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I. ABSTRACT

This paper presents a dynamic scheduling algorithm. The
purpose of the algorithm is to maximize revenue of the
network service provider and share network resources at
the fair way. Presented algorithm is derived from the linear
type of revenue target function, and closed form globally
optimal formula is presented. The method is computationally
inexpensive, while still producing maximal revenue. Due to
the simplicity of the algorithm, it can operate in the highly
non-stationary environments. In addition, it is non-parametric
and deterministic in the sense that it uses only the information
about the number of users and their traffic classes, not about
call density functions or duration distributions.

II. I NTRODUCTION

Today’s networks must carry a wide range of different
traffic types being still able to provide performance guarantees
to realtime traffic such as Voice over IP (VoIP), Video-on-
Demand (VoD), or videoconferencing and at the same time
give some capacity to the best effort traffic. At the point
of single node view the traffic classification is handled by
scheduling multiple queues in a matter that leads to the optimal
result. Most popular scheduling algorithms are priority queue
[8] and weighted fair queue (WFQ) [9]. Priority queue prefers
classes with higher priority, but it is nonadaptive and unfair, i.e.
the delay in the low priority queue may increase unreasonably
large. In contrast, WFQ gives weights for different classes in
such a way that the performance of the low priority queues is
guaranteed.

Traffic classification and pricing of the services are the
issues we need to combine. Many optimal pricing schemes
have been proposed to address this problem. Most of ap-
proaches assume an known user utility function and establish
a optimization model to either maximize the user benefit or
provider revenue [6], [7], [10]. However, the major problem

with this kind of approach is that user utility function can
not be well defined in short term and sometimes even very
difficult in long term. The effectiveness of such schemes is
still questionable. This paper extends our previous pricing and
QoS research, in which the optimal link allocation between
traffic classes using different pricing scenarios and the QoS
were studied [2]. The possibility of using revenue as the
criterion for updating weights in the WFQ service discipline
case was theoretically considered in linear and flat pricing
scenario [3], [5]. In this paper we take into account queuing
scheduling issues by introducing dynamic weight tracking
algorithm in the scheduler. QoS and revenue aware scheduling
algorithm is investigated in the single node case. It is derived
from Lagrangian optimization problem, and globally optimal
closed form solution is presented. The close research is [1],
where adaptive WFQ algorithm was investigated, but revenue
criterion was not used.

III. PRICING SCENARIO

Here the pricing scenario is presented in the simplified form.
Let d0 be the minimum processing time of the classifier for
transmitting data from one queue to the output. For simplicity
it is assumed that the data packets have the same sizeb.
Therefore their size can be scaled tob = 1. Extensions to
the variable packet sizes do not need essential modifications
to the main theory. The number of service classes is denoted
by m, and in this case,m = 3. In each queue, sub-queues can
be defined due to the different insertion delays, transmission
delays etc. of the different packets in the same queue. How-
ever, this is also straightforward extension to our scenario,
and therefore it is beyond the scope of this study. It has only
the effect on the computational complexity. In our scheduling
model, real processing time (delay) for classi in the packet
scheduler isdi = Nid0/wi, wherewi(t) = wi, i = 1, . . . ,m
are weights allotted for each class, andNi(t) = Ni is a
number of customers in theith queue. Here time indext has
been dropped for convenience. The natural constraints for the



weights are
wi > 0 (1)

and
m
∑

i=1

wi = 1. (2)

Without loss of generality, only non-empty queues are con-
sidered, and thereforewi 6= 0, i = 1, . . . ,m. If some weight
is wi = 1, thenm = 1, and the only class to be served has
the minimum processing timed0, if Ni = 1. For each service
class, a revenue orpricing function

ri(di) = ri(Nid0/wi + ci) (3)

(euros/minute) is non-increasing with respect to the delaydi.
Here ci(t) = ci includes insertion delay, transmission delay
etc., and here it is assumed to be constant (therefore above-
mentioned sub-queue systems are not considered here). In
this paper our study concentrates to the case of the simplest
functions, namely linear pricing functions, as shown in Fig. 1.
Linear pricing algorithms may perhaps also be used as building
blocks for developing piecewise linear pricing models.
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Fig. 1. Three linear pricing functions. Horizontal axis: delay; verticalaxis:
price.

For gold class, the pricing modelr1(d) = −5d + 10 means
that when the delayd is small, the price paid by gold class
customer is high - maximally 10 units of money. It is natural
that for the highest priority class, constant shift (e.g. ten money
units in this case) is selected to be highest. On the other hand,
penalty paid to the highest priority class customers is also
highest; in this case it depends linearly on the delay, being
−5d. For example, ifd = 3, then r1(d) = r1(3) = −5 ×
3 + 10 = −5 units of money. Same observations hold for
silver and bronze classes. For bronze class,r3(d) = −d + 2
means that the price paid by that class customer is maximally
2 units of money. In this case, constant shift was selected
to be lowest. On the other hand, penalty for bronze class is
also lowest, being−d. However, our purpose is not to make
accurate study of the practical realizations of the parameters
of the curves, only general parametrical forms of the pricing
functions.

