph(I, Î)
is calculated. This provides ten data sets for each object: “relative errors of morphed
views generated from two sample views” and “relative errors of morphed views generated
from three sample views” for five different partitionings each. For each data set the mean
and the maximal relative errors are calculated and depicted in diagrams depending on the
number ν of view bubbles in R and on the similarity threshold τ for tracking. In addition,
the Levenberg-Marquardt method for non-linear parameter fitting [40] is performed again
to fit the mean errors depending on ν. The fittings are performed separately for both
objects as well as separately for morphing from two or three sample views, respectively.
The resulting parameters for the fitting curves of these four data sets are then averaged
and the final curve is displayed in the diagrams with the mean and maximal relative errors.
The same procedure is performed for fitting the mean errors depending on τ . This allows
a comparison of the quality of morphed views between the tested objects and between
morphing from two and from three sample views.

1For the linear combination of object point positions the conditions (b1 i) to (b4 iv) must be met. This
is guaranteed by excluding some view bubbles from the statistic evaluation. In detail: (b1 i) and (b1 ii)
are met for all view bubbles under inspection, whereas (b2 iii), (b4 iii), or (b4 iv) are violated for the
“Tom” object twice for τ = 0.85, once for τ = 0.9, and 89 times for τ = 0.95, and for the “dwarf “ object
once for τ = 0.85, once for τ = 0.9, and 44 times for τ = 0.95.
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6.2.3 Results

First let me make some remarks on ǫmorph. The use of only one single parameter to measure
the quality of a morphed view holds the danger that very different artefacts can yield the
same value of the parameter. The results for ǫmorph show an increasing quality of morphed
views for a decreasing relative error. That means, the visual impression correlates with
the performance of ǫmorph. Furthermore, the relative errors grow larger if the distance
between the unfamiliar view (p̂, q̂) and the sample view (p, q) is increasing. Both effects
are demonstrated in figure 6.9 and support the reasonability of using ǫmorph as a measure
of quality.

Figure 6.10 shows the mean and maximal relative errors and the fitting curves depend-
ing on the number of view bubbles in the representations of the “Tom” object and the
“dwarf” object, respectively. The mean relative errors for both objects for two as well as
three sample views are monotonicallly decreasing with an increasing number of view bub-
bles in the object representation R, i.e., with a decreasing size of the view bubbles. The
correlation between the mean errors and the number ν of view bubbles can be expressed
by a logarithmic function

g(ν) = c · lnν + d (6.21)

for ν ∈ [4, 289], which is the range of numbers of view bubbles. Figure 6.11 shows the
same data plotted against the similarity threshold τ for the tracking algorithm which was
used to generate the object representation. Here the fitting function

h(τ) = a · τ + b, (6.22)

τ ∈ [0.75, 0.95], for the mean errors is linearly decreasing. These approximations are
consistent with the exponential fitting function ν = f(τ) described in section 5.2 in the
last chapter (see figure 5.5 and equation 5.2) and they allow the estimation of the necessary
number of view bubbles in R (or the necessary similarity threshold for the generation of
the representation) for a given mean relative error of the morphed unfamiliar views. For
example, if the mean relative error should be 3% equation 6.21 provides a value of about
73 view bubbles necessary in the sparse representation.

The figures 6.10 and 6.11 reveal smaller relative errors for the “Tom” object than for
the “dwarf” object.

Surprisingly at a first glance, the errors for morphing from two sample views are
only slightly larger than the errors for morphing from three sample views; for the finest
partitioning of the viewing hemisphere they are even smaller than for three sample views.

6.2.4 Discussion

The morphing experiments have been performed for every second view in the first quadrant
of each view bubble only. I assume that the results can be transferred to the remaining
views, which have not been tested. Concerning the quality of the morphed views two
weaknesses can be noticed. Both are inherent in the problem of view synthesis from
sample views. The first is connected with self-occlusions of object parts. Only parts of the
object which are visible in image I(p,q) can be mapped in image Î(p̂,q̂). A demonstration of
this effect is shown in figure 6.9. View (13, 13) is morphed incorrectly, because the tail of
“Tom”, which is visible in the original view (13, 13) is not visible in the source view (3, 7).
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The second weakness can be explained by a visibility constraint called monotonicity, as
Seitz and Dyer [64] point out. For two sample views this constraint requires that all
visible object points appear in the same order in the sample views. Then, theoretically,
intermediate views can be synthesized unambiguously, otherwise unfamiliar views cannot
be predicted exactly. For three sample views the pairwise monotonicity between every pair
of views inside the triangle spanned by the sample views permits the synthesis of any view
in this triangle. Anyway, the range of views that can be predicted may not be larger than a
single aspect of an aspect graph (see section 2.1.2). As monotonicity in general cannot be
measured a priori I can only assume that for smaller view bubbles, i.e., for larger similarity
thresholds τ , it is met, whereas for larger view bubbles it cannot be guaranteed. Both of
these general problems can account for the fact that the quality of the morphed views is
decreasing with a decreasing number of view bubbles in R as well as with an increasing
distance of the unfamiliar view from the sample views. In theory there are no restrictions
on the position of the unfamiliar view in relation to the sample views (see section 6.1.1
where no conditions on ϕ̂ and λ̂ are established). Thus, a large distance should provide
equal quality morphs as small distances as long as the monotonicity constraint is met
and no self-occlusions occur. Of course, the results also depend on the density and the
positions X(p,q) of the graph vertices in the source view I(p,q) and on the quality of the
correspondences provided by the tracking algorithm, i.e., the point sets X e

(p,q) and X n
(p,q).

One possible reason why the relative errors for the “Tom” object are in general smaller
than for the “dwarf” object may lie in the fact that self-occlusions occur earlier for the
“dwarf” because of its convex shape (see figure 3.2 for an example). These self-occlusions
can lead to more faulty reconstructions.

The very small differences measured between the relative errors for morphing from two
and from three sample views are not really surprising taking into account, that from the
formulas given in section 6.1.1 no difference at all is expected for ideal conditions, i.e.,
for compliance of monotonicity and absence of self-occlusions within the range of recon-
struction. Thus, the differences which are measured can only be reducible to deviations
from the ideal conditions. And, in fact, for larger view bubbles in the representation the
difference between two and three sample views is more distinctive than for smaller view
bubbles (particularly obvious in figure 6.11 for the “dwarf” object). This is a hint that
the differences occur due to self-occlusions or a violated monotonicity constraint, which
are more likely for larger distances between the sample views. In other words, for a large
distance between two sample views a third sample view can provide more information for
a better reconstruction than for a smaller distance beween two sample views. Further-
more, the differences between morphing from two and from three sample views are more
distinctive for the “dwarf” object, which can be explained by the same argument: more
self-occlusions occur for the “dwarf” than for “Tom”. For very small distances between
sample views, as given for the finest partitioning of the viewing hemisphere, almost no
self-occlusions or violations of the monotonicity constraint should occur. In this case the
same results from two as well as three sample views could be expected. However, the data
which represents the third view is erroneous due to the imperfect tracking of correspond-
ing object points. Thus, for very small distances between the sample views the third view
probably adds an additional error instead of compensating for the error introduced by
the second view. This can explain the fact, that for the finest partitioning of the viewing
hemisphere two sample views provide even better results than three sample views.



6.2. EVALUATION OF MORPHED VIEWS 61

Another interesting aspect of view synthesis from three sample views which could have
been investigated is the question of differences in error rates depending on the position of
the synthesized view inside or outside of the triangle spanned by the sample views. This
is implied by the triangles in the first row of figure 6.9. The effect of the unfamiliar view’s
position inside or outside the triangle has not been analyzed in detail, but the fact that
there are gradually increasing relative errors instead of an abrupt rise when the triangle is
left suggests that the inside/outside condition does not have a strong effect on the results.

