
Visualization of Processes in Self-Learning Systems

Gabriele Peters∗, Kerstin Bunte†, Marc Strickert‡, Michael Biehl§ and Thomas Villmann¶
∗Human-Computer Interaction, FernUniversität in Hagen, Germany

E-mail: gabriele.peters@fernuni-hagen.de
†CITEC-Cognitive Interaction Technology Center of Excellence, Bielefeld University, Germany

E-mail: kbunte@techfak.uni-bielefeld.de
‡Department of Computer Science and Mathematics, University of Marburg, Germany

E-mail: marc.strickert@uni-marburg.de
§Johann Bernoulli Inst. for Mathematics & Computer Science, University of Groningen, The Netherlands

E-mail: m.biehl@rug.nl
¶Computational Intelligence Group, University of Applied Sciences Mittweida, Germany

E-mail: villmann@hs-mittweida.de

Abstract—One aspect of self-organizing systems is their
desired ability to be self-learning, i.e., to be able to adapt
dynamically to conditions in their environment. This quality
is awkward especially if it comes to applications in security
or safety-sensitive areas. Here a step towards more trustful
systems could be taken by providing transparency of the
processes of a system. An important means of giving feedback
to an operator is the visualization of the internal processes
of a system. In this position paper we address the problem
of visualizing dynamic processes especially in self-learning sys-
tems. We take an existing self-learning system from the field of
computer vision as an example from which we derive questions
of general interest such as possible options to visualize the flow
of information in a dynamic learning system or the visualization
of symbolic data. As a side effect the visualization of learning
processes may provide a better understanding of underlying
principles of learning in general, i.e, also in biological systems.
That may also facilitate improved designs of future self-learning
systems.
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systems, symbolic representations

I. INTRODUCTION

A frequent demand on self-organizing systems is their
capability to react and adapt dynamically to conditions and
events in their surroundings. For these acquirements they
have to be able to learn autonomously from the environment,
i.e., they have to be self-learning. This quality is delicate
especially if it comes to applications in security or safety-
sensitive areas, because the flexibility of self-learning may
seem to be conficting with security and safety requirements.
Here a step towards more trustful systems could be taken
by providing insight to the self-organizing processes of the
system. Both, usability and controllability of such a system
can be increased by giving feedback to the operator on
the internal status of the system [1], [2]. This includes
the knowledge the system has learned so far but also
information on the learning process itself, i.e., the learning
characteristic. An important means for system monitoring is

the visualization of the internal processes which, in addition,
also facilitates interaction with the system [3]. In the field of
machine learning one can distinguish at least two fundamen-
tally different approaches. On the one hand, methods exist
which represent learned knowledge in symbolic form, such
as realized by belief revision [4]. Here the result of the learn-
ing process is given explicitly, e.g., in the form of it-then
rules. On the other hand, there are learning approaches that
represent learned knowledge in subsymbolic, i.e., numeric
form, such as realized by reinforcement learning [5]. Here
the result of the learning process is given only implicitly,
e.g., in the form of a table of numbers. The main benefits of
a combination of symbolic and numeric representations in
self-learning systems are described in [6]. Biological learn-
ing systems inspire the formulation of further requirements
for self-learning systems. Among them is the demand that
learning should take place at several levels of hierarchy and
that a multi-directional transfer of information between the
separate levels is necessary to acquire cognitive capabilities
autonomously from the environment. The current situation in
classical machine learning is characterized by a rather strict
separation of symbolic and numeric learning approaches,
although results from, e.g., psychological research also pro-
vide evidence that humans are able to learn implicitly as well
as explicitly and that these levels of learning interact with
each other [7]. Only recently these fields of machine learning
slowly begin to merge, taking advantage of the mutual
benefits of both concepts. One such approach that combines
both ideas is the Sphinx system described in [8], [9]. We take
this system as an example and a starting point to develop our
ideas on the visualization of learning processes. Despite of
strong research efforts no broad intelligent, self-organizing
system exists which features essential properties of biolog-
ical learning systems (such as the ability to explore the
environment and to learn the inherent structure of perceived
data) and at the same time is able to solve complex problems
(such as cognitive tasks in computer vision). The few



approaches (including the above mentioned system), which
try to implement the above mentioned learning principles,
only provide first decent results in autonomously gaining
cognitive abilities. Consequently, it is not surprising that -
so far - no attempt has been made to visualize the internal
processes of such a broad learning system. An inherent
challenge for the development of such systems is the limited
access to the information flow between different learning
levels. Visualization of dynamically attained system states
helps to monitor and identify transition patterns important
for the system design task.