IV. SCHEDULING ALGORITHM

One user in classi paysri(di) money units to the service
provider according to the pricing function (3). Because there
are Ni customers in the queuei, the total price paid by
the ith class customers in unit time step (euros/minute) is
Niri(Nid0/wi +ci). Because there arem classes, the revenue
criterion to be maximized has the form

F (w1, . . . , wm) =

m
∑

i=1

Niri(Nid0/wi + ci) (4)

under weight constraint (1) and (2). Without loss of generality,
setd0 = 1.

As a special case, considerlinear revenue model.
Definition 1: The function

ri(t) = −rit + ki, i = 1, . . . ,m, (5)

ri > 0, (6)

ki > 0, (7)

is called linear pricing function.
Using Eqs. (3), (4) and (5), we define the revenueF for

linear pricing functions by Lagrangian as follows:

F = F (w1, . . . , wm)

=

m
∑

i=1

Ni(−ri

Ni

wi

+ ki) + λ(1 −
m
∑

i=1

wi)

= −
m
∑

i=1

riN
2

i

wi

+
m
∑

i=1

Niki + λ(1 −
m
∑

i=1

wi),

0 < wi ≤ 1. (8)

Here the constantsci have been dropped out for convenience.
Theorem of closed form solution for optimal weights is as
follows:

Theorem 1: For linear pricing functions, the maximum
revenue F is achieved by using the weights

wi =

√
riNi

∑m

l=1

√
rlNl

, (9)

and it is unique in wi ∈ (0, 1]. We have proofed that in [?],
and an upper bound for revenueF is obtained:

Theorem 2:

F <

m
∑

i=1

Niki. (10)

This is proofed in [4]. Analytical form to the revenue can be
expressed solving weightswi out:

Theorem 3: When optimal weights wi are used according
to Theorem 1, revenue is

F = −
(

m
∑

i=1

√
riNi

)2

+

m
∑

i=1

Niki. (11)

Proof: When penaltyλ(1 −
∑

i wi) in Eq. (8) vanishes,F
can be represented in the form

F = −
m
∑

i=1

riN
2

i

wi

+

m
∑

i=1

Niki. (12)



Substitute optimal weights (9) to Eq. (12). Then

F = −
m
∑

i=1

riN
2

i

∑m

l=1

√
rlNl√

riNi

+

m
∑

i=1

Niki

= −
m
∑

i=1

√
riNi

m
∑

l=1

√
rlNl +

m
∑

i=1

Niki

= −(

m
∑

i=1

√
riNi)

2 +

m
∑

i=1

Niki. (13)

Q.E.D.
From Eq. (13), one possible constraint in the CAC mecha-

nism is obtained, namely

(
m
∑

i=1

√
riNi)

2 <
m
∑

i=1

Niki, (14)

that guaranteesF > 0.
Next theorem states optimal number of users, as well as

upper bounds for buffer sizes:
Theorem 4:Upper bounds for buffer sizes are

qi = ⌊1

2

ki

ri

⌋, i = 1, . . . ,m, (15)

where y = ⌊x⌋ denotes maximum integer y satisfying y ≤ x.
Proof: The optimal number of users for fixed weights is
obtained as follows:

∂F

∂Nl

= −2
rl

wl

Nl + kl = 0. (16)

Therefore

Nl =
1

2

wlkl

rl

, l = 1, . . . ,m. (17)

The second derivative is

∂2F

∂N2

l

= −2
rl

wl

< 0, (18)

becauserl > 0 and wl ≥ 0. ThereforeF is strictly concave
with respect toNi, i = 1, . . . ,m having one and only one
global maximum, which is satisfied by Eq. (17). Becausewi ≤
1, i = 1, . . . ,m, then

Nl ≤
1

2

kl

rl

, (19)

for which Eq.(15) follows. This completes proof.Q.E.D.
Next another upper bound for revenue is presented:
Theorem 5: In the case of linear pricing model (1), upper

bound for revenue is

F ≤ 1

4

m
∑

i=1

k2

i

ri

. (20)

Proof: Select optimalvalue forNi in Eq. (17), and substitute
it in Eq. (8) by using constraint (2). Then

F =
m
∑

i=1

1

2

wiki

ri

(

−ri

1

2

wiki

riwi

+ ki

)

=
1

4

m
∑

i=1

wik
2

i

ri

. (21)

Due to the conditionwi ≤ 1, Eq. (20) follows.Q.E.D.

Interpretation of (20) is quite obvious:ki increases upper
limit, while ri decreases it.