I would like to make some remarks on the biological plausibility of object perception by
a linear combination of sample views. As mentioned earlier in this chapter (section 6.1.1)
Ullman and Basri’s approach [74] is of theoretical importance and has not been applied to
real-world images, because perfect correspondences between the sample views have to be
provided and no self-occlusions of the objects are allowed to occur. The psychophysical
study carried out by Bülthoff and Edelman [9] mentioned in section 2.2.4 yielded a rejection
of this linear combination model. But they also base their study upon the assumption
of perfect correspondences and very few self-occlusions. For example, in parts they use
wire-like test objects. If one starts from realistic assumptions such as real-world objects
with self-occlusions and imperfect correspondences as done for this thesis, my results
yielded by the linear combination approach are consistent with Bülthoff and Edelman’s
findings. For instance, the decreasing recognition rates for views which lie outside the
connecting line between two sample views have been a reason for them to reject the linear
combination model. But this is exactly what my linear combination approach under
realistic assumptions provides: decreasing quality of an unfamiliar view with an increasing
distance from the sample views.

Summarizing, I can say that a mean relative error of morphed views of about 5% for a
reasonable partitioning of the viewing hemisphere seems to be small enough not to be able
to question the linear combination of object point positions in familiar views to generalize
to unfamiliar views. This partly answers question Q4 from the introduction (chapter 1).
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view (13, 13)
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view (11, 11)
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view (5, 9)
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(3, 14)
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morphed
from two
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original
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Figure 6.9: Performance of the Relative Error. The last two rows of this diagram show

unfamiliar views of the “Tom” object which were morphed from two or three sample views. For

each case the sample views were the same as depicted in figure 6.6. Only the position of the

unfamiliar view varies from column to column. The first row shows the positions of the views in

relation to each other. In the second row the original images of the unfamiliar views are displayed

to be compared with their morphed versions. For two as well as for three sample views the relative

error increases with an increasing distance of the unfamiliar view from view (3, 7), which is the

source of the gray level values for the morphed view. The quality of the morphed views assessed by

visual inspection decreases with an increasing distance as well. The differences between morphing

from two and from three sample views are negligible for this example.
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Figure 6.10: Correlation Between Morphing Errors and Number of View Bubbles. The

fitting function is calculated from the data sets for both objects and has the parameters c = −0.014

and d = 0.09.
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Figure 6.11: Correlation between Morphing Errors and Similarity Threshold. The fitting

function is calculated from the data sets for both objects and has the parameters a = −0.275 and

b = 0.276.



Chapter 7

Virtual Views

In the last chapter the possibility to generate images of unfamiliar views of an object from
the few views stored in its sparse representation R was demonstrated. However, as the
main goal of this thesis is the modelling of perception functions such as the estimation of
an object’s pose, rather than view synthesis, it is neccessary to generate representations
of unfamiliar views from views constituting R. In equation 3.9 the representation of a
view has been introduced in terms of pairs of vertex positions and feature vectors. In
the last chapter of these two only the vertex positions of unfamiliar views from sample
views were calculated. In this chapter, now, the calculation also of feature vectors from
sample views will be described, resulting in complete representations of unfamiliar views,
as needed for perception. The feature vectors of unfamiliar views are derived by an in-
terpolation of feature vectors in sample views, introduced in subsection 7.1.1. A resulting
view representation can be visualized by a reconstruction of the view from the new feature
vectors. The reconstructed view is denoted by the term “virtual view”. This is described
in subsection 7.1.2. The quality of the representations of unfamiliar views is assessed in
this chapter in section 7.2 by an error analysis and a statistical description of a large set
of virtual views, similar to the evaluation of morphed views in the last chapter. Further-
more, the quality of the generated representations of unfamiliar views has to be proved in
chapter 8, where they are applied to pose estimation.

7.1 Virtual View Generation

The same processing scheme as the one used for the generation of morphed views described
in section 6.1 is applied here to generate virtual views. Virtual views are generated exclu-
sively inside view bubbles because only there correspondences are available. The sample
views for the generation of virtual views are the same as in chapter 6 in the case of two
as well as three sample views. They depend on the virtual view’s position inside its view
bubble.
The generation of virtual views proceeds in three steps (see figure 7.1):

1. The first step is the same as for the generation of morphed views: object point posi-
tions of the unfamiliar view are derived by linear combinations of the corresponding
point positions in the sample views, resulting in the set X̂(p̂,q̂) of point positions in
the unfamiliar view (p̂, q̂), as described in subsection 6.1.1.

65
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Figure 7.1: Flowchart of the Generation of Virtual Views From Three Sample Views. A

virtual view of an object is generated in three steps. Firstly, the positions X ,X e and Xn of object

points in the sample views are linearly combined to the unfamiliar view’s set of point positions X̂
as described in subsection 6.1.1 (see equations 3.9 and 4.1). Secondly, an interpolation between

the feature vectors F ,Fe and Fn at object points in the sample views is performed yielding the

set F̂ of feature vectors, which describes the corresponding object points in the unfamiliar view.

The first and second step provide the sought representation Ĝ of an unfamiliar view. From this

calculated representation the virtual view V̂ is reconstructed in the third step.

2. In the second step the object point features of the unfamiliar view are derived by
interpolations between features at corresponding object points in the sample views.
For the example of three source views with the unfamiliar view lying in the first
quadrant of its view bubble the problem can be formulated as follows:
given: the sets F(p,q),Fe

(p,q) and Fn
(p,q) of object point features in the sample views and

the positions of the sample views and the unfamiliar view on the viewing hemisphere,
sought: the set F̂(p̂,q̂) of object point features in an unfamiliar view (p̂, q̂) which lies
in the first quadrant of view bubble B(p,q).
For the case of other quadrants or only two sample views the given feature sets vary
as described in section 6.1.

In subsection 7.1.1 a solution for this problem is proposed.

After this second step the sought representation Ĝ(p̂,q̂) of an unfamiliar view (p̂, q̂) is

available, because the sets X̂(p̂,q̂) and F̂(p̂,q̂) have only to be combined to

Ĝ(p̂,q̂) =
〈
X̂(p̂,q̂), F̂(p̂,q̂)

〉
(7.1)

(compare with equation 3.9).

3. In the third step a virtual view is generated by an image reconstruction from the
interpolated Gabor wavelet responses of graph Ĝ(p̂,q̂). This is described in more detail
in subsection 7.1.2.
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Figure 7.2: Weighting of Feature Vectors for Three Sample Views. In this example, w1 is

the strongest weight, because the unfamiliar view (p̂, q̂) is closer to sample view (p1, q1) than to

the sample views (p2, q2) and (p3, q3).

7.1.1 Interpolation of Object Point Features

In this subsection formulas are given for step two of the algorithm for generating vir-
tual views. Let Ĵ(p̂,q̂) denote one feature vector of the set F̂(p̂,q̂) of all feature vectors

of the unfamiliar view (p̂, q̂) (compare with section 3.5). Ĵ(p̂,q̂) should be interpolated
from the corresponding feature vectors J(p1,q1),J(p2,q2), and J(p3,q3) in the sample views
(p1, q1), (p2, q2), and (p3, q3) (see figure 7.2). The order of numeration is the same as in
subsection 6.1.1. The interpolation consists in calculating a weighted mean. In the case of
two sample views, Ĵ(p̂,q̂) is calculated as weighted sum of J(p1,q1) and J(p2,q2), in the case
of three sample views it is a weigthed sum of J(p1,q1),J(p2,q2)and J(p3,q3):

Ĵ(p̂,q̂) =
S∑

i=1

wi J(pi,qi) (7.2)

where S = 2 or 3 is the number of sample views and
∑S

i=1 wi = 1. The weights wi depend
on the relative position of the unfamiliar view with respect to the sample views. A smaller
distance between the unfamiliar view and a sample view leads to a stronger weight than

a larger distance. Let di := d
((p̂

q̂

)
,
(pi

qi

))
be the Euclidean metric for i = 1, . . . , S. Then

the weights are calculated depending on the number of used sample views as listed in the
next two brief sections.

