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Object Recognition with a Sparse and Autonomously LearnedRepresentation Based on Banana Wavelets�Norbert Kr�ugerx, Gabriele Petersx, Christoph von der Malsburgxzx Ruhr-Universit�at Bochum,Institut f�ur Neuroinformatik,D{44780 Bochum, Germanyz University of Southern California,Dept. of Computer Science and Section for Neurobiology,Los Angeles, CA 90089-2520, USAAbstractWe introduce an object recognition system, based on the well known Elastic Graph Matching (EGM), butincludes signi�cant improvements compared to earlier versions. Our basic features are banana wavelets, whichare generalized Gabor wavelets. In addition to the qualities frequency and orientation, banana wavelets have theattributes curvature and size. Banana wavelets can be metrically organized. A sparse and e�cient representationof object classes is learned utilizing this metric organization. Learning is guided by a sensible amount of a prioriknowledge in form of basic principles. The learned representation is used for a fast matching. Signi�cant speedup can be achieved by hierarchical processing of features. Furthermore manual construction of ground truth isreplaced by an automatic generation of suitable training examples using motor controlled feedback. We motivatethe biological plausibility of our approach by utilizing concepts like hierarchical processing or metrical organizationof features inspired by brain research and criticize a too detailed modelling of biological processing.1 IntroductionIn this paper we describe a novel object recognition system in which representations of object classes can be learnedautomatically. The learned representations allow a fast and e�ective location and identi�cation of objects in compli-cated scenes. Our object recognition system is based on three pillars. Firstly, our preprocessing is based on the ideaof sparse coding [8, 27]. Secondly, e�ective learning is guided by a priori constraints covering fundamental structureof the visual world. Thirdly, we use Elastic Graph Matching (EGM) [21, 35] for the location and identi�cation ofobjects.A sparse representation can be de�ned as a coding of an object by a small number of binary features taken froma large feature space. A certain feature is only useful for coding a small subset of objects and is not applicable formost of the other objects. Sparse coding has biologically motivated advantages like minimizing wiring length forforming associations. Baum et. al. [2] point to the increase of associative memory capacity provided by a sparse code.Ohlshausen & Field [25] argue that the retinal projection of the three{dimensional world has a sparse structure andtherefore a sparse code meets the principle of redundancy reduction [1] by reducing higher{order statistical correlationsof the input. As an additional advantage to the reasons mentioned above, our matching algorithm achieves a sigini�cantspeed{up by utilizing the fact that only a small number of features is required in our sparse representation of an object.For a more detailed discussion of sparse coding we refer to [8].Our representation of a certain view of an object class comprises only important features. These are extractedfrom di�erent examples (see �gure 1i-iv). The central assumption of our learning algorithm necessitates on a prioriknowledge applied to the system in the form of general principles and mechanisms. Learning is inherently faced withthe bias-variance dilemma [10]: If the starting con�guration of the system is very general, it can learn from andspecialize to a wide variety of domains, but it will in general have to buy this advantage by having many internaldegrees of freedom. This is a serious problem since the number of examples needed to train a system scales verybadly with the system's size, quickly leading to totally unrealistic learning time; or else, with a limited set of trainingexamples the system will trivially adapt to its accidental peculiarities and the system will fail to generalize properly�Supported by grants from the German Ministry for Science and Technology 01IN504E9 (NEUROS) and 01M3021A4 (Electronic Eye).1



to new examples. This is the \variance" problem. On the other hand, if the initial system has few degrees of freedomit may be able to learn e�ciently but, unless the system is designed with much speci�c insight into the domain athand (the solution we criticized above), there is great danger that the structural domain spanned by those degrees offreedom does not cover the given domain of application at all |the \bias" problem.
a) 

b) 