Call Admission Control mechanism can be made by simple
hypothesis testing without assumptions about call or dropping
rates. Let the state at the momentt beNi(t), t = 1, . . . ,m. Let
the new hypothetical state at the momentt + 1 be Ñi(t + 1),
t = 1, . . . ,m, when one or several calls appear. In hypothesis
testing, Theorem 3 is applied as follows:

F (t) = −
(

m
∑

i=1

√
riNi(t)

)2

+

m
∑

i=1

Ni(t)ki. (22)

F̃ (t+1) = −
(

m
∑

i=1

√
riÑi(t + 1)

)2

+
m
∑

i=1

Ñi(t+1)ki. (23)

If F (t) > F̃ (t), then call is rejected, otherwise it is accepted.
Computational complexity of the algorithm also be derived

by exploiting Theorem 3. When no calls or droppings happen,
weights are not adjusted. When call appears,O(m) multipli-
cations and additions are performed, as seen from Eq. (11).

V. EXPERIMENTS

In the experiments, call arrivals and duration are Poisson
and exponentially distributed. Call rates per unit time for gold,
silver, and bronze classes areα1 = 0.1, α2 = 0.2, andα3 =
0.3, respectively. Duration parameters (decay rates) areβ1 =
0.010, β2 = 0.007, andβ3 = 0.003, where probability density
functions for duration are

fi(t) = βie
−βit, , i = 1, 2, 3, t ≥ 0. (24)

The three service classes have pricing functions as follows:

r1(t) = −5t + 200 (25)

for gold class,
r2(t) = −2t + 100 (26)

for for silver class, and

r3(t) = −0.5t + 50 (27)

for bronze class. Figure 2 shows the evolution of three weights
w1(t), w2(t), andw3(t) as a function of time, with and without
CAC mechanism. Figure 3 shows the corresponding delays.
Solid, dashed, and dash-dotted curves correspond to gold,
silver, and bronze class, respectively. It is not surprising that
the delays of gold class customers are lowest, while delays of
bronze class customers are largest. Number of usersNi(t) are
shown in Fig. 4. Due to the arrival and duration rates, number
of users is lowest in gold class, while number of users is
largest in bronze class. Solid, dashed, and dash-dotted lines
show upper bounds of the different buffers according to the
Theorem 4. However, because CAC mechanism is not used
(left fig.), andNi(t) may be are larger than the upper bounds.
Ni(t) achieves the theoretical value

E[Ni(t)] =
αi

βi

(28)
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Fig. 3. Delays as a function of time. Left fig. without CAC and right fig.
with CAC. Horizontal axis: time. Vertical axis: delay. Solid, dashed, and dash-
dotted curves correspond to gold, silver, and bronze class, respectively.
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Fig. 4. Left fig. without CAC and right fig. with CAC. Horizontal axis:
time. Vertical axis: number of users. Solid, dashed, and dash-dotted curves
correspond to gold, silver, and bronze class, respectively. Lines are upper
bounds for buffer sizes.

stated in Little’s Theorem, i.e.α1/β1 = 10, α2/β2 ≈ 29,
α3/β3 = 100. In Fig. 5, revenue as well as two upper bounds
are shown (note y-axis scale is different in the subfigs). At the

left fig. the lowest curve (solid) is the revenue achieved by the
closed form method with no CAC. It became negative. Dashed
curve shows the upper limit

∑

i Niki as stated in Theorem 2,
and the solid line illustrates the upper bound of Theorem 5,
and it is constant due to the invariance ofri and ki in that
experiment. When using our CAC mechanism it is noticeable,
that the upper bounds are larger than the realized number of
users, as well as revenue, and what is important, revenue is
now positive.

VI. CONCLUSIONS

Experiments clearly justify the performance of the devel-
oped dynamic scheduling algorithm. For example, theorems
for upper bounds hold, and revenue curves are positive. Some
of the statistical and deterministic algorithms presented in the
literature assume quite stricta priori information about param-
eters or statistical behavior such as call densities, duration or
distributions. However, such methods usually are - in addition
to computationally complex - not robust against erroneous
assumptions or estimates. On the contrary, our algorithm is
deterministic and non-parametric, ie. it uses only the infor-
mation about the number of customers, and thus we believe
that in practical environments it is comptetitive candidate
due to the robustness. Also, Call Admission Control (CAC)
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Fig. 2. Three weights as a function of time. Left fig. without CAC and right
fig. with CAC. Horizontal axis: time. Vertical axis: weight value.

mechanism can be used in the context of the algorithm. It is
based on the hypothesis testing, and is computationally quite
simple. The algorithm used the same packet sizes. However,
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Fig. 5. Left fig. without CAC and right fig. with CAC. Horizontal axis: time.
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upper bound

∑

i
Niki; solid line: 0.25

∑

i
k2

i
/ri.

it is quite straightforward to develop the version, which can
handle different packet sizes. General conclusion is that the
linear pricing scenario is quite simple. However, we believe

that more practical pricing scheme can be based onpiecewise
linear model. Studies to that direction are made. Especially
flat pricing scenario is interesting topic of study.
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and Revenue Aware Adaptive Scheduling Algorithm”,Journal of Com-
munications and Networks, Vol. 6, No.1 March 2004, pp. 68-77.
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