Two Sample Views

w1 = d2/(d1 + d2), (7.3)

w2 = d1/(d1 + d2). (7.4)

Three Sample Views

w1 = d2d3/(d1d2 + d1d3 + d2d3), (7.5)

w2 = d1d3/(d1d2 + d1d3 + d2d3), (7.6)

w3 = d1d2/(d1d2 + d1d3 + d2d3). (7.7)
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At this point the complete representation Ĝ(p̂,q̂) of an unfamiliar view, which can be utilized
for perception tasks, has been derived from the representations G(pi,qi) of the sample views,
i = 1, . . . , S.

7.1.2 Virtual View Reconstruction

In this subsection the reconstruction of images from labeled graphs in general, proposed
by Pötzsch et al. [57, 58], is introduced and the third step, that of the generation of virtual
views, is explained. In the last subsection the interpolation of feature vectors has been
described. Feature vectors throughout this thesis are Gabor filter responses, which have
been introduced in subsection 3.4.2. The Gabor transform was described by the operator
W:

J~k
= (WI)~k

for a Gabor kernel specified by the parameter ~k (see equation 3.6). Because of the linearity
of the operator W the reconstructed version Ĩ of I should be retrievable from the values
J~k

by a linear combination

Ĩ(~x) = V ~J =
∑

~k

J~k
b~k(~x) (7.8)

with appropriate basis functions b~k(~x). Since the Gabor filters ψ~k
are not orthonormal it

is necessary to choose a linear combination of ψ~k
for the basis functions b~k instead of the

functions ψ~k
themselves:

b~k(~x) =
∑

~l

(Ψ−1)~k~l
ψ~l

(~x) with Ψ~k~l
:=

∫
ψ~k

(~x)ψ~l
(~x) d~x. (7.9)

The latter dot products of the Gabor filters can be computed analytically, which is done
in [57].

As a single object view is represented by a graph labeled with jets (which are vectors
of Gabor wavelet responses) it is interesting to visualize the amount of information in
such a representation by a reconstruction of the view from the Gabor responses. For this
purpose, the reconstruction described above can be approximated by a local reconstruction
of each jet restricted to a Voronoi area around its location. This provides the image V
reconstructed from its original graph G as displayed in figure 7.3.

As the feature vectors of the sample views, from which the feature vectors of the
unfamiliar view have been interpolated, are Gabor wavelet responses, also the interpolated
vectors can be interpreted as Gabor wavelet responses. A reconstruction V̂(p̂,q̂) from these

“virtual” jets of the representation Ĝ(p̂,q̂) of an unfamiliar view (p̂, q̂) is performed and
completes the last step of the generation of virtual views. An example of a reconstructed
image V̂(p̂,q̂) is displayed in figure 7.3 as well.

7.2 Evaluation of Virtual Views

In the last section the generation of the representation Ĝ of an unfamiliar view was derived.
It has been shown that this representation can be visualized by a reconstruction of a
virtual view V̂ from Ĝ. This virtual view can be helpful exploring the quality of the
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representation Ĝ by a comparison with an image V which is reconstructed from the original
graph G of the unfamiliar view using the same reconstruction method. In this comparison
the images V̂ and V appear in the same roles as the morphed image Î and its original
version I in section 6.2 in the last chapter. The evaluation of the quality of the virtual views
has been reported by Peters and von der Malsburg [52] and is performed in analogy to the
evaluation of morphed views described in section 6.2. In particular, the same relative error
is calculated between V and V̂, which is denoted by ǫvirt(V, V̂ ) in this chapter (compare
with formula 6.20), and analogous statistics are evaluated for large data sets of errors
obtained experimentally.

7.2.1 Methods

Actually, it is sufficient to refer to subsection 6.2.2 to describe the mehods used to analyze
the quality of virtual views, and thus the quality of generated representations of unfamil-
iar views. Each detail of the methods used for assessing morphed views is transfered to
the methods of evaluating virtual views. In particular, for each of the five different parti-
tionings of a viewing hemisphere, which have been introduced in chapter 5, virtual views
are generated according to the scheme depicted in figure 6.8: in the case of two sample
views the object point features of an unfamiliar view marked by a dot are interpolated
from the object point features in the center and east view of the view bubble, in the case
of three sample views they are calculated form the center, the east, and the north view.
The interpolation of feature vectors functions as described in subsection 7.1.1. After the
generation of a virtual view V̂ and the image V for each of these unfamiliar views and after
calculating ǫvirt(V, V̂ ), the data sets “relative errors of virtual views generated from two
sample views” and “relative errors of virtual views generated from three sample views”
are obtained for each partitioning of the hemisphere for both objects. With these data
sets the same parameter fitting is performed as described in subsection 6.2.2 for morphed
views. The resulting data and curves for virtual views are depicted in diagrams to compare
the quality of virtual views between both objects and between an interpolation of feature
vectors from two and from three sample views.

7.2.2 Results

The results obtained in this chapter resemble those obtained in chapter 6 and are depicted
in figures 7.4 and 7.5. Figure 7.4 shows the mean and maximal relative errors and the
fitting curves depending on the number of view bubbles in the representations of the
“Tom” object and the “dwarf” object, respectively. As for the mean relative errors of
morphed views the mean relative errors of virtual views are monotonously decreasing with
an increasing number of view bubbles in the object representation R for both objects
and for two as well as three sample views. The correlation between the mean errors and
the number ν of view bubbles can be expressed by the qualitatively same logarithmic
function 6.21 with different parameters.

Figure 7.5 shows the same data plotted against the similarity threshold τ for the
tracking algorithm which was used to generate the object representation. Here the fitting
function is also a linearly decreasing function 6.22, also with slightly different parameters
as in chapter 6. The fitting functions allow the estimation of the necessary number of
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view bubbles in R (or the necessary similarity threshold for the generation of the repre-
sentation) for a given mean relative error of the virtual views and thus for a given quality
of representations of unfamiliar views. For example, if the mean relative error should
be 3% equation 6.21 provides a value of about 166 view bubbles necessary in the object
representation.

As in the case of morphed views the figures 7.4 and 7.5 reveal smaller relative errors
for the “Tom” object than for the “dwarf” object. In addition, the errors for the feature
interpolation from two sample views are again only slightly larger than for the interpolation
from three sample views and for the finest partitioning of the viewing hemisphere they are
even smaller than for three sample views, which is another parallel to the results of the
last chapter.

7.2.3 Discussion

Each of the results described in the last subsection can be explained by the same phenom-
ena as described in detail in subsection 6.2.4. The decreasing error rates for an increasing
number of view bubbles in the object representation, as well as the lower error rates for
the “Tom” object than for the “dwarf” object, as well as the slight advantage of an inter-
polation from three sample views compared to an interpolation from two sample views for
larger view bubbles, as well as the reversed relationship for the finest partitioning of the
viewing hemisphere can be reduced to self-occlusions and the monotonicity constraint.

As on the one hand, object recognition with graphs labeled with Gabor wavelet re-
sponses has been proven to be very powerful (for example by Lades et al. [29]) and as on
the other hand, the errors of the reconstruction of an unfamiliar view from its inferred
representation Ĝ are quite small (for instance, about 5% for a convenient partitioning of
the viewing hemisphere), I expect reasonable object recognition rates also from Ĝ, but
of course this still has to be proved by experiments. To verify the applicability of Ĝ for
perception tasks pose estimation experiments have been performed, which are described
in the next chapter. Another approach to obtain the representation Ĝ of an unfamiliar
view could be the extraction of Ĝ from the morphed version Î of the unfamiliar view. In
this thesis this was not subjected to investigation.