i) ii) iii) iv) v) Figure 1: i{iv) Di�erent examples of cans and faces used for learning. v) The learned representations.We propose that a priori knowledge is needed to overcome the bias{variance dilemma. The challenge here is to attaingenerality and to avoid the extreme of equipping the system with manually constructed speci�c domain knowledge,such as geometry and physics in general or even the geometric and physical structure of objects themselves. We haveformulated a number of a priori principles to reduce the dimension of the search space and to guide learning, i.e.,to handle the variance{problem. We assume that we can avoid the bias{problem because of the general applicabilityof those principles. All these principles are concerned with the selection of important features from a prede�nedfeature space (P0, P1, P2) and the structure thereof (P3). In [18] and [17] we have already made use of the followingprinciples: P0 (Locality): Features refering to di�erent locations are treated as independent;P1 (Invariance): Featuresare preferred which are invariant under a wide range of object transformations; P2 (Minimal Redundancy): Featuresshould be selected for minimal redundancy of information.Here we introduce a principle P3 as an important additional constraint.P3 (Local Feature Assumption): Signi�cant features of a local area of the two{dimensional projection of the visualworld are localized curved lines.We formalize P3 by extending the concept of Gabor wavelets (see e.g., [5]) to banana wavelets (section 2). To theparameters frequency and orientation we add curvature and size (see �gure 2). [21, 35]. An object can be representedas a con�guration of a few of these features (�gure 1v), therefore it can be coded sparsely. The space of banana waveletresponses can be understood as a metric space, its metric representing the similarity of features. This metric is utilizedfor the learning of a representation of objects and for recognition of these objects during the matching procedure. Thebanana wavelet responses can be derived from Gabor wavelets responses by hierarchical processing to gain speed andreduce memory requests (see section 3). A set of examples of a certain view of an object class (�gure 1i{iv) is usedto learn a sparse representation (sections 4 and 5) which contains only the important features, i.e., features whichare robust against changes of background and illumination or slight variations in scale and orientation. This sparserepresentation allows for quickly and e�ectively locating (see section 6) by using EGM.Our system has certain analogies to the visual system of vertebrates. There is evidence for curvature sensitive featuresprocessed in a hierchical manner in early stages [6]; sparse coding is discussed as a coding scheme used in the visualsystem [8]; and metric organization of features seems to play an important role for information processing in thebrain [14, 32]. Instead of detailed modelling of brain areas we aim to apply some basic concepts inspired by brainresearch (like sparse coding, hierarchical processing, metrical organisation of features, etc.) in our arti�cial objectrecognition system. We think a system does not necessarily need to contain \neurons" or \hebbian plasticity" to becalled biologically motivated. Maybe we miss the important aspects of information processing in the brain by lookingon a too detailed level. After all, humans did not build planes with feathers, but the observation of birds inspired theunderstanding of the basic principles of ying which are used by any airplane. For a more detailed discussion of theanalogy to biology we refer to [19].To enable simultaneously a rough understanding of the basic ideas of the approach and a detailed description of thealgorithm this paper can be read in two modes: For every subsections we give �rst a short summary and then a moredetailed description beginning with the phrases \Formally speaking..." or \More formally ...". The reader may skipthe latter parts for a rough understanding or a �rst reading.2
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Figure 2: Relation between Gabor wavelets and banana wavelets. Left: four examples of Gabor wavelets which di�erin frequency and direction only. Right: 16 examples of banana wavelets which are related to the Gabor wavelets onthe left. Banana wavelets are described by two additional parameters (curvature and size).2 The Banana SpaceIn this section we describe our realization of principle P3: a feature generation based on banana wavelets and itsmetric organization in the banana space. P3 gives us a signi�cant reduction of the search space. Instead of allowing,e.g., all linear �lters as possible features, we restrict ourself to a small subset. Considering the risk of a wrong featureselection it is necessary to give good reasons for our