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Abstract. We recently explored the benefits of a reinforcement learning
agent which is supplemented by a symbolic learning level. This second
level is represented in the symbolic form of Spohn’s ranking functions.
Given this context, we discuss in this paper the creation of symbolic
rules from a Q-function. We explore several alternatives and show that
the rule generation greatly influences the performance of the agent. We
provide empirical evidence about which approach to favor. Additionally,
the rules created by the considered application are shown to be plausible
and understandable.
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1 Introduction

It is often desirable to be able to tell what an agent has been learned. To achieve
this, one idea is to take a numerical learning scheme and extract rules after-
wards, as has been done, e.g, for neural networks [7]. A second approach is to
combine a symbolic representation with a numerical one. This has also been
done for neural networks [11]. And finally one can imagine to completely omit
the numerical representation and use a symbolical representation only. In the
context of reinforcement learning [12], the latter approach can be found in the
context of relational reinforcement learning [13].

Besides getting insight into the belief base of an agent, an additional benefit
is that learning on a numerical level can profit from the belief represented on
a symbolic level. This is comparable to the top-down and bottom-up learning
capabilities of the human brain [2].

In particular, using a ranking function [10] as the symbolic representation to
augment a reinforcement learning agent can lead to a vastly improved perfor-
mance. We have shown this for small grid-worlds [4] as well as for large and
noisy state spaces [5] such as those occurring in object recognition [3].

Ranking functions belong to the field of belief revision [1] and are a deter-
ministic belief representation [9]. They were initially introduced by Wolfgang
Spohn under the name of ordinal conditional functions [8]. Each ranking func-
tion expresses the belief of an agent in each particular instance of its world.
In a reinforcement learning set-up, these instances are given by the variables
describing the environment in which the agent learns.
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Fig. 1. The agent’s architecture. It differs from a classic reinforcement learning agent
in the presence of a ranking function which filters the actions. The ranking function
itself is revised with information from the Q-function (bold arrow).

This paper clarifies how we use the numeric learning level of the reinforcement
learning agent to generate a revision which alters the ranking function and hence
the symbolic learning level. Given a number of variables which describe the
environment, ranking functions map each possible realization of these variables
to a non-negative number. A particular realization is called world model and the
number it is mapped to is called rank. The rank represents the disbelief the agent
currently has concerning the associated world model. Let κ be a ranking function.
Altering κ and thereby creating a new ranking function is called revision. For
instance, κ′ = κ ∗ (A|S) creates a new ranking function κ′ which expresses the
belief that in state S action A is the most preferable. Hence, our main concern is
the following: How to choose an action A in each state S such that a subsequent
revision with (A|S) is most beneficial for an agents learning progress?

This question is addressed by discussing four candidate algorithms that are
assessed in a small application. Additionally, the state space of this application
is chosen such that the symbolic rules we expect the agent to learn are obvious.
This allows us to verify the agents success by simple inspection.

2 The Candidate Algorithms

Fig. 1 shows the general architecture of the agent. The bold arrow highlights the
main concern of this paper. There are four candidate algorithms we evaluate.
These are presented in Fig. 2 to 5, where we use the following notation:

Input S: the last state
A: the action taken
r: the reward gained
κ: a ranking function
ct: a threshold (Fig. 4 and 5 only)

Output κ′: a modified ranking function

Other qm: the Q-value of the best action
am: the number of actions whose Q-value is qm
Ã: the single best action
A: all possible actions available in S

cnt(S,A): count of A being best in S (Fig. 4 and 5 only)
incCnt(S,A): increments cnt(S,A) (Fig. 4 and 5 only)
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We now summarize the general idea behind each algorithm.

RF1: This is the algorithm of Fig. 2 which revises κ with (A|S) if A is the
single best action in S.

RF2: The algorithm of Fig. 3 is similar to RF1, but only revises κ if the
best action is also the action taken, i.e. the agent did not chose an
exploratory action.

RF3: The algorithm of Fig. 4 revises κ with (A|S) if A was the single best
action for a pre-defined number of visits. This number is named ct.

RF4: Finally, the algorithm of Fig. 5 extends RF3. If A was the single best
action most often (with absolute frequency cm) and A′ second most
often (with absolute frequency cn), then κ is revised with (A|S) if cm−cn
exceeds the threshold ct.

3 The Example Application

As mentioned before, the application follows the general architecture shown in
Fig. 1. With this picture in mind, we first specify the environment. The agent
has to learn its way from a starting location to a goal location. These locations
are situated on a spherical grid with 128 approximately evenly spaced nodes.
The radius of the sphere is 1. The observed states come from the domain:

S = D× C, with D = {far, middle, close}
C = {black, white, red, green, blue, yellow, . . . }

The number of colors is varied to test the agent in state spaces of different
sizes. The data presented in this work was generated using state spaces where
|C| ∈ {6, 25, 225}.While the C-part of the state description is generated randomly
at each step, the D-part of the signal is chosen according to the distance d of the
agent to the goal state. If d2 < 1.2 then element close will be chosen. A value
in the range of 1.2 ≤ d2 < 2.4 activates middle and far stands for 2.4 ≤ d2.

