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AbstractWepropose an architectural model for a responsive vi-

sion system based on techniques of reinforcement learning.

It is capable of acquiring object representations based on

the intended application. The system can be interpreted as

an intelligent scanner that interacts with its environment in

a perception-action cycle, choosing the camera parameters

for the next view of an object depending on the information

it has perceived so far. The main contribution of this pa-

per consists in the presentation of this general architecture

which can be used for a variety of applications in computer

vision and computer graphics. In addition, the funcionality

of the system is demonstrated with the example of learning a

sparse, view-based object representation that allows for the

reconstruction of non-acquired views. First results suggest

the usability of the proposed system.

1 Introduction

Both, computer vision as well as computer graphics are

concerned with the visual appearance of objects of the real

world. Major problems of computer vision are the recog-

nition or classification of objects from images. An impor-

tant challenge of computer graphics consists in the genera-

tion of internal models of objects from images, e.g., for the

purpose of geometric modelling or graphic illustration. For

both fields of research the acquisition of an object represen-

tation is necessary.

The current situation is for the most part marked by a

separation between object acquisition and further process-

ing of the acquired information in a specific application,

whether in the field of computer vision or in the field of

computer graphics (figure 1). This often leads to the fact

that the recorded data do not meet the requirements of the

application. A usual way to obtain reasonable results any-

how is the development of heuristics. Another approach,
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Figure 1. Usually the data acquisition and the
further processing of the data occur strictly
successively.
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Figure 2. The proposed vision system allows
for a feedback from the application to the
data acquisition via reinforcement learning.

which has been used to different extents in the mentioned

fields of application, is the active visual acquisition of ob-

jects. This means that the processing of the recorded data

gives feedback to the acquistion part of the system. In anal-

ogy to human information processing the system should au-

tonomously learn strategies of object acquisition on the ba-

sis of application-specific objectives only.

We propose an architectural model for a responsive vi-

sion system based on techniques of reinforcement learning

that takes these considerations into account (figure 2). It is

capable of acquiring object representations based on the in-

tended application only and thus can be employed for a vari-

ety of tasks. The system can be interpreted as an intelligent
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scanner that interacts with its environment in a perception-

action cycle, choosing the camera parameters for the next

view depending on the information it has perceived so far.

So, the subsequent input depends on the actions taken pre-

viously.

Section 2 summarizes related work. In section 3 we pro-

pose the responsive vision system. In section 4 this system

is applied to a typical problem, the acquisition of a view-

based object representation, which can be used for view

morphing. In addition, first results for this problem are

presented here. Finally, in section 5 some conclusions are

drawn.

2 Related work

The term viewpoint planning summarizes techniques of

deciding the optimal viewpoint distribution which captures

all relevant information about an object or a scene for a spe-

ci fic task. Within the last decade a variety of methods for

viewpoint planning have been proposed. But in the field of

computer vision it is usually not employed until the level of

object recognition [1], instead of utilizing it also for object

acquisition. This holds true also for [2], where the dynamic

aspect plays a role also not until the level of recognition.

In [3] an approach to the acquisition of view-based object

representations is proposed where key-frames for the rep-

resentation are chosen from an image sequence. But the

strategy for the choice of key-frames as well as the scan

path are given. The same holds true for the adaptive track-

ing approach proposed by [4]. In [5] an approach to 3d

model acquisition with an ”eye-in-hand” configuration is

described but again with a given scan strategy. Also for

more adaptive systems, which try to adapt the scan path to

the object or the application, holds true that the strategies

for scanning an object or a scene are mostly given by the

developer [6, 7, 8, 9, 10]. Only recently these strategies

are also learned automatically, for example with methods

of reinforcement learning. This approach is chosen, e.g.,

by [11, 12, 13] for the autonomous emergence of strategies

for object recognition. However, we do not know any ap-

proach to object acquisition by active learning up to now

and propose a method which adaptively learns a view-based

object representation without a given strategy.

3 A responsive vision system

Figure 3 displays the general architecture of a vision sys-

tem that learns object representations interactively depend-

ing on the intended application. The different components

of the system are separated in three modules: Learning in

the upper right part of the diagram, Acquisition in the lower

left, and Application in the upper left. The resulting object

representation is shown in the lower right part. In the di-

agram examples for concrete design decisions are printed

in italics. In the next section the different modules are de-

scribed, in section 3.2 the interaction between these mod-

ules is explained, and in section 3.3 we focus on some de-

sign decisions a user has to make when she likes to utilize

this system for her own needs.