decision. We argue that nearly any object can be composed oflocalized curved lines. Furthermore, the fact that humans can easiliy handle line drawings of objects strengthens ourassumption. We think that a good feature has to have a certain complexity but an extreme increase of complexity upto a spezialization to a very narrow class of objects has to be avoided. In any case, there is some arbitraryness in theassumption P3 and it therefore can only be justi�ed by the �nal performance of the whole system.Banana wavelets can be naturally organized in a metric space. Their distance expresses the similarities of qualities ofthe kernels sich as position, orientation or curvature. This metric organization is essential for the learning algorithmdescribed in section 5 because it allows to summarize cluster of similar features by their center of gravity.2.1 Banana WaveletsOur a priori principle P3 states that curved lines are important features of the local visual world. A banana wavelet canbe understood as a generalized Gabor Wavelet [29]. Banana wavelets, like Gabor wavelets are localized �lters whichcan be derived from a \mother wavelet". In contrast to Gabor wavelets, which are characterized by two parameters,the set of all banana wavelets is described by four parameters (see �gure 2a).A banana wavelet B~b is a complex valued function de�ned on IR � IR. It is parameterized by a vector ~b of fourvariables ~b = (f; �; c; s) expressing the attributes frequency (f), orientation (o), curvature (c) and size (s). It can beunderstood as a product of a constant ~b with a curved and rotated complex wave function F~b(x; y) and a stretchedtwo{dimensional Gaussian G~b(x; y) bent and rotated according to F~b (see �gure 3top):B~b(x; y) = ~b �G~b(x; y) � �F~b(x; y)�DC~b�with G~b(x; y) = exp��f22 ���2x �x cos� + y sin� + c (�x sin� + y cos�)2�2 + ��2y s�2(�x sin� + y cos�)2��and F~b(x; y) = exp�if �x cos� + y sin� + c (�x sin� + y cos�)2�� :A banana wavelet can be equivalently expressed by a combination of matrix operations M�, Ms and a non{linearoperation Mc. M� performs a rotation by angle �, Ms stretches the Gaussian. Mc(~x) is a non{linear functionbending the coordinate system (see Appendix A.1). 3
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Figure 3: Top: Real part of a banana wavelet is the product of a curved Gaussian G~b(x; y) and a curved wave functionF~b(x; y). Bottom: Real and imaginary part of the same banana wavelet depicted as grey level picture, with ehiteencoding high values.To ensure DC-freedom of the banana wavelets, i.e., the independence of the �lter responses from the mean grey valueintensity, we set DC~b = R G~b(~x)F~b(~x)d~xR G~b(~x)d~x = e��x2 : (1)To compensate di�erences of �lter responses deriving from banana wavelets of di�erent sizes or frequencies we set~b = f2 � �1 + �f fmax�ffmax � � �1 + �s smax�ssmax �jjB~bjj2 (2)where jj jj2 represents the L2 norm. The factor f2 compensates the decrease of the power spectrum of \natural images"[7]. The factor �1 + �f fmax � ffmax � ��1 + �s smax � ssmax �ensures a more even distribution of the reponses of the banana wavelets. It intensi�es responses for small size andhigh frequency.We de�ne a discrete sampling of the space of banana wavelets by a functionÊ : (l; ô; b;m)! (f(l); �(ô); c(b); s(m))embedding the discrete grid with integer coordinates (l; ô; b;m) in the continuous space (f; �; c; s). In our simulationswe only make use of the discrete set of banana wavelets with parameters (f(l); �(ô); c(b); s(m)). The kernels of twobanana wavelets B~b1 and B~b2 with small euclidian distance jj~b1�~b2jj have small L2 distance by de�nition. Accordingly,Ê has to be chosen such that neighboring coordinates in the grid correspond to similar kernels. The embedding functionÊ ensures that the features corresponding to the grid (l; ô; b;m) are su�ciently seperated to avoid redundancy butalso su�ciently dense to ensure a certain completeness of information.More formally we de�ne Ê by1 f(l) = fmax � f�ls l : 0; : : : nl � 1�(ô) = ô�2�nô ô : 0; : : : nô � 1c(b) = cmax � 2�cmax�bnb b : 0; : : : nb � 1s(m) = smin +m � (smax�smin)ns m : 0; : : : nm � 1 (3)We refer to a discrete set of banana wavelets with nl levels, no orientations, nb curvatures and nm sizes by B and callit a banana plant (see �gure 4). In our simulations we used the parameter settings shown in table 1, columns 1 & 2,in the following referred to as \standard settings".1The parameter ô runs from 0 to 2 � no � 1, where no represents the number of kernels used for the actual image processing. In casethat ô is larger than no � 1, i.e., �(ô) > �, B~b with ~b = (f(l); �(ô); c(b); s(m)) represents the kernel Conj(B(f(l);�(ô)�no;c(b);s(m))), whereConj(B) represents the complex conjugated kernel corresponding to B. Except for section 3 we only make use of the �rst no kernels.4