Concluding I can say that, together with the results of chapter 6, the results of this
chapter allow an answer to question Q4 posed in the introduction. The linear combination
of object point positions and the interpolation of object point features can be assessed as
useful strategies to combine familiar to unfamiliar views. Because of the almost perfect
reconstruction results for morphed as well as virtual views from sample views with small
distances I suppose that the boundaries of the range of generalization from familiar to
unfamiliar views is determined only by specific object properties such as self-occlusions
instead of limitations of the combining methods introduced in the last chapters.
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Figure 7.3: Example of Virtual View Generation. a) In the first two steps of the algorithm the interpolated graph Ĝ(p̂,q̂) = Ĝ(6,10), which

representa the unfamiliar view (p̂, q̂) = (6, 10), is calculated by a linear combination of vertex positions and an interpolation of feature vectors

of the sample views (center, east, and north view). b) In the third step of the algorithm the virtual view V̂(p̂,q̂) = V̂(6,10) is reconstructed from

Ĝ(6,10). c) View (6, 10) can also be reconstructed from its original graph G(p̂,q̂) = G(6,10) yielding image V(p̂,q̂) = V(6,10). d) To evaluate the

quality of the information in the interpolated graph Ĝ(6,10), V(6,10) and V̂(6,10) can be compared.
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Figure 7.4: Correlation BetweenVirtual View Errors and Number of View Bubbles. The

fitting function is calculated from the data sets for both objects and has the parameters c = −0.009

and d = 0.076.
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Chapter 8

Pose and Sequence Estimation

In the last chapters the sparse representation R of a three-dimensional object has been
derived, which consists of representations of only some views of the object. Furthermore,
it has been shown that the representations of views not contained in R can be derived
from the sample views. Herewith the information necessary to perform perception tasks
is available. In this chapter the concept of view-based object perception is verified by
using R and the view generating techniques to estimate the pose of an object, which is an
essential function of perception, e.g., when the object is to be grasped. The poses of smooth
test sequences of the rotating objects are estimated from the original (i.e., non-degraded)
images and from images with additive noise. Two different estimation experiments are
performed. On the one hand, each view of a test sequence is treated independently. These
experiments are denoted by the term “single pose estimation”. On the other hand, the
neighborhood of successive views of a test sequence can be exploited. Experiments which
take this temporal context into account are denoted by the term “sequence estimation”. In
the first two sections of this chapter experiments with non-degraded images are described.
Section 8.1 deals with single pose estimation, section 8.2 with sequence estimation. In
section 8.3 single pose as well as sequence estimation experiments with test sequences
with a substantial amount of noise are described.

8.1 Single Pose Estimation

Given the sparse representation of the object in question and given a test view of the ob-
ject, the aim is the determination of the object’s pose displayed in the test view, i.e., the
assignment of the test view to its correct position on the viewing hemisphere. In this sec-
tion a solution to this problem is proposed (subsection 8.1.1) and the results of simulations
with a series of test views are reported (subsection 8.1.2) and discussed (subsection 8.1.3).

8.1.1 Methods

Let T be the test view, the pose of which should be estimated, and GT be its representing
graph, which is extracted from the original image of view T as described in section 3.5
after the test view has been divided into object and background segments as described in
section 3.3. This means that no a priori knowledge about the object is provided. Remem-
ber that a view is determined by its position on the viewing hemisphere (see section 3.2)

75
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and remember the sparse representation R = {Bi}i∈R = {〈Gi,Gw
i ,Ge

i ,Gs
i ,Gn

i 〉}i∈R of an
object where R is the cover of the viewing hemisphere defined in subsection 5.1.1. Let
Ii, i ∈ R, be the center images of the view bubbles the graphs Gi are extracted from. The
single pose estimation algorithm for estimating the pose of a single test view T proceeds
in two steps:

1. Match GT to each image Ii, i ∈ R, as described in section 3.6 using the similarity
function Sabs (equation 3.7). As a rough estimate of the object’s pose choose that
view bubble B̂ the center image Ii of which provides the largest similarity to GT .

2. Generate the representation Ĝ for each unfamiliar view which is included in B̂ using
the techniques described in subsections 6.1.1 and 7.1.1 for two sample views. From
each of the calculated graphs Ĝ generate the corresponding virtual view V̂ (see
subsection 7.1.2). Compare each of the virtual views V̂ with the virtual view V̂T

reconstructed from GT using the error function ǫvirt(V̂ , V̂T ) (see section 7.2). The
estimated pose T̂ of the test view T is the position on the viewing hemisphere of
that virtual view V̂ which provides the smallest error ǫvirt.

The estimation error between T and T̂ can be determined by the Euclidean distance as it
has already been used in subsection 7.1.1:

ǫesti(T, T̂ ) = d(T, T̂ ). (8.1)

For the reconstruction of the virtual views only two sample views are used, because of
the insignificant differences between reconstructions from two and three sample views (see
figures 7.4 and 7.5 in subsection 7.2.2).

For the evaluation of the algorithm three sequences T of ten test views each have been
chosen, which are used throughout this chapter. They are displayed in figure 8.1. For
both objects and for each partitioning of the viewing hemisphere the poses of these 30 test
views have been estimated.

8.1.2 Results

The illustrations in figure 8.1 indicate that pose estimation becomes more precise with
an increasing number of sample views in the object representation. This result has been
expected and is confirmed by an inspection of the mean estimation errors taken over the
30 test views for each object and each partitioning of the hemisphere separately. They are
summarized in the first column of table 8.1. With one exception for the “Tom” object the
mean errors are decreasing with an increasing value of τ . Figure 8.2 shows an example of
estimated poses.

8.1.3 Discussion

The results of the single pose estimation experiments for non-degraded images are amaz-
ingly good. This is particularly obvious for the example displayed in figure 8.2, taking
into account that the sparse representation of the “Tom” object contains only the repre-
sentations of those 30 views depicted in figure 5.6. This was the test sequence for which
the best result for τ = 0.75 was obtained, but also for a reasonable partitioning of the
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0.75 0.85 0.95τ
object

"dwarf"

"Tom"

single pose estimation, non−degraded images

Figure 8.1: Single Pose Estimation for Non-Degraded Images. For three partitionings of

the viewing hemisphere the results of the single pose estimation experiments are depicted. The

light gray squares indicate the views which are represented in the object representation R, black

dots mark the positions of the three test sequences T , and the estimated positions are tagged by

dark gray circles. The arrow points at the test sequence and its estimation which is displayed in

figure 8.2.

viewing hemisphere (τ = 0.85) the mean estimation errors are smaller than 5◦ for both
objects, which can be regarded as a remarkable result. This provides another argument
which supports the good quality of the calculated representations Ĝ of the unfamiliar views
and allows the conclusion that the proposed view-based approach to object perception is
suitable for pose estimation.
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mean errors, non-degraded images

single pose sequence
τ

estimation estimation

0.75 36.51◦ 33.91◦

0.8 3.63◦ 3.49◦

object
0.85 0.77◦ 0.77◦

“Tom”
0.9 3.35◦ 1.76◦

0.95 0.36◦ 0.12◦

0.75 20.54◦ 9.75◦

0.8 19.47◦ 3.38◦

object
0.85 4.2◦ 2.9◦

“dwarf”
0.9 2.65◦ 1.36◦

0.95 1.71◦ 0.77◦

Table 8.1: Mean Estimation Errors for Non-Degraded Images. Each value given in degrees

is the mean estimation error computed from the 30 test views. For example, for the “Tom” object

and the partitioning of τ = 0.75 the average distance of the estimated pose T̂ to the true pose T

is 36.51◦ if each view has been estimated independently (first column). In the second column

the mean errors are presented for the sequence estimation experiments, which are described in

section 8.2. For the “dwarf” object meansingle > meansequence is significant for τ = 0.75 on a

10%-level, for τ = 0.8 on a 5%-level, for τ = 0.85 on a 10%-level, for τ = 0.9 on a 1%-level, and

for τ = 0.95 on a 2.5%-level, which has been ascertained with the one-tailed t-test. The significant

values are enclosed in a rectangle.