In this position paper we address the problem of visu-
alizing processes in self-learning systems. The purpose of
such a visualization is at least twofold. On the one hand, it
represents one of the best possibilities to improve the design
and safety of a system by increasing its transparency, its
usability and its possibilities for user interaction. On the
other hand, visualizations of processes in artificial learning
systems may also allow for insights in learning mechanism
in general, including biological systems. In section II we
introduce briefly the learning system we refer to in this
paper. In section III we first identify relevant questions which
are able to open future research directions in the field of
visualization of dynamic learning processes and give an
example of a concrete visualization of a learned symbolic
representation in the form of rules.

II. EXAMPLE FOR A SELF-LEARNING SYSTEM

In this section we give a brief overview of the self-learning
system Sphinx we will take as an example to introduce
our suggestions for visualizations. We restrict ourselves to
describing only those aspects of the system, which are
relevant for this purpose. For details refer to [8]. The iterative
two-level architecture of Sphinx is displayed in figure 1.
Sphinx is able to autonomously learn strategies for visual
object acquisition and recognition from scratch. For that
purpose the system interacts with its environment by rotating
objects depending on past perceptions to acquire those views
which are advantageous for recognition. The goal is that
after the learning process the system is able to recognize
objects with as few actions as possible. Sphinx is endowed
with some simple visual recognition mechanisms, such as
the categorization of object textures into the three different
categories simple, medium and complex. In the beginning of
the learning process a set of unfamiliar objects (such as a
bottle) is presented. Sphinx starts to chose whatever object
it likes, rotates the object as often as it likes to any view
it likes, and perceives the visual parameters of the view.
This is repeated several times. During the learning process
a set of if-then rules is learned that allows for an increas-
ingly efficient acquisition process, i.e., an increasingly goal-
oriented selection of views for decisions for the next action
such as the rotation to a particular view or the recognition
of a special object. The if-then rules are ranked according

to their plausibility, with increasing ranks for decreasing
plausibilities, starting with a rank of 0 for the most plausible
rules. During the learning process new rules can be created,
existing rules can be deleted or modified, and the ranks of
rules can be adapted. In the end of the learning process
Sphinx displays high recognition rates using its learned rules.
Examples for learned rules are

• IF the shape of the front view is an upright triangle
AND the size of the front view is tall THEN recognize
a bottle.

• IF the shape of the front view is a circle AND the shape
of the side view is unknown AND the texture is simple
THEN rotate the object to the left.

A. System Parameters of the Low-Level Learning Part

The lower learning level of Sphinx is realized by methods
of reinforcement learning, i.e., Q-learning [5]. Learning pro-
ceeds over several episodes. One episode consists of serveral
steps in which a state of the environment is perceived, an
action is performed, a reward is received for the last action,
and a Q-table is updated using the received reward. (Figure 1
shows theses stages of one learning step.) Hence, the central
data structure on the lower learning level is the Q-table,
which is a sparsely populated table with quality values of
state-action pairs. This is the main data structure for the
numeric representation of learned knowledge.

B. System Parameters of the High-Level Learning Part

The above mentioned rules are derived from an interplay
between the rewards received on the lower learning level
and a central data structure on the higher level which
is learned simultaneously, namely the ordinal conditional
function (OCF). This function assigns a rank to each world
model according to its plausibility. A world model is a
conjunction of literals of all possible variables. The OCF
is the main data structure for the symbolic representation
of learned knowledge. The symbolic representations of the
states are constituted by values of visual parameters that
characterize an object. In detail, that are the 7 boolean
variables summarized in table I with their possible values
in parentheses. (The deviation variables code the deviations
from the idealized shapes.) The symbolic representation s