Standard Parameter SettingsTransformation Approximation Banana space Learning Matchingnl = 2 fmax = 2� ex = 4 � = 0.5 �1 = 0.8no = 8 fs = 0:8 ey = 4 � = 2.5 �2 = 1.7nb = 7 smin = 0.5 nWb = 1 ef = 10 p1 = 0.1nm = 3 smax = 1.0 nWm = 1 e� = 0.3 p2 = 0.7�x = 1.0 cmax = 1.3 sWmin = �1 � smin ec = 0.4 r1 = 1.0�y = 2.0 sWmax = sWmin es = 3.0 r2 = 1.5�f = -0.3 �1 = 1.0�s = 0.45 �2 = 1.0Table 1: Standard Settings. Columns 1,2: Parameters of transformation. Column 3: Parameters in W di�ering fromthe parameters in B. Column 4: Metric of the banana space. Column 5: Parameters of learning.
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Figure 4: Banana plant. These are some examples for wavelets of a banana plant with l = 0; : : : ; 1 frequencies,o = 0; : : : ; 7 orientations, b = 0; : : : ; 6 curvatures and m = 0; : : : ; 3 magnitudes which is a standard setting.2.2 The Banana SpaceLet I be a given picture and I(x; y) be its value at pixel position (x; y). The six{dimensional space of vectors~c = (x; y; l; o; b;m) is called the banana coordinate space(refered to as C), where ~c represents the Banana waveletB(f(l);�(o);c(b);s(m)) at pixel position (x; y). The banana coordinate space has nl � no � nb � nm � xres � yres elements, xresand yres representing the resolution of the image I. In the following we de�ne a neighbourhood relation N(~c1;~c2) anda metric d(~c1;~c2) on C. Two coordinates ~c1;~c2 are expected to be neighbored (or have a small distance d) when theircorresponding kernels are similar. For the coordinates pixel position (x; y), level l and size m we can assume that thesimilarity of corresponding kernels changes accordingly to the distance of these parameters, i.e., the correspondingkernels can be thought to be arranged in a four{dimensional cube. For the coordinates orientation o and curvature bit is more convienent to arrange the corresponding kernels in a Moebius topology (see �gure 5). Note that a bananawavelet with orientation �(o) and curvature c(b) rotated by � produces the same absolute reponse as a banana waveletwith orientation �(o) and curvature �c(b). We use the neighbourhood relation N for our feature extraction describedin section 4 and the metric d in the learning algorithm described in section 5.More formally we �rstly de�ne a Moebis topology on the subset (o; b). (o1; b1); (o2; b2) are called neighbored (N(~c1;~c2) :=True) if at least one of the following two conditions hold true:Within Toplogy: maxfjo1 � o2j; jb1 � b2jg � 1 for o1 : 0; : : : ; nk � 1; o2 : 0; : : : ; nk � 1Border Topology: (o1 = 0 ^ o2 = no � 1 ^ jb1 + b2j � 1)_ (o1 = no � 1 ^ o2 = 0 ^ jb1 + b2j � 1) :Secondly we can extend the neighbourhood relation to C: ~c1 is neighbored to ~c2 if (o1; b1) is neighbored to (o2; b2) andmaxfjx1 � x2j; jy1 � y2j; jl1 � l2j; jm1 �m2jg � 1: (4)5