The set of actions is A = {best, good, bad, worst}. Each of these symbolic
values in itself represents a set of “real” actions. This is clarified in Fig. 6. Essen-
tially, best chooses a real action that minimizes the distance to the goal while
worst maximizes it. Whenever the symbolic action chosen corresponds to a set
of real actions with more than one element, a particular one is chosen randomly.
In such a setting we essentially expect the agent to learn that regardless of the
perceived color or distance, the action best is always preferable. Hence, the
actual d-values used to select on the elements of D are rather unimportant.

The reinforcement learning part of the agent uses Q-learning [12] and the
update equation

Qt+1(S,A) = Qt(S,A) + α[r(S,A) + γmax
a

(Qt(δ(S,A), A)) −Qt(S,A)],

where the discount factor γ is set to 0.6, while α is initially 1 and then gradually
reduced to 0.25. The reward r(S,A) is always 0 with the exception of A leading
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if ( r > 0 and ¬(κ |= (A|S)) )
κ′ = κ ∗ (A|S)

qm = max
A′∈A

Q(S,A)

am = |{A′|Q(S,A′) = qm}|
if ( am = 1 )

Ã = arg max
A′∈A

Q(S,A′)

κ′ = κ ∗ (Ã|S)

RF1

Fig. 2. Revision with (A|S) if A is the
single best action at the current state S.

if ( r > 0 and ¬(κ |= (A|S)) )
κ′ = κ ∗ (A|S)

qm = max
A′∈A

Q(S,A)

am = |{A′|Q(S,A′) = qm}|
if ( am = 1 )

Ã = arg max
A′∈A

Q(S,A′)

if ( A = Ã )
κ′ = κ ∗ (A|S)

RF2

Fig. 3. Revision with (A|S) if A is the
single best action at the current state S
and has also been chosen as the current
action.

if ( r > 0 and ¬(κ |= (A|S)) )
κ′ = κ ∗ (A|S)

qm = max
A′∈A

Q(S,A)

am = |{A′|Q(S,A′) = qm}|
if ( am = 1 )

Ã = arg max
A′∈A

Q(S,A′)

if ( A = Ã )
incCnt(S,A)
cm = max

A′∈A
cnt(S,A′)

if ( cnt(S,A) = cm and cm > ct
)

κ′ = κ ∗ (A|S)

RF3

Fig. 4. Revision with (A|S) if A has
been the single best available action of-
ten enough.

if ( r > 0 and ¬(κ |= (A|S)) )
κ′ = κ ∗ (A|S)

qm = max
A′∈A

Q(S,A)

am = |{A′|Q(S,A′) = qm}|
if ( am = 1 )

Ã = arg max
A′∈A

Q(S,A′)

if ( A = Ã )
incCnt(S,A)
cm = max

A′∈A
cnt(S,A′)

ac = |{A′|cnt(S,A′) = cm}|
if ( ac = 1 and cnt(S,A) = cm
)

cn = max
A′∈A\A

cnt(S,A′)

if ( cm − cn > ct )
κ′ = κ ∗ (A|S)

RF4

Fig. 5. Revision with (A|S) if A has
been the single best available action
more often than the second most often
action.
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Fig. 6. A mapping from the symbolic actions to actual movements. Consider the state
S on a grid from which several paths lead to the start and goal state. The actions
available in S are A = {1, 2, 3, 4, 5}. The symbolic actions best, good, bad, and
worst correspond to subsets of A. In this example these are best = {3}, good = {2, 4},
bad = {5}, and worst = {1}.

to the goal state in which case a reward of 100 is given. The agent prefers the
shortest path towards the goal despite the fact that only the goal state transitions
are rewarded. This is due to the discount factor γ which makes longer paths
less attractive. The transition function δ(S,A) is implicitly given through the
connections of the spherical grid. The actions are chosen by a modified ε-greedy
policy [12] with ε = 0.1. The modification is necessary to make the policy aware
of the presence of the symbolic learning level. It first uses ε to decide whether
or not to use the ranking function and then, again, to actually decide on the
action. This way the presence of a ranking function does not cripple the agents
ability to explore its environment once a revision has taken place.

4 Results

Fig. 7 shows the result for a state space of size 3× 25, i.e. a configuration which
uses 25 colors to confuse the agent. In this, an application of algorithm RF1
yields the fastest learning agent. Also, RF1 is the only algorithm that actually
learns faster than a plain Q-learner, i.e. one without the second learning level.
Algorithm RF2 ranked second. Worst are algorithms RF3 and RF4. For the
results in Fig. 7, we set the threshold ct = 2. We performed various runs with
different values for ct and the results were all quite similar. Therefore only one
curve for each algorithm is included. In any case, their performance does not
justify the added complexity. To show the aforementioned preference of the agent
for short paths, we also include a plot of the episode lengths against the episode
number in Fig. 7. An episode was forced to terminate if it took 200 steps.