Table I
VARIABLES

variable possible semantic

1 FrontViewShape {Unknown, Circle, Square, TriangleUp, Triangle-
Down}

2 FrontViewSize {Unknown, Flat, Regular, Tall}
3 FrontViewDeviation {Unknown, Little, Medium, Much}
4 SideViewShape {Unknown, Circle, Square, TriangleUp, Triangle-

Down}
5 SideViewSize {Unknown, Flat, Regular, Tall}
6 SideViewDeviation {Unknown, Little, Medium, Much}
7 Texture {Unknown, Simple, Medium, Complex}



Figure 1. The seven stages of a single learning step of the self-learning system Sphinx. Learning takes place on two levels of hierarchy, and there is an
exchange of information between both levels in both directions. The subsymbolic level is realized by means of reinforcement learning. The knowledge
learned here are values of state-action pairs and it takes the numeric form of a table of numbers. The symbolic level of if-then rules is realized by means
of belief revision. Before the execution of the very first learning step neither any symbolic knowledge nor any numeric knowledge has been acquired, as
detailed in [8].

of a specific state is the conjunction of the corresponding
literals of all of these variables.

The possible actions are two rotation actions (to the left
and to the right), one recognition action for each of 9 objects

• Recognize = {Ball,Bird,Bottle,DVD,Football,
House,Pott,TetraPack,Tree}

and the decision to not recognize anything. Thus, here we
have one variable with 12 possible values:

• Action = {RotateLeft,RotateRight,RecognizeUnkown}
∪ R, where R is the set of ’Recognize’ actions.

Finally, a world model which is ranked by the OCF during
the learning process takes the form of conjunctions of
literals, where the first part is a symbolic representation
s of a state as described above and the last literal is a
symbolic representaion a of an action. For the interpretation,
s constitutes the predicate of an if-then rule, whereas a
constitutes the consequent, with the meaning, that if such
a rule is ranked plausible, then action a is a plausible action
in state s.

III. QUESTIONS OF GENERAL INTEREST

Our goal is the visualization of dynamic processes in
learning systems in general. Future learning systems will be

most successful, as explained in section I, if they combine
symbolic and numeric knowledge on different hierarchy lev-
els. The questions of general interest in this context concern
the visualization of the dynamic transfer of information and
of the symbolic data.

In our example the status of the self-learning system
Sphinx is defined, on the one hand, by the OCF (i.e., the
list of learned rules with plausibility ranks, values of zero
indicating highest trustworthiness) and, on the other hand,
the Q-table (i.e., a sparsely populated table or matrix of
qualities of state-action pairs).

For the visualization of numeric data, especially of ma-
trices of values, a number of suggestions already exist.
For this reason we concentrate in the following subsections
on general considerations concerning the visualization of
the dynamic flow of information in self-learning systems
(subsection III-A) and on a concrete example of a visu-
alization of lists of rules of the Sphinx learning system
(subsection III-B).

A. General Considerations on the Visualization of Self-
Learning Systems

Internal states of self-learning systems are driven by
external stimuli from the environment but also from internal



states that account for previous recursively dependent system
states. A rigorous mathematical analysis would opt for
quantification of partial auto-correlation characteristics or
the identification of attractor states [19]. Semi-quantitative,
yet informative, visualization-based characterization of dy-
namical systems is possible using the visual recurrence anal-
ysis approach [20]. This method characterizes quasi-periodic
states and phase transitions by seeking pairs of states vectors
over time being marked in a so-called recurrence matrix
suitable for visual assessment and interpretation. Restriction
to rather small data sets, complete data knowledge, and real-
valued uni-variate input data prevent us from using visual
recurrence analysis; however, the strong idea of relying on
neighborhood relations is used for visual local reconstruc-
tions of state relationships in this work.

1) Visualization graphs: Chart plots against time are
commonly useful in process characterization if system goals
can be defined. For example, rates of learning success or
internal stimulus representation accuracies can be computed
and plotted during different learning phases of the model. If
such externally quantifiable goals are not available, measures
of structural complexity can be calculated. The numbers
of active rules per learning episode or, more precisely, the
activity distribution and credibility of rules can be used for
model characterization. Progress is then defined relative to
previous system states by calculating differential values such
as relative entropy measures such as the Kullback-Leibler
divergence [21].