Figure 5: Moebius topology. The subspace of orientations and curvatures (o; b) with no = 16 orientations and nb = 3curvatures. Top: The banana wavelets on the left are connected by lines to the wavelets with neighbouring indices(o,b) on the right. Connecting the right edge with the left edge according to these neighbourhoods leads to the Moebiustopology shown at the bottom.
E 

C P Figure 6: Embedding. The discrete banana coordinate space C is embedded in the continuous parameter space P . Cand P are shown in three dimensions only.Now we de�ne a distance measure on C harmonizing with its topology. The mappingE : (~c)! (x; y; f(l); �(o); c(b); s(m)) (5)embeddes the discrete space C in a continuous space P , in the following called parameter space (see �gure 6). E is asimple extension of Ê taking also the pixel position (x; y) into account (see �gure 6). After de�ning a metric on theparameter space P we use the embedding function E to translate this metric back to C. As for the topology above wecan de�ne �rstly a distance in the subspace (�; c) expressing the Moebius topology thereof. Let (ex; ey ; ef ; e�; ec; es)be a cube2 of volume one in P . Let d((�1; c1); (�2; c2)) be de�ned as followsd((�1; c1); (�2; c2)) =minnq (�1��2)2e2� + (c1�c2)2e2c ; q ((�1��)��2)2e2� + (c1+c2)2e2c ; q ((�1+�)��2)2e2� + (c1+c2)2e2c o (6)Now we can de�ne a distance measure on P . d(~c1;~c2) =s (x1 � x2)2e2x + (y1 � y2)2e2y + (f1 � f2)2e2f + d((�1; c1); (�2; c2))2 + (s1 � s2)2e2s : (7)Setting d(~c1;~c2) = d(E(~c1); E(~c2))we can �nally extend C to a discrete metric space.2Our coice of parameters are shown in table 1, column 3. 6



2.3 Banana Wavelet ResponsesThe basic feature of our object recognition system is the magnitude of the �lter response of a banana wavelet B~bextracted by a convolution of B~b with the image I. In the following (FI) � ~x0;~b� represents the magnitude of the �lterresponse of the banana wavelet B~b at pixel position ~x0 in image I. A banana wavelet B~b causes a strong responseat pixel position ~x0 when the local structure of the image at that pixel position is similar to B~b. We call this six{dimensional metric space AI � ~x0;~b� the banana response space associated with image I. The very same metric andtopology as de�ned in (4) and (7) can be applied to this space. We call the whole construction consisting of a bananaplant, the coordinate space and the response space the banana space.More formally let the operator F symbolize the convolution of an image I with B~b for all possible ~b at a pixel position~x0 in the image I (FI) � ~x0;~b� := Z B~b ( ~x0 � ~x) I (~x) d~x = �B~b � I� ( ~x0) (8)and let AI � ~x0;~b� be the magnitudes of (FI)( ~x0;~b)AI � ~x0;~b� := ���(FI) � ~x0;~b���� : (9)Figure 7 shows the complex and absolute responses for an image and a speci�c banana wavelet.
Figure 7: Results of a transformation with banana wavelets. Top: real part of a banana wavelet, imaginary part of abanana wavelet, image to be transformed. Bottom: the results of the convolution of the image with the wavelet. Fromleft to right: real part of the convolution result, imaginary part of the convolution result, magnitude of the convolutionresult. White pixels code high values, so there are local maxima at those parts of the image which show lines or edgesof the same orientation, curvature and size as the banana wavelet (here especially the head of the person).2.4 Path Corresponding to a Banana WaveletTo every banana wavelet B~b there can be de�ned a curve ~p~b, called the path corresponding to B~b (see �gure 8a,b)3.This curve is used in section 3 to speed up the transformation of an image by hierarchical processing. It also allows thevisualization of the learned representation of an object (see �gure 8c). Therefore the path corresponding to a bananawavelet also represents a transition of a grey level feature (represented by a banana wavelet) to a feature based on linedrawings. In the approximation algorithm described in section 3 we apply two qualities connected with a curve ~p, thederivative _~p(t0) at a certain point t0 expressing the tangent vector at ~p(t0) and the length L(~p) of the curve.More formally we de�ne ~p~b(t) : [�1; 1]! IR2 (10)~p~b(t) = � cos(2� � �)(� cf (s�yt)2) + sin(2� � �)( 1f s�yt)� sin(2� � �)(� cf (s�yt)2) + cos(2� � �)( 1f s�yt) �We can equivalently express ~p~b(t) in our matrix notation (see appendix A.2).3For the concept of curves see e.g., [23] 7