3.1 Modules

Module L earnin g . In traditional approaches of computer

science a problem is solved by an algorithm that has

been developed by the programmer who has reflected on

the problem. In contrast to this, approaches exist which

delegate also the discovery of solution procedures to the

machine. Often principles of nature are a role model for

such approaches. One example are evolution-based meth-

ods such as genetic programming [14]. Another example

are behavior-based techniques such as Reinforcement

Learning, which seem to be an appropriate approach to our

problem of object learning. The principles of reinforcement

learning are sketched in the following. An agent interacts

with its environment by perception and action. In an

interaction step i the agent receives information si ∈ S on

the current state of the environment as input via perception.

Then the agent chooses an action ai ∈ A according to its

policy function p : S → A. The action is carried out and

changes the state of the environment (transition function

d : S × A → S). The agent is able to adapt its behavior

to certain conditions. For this purpose the agent receives

direct feedback for its last action by a scalar reward

signal r. In addition, a valuation of the state transition

is conducted by a value function Q : S × A → IR. The

behavior of the agent should maximize the long term sum

of the reward signals, i.e., the expected return. The value

function is learned by systematic trial-and-error for which

a bunch of techniques has been developed. In [15, 16, 17]

overviews are given.

Module Acq uisition. There are some steps in the ac-

quisition process which are common to all kinds of

applications and all kinds of data structures of the object

representation. Whether a 3D model or a view-based

representation should be learned, in any case there will

be some steps of preprocessing of a perceived view of

the object, such as image enhancement or segmentation

techniques. As the perceived image is the only information

about the environment available to the agent, there will

also be some feature extraction technique. Examples for

features are responses of a Gabor wavelet transform or the

scale-invariant feature transform (SIFT) [18]. Depending

on the specific design there may also be a calculation of

a representation of a single view (e.g. in form of a graph
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Figure 3. Architecture of a vision system that learns object representations.

labeled with local object information or in form of the 3d

positions of object features) before the new information

is incorporated into the object representation. At last, to

extract useful information from a sequence of views the

common information between successive views has to be

exploited. This can be realized for example by 2d feature

tracking or by bundle adjustment techniques.

Module App lication. The two major fields of appli-

cation for interactive object learning are computer vision

with the goal of object recognition and classification and

computer graphics with the purpose of object reconstruc-

tion. After the learning process and given a test view or

a sequence of test views recognition and classification

should be possible even if the agent has not experienced

those test views. Analogously, the reconstruction of the

complete object and the rendering from unfamiliar views

are claimed. This module gives the crucial feedback to the

Learning module utilizing the object representation learned

so far.

3.2 Interaction between the modules

The Learning module implements the perception-action

cycle of the system. It produces actions and states as output

and takes feedback from the defined application as input.

The feedback from the application modifies the subsequent

environment of the agent. The goal of the acquisition pro-

cess is defined by the reward signal. This reward signal is

calculated according to the specific application. Thus, goal-

directed behavior emerges, resulting in different object rep-

resentations for different applications.
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3.3 Design decisions

Besides decisions concerning the data structure of the

object representation and the way how new information

is integrated (Acquisition module) the majority of design

decisions falls in the Learning module. Here we have to

define the following parameters:

States S: A state should incorporate the information

necessary for the agent to decide for the next action. It

seems reasonable to include at least information on the

object learned so far and on the current view which is

perceived.

Actions A: An action should change the camera pa-

rameters, i.e., position and orientation of the camera in

relation to the object, but also the focal lenght could

be useful to change depending on the application. In

addition, an update of the object representation can also be

implemented as action of the agent.

Value function Q : The estimation of the value func-

tion is the goal of reinforcement learning. It reflects how

good it is for the agent to perform a given action in a given

state. The definition of the policy function has to be taken

into account here.

Policy function p: It determines for each state the

next action of the agent. One of the design decisions here

consist in the determination to which extend the strategy

learned so far is exploited or, on the other hand, is ignored

in favor of exploration.

Reward function r: Its definition is the crucial de-

sign decision as it determines the goal of the learning

process. Here the response of the application must be

integrated.

Summarizing, as the chosen application determines the

learning process and the resulting object representation this

system will be applicable for many purposes, in computer

vision as well as computer graphics. Once a basic system

has been established the user primarily has to define states,

actions, and a reward function to adopt it for a different ap-

plication.