2) Visualization of internal states: The relationships of
internal states of a developing system are the result of a
process, thus, they are supposed to be more meaningful
relative to the previous stages rather than to a global origin.
Moreover, the combination of symbolic and subsymbolic
architectures requires methods that are able to deal with
internal representation ranging between numeric and cate-
gorial data. A very general approach is the definition of
scoring schemes to assess the similarity of internal states.
For numeric data, such as the Q-table, this can be done using
norms for potentially sparse vectors. For symbolic string data
it is more natural to employ edit-distances, alignment scoring
strategies, or Hausdorff metrics [13], which for general
boolean rules would require prior canonicalization using
algebraic normal forms (Zhegalkin polynomials) [14]. Alter-
natively, Karnaugh-Veitch-Diagrams can be used to simplify
Boolean algebra expressions [15]. Once the (dis-)similarity
measure is defined, it is possible to extract rankings of state
neighbours for use with relational data processing tools [16].

Visualization methods like stochastic neighbor embedding
(SNE) allow to use information on object neighborhoods to
re-create their approximations in simple-structured spaces,
such as 2D-scatter plots [10], [11]. These plots can be
equipped with additional labeling information for printing
or further be used in interactive systems like GGobi for the
visual inspection of attained state configurations [12].

Table II
CHARACTER CODES OF THE RULES IN SPHINX AND THEIR

ANNOTATION.

character denotation character denotation

A Unknown M Pott
B Tall N Triangle Down
C Little O Tree
D Complex P Much
E Tetra Pack Q Bird
F Circle R rotate left
G Flat S rotate right
H Medium T House
I Football U Ball
J Square V Bottle
K Normal W Triangle Up
L Simple X DVD

Another challenge is the varying number of internal states
generated dynamically during the learning process. Adding
and removing objects from the display may lead to flickering
and undesired clutter. Therefore, prototype representations of
average or median states are desirable for conveying global
pictures of internal states. Vector quantization methods like
k-means or self-organizing maps can be used for clustering
vectorial data [18], and generalizations for relational data
have been recently developed [17].

Thus, some demands for the visualization of learning
process data are that it should be

• usually unsupervised;
• stable (continuous) between successive plots;
• turning similarity information into neighborhood prox-

imities;
• able to handle a varying number of objects (clustering

option);
• time & memory efficient.

In the following example we make use of a method for the
reconstruction of neighborhoods in Euclidean space for the
visualization of rule sets.

B. Concrete Example of a Visualization of Learned Rules

As an illustrative example we visualized of rules of the
Sphinx learning system after episode 1 and after episode
10 of learning. A rule is given by an 8 bit character code
containing the 7 variables explained in table I and the action
of the system in the last bit, which can be the recognition
of 9 possible objects or a rotation (see section II-B for
details). The character definitions can be found in table II. As
explained before the rules are accompanied with a numeric
plausibility value, where lower values denote that the system
trust the rules more than bigger ones.

First we created a pairwise dissimilarity score between
all rules taking into account the first 7 variables. As we can
see from table I some variables, like 1 FrontViewShape
and 4 SideViewShape, should be considered as equally far
from each other. We see now reason to consider Circle
more similar to Square than TriangleUp. In the special



Episode 1

 

 

WBAAAAHV

FAAAAALR

AAPABALI

AAPJGALT

WAANKALU

AKANGADX
WBHAAAHU

WAAAKPLT

AKCAKADI

AACJACHO

0

50

100

150

200

250

300

350

Episode 10

 

 

NKCWBPHV

NKPNBPDO

WBPFKHDV

WGHWKHLT

NKHJAHHV

WGHFGPHE

WBHNBCLE

WGCWGPDR

NGPNKCDI

WKHJKHHI

FKCAAAHRFKCAAAHR

0

50

100

150

200

250

300

350

Figure 2. Visualization of the neighborhood relations of rules after the first training episode of the self-learning system Sphinx and after 10 episodes.
Neighboring points denote similar rules according to a scoring system explained in the text. The color denotes the plausibility, cyan denoting highest
plausibility (OCF=0), magenta denoting least plausibility (OCF=360). At the beginning every rules is trusted almost equally well, because the system
did not yet develop proper differentiation into pragmatic values. After 10 episodes some implausible rules are identified, which are highlighted in the
visualization by a magenta color.

case of Unknown in one of these two variables we even
consider no contribution at all to the dissimilarity value
for the comparison of the rules. For the other variables the
content can be ordered, such that we simply exchanged them
by numerical values ranging from 0 to 3 and taking the
squared Euclidean distance. The contribution of the non-
ordered variables is just added to this distance. This way
we end up with pairwise dissimilarity scores of the rules,
which we can use in state-of-the-art nonlinear visualization
techniques, such as t-SNE.