a) b) c) Figure 8: Path corresponding to a banana wavelet. a: Arbitrary wavelet. b: Corresponding path. c) Visualization ofa representation of an object class. The width of a line segment depends on the parameter l, banana wavelets withlower frequencies are represented by line segments with larger width.3 Approximation of Banana Wavelets by Gabor WaveletsThe banana response space contains a huge amount of features, their generation takes a long time on a sequentialcomputer and requires large memory capacities. E.g., a transformation with our standard setting (as de�ned in table1) needs approximately 21 seconds on a Sparc Ultra and requires 80 megabytes of main memory. Here we de�ne analgorithm to approximate banana wavelets from a small set of Gabor wavelets and banana wavelet responses fromGabor wavelet responses by hierarchical processing. This approximation can be performed before the matching (asdescribed in section 6) or in a virtual mode in which only those features are evaluated \on the y" which are actuallyrequested for the matching. Because of the sparseness of our representations of objects only a small subset of thebanana space is actually used during matching and can be evaluated therefore very fast. In case that all Bananawavelets are evaluated before matching we achieve by the hierarchical processing speed up of a factor 5. In the virtualmode we can accelerate the matching up to a factor 12 and we can reduce memory requests by a factor 20. The readerwho is more interested in the learning algorithm may skip this section.3.1 The Approximation ProblemLet B be a set of banana wavelets. Let W be a discrete set of banana wavelet W ~w with zero curvature (nb = 0), onesize (nm = 1) and nf , no chosen as for B. The elements of W can be interpreted as Gabor wavelets because they onlyhave the variable qualities frequency and orientation. Let W (~x;~w) be W ~w translated by the vector ~x. Our aim is toapproximate an arbitrary banana wavelet in B by a weighted sum of translated banana wavelets in W (see �gure 9).Let J~b = n(~x~bj; ~w~bj)o ; j : 0; : : : ; n~b � 1be a set of positions ~x~bi and parameter vectors ~w~bi . We calculate the approximation B̂~b of B~b by a weighted sum ofGabor wavelets in W B̂~b = X(~x~bj ; ~w~bj)2J~b �~bj �W (~x~bj ; ~w~bj ): (11)
+ = + b b b . . . 

b 

1 2 3 

b b 
+  

+ Figure 9: Approximation. The banana wavelet on the left is approximated by the weighted sum of Gabor wavelets onthe right.In this approximation problem we have to regulate two di�erent and contradictional entities. The quality of approxi-mation and the number of basis functions used for the approximation. In terms of the quality of approximation we liketo minimize jjB̂ � Bjj2, where jj jj2 represents the L2{norm. In terms of speed of approximation we like to minimizethe number of additions and multiplications in (11), i.e., jJ~bj (for a set S we de�ne jSj as the number of elements ofS). Because of the similarity of the Gabor wavelets in W to a local part of a banana wavelet in B we expect to get afairly accurate approximation with a small number of Gabor wavelets (see �gure 10).8



Let FWI be the complex reponses associated with I obtained by a convolution with the elements of W . Given theapproximation in equation (11) we can analogously calculate an approximation ÂI of AI byÂI � ~x0;~b� = X(~x~bj ; ~w~bj )2J~b ����~bj � FWI �(~x0 � ~x~bj); ~w~bj���� (12)We de�ne sWmin = �1 � sBmin and sWmax = sWmin. The parameter �1 determines the width of the Gaussian of the Gaborwavelet in y{direction. The number of directions no is chosen independently. A large number of orientations n�improves the accuracy of approximation but presupposes a more time consuming convolution to obtain AWI (seesubsection 3.3). The approximation in (12) can be performed before the later matching stages or in a virtual mode,i.e., (12) can be calculated only if a certain banana response is requested from the matching algorithm (see section 6).In the �rst case we achieve a speed up by a factor of 4.7. In the virtual mode the speed up depends on the complexityof the representation used for matching. For a typical task as decribed in section 7 we achieve a speed up by a factorof 10 (wird noch mehr werden).3.2 Approximation using a Path Corresponding to a BananaWe present a solution of the approximation problem de�ned above by utilizing the path corresponding ~p~b to a bananawavelet (as described in section 2.4). We simply choose as ~xj ; ~wj the closest Gabor wavelet in W to the tangent on~p~b(ti) for aquidistantly seperated ti in the interval [�1; 1] and we choose the weight �~bi according to the magnitude ofB~b at the position ~p~b(ti) (see �gure 9).
Figure 10: Left: Real part of a banana wavelet. Middle: Approximation of the banana wavelet. Note that thesymmetry along the contour line of the original banana wavelet is not conserved in the approximation. Especially forstronger curvatures this e�ect increases. Right: error of approximation.Formally speaking, the number n~b of Gabor wavelets used to approximate a certain B~b with is proportional to thelength of the path corresponding to B~b devided by the length of a path corresponding to the Gabor wavelet with samefrequency f and zero orientation4, i.e., W ~w with ~w = (f; 0; 0; sWmin)n~b = �2 L(B~b)L(W (f;0;0;sWmin)) :An increase of �2 leads to a narrowing of the base points of the approximation and therefore to an overlapping of theGabor wavelets. The centre of the j{th Gabor wavelet ~xj is de�ned as~x~bj = ~p~b(tj)for aquidistantly seperated tj = �1 + 2 j(n~b � 1) ; j : 0; : : : ; n~b � 1:Let o(~p~b(t)) be the index of the orientation5 of the W 2 W with associated derivative closest to the derivative _~p~b(t).Then we set W (~xj ;~bj) =W (~p~b(tj);(f;o(~p~b(t)));4Note that the pathes corresponding to Gabor wavelets with a certain frequency have the same length.5Here o(~p~b(t)) goes from 0 to 2 �nWo �1. The imaginary part of a banana wavelet is not axis symmetric, therefore the conjugated Gaborwavelet is needed to cover all curvatures. 9