4 Application to a standard vision problem

We have applied the proposed system to a standard task

in computer vision, namley the acquisition of a sparse,

view-based object representation. To test whether the rel-

evant information on the object has been captured by the

learned scan path we reconstruct non-acquired views from

Figure 4. Simulated setup with camera and
object.

perceived views by 2d view morphing. In section 4.1 we

describe briefly the components of this application. A more

detailed description can be found in [19]. In section 4.2 we

concretize the design decisions of section 3.3, and in sec-

tion 4.3 first results are summarized, which have also been

described in more detail in [19].

4.1 Basic components of the system

Data base and view representation. We simulate an

eye-in-hand camera setup with the object on a table such as

shown in figure 4. The camera rotates around the object at

a fi x ed distance and is oriented to the center of the object

base. The observed object views are represented in a data

base which contains views for 100 lines of longitude and

25 line of latitude on the upper view hemisphere resulting

in 2500 views for one object. Each of the recorded views is

preprocessed by a Gabor wavelet transform using a filter

bank with wavelets of 8 orientations and 4 frequencies fol-

lowed by a simple segmentation utilizing gray level values.

A regular grid graph is placed on the object segment and

the nodes of the graph are labeled with the corresponding

Gabor wavelet responses.

Correspondences by tracking. Correspondences be-

tween successive views are obtained by tracking the nodes

of a graph from frame to frame within a local area of

the view hemisphere. This is realized by utilizing the

information obtained from the Gabor transform at each

node of the graph [20]. The grid graph shown in the left
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Figure 5. Tracking of object points.

view of figure 5 is tracked along the sequence to the view

shown on the right. The nodes stay on corresponding object

points. A similarity function between two graphs based

on the Gabor wavelet responses is defined reflecting the

similarity between the particular views.

Sparse object representation. A sparse, view-based

object representation consists of original grid graphs and

tracked graphs of only some key views of the scanned path.

Given a scan path on the view hemisphere we start with

its first view (key view K0) and incorporate its original

grid graph G
K0

orig in the object representation. This graph

is tracked along the scan path until the similarity between

the tracked graph at the current view of the scan path and

G
K0

orig drops below a preset threshold. The tracked graph

G
K1

track for this second key view K1 is also stored in the

object representation. For K1 a new grid graph G
K1

orig is

generated and incorporated into the representation as well.

It is also tracked until the similarity to G
K1

orig drops again

below the threshold, and so on. For the first and the last

key view of the scan path only one graph is stored (GK0

orig

and G
KN

track, respectively), whereas for each other key view

Kj, j = 1, . . . , N − 1 of the scan path two graphs G
Kj

track

and G
Kj

orig are stored in the object representation, ensuring

piecewise correspondences for local areas of the view

hemisphere (figure 6).

Reconstruction of non-acquired views. An unfamil-

iar view is morphed from those two consecutive key views

which are closest to it, using the correspondences provided

by the tracking procedure. For view morphing we use a

standard technique described in [21]. A morphed view

can then be compared to its original version by an error

function. This yields an error for a reconstructed view. In

the example in figure 7 the non-acquired view (7, 11) is

reconstructed from the key views (3, 7) and (14, 7). It can

be compared to the original view (7, 11).
This technique is used for the calculation of the reward

signal after each step of a scan episode as well as for the

calculation of the total reconstruction error after a scan path

has been learned.

Figure 6. Sample views of two objects and a
possible scan path with three key views.

4.2 Design decisions for the application of
2d view morphing

States S: The current position of the camera only is not

sufficient to define a state of the environment. But the

complete path which has been scanned would yield too

many states. Thus, we define a state as a vector which

contains the current position of the camera and four values

which describe the degree of unfamiliarity of the areas

to the north, east, south, and west of the current position

on the view hemisphere, respectively. To calculate the

degree of unfamiliarity of an area we assign a value to each

unfamiliar position of an area. This value is the distance

from this unfamiliar position to the next familiar position

(i.e. one that has already been scanned). Then the value of

an area is the sum of all values of unfamiliar positions in

this area. The possible values of an area are quantized into

fi ve bins. For a further reduction of the number of states

we also quantize the original view hemisphere, resulting

in a raster of 20 × 5 views. Thus, a state consists of six

components: x-position on the hemisphere (20 possible

values), y-position (5 possible values), unfamiliarity of

the areas in the four directions (5 possible values each),

resulting in a total of 2000 states.