8
.1

.
S
IN

G
L
E

P
O

S
E

E
S
T

IM
A
T

IO
N

79

estimated sequence

original sequence
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Figure 8.2: Example for Single Pose Estimation. This figure shows the images of the test sequence and its estimation which are marked in

figure 8.1. For this example the representation of the “Tom” object for τ = 0.75 has been chosen. It consists of the views which are depicted in

figure 5.6. In the first row the true poses of the object, which should be estimated, are displayed. The second row shows the poses which have

been estimated by treating each view of the sequence independently. The estimation error for this sequence averages 5.78◦.
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8.2 Sequence Estimation

Although the results reported in the last section are already satisfactory it could be possible
to achieve an improvement of the pose estimation results by incorporating information
which has not been utilized up to now. The temporal context of object views, which are
presented to an observer while the object rotates, could provide additional, useful hints to
the object’s pose. In subsection 8.2.1 I propose a pose estimation procedure which takes
into account that successive views of the test sequences are arranged contiguously on the
viewing hemisphere. Experiments are performed with the same test sequences as in the
previous section, the results of which are reported in subsection 8.2.2 and discussed in
subsection 8.2.3.

8.2.1 Methods

The views of the test sequences already used for single pose estimation are neighbors on
the viewing hemisphere, which means that the x− as well as the y−coordinate of the
positions of successive views deviate at most by one unit. Furthermore, no view appears
more than once in a sequence.

Let n̂ = |B̂| be the number of stored views contained in the view bubble B̂ which is
provided by step one of the single pose estimation algorithm for a single test view, and let N̂
be the smaller of n̂ and 10: N̂ = min(n̂, 10) . The results of the single pose estimation can
be improved by a sequence estimation algorithm which consists of two mechanisms. The
first mechanism can provide an improvement by fine-tuning inside the rough estimate B̂,
the second mechanism can correct single outliers of the estimated sequence if the rough
estimate failed.

1. “Fine-tuning” mechanism: For each view of the test sequence T the first step of
the single pose estimation algorithm is performed. Then, step two of the single pose
estimation algorithm is extended by the determination of a series of best estimates
of each view of the test sequence, instead of determining only one best estimate. In
detail, let Tj , j = 1, . . . , 10, be the views of the test sequence T . The N̂j best esti-
mates T̂jk, k = 1, . . . , N̂j , of test view Tj are the positions on the viewing hemisphere

of those virtual views which provide the N̂j smallest errors ǫesti (compare with sub-
section 8.1.1). This implies that they are contained in the same view bubble, which
has been determined by step one of the single pose estimation algorithm . The values
T̂jk are numbered in descending order of similarity, i.e., T̂j1 is the best estimate of

view Tj . In contrast to the single pose estimation, where T̂j1 is the estimated pose
of Tj , here the estimated pose is chosen from the set of the N̂j best estimates, taking
into account that T̂jk should be neighboring to its predecessor T̂j−1,k′.

The fine-tuning mechanism starts with the addition of T̂1,1 to an empty, preliminary
estimated sequence T̂pre. If T̂j−1,k′ has been added to T̂pre and T̂jk is sought as an

estimate of Tj , a loop runs for k = 1, . . . , N̂j and checks the neighborhood, i.e., the
angular distance, of T̂j−1,k′ and T̂jk. The first T̂jk which is neighboring to T̂j−1,k′ is

added to T̂pre, but only if it has not been added as estimate of an earlier view of T .
If this loop is left without having found any estimate of Tj , the first T̂jk is added to

T̂pre which has not been added before regardless of its neighborhood to T̂j−1,k′. Only
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if this search is not successful either, T̂j1 is chosen as estimate of Tj . This procedure
provides the preliminary estimated sequence T̂pre.

As each of the N̂j best estimates of a view Tj is contained in the same view bubble,
which has been determined as rough estimate of view Tj , this fine-tuning mechanism
can usually provide an improvement of the single pose estimation result only if the
rough estimation of Tj has provided the correct view bubble.

2. “Outlier” mechanism: As the first step of the single pose estimation algorithm

does not always provide satisfactory results, it is possible that T̂pre :=
(
T̂1, . . . , T̂10

)

still contains some outliers where the rough pose estimation of a single view failed
and the fine-tuning mechanism could not yield an improvement. Single outliers can
be corrected by the following mechanism. An estimated view T̂j , j =2, . . . , 9, which
has a large angular distance (in the sense of equation 8.1) to its predecessor T̂j−1

as well as to its successor T̂j+1, is corrected by chosing the mean position instead:
T̂j := 1

2 (T̂j−1 + T̂j+1). As a limit of distance 8 units on the viewing hemisphere
have been chosen.

T̂1 and T̂10 are treated separately thereafter. If d(T̂1, T̂2) ≥ 8 than T̂1 is replaced
by 2T̂2 − T̂3. This means that an outlier at the beginning of T̂pre is replaced by a
view which provides a smooth transition to the second and third estimated views
of the sequence, because T̂2 takes now the mean position between the new pose T̂1

and T̂3. (In case that the substitute for T̂1 does not lie in the range of the viewing
hemisphere, T̂1 is replaced by that view inside the range of the hemisphere which lies
closest to 2T̂2 − T̂3.) For an outlying pose T̂10 at the end of T̂pre the corresponding
procedure is performed. This results in the final estimated sequence T̂ .

To evaluate the quality of the sequence estimation algorithm the poses of the test se-
quences T have been estimated for both objects and each partitioning of the viewing
hemisphere.

8.2.2 Results

In the second column of table 8.1 the mean estimation errors computed from the three
test sequences with 10 views each are summarized for the sequence estimation. As in the
case of single pose estimation the mean errors are decreasing with an increasing value of τ
with one exception for the “Tom” object.

As expected, a comparison of the mean estimation error meansingle of the single pose
estimation with the mean estimation error meansequence of the sequence estimation yields
better results for the sequence estimation algorithm. For all partitionings and for both
objectsmeansequence ≤ meansingle holds. For the “dwarf” objectmeansingle > meansequence

is significant for all partionings of the hemisphere, which has been ascertained with the
one-tailed t-test .

Most of the improvements achieved by the sequence estimation are due to the fine-
tuning mechanism, because for most of the views to be estimated the first step of the
single pose estimation already provides the correct view bubble. This effect is exemplified
in figure 8.3, where three sequences and their typical estimates are shown for a reasonable
partitioning of the viewing hemisphere.
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8.2.3 Discussion

The figures 7.4 and 7.5 in the last chapter indicated a better quality of the calculated
representations Ĝ of unfamiliar views for the “Tom” object than for the “dwarf” object.
This may be a reason why the difference between the results from single pose and sequence
estimation is significant for the “dwarf” object, whereas for the “Tom” object it is not.
The better quality of the generated representations of unfamiliar views implies a better
result of the single pose estimation for the “Tom” object than for the “dwarf” object. That
means that the aid of the additional neighborhood information provided by the fine-tuning
mechanism of the sequence estimation algorithm has a larger effect on the improvement
of the results for the “dwarf” object than for the ”Tom” object. In general, the results
reported in the last subsection allow for the conclusion that the integration of information
from successive views can improve the estimate of an object’s pose from non-degraded
images.
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τ = 0.85

τ = 0.85

τ = 0.85

mean error: 1.44 mean error: 0.72

mean error: 1.59mean error: 2.54

mean error: 3.11 mean error: 1.44

single pose estimation sequence estimationof sequence
first image

non−degraded images

mean error: 1.44 mean error: 0.72

Figure 8.3: Single Pose and Sequence Estimation for Non-Degraded Images. For the single

pose estimation the estimated poses (dark gray circles) deviate only little from the true poses

(black dots), because the rough estimation already provides the correct view bubble. This means,

that almost no outliers occur in the estimated sequence and most improvements achieved by the

sequence estimation are due to the fine-tuning mechanism.