a) 

b) 

i) ii) iii) iv) v) Figure 11: a,i: Banana wavelet. a,ii) Input picture. aiii) original transformation of the picture in a,ii) with the bananawavelet in a,i). a,iv) Gabor approximation of the trafo in a,iii). a,v) di�erence between a,iV) and a,iii). b,ii) Thefunction E(I; ~x). b,iii{v) The normalized trafo, its Gaborapproximation, and the di�erence of both for the kernel ina,i).i.e., we have (~xj ;~bj) = (~p~b(tj); (f; o(~p~b(t)))). We calculate the weights �~bj the following way. We de�ne~�~bj = real(B(~p~b(tj))):and ensure that B̂~b has the same norm as B~b by setting�~bj = ~�j � jjB~bjj2jjP ~�~bj �W (~xj ;~bj)jj2 :3.3 Quality of ApproximationWe can measure the quality of the approximation in the space of �lters by calculating the mean L2 distance of thebanana wavelets and its approximation6 q1(B; B̂) := 1jBjX~b2B jjB̂~b �B~bjj2jjB~bjj2or in the space of �lter reponses by evaluating the di�erences of the transformation using the original kernels or theformula (12) q2(A; Â;I) := 1jIjjBjXI2IX~b2B jjÂI(~b)�AI(~b)jj2jjAI(~b)jj2 ;where I is a set of pictures and AI(~b) respectively ÂI(~b) are the functions representing the whole image convolutedwith B~b respectively B̂~b. Note that q1 and q2 are not completely dependent (see caption table 2). Table 2 gives thequality of approximation and the speed up for di�erent parameter settings of nWo ; �1 and �2.4 Extracting the important Banana Responses per InstanceOur second stage of preprocessing reduces the number of vectors ~c in the coordinate space C to represent a certainpicture I or an local area of I. Our aim is to extract the local structure in I in terms of curved lines expressed bybanana wavelets. Some of these lines may be important to represent the speci�c object, but there will be also curvedlines representing features which are caused by accident conditions, e.g., shadows caused by speci�c illumination,background or object surface texture. An algorithm extracting the important features for a class of objects fromdi�erent pictures of this object based on the preprocessing described here is presented in section 5.6The division by jjB~bjj2 ensures that q1 is independent of a simple scalar multiplication of the banana wavelets.10