Actions A: Possible actions are the movement of the

camera in one of the four above mentioned directions on

the quantized view hemisphere.

Value function Q : We apply Q-learning. The Q-values
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original  view (3, 7) original view (14, 7)

morphed view (7, 11) original view (7, 11)

Figure 7. Reconstruction of a non-acquired
view.

Q(st, at) = Q(st, at) + α(rt+1 + maxa Q(st+1, a) −

Q(st, at)) with st state, at action, and rt+1 reward at

step t, are stored in a table. (This requires the number of

state-action-pairs to be reasonably small.)

Policy function p: We apply a learning rate α = 1/3 and

an ǫ-greedy policy with ǫ = 1/3, annealed by the factor

1/1.000001. In the beginning the agent chooses a random

action in one third of all steps (exploration) and an action

based on the learned information in two thirds of all steps

(exploitation). With ongoing processing the probability

for exploration is slowly decreasing for the benefit of

exploitation.

Reward function r: Before the choice of the next

action the agent predicts the view he would perceive if he

performed the action. The prediction is calculated accord-

ing to the morphing technique described in section 4.1 from

the last two key views he has experienced so far. After the

prediction the action is carried out. The reward for this

action is higher for larger reconstruction errors between the

predicted and the actual view. More concrete, the reward

is calculated according to rt+1 = −(erecon,t+1 − 1)16.

The total return for one episode is the sum of the rewards

received for each step of the episode.

We carry out 32 steps per episode. Each episode starts

at position (0, 0) on the view hemisphere. In each step the

camera is moved one position on the quantized hemisphere,

i.e., we track the current graph on the unquantized hemi-

sphere to the next position on the coarser raster according

Figure 8. Key views of the learned scan path.

to section 4.1. While tracking from step to step key views

are determined as described in section 4.1. Each episode

provides a scan path with associated key views. This learn-

ing process is stopped when the scan path has stabilized.

To assess the quality of the learned path we calculate a to-

tal reconstruction error by choosing a set of 25 test views

on the unquantized hemisphere. These views are recon-

structed from the acquired key views of the learned path as

described in section 4.1. Then the total reconstruction error

for this path is the mean of the reconstruction errors of all

test views.

4.3 First results

The method described above has been carried out for the

“Tom” object ( figure 6). The learned scan path stabilized

after 2 million episodes which took a few minutes on a stan-

dard PC with pre-calculated values from the tracking and re-

construction modules. It yielded a significantly lower total

reconstruction error than achieved with random scan paths

of equal length. The mean reconstruction error for 100 ran-

dom paths is 9.2, whereas the error for the learned path is

5.8. In figure 8 the key views of the stabilized, learned scan

path are depicted. The inset shows the view hemisphere

seen from above with view (0, 0) at the bottom. Only the

key views of the path are displayed. The returns seem to be

monotonously increasing until the scan path has stabilized

between episodes 106 and 107. The scan paths learned up

to these episodes are displayed in figure 9 illustrating the

learning process. The resulting path has an even shape,

going around the lower part of the view hemisphere from

the front to the backside, turning up and moving back to

the front in the upper part of the hemisphere. Those views

of the backside of the object that haven’t been covered are

rather similar to the views where the agent turned up to-

wards the top of the hemisphere. Thus it seems to make

sense not to incorporate these redundant views into a sparse
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Figure 9. Scan paths learned up to certain
episodes.

object representation. We carried out experiments with an

episode length of 36 steps as well. The shape of the result-

ing scan path for these experiments is similar to the one with

a length of 32 steps with the exception that it alternates its

direction once more in the top of the hemisphere. But for

the epsiodes with 32 steps the difference between learned

and random paths in terms of the total reconstruction error

is more obvious than for the episodes with 36 steps.

5 Conclusions

We have proposed an architecture for a vision system

that is capable of acquiring object representations. It is

based on reinforcement learning techniques and interacts

with its environment via an perception-action cycle. The

resulting object representations depend on the information

perceived so far and on the intended application only. The

functionality of the system has been shown with the exam-

ple of learning a sparse, view-based object representation

that allows for the reconstruction of non-acquired views.

Because of its generality we presume that the model is

applicable to a variety of tasks in computer vision and

computer graphics. This is still to be demonstrated with

examples of more objects as well as more and different

applications.
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