The advantage of the RF1 algorithm over the plain Q-learner grows with the
number of dimensions. This is shown in Fig. 8, where we enlarged the state space
to include 225 colors. There, the maximum episode length was set to 300.

Since a ranking function allows us to query its learned rules, Fig. 9 shows all
the rules learned by the RF1 agent in a state space which uses just 6 colors. This
table was computed by keeping track of the rules the agent was revised with and
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Fig. 7. Learning progress of the RF1 to RF4 agents and a plain Q-learner. The state
space had a size of 3 × 25, an episode at most 200 steps. The left diagram shows the
cumulated rewards, the right the episode length, both plotted against the episodes. The
averages were computed from 500 runs. The labels are arranged to match the curves’
order at episode 100.
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Fig. 8. Learning progress of the RF1 agent and a plain Q-learner. The state space had
a size of 3× 225, an episode at most 300 steps. The left diagram shows the cumulated
rewards, the right the episode length, both plotted against the episodes. The averages
were computed from 500 runs. The labels are arranged to match the curves’ order at
episode 300.
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far∧black ⇒ best | TRUE
far∧white ⇒ best | TRUE
far∧red ⇒ best | TRUE
far∧green ⇒ bad | TRUE �
far∧blue ⇒ good | TRUE �
far∧yellow⇒ best | TRUE
far∧black ⇒ good | FALSE
far∧black ⇒ worst| FALSE
far∧red ⇒ good | FALSE
far∧yellow⇒ good | FALSE

middle∧black ⇒ best| TRUE
middle∧white ⇒ best| TRUE
middle∧red ⇒ best| TRUE
middle∧green ⇒ good| TRUE �
middle∧blue ⇒ best| TRUE
middle∧yellow⇒ best| TRUE
middle∧yellow⇒ good| FALSE

close∧black ⇒ best| TRUE
close∧white ⇒ best| TRUE
close∧red ⇒ good| TRUE �
close∧green ⇒ best| TRUE
close∧blue ⇒ best| TRUE
close∧yellow⇒ best| TRUE
close∧black ⇒ bad | FALSE
close∧white ⇒ good| FALSE
close∧white ⇒ bad | FALSE
close∧blue ⇒ good| FALSE
close∧blue ⇒ bad | FALSE
close∧yellow⇒ bad | FALSE

Fig. 9. Rules learned by an agent using the RF1 algorithm. We expect the agent to
learn that it is always best to choose the action best. All rules with which its ranking
function was revised at some point during learning are shown. The ones that were still
believed after 100 episodes are marked TRUE , the ones discarded FALSE . The � marks
the four sub-optimal rules which happened to be still believed.

middle∧gray ⇒ best
close∧maroon⇒ best
close∧blue ⇒ best
close∧brown ⇒ best

far∧teal ⇒ best

far∧cyan ⇒ good �
far∧apricot⇒ best
far∧orange ⇒ best
far∧black ⇒ best
far∧lilac ⇒ best

far∧magenta⇒ good �
far∧amber ⇒ best
far∧plum ⇒ good �
far∧maroon ⇒ best
far∧white ⇒ best

far∧red ⇒ best
far∧violett⇒ best
far∧green ⇒ best
far∧olive ⇒ best
far∧purple ⇒ best

Fig. 10. Rules learned by an agent in a state space of size 3×25 after 400 episodes. We
only show the 20 most strongly believed actions. Among these are three sub-optimal
ones.

asking the ranking function after 100 episodes whether it still believes them or
not. As one can see, the agent mostly believes that the best action should be
chosen regardless of the C-part of the state signal.

Because the same table for an agent which had to cope with a state space of
size 3×25 already contains more than 200 rules, we present as a second example
the 20 most believed ones in Table 9. There, the agent was allowed to learn for
400 episodes and the maximum episode length was set to 200.

Despite the fact, that the learned rules are not perfect, one can say that in
both experiments the agent has learned that the best action is preferable.

5 Conclusion

Summarizing, we have assessed four candidate algorithms on their impact on
the learning progress of an agent with two learning levels. We found that the
most simple one not only performed best, but is the only algorithm that actually
surpasses a plain Q-learner. This highlights the fact that the actual method of
rule extraction is crucial for the applicability of the two-level-architecture.

Additionally, the presented application allowed us to show that the rules
learned by such an agent are plausible and match expectations.

In this work we observed that the advantage of the RF1-algorithm over the
plain Q-learner increases with the complexity of the state space. In an earlier
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work [5] we observed that additional clues provided during an episode also mat-
ter. The experiment in this paper does not provide any clues except a reward of
100 for a goal state transition. In [5], however, we made the notion of similarity
available to the ranking function which effected an enormous difference between
the two-level learner and a plain Q-learner.

In our opinion, future directions of research should investigate the possible
benefits of adding further reasoning capabilities to the agent. For instance,
the symbolic rules provide a basis for standard reasoning and inference algo-
rithms [6].
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