84 CHAPTER 8. POSE AND SEQUENCE ESTIMATION

Figure 8.4: Graphs Used For Noisy Test Images. As the segmentation algorithm is not

applicable to noisy images it is neccessary to cover almost the entire test image by a representing

graph.

8.3 Adding Noise

From the good results of the pose estimation from non-degraded images it can be expected
that the view-based approach proposed in this thesis even allows pose estimation from
images which are degraded by added noise. This problem is discussed in this section.

8.3.1 Methods

The original images of the three test sequences introduced in subsection 8.1.1 are de-
graded independently by adding Gaussian white noise of zero mean and variance V = 0.06.
Examples for noisy images are depicted in figure 8.5.

To gain a representation of the object view displayed in the test image a graph has to
be extracted. For non-degraded test images the image has been segmented into object and
background before a graph has been extracted only from the object segment. However, for
a noisy image a reasonable segmentation into object and background cannot be expected.
Thus, to simulate a realistic task in which no information about the object is provided it
is necessary to cover almost the entire test image by a graph. In figure 8.4 such graphs
are displayed on two of the test views. I chose a rectangular grid graph with equidistant
vertices starting with the upper left vertex at pixel position (10, 10) with a distance of 10
pixels in x- as well as y-direction. The graphs used do not cover the entire image, rather, a
small area at the boundaries of the image is left blank for the global move of the matching
algorithm described in section 3.6. For such a graph GT of a test view T the Gabor features
are extracted at its vertices. Finally, GT is matched on the center images Ii, i ∈ R, of the
view bubbles of the object representation R as described for non-degraded test images in
subsection 8.1.1.

To estimate the amount of information on the object’s appearance which is available
in such a representation of a degraded image I have exemplarily reconstructed two views
from their representing graphs as described in subsection 7.1.2. The results are depicted
in figure 8.5 as well and reveal a small amount of information on details of the object.

The same single pose and sequence estimation experiments are performed as described
in subsections 8.1.1 and 8.2.1 for non-degraded images, this time with the noisy images of
the three test sequences. The mean estimation errors are determined for each partitioning
of the viewing hemisphere and for both objects.
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mean errors, noisy images

single pose sequence
τ

estimation estimation

0.75 64.42◦ 50.13◦

0.8 40.02◦ 45.69◦

object
0.85 34.69◦ 33.96◦

“Tom”
0.9 29.64◦ 28.97◦

0.95 11.28◦ 9.99◦

0.75 41.79◦ 36.77◦

0.8 30.98◦ 23.05◦

object
0.85 13.48◦ 12.09◦

“dwarf”
0.9 3.9◦ 4.06◦

0.95 2.09◦ 1.91◦

Table 8.2: Mean Estimation Errors for Degraded Images. Each value given in degree is the

mean estimation error computed from 30 noisy test views. The first column lists the mean errors

which occur if each view has been estimated independently. In the second column the mean errors

are presented for the sequence estimation experiments.

8.3.2 Results

The mean estimation errors of the single pose and sequence estimation for degraded images
are summarized in table 8.2. As expected, the mean errors for noisy images are larger
than for non-degraded test views for both objects and each partitioning of the viewing
hemisphere. Again, the estimation results improve with increasing values of τ , i.e., with a
larger number of sample views in the object representation, for both objects and for single
as well as sequence estimation. However, there is a difference to the results obtained from
non-degraded images. The mean estimation errors for the “dwarf” object are smaller than
those obtained for the “Tom” object.

Concerning the question of interest, for the majority of the values (with one exception
for each object) the mean estimation errors are smaller for the sequence estimation than
for the single pose estimation. However, this difference is not significant in any case.

In contrast to the experiments carried out with non-degraded images, here the im-
provements achieved by the aid of the additional neighborhood information are also due
to the outlier mechanism of the sequence estimation algorithm, instead of the fine-tuning
mechanism, because the rough estimation of a view of a test sequence more often fails
for degraded images. This is particularly obvious for object representations which con-
tain only a few sample views. This effect is demonstrated in the first two examples in
figure 8.6. A complete sequence with outlier correction is displayed in figure 8.7. Minor
improvements due to the fine-tuning mechanism occur mainly if object representations are
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used which contain a larger number of sample view. Examples for that are shown in the
last two rows of figure 8.6 and in the figures 8.8 and 8.9.

8.3.3 Discussion

The quality of the pose estimation from test views degraded by noise for a reasonable
partitioning of the viewing hemisphere can be regarded as fairly good. This holds especially
for the “dwarf” object where the mean estimation errors are less than 15◦. For individual
test sequences the proposed estimation methods are capable to provide mean estimation
errors less than 4◦ even if the used object representation contains only few sample views
as displayed in the figures 8.7 and 8.8.

The better estimation results obtained for the “dwarf” object than for the “Tom”
object can be explained by the fact that the addition of noise has a larger impact on the
“Tom” object. For example, the face of “Tom” is characterized by a larger amount of fine
details, i.e., high frequencies, than the face of the “dwarf”. As high frequencies are more
affected by the addition of noise than low frequencies the available amount of information
about the “Tom” object is smaller than that of the “dwarf” object after the addition of
noise. The larger amount of low frequencies contained in the views of the “dwarf” can
still be utilized for view discrimination. This effect is demonstrated in figure 8.5, where
the observer can recognize the “dwarf” reconstructed from the noisy image easier than
the reconstructed “Tom”.

For noisy test images the rough estimate of the single pose estimation algorithm more
often provides a wrong view bubble than for non-degraded test images. In this case the
fine-tuning mechanism of the sequence estimation algorithm is usually ineffective. In
addition, the outlier mechanism can only improve the estimation of the sequence if single
views have been misestimated with a large distance to the true pose. For degraded images
and a very sparse object representation, however, the rough estimation for more than one
successive test view fails. This might be a reason for the non-significant improvement
provided by the sequence estimation. The benefit of utilizing neighborhood information
of successive views could however be enhanced by a more elaborate algorithm which does
not only take the best estimates inside one view bubble into account, but for example,
tests also views in neighboring view bubbles.

Concluding I can say, that the proposed view-based approach, which includes the
sparse object representation R as well as the techniques for generating representations
Ĝ of unfamiliar views, seems to be suitable to perform perception tasks, demonstrated
here for the estimation of an object’s pose, even if the amount of information on the
object provided in the test images is reduced considerably by added noise. For test images
degraded by noise the utilization of the temporal context of successive views, which is
presented to an observer by a rotating object, can slightly improve the pose estimation.
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test images

sequence
estimation

for pose and

reconstructed
from
Gabor filter
responses

test images

sequence
estimation

reconstructed
from
Gabor filter
responses

for pose and

non−degraded
images noisy images

Figure 8.5: Reconstructions of Non-Degraded and Noisy Images from Gabor Responses.
The original images of the test sequences are degraded by adding Gaussian white noise of zero

mean and variance V = 0.06 as depicted in the second column. Single pose and sequence esti-

mation experiments are performed for the test sequences degraded by this amount of noise. The

reconstructions from their Gabor filter responses illustrate the small amount of information which

can be extracted from the degraded images by Gabor wavelets.
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τ = 0.85

τ = 0.95

τ = 0.75

τ = 0.8

single pose estimation sequence estimationof sequence
first image

noisy images

mean error: 0.36 mean error: 0

mean error: 3.18mean error: 9.39

mean error: 2.16 mean error: 1.89

mean error: 32.46 mean error: 17.19

Figure 8.6: Single Pose and Sequence Estimation for Noisy Images. For images degraded

by added noise the improvements of the sequence estimation in comparison to the single pose

estimation are also due to the fact that single outliers of the estimated sequence can be corrected.