Figure 2 shows the pairwise dissimilarities of the rules
embedded in the 2-dimensional Euclidean space after the
first training episode (=150 learning iterations) of the learn-
ing system and after 10 episodes (=1.500 iterations). We
used t-SNE on the dissimilarity scores using the publicly
available code and with a neighborhood contiguity parame-
ter (perplexity) of 10. Since neighborhood relationships of
embedded rules in the point cloud do not change under
rotation and scaling operations, the axes express extent of
space only. In the beginning we can find a lot of rules with
’A’-Unknown feature content and nearly all rules are equally
trusted, because the system did not develop a differentiation
into levels of usefulness at that early stage. We plotted some
example rules on the position of their corresponding dot
in the map. After 10 episodes, rules with a lot of ’A’s are
denoted by a higher OCF value like the rule ’FKCAAAHR’
shown in the upper right corner.

One example for a rule that is ranked implausible, i.e., is
colored magenta after 10 episodes, is ’NKCWBPHV’. This
rule means ’IF Front View Shape = Triangle Down AND
Front View Size = Normal AND Front View Deviation =
Little AND Right View Shape = Triangle Up AND Right
View Size = Tall AND Right View Deviation = Much AND
Texture = Medium THEN Recognize Bottle’.

On the other hand, one example for a rule that is still
ranked plausible after 10 episodes, is ’NKPNBPDO’. This
rule means ’IF Front View Shape = Triangle Down AND
Front View Size = Normal AND Front View Deviation =
Much AND Right View Shape = Triangle Down AND Right
View Size = Tall AND Right View Deviation = Much AND
Texture = Complex THEN Recognize Tree’.

Besides the different colors another difference between teh
diagrams can be recognitzed. There are also more trenches
between groups of rules visible in the right panel, expressing
further differentiation of the trained system.

Summarizing, in this example we derived dissimilarity
codes in an heuristic way using our prior knowledge of the
nature of the variables, but custom dissimilarity measures
can be employed as desired.

IV. CONCLUSION

We discussed the problem of visualization of processes in
self-learning systems. This topic becomes relevant especially
when self-learning systems are applied in safety critical
environments because the visualization of internal system



statuses and processes can provide transparency and thus in-
crease usability and trust. The most promising approaches in
the field of self-learning systems combine learning methods
on several hierarchies, including symbolic representations
of the world. As such representations are understandable by
humans they are especially suited to be applied in domains,
where usability and safety is critical.

By means of an example of an existing self-learning
system we developed some ideas how to visualize dynamic
learning processes and gave a concrete example of a visual-
ization of symbolic knowledge in the form of learned rules.

In particular, it seems to be reasonable to visualize
symbolic rules using state-of-the-art nonlinear techniques.
This way the user can get an impression of the system
state via visual inspection. Therefore suitable metrics are
necessary, especially if the code presentation accounts for
defined semantic meanings.

We visualized learned rules of a self-learning system in a
way that enables an operator to monitor its internal learning
state. By a comparision of the neighborhood relations of
learned rules at different instants of time an operator can
recognize an increasing development of clusters of rules
(indicated by an increasing width of trenches between rule
clusters). Furthermore, she is enabled to follow the process
of an increasing rejection of implausible rules (indicated
by an increasing number of rules colored magenta). Both
artifacts can be used as an indicator of a proper functioning
of the system, thus contributing to more saftey and security.

We have demonstrated our ideas by means of a special
learning system where learned rules can be compared by
means of a customized distance metric. Of course, there
is a huge variety of learning approaches, and visualization
techniques will depend on the special algorithms and data
structures at hand. Future work has to deal with the broader
question of a possible matching of different visualization
techniques to different classes of learning systems.
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