This is particularly obvious in the first two examples, which have been obtained from object

representations with only a few sample views (τ = 0.75 and 0.8).



8
.3

.
A

D
D

IN
G

N
O

IS
E

89

correct
original
sequence

input:
sequence
with added noise

output from
single pose

output from
sequence

estimation

estimation

single pose and sequence estimation, object "dwarf", noisy test images, τ = 0.8

error = 3.18

error = 9.39

Figure 8.7: Estimation Example - Object “Dwarf”, τ = 0.8. This is an example of pose estimation with an object representation consisting

of only a few sample views (τ = 0.8). For images degraded by noise the failures of the single pose estimation are often due to a misleading result

of the first step of the algorithm. The noise often leads to a wrong rough estimate of the view’s pose. Thus, improvements provided by the

sequence estimation can be achieved by a correction of single outliers. The outliers, which are corrected by the sequence estimation, are marked

in this figure (compare with the second row of figure 8.6).
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Figure 8.8: Estimation Example - Object “Dwarf”, τ = 0.85. This is an example of pose estimation from noisy images with a reasonable

partitioning of the viewing hemisphere. The results from the single pose estimation are already satisfying. Minor improvements can be achieved

by the sequence estimation due to the fine-tuning mechanism (compare with the third row of figure 8.6).
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Figure 8.9: Estimation Example - Object “Tom”, τ = 0.95. This final example shows a perfect result obtained from the sequence estimation

algorithm with a large number of views in the object representation. The pose of the third view of the sequence obtained from single pose

estimation has been corrected by the fine-tuning mechanism (compare with the last row of figure 8.6).
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Chapter 9

Summary and Conclusions

In brain research as well as in computer science three-dimensional object perception is
still an unsolved problem. This thesis aimed at studying the possibility of establishing a
representation of a three-dimensional object from two-dimensional views only and analyz-
ing the capabilities of such a view-based representation to perform perception tasks such
as estimating the pose of an object. For this purpose I simulated a biologically plausible
system which is able to independently learn sparse, view-based object representations from
sample views of real-world objects. Representations of unfamiliar views can be derived
from those of stored views by a linear combination of object point positions and an inter-
polation of object point features. The system is capable of estimating object poses, given
a sufficient number of sample views, even from input images degraded by added noise,
which proves the capability of the view-based approach to perform perception tasks.

In detail, my investigations were guided by the questions Q1 to Q4 specified in the
introduction. Answers to these questions provided by the current state of research in
disciplines such as biology, psychology, engineering, and computer science are already
listed in the summary of chapter 2. Here the results and conclusions I obtained from my
simulations are briefly summarized.

Q1 First of all, the general question about a view-based representation of three-dimen-
sional objects can be affirmed. It is possible to interpret the visual perception of
objects by a purely view-based approach. The establishment of an explicit, three-
dimensional model of an object does not seem to be neccessary to perform perception
functions. That means that the main thesis of this work put forward in the intro-
duction (chapter 1) can be supported.

Q2 For each view of an object I determined a surrounding area of viewpoints for which
the appearance of the object changes only slighly. The determination of such areas
for each view on the viewing hemisphere of an object reveals views which possess
larger areas of pose robustness than the majority of other views. These views can
be regarded as canonical views. The importance of canonical views for human ob-
ject perception has been suggested by many physiological and psychological studies.
Furthermore, I chose only some of these areas of pose robustness which are sufficient
to cover the whole viewing hemisphere. The representations of these selected areas
account for the view-based object representation. Each selected area can be regarded
as an aspect, which is another well-known concept supported by behavioral studies.

93
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Q3 The distribution of the views which constitute the representation of a three-dimen-
sional object in my simulations depend on the object and on the precision with which
unfamiliar views must be recoverable from stored views. The range of generalization
obtained for a reasonable partitioning of the viewing hemisphere is in accordance
with psychological and physiological results. On average this range, within which
an inference from a familiar to an unfamiliar view is possible, comprises views with
a distance of about 30 ◦ to 40 ◦.

Q4 In my approach representations of unfamiliar views are derived from those of familiar
views by a linear combination of object point positions and a biologically inspired
interpolation of object point features. The neccessary correspondences between the
stored views are provided by tracking object points from view to view. This pro-
cedure has its parallels in psychology as well. From the quality of the resulting
representations of unfamiliar views reasonable recognition rates can be expected,
the more so as the possibility has been demonstrated to generate morphed versions
of unfamiliar views of fair quality with the linear combination approach.

The above-mentioned viewpoint-invariant recognition of objects is a point which is
directly connected with my work but has not been analyzed in this thesis. It requires
a large data base with images for several objects. Roughly sketched, it could function
similarly to the pose estimation, with the difference that the representing graph of the
test view is matched with the representations of all objects stored in the data base instead
of one object only. As an alternative, object recognition could be realized by generating
morphed versions of unfamiliar views of objects from views stored in their representations
and then matching the graph of the test view on the morphed views. This latter method
could also be tried for pure pose estimation.

The necessity to provide a large number of object views together with their relative
positions in order to learn a sparse representation of the object does not seem to have
a counterpart in the functionality of our brains and represents a limitation of this work
in the current stage. Thus, a next step of investigation could be the learning of a view-
based object representation following insights from the biological sciences. For instance,
the active manipulation of objects can be an important source of information during
the acquisition of an object representation, because the information about the relative
positions of views would be provided by the joint angles of the arm which rotates the
object. To avoid the complete supply of object views it can be advantageous to integrate
a motor-controlled feedback loop which actively decides which aspects of an object require
a further inspection.

Besides the biological relevance of this thesis, which is its major concern, there are
nevertheless technical applications as well. For example, if the generation of unfamiliar
views from some sample views is feasible (as shown in chapter 6), then the rendering of
whole objects is possible from only some stored reference views, which could be relevant
for data compression.



Appendix A

Sequences of Matched and

Tracked Local Object Features

The figures A.1 to A.6 display parts of sequences of matched and tracked object points
and the referring similarity diagrams. In the figures A.7 to A.14 the complete sequences
are displayed. See subsection 4.3.2 for a description.
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first poor match 

TOM, sequence (91,4) -> (99,4) 

 

tracked: 

matched: 

last good match 

... 

... 

... 

... 

(91,4) (92,4) (93,4) (94,4) (95,4) (96,4) (97,4) (98,4) (99,4)
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Figure A.1: Object “Tom”, Second Sequence With Similarity Diagram.
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first poor match 

TOM, sequence (40,6) -> (49,6) 

 

tracked: 

matched: 

last good match 
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... 
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Figure A.2: Object “Tom”, Third Sequence With Similarity Diagram.
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first poor match 

TOM, sequence (97,4) -> (97,11) 
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matched: 
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Figure A.3: Object “Tom”, Fourth Sequence With Similarity Diagram.
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first poor match 

DWARF, sequence (80,6) -> (80,12) 

 

tracked: 

matched: 

last good match 
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... 
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Figure A.4: Object “Dwarf”, Second Sequence With Similarity Diagram.
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first poor match 

DWARF, sequence (85,4) -> (85,10) 

 

tracked: 

matched: 

last good match 

... 

... 
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Figure A.5: Object “Dwarf”, Third Sequence With Similarity Diagram.
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first poor match 

DWARF, sequence (64,18) -> (71,18) 

 

tracked: 

matched: 

last good match 
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Figure A.6: Object “Dwarf”, Fourth Sequence With Similarity Diagram.
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first poor match 

   

 

TOM, sequence (48,5) -> (36,5) 
TOM, sequence (48,5) -> (36,5) 

 

Figure A.7: Object “Tom”, Complete First Sequence.
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first poor match 

TOM, sequence (91,4) -> (99,4) 

Figure A.8: Object “Tom”, Complete Second Sequence.
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first poor match 

TOM, sequence (40,6) -> (49,6) 

Figure A.9: Object “Tom”, Complete Third Sequence.
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first poor match 

TOM, sequence (97,4) -> (97,11) 

Figure A.10: Object “Tom”, Complete Fourth Sequence.
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first poor match 

DWARF, sequence (53,18) -> (60,18) 

 

Figure A.11: Object “Dwarf”, Complete First Sequence.
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first poor match 

DWARF, sequence (80,6) -> (80,12) 

Figure A.12: Object “Dwarf”, Complete Second Sequence.
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first poor match 

DWARF, sequence (85,4) -> (85,10) 

 

Figure A.13: Object “Dwarf”, Complete Third Sequence.
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first poor match 

DWARF, sequence (64,18) -> (71,18) 

Figure A.14: Object “Dwarf”, Complete Fourth Sequence.
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Appendix B

Linear Combination of Object

Point Positions

The position of a view on the viewing hemisphere can be defined by its pan and tilt angles
ϕ and λ with

(i) 0 ≤ ϕ < 2π and

(ii) 0 ≤ λ ≤ π
2 .

(see figure 6.3). If the original coordinate system spanned by the axes X, Y, and Z is rotated
first with the angle ϕ around the Y -axis, secondly with the angle −λ around the newly
risen X-axis, then the resulting total rotation can be described by the following matrix:

ROT (ϕ, λ) = Rot(Y, ϕ) ·Rot(X,−λ) (B.1)

with the rotation matrices

Rot(Y, ϕ) =




cos(ϕ) 0 sin(ϕ)
0 1 0

−sin(ϕ) 0 cos(ϕ)


 , (B.2)

Rot(X,−λ) =




1 0 0
0 cos(λ) sin(λ)
0 −sin(λ) cos(λ)


 , (B.3)

and

ROT (ϕ, λ) =




cos(ϕ) −sin(ϕ)sin(λ) sin(ϕ)cos(λ)
0 cos(λ) sin(λ)

−sin(ϕ) −cos(ϕ)sin(λ) cos(ϕ)cos(λ)


 . (B.4)

Let ~o be a fixed object point in the original coordinate system. Its coordinates (
x
y
z
) in the

rotated coordinate system can be calculated as


xy
z


 = ROT−1(ϕ, λ) · ~o (B.5)
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with

ROT−1(ϕ, λ) =




cos(ϕ) 0 −sin(ϕ)
−sin(ϕ)sin(λ) cos(λ) −cos(ϕ)sin(λ)
sin(ϕ)cos(λ) sin(λ) cos(ϕ)cos(λ)


 . (B.6)

x and y can be interpreted as coordinates of point ~o in the projection plane of view (ϕ, λ).
ROTi = ROT (ϕi, λi), i = 1, 2, 3, is set for the given sample views and R̂OT = ROT (ϕ̂, λ̂)
for the unfamiliar view (ϕ̂, λ̂), which is to be reconstructed. It is possible to number the
sample views in such a way that

(iii) ϕ1 = ϕ3 and

(iv) λ1 = λ2

hold. If the center view of the view bubble is the view with index 1 then the second and
third views can be chosen in accordance with the conditions (i) and (ii). Furthermore,

ROT−1
i =



ROT−1

iRow1

ROT−1
iRow2

ROT−1
iRow3


 (B.7)

with ROT−1
iRowj the j-th row vector of ROT−1

i and

R̂OT
−1

=



R̂OT

−1

Row1

R̂OT
−1

Row2

R̂OT
−1

Row3


 . (B.8)

Then following equations hold:

xi = ROT−1
iRow1 · ~o yi = ROT−1

iRow2 · ~o
x̂ = R̂OT

−1

Row1 · ~o ŷ = R̂OT
−1

Row2 · ~o.
(B.9)

B.1 Two Sample Views, x-Coordinate

Assumption (iii) and the equations (B.9) imply that x̂ can be expressed as linear combi-

nation of x1 and x2, if R̂OT
−1

Row1 can be laid down as linear combination of ROT−1
1Row1

and ROT−1
2Row1.

R̂OT
−1

Row1 = a1 ·ROT−1
1Row1 + a2 · ROT−1

2Row1 (B.10)

holds for det
(

cos(ϕ1)
−sin(ϕ1)

cos(ϕ2)
−sin(ϕ2)

)
6= 0. This is equivalent to

sin(ϕ1−ϕ2) 6= 0. (B.11)

The last inequality holds for ϕ1−ϕ2 6= kπ, k∈ ZZ. Due to assumption (i) that implies

x̂ =
2∑

i=1

aixi (B.12)

if

(b1 i) ϕ1−ϕ2 6= ± π and

(b1 ii) ϕ1 6= ϕ2

and the coefficients ai are derived from equation B.10.
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B.2 Two Sample Views, y-Coordinate

The equations (B.9) imply that ŷ can be expressed as linear combination of x1, x2, and

y1, if R̂OT
−1

Row2 can be expressed as linear combination of ROT−1
1Row1, ROT

−1
2Row1, and

ROT−1
1Row2.

R̂OT
−1

Row2 = b1 · ROT−1
1Row1 + b2 ·ROT−1

2Row1 + b3 · ROT−1
1Row2 (B.13)

holds for det(ROT−1
1Row1, ROT

−1
2Row1, ROT

−1
1Row2) 6= 0. Due to assumption (iii) this is

equivalent to

cos(λ1) · sin(ϕ1−ϕ2) 6= 0. (B.14)

The last inequality holds if λ1 6= k π
2 , k∈ ZZ, k odd, and ϕ1−ϕ2 6= k

′
π, k

′∈ ZZ. Due to the
assumptions (i) and (ii) that implies

ŷ =
2∑

i=1

bi · xi + b3 · y1 (B.15)

if (b1 i), (b1 ii), and

(b2iii) λ1 6= π
2

and the coefficients bi are derived from equation B.13, e.g., by applying Cramer’s rule.

B.3 Three Sample Views, x-Coordinate

Due to assumption (iii) and the zero entry in ROT−1
Row1(ϕ, λ), the formula for three sample

views reduces to the same linear combination as for two sample views:

x̂ =
2∑

i=1

aixi (B.16)

if (b1 i) and (b1 ii) with the same coefficients ai as in case B.1.

B.4 Three Sample Views, y-Coordinate

The equations (B.9) imply that ŷ can be expressed as linear combination of y1, y2, and y3, if

R̂OT
−1

Row2 can be written as linear combination of ROT−1
1Row2, ROT

−1
2Row2, and ROT−1

3Row2.

R̂OT
−1

Row2 = b1 · ROT−1
1Row2 + b2 ·ROT−1

2Row2 + b3 · ROT−1
3Row2 (B.17)

holds for det(ROT−1
1Row2, ROT

−1
2Row2, ROT

−1
3Row2) 6= 0. Due to the assumptions (iii) and

(iv) this is equivalent to

sin(λ1) · sin(λ1−λ3) · sin(ϕ1−ϕ2) 6= 0. (B.18)



114 APPENDIX B. LINEAR COMBINATION OF OBJECT POINT POSITIONS

The last inequality holds if λ1 6= kπ, λ1−λ3 6= k
′
π, and ϕ1−ϕ2 6= k

′′
π, k, k

′
, k

′′ ∈ ZZ. Due
to the assumptions (i) and (ii) that implies

ŷ =
3∑

i=1

biyi (B.19)

if (b1 i), (b1 ii),

(b4iii) λ1 6= λ3 and

(b4 iv) λ1 6= 0

and the coefficients bi are derived from equation B.17.
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