Quality of ApproximationParameter quality org. trafo appr. trafo virt. trafoOrg. Trafo App. Trafo sec. sec. sec.nk no nb nm nWo �1 �2 q1 q2 match conv match conv match conv2 8 7 3 8 0.5 2.0 0.27 0.21 1.1 21 1.1 10.5 0.9 1.02 8 7 3 8 1.0 2.0 0.27 0.19 1.1 21 1.1 6.4 0.8 1.02 8 7 3 8 1.5 2.0 0.39 0.22 1.1 21 1.1 5.2 0.74 1.02 8 7 3 8 2.0 2.0 0.49 0.26 1.1 21 1.1 4.4 0.7 1.02 8 7 3 8 1.0 0.75 0.34 0.17 1.1 21 1.1 4.3 0.69 1.02 8 7 3 8 1.0 1.0 0.34 0.16 1.1 21 1.1 4.5 0.7 1.02 8 7 3 8 1.0 1.5 0.31 0.19 1.1 21 1.1 5.5 0.75 1.02 8 7 3 8 1.0 2.0 0.27 0.19 1.1 21 1.1 6.4 0.8 1.02 8 7 3 8 1.0 2.5 0.28 0.2 1.1 21 1.1 7.06 0.83 1.02 8 7 3 4 1.0 1.0 0.5 0.3 1.1 21 1.1 4.3 0.69 0.5Table 2: Quality of Approximation: Row 1{4: Variation of �1 with constant �2. Row 5{9: Variation of �2 withconstant �2. Although q1 is minimal for the �1 = 1:0; �2 = 2:0 q2 has its minimum for �1 = 1:0; �2 = 1:0. We assumethis e�ect is caused by the fact that an increase of �2 narrows the base points of approximation. In natural pictureslines are frequently features. This regularity decreases the necessity of many base points. Row 10: Approximationwith only 4 curvatures in the �rst trafo. The transformation without approximation requests 80 MB main memory(the trafo and and the Fourier transformed kernel have to be stored), tha approximated trafo requests 40 MB mainmemory and the virtual trafo requests 4 MB main memory for the transformation of the kernel in WWe de�ne an important feature in one image (or per instance) by two qualities C1 and C2. An important feature perinstanceC1 has a strong response,C2 has to represent a local maximum in the banana space.C1 represents the requirement that a certain feature or similar feature is present, whereas C2 allows a more speci�c char-acterization of this feature. Banana responses vary smoothly in the coordinate space. Therefore the six{dimensionalfunction AI � ~x0;~b� is expected to have a properly de�ned set of local maxima. In terms of analogy to the processingin area V1 in the vertebrate visual system C1 may be interpreted as the response of a certain column which indicatesthe general presence of a feature coded in this column, whereas C2 represents the interculumnar competition givinga more speci�c coding of this feature [32]. Figure 12 shows the signi�cant features per instance represented by theircorresponding path.We say a banana wavelet has a \strong response" at a certain pixel position ~x when it is larger than an average responseE(I; ~x0). For this average response we consider the average activity in the complete reponse space, but we take alsothe average activity of a local area in the response space into account. Therefore a global and local normalization isperformed.Formally speaking, we de�ne the mean local activity E(I; ~x0) at pixel position ~x0 and the mean total activity E(I) ofthe banana space by E(I; ~x0) = X~x2A(~x0;rE)X~b2BAI �~x;~b�and E(I) =X~x2IX~b2BAI �~x;~b�where A(~x0; rE) represents the cuboid with center ~x0 and length of side rE in the (x; y) space in which the localactivity is calculated (see �gure 13). The function E(I; ~x0) has high values, when there is a lot of structure in thelocal area around ~x0. We now de�ne a threshold by the average of these two activitiesT (~x0) = �E(I) + (1� �)E(I; ~x0)2and we can formalize C1 and C2 as follows: A banana reponseAI � ~x0;~b0� represents a signi�cant feature per instanceifC1: AI �~x0;~b� > � � T0, 11



Figure 12: Result of the second stage of preprocessing. Left column: the original images. Middle column: Signi�cantFeatures corresponding to banana wavelets of high frequency expressed by its corresponding path. Right column:Signi�cant Features corresponding to low frequency. The detailed structure of the house and the inner features of theface are best described by elements of the banana space with high frequency. E.g., the eyes of the person are bestdescribed by banana wavelets with small size.
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r E Figure 13: Normalization. a: Input Picture I. b: The local activity is calculated within the small cuboid A(~x0; rE).c: The function E(I; ~x).C2: AI �~x0;~b0� � AI �~xi;~bi� for all neighbours of (~x0;~b0) as de�ned in (4).The parameter � regulates the distinctness, a feature must exceed the average activity, to be a candidate for asigni�cant feature per instance. A larger value for � reduces the number of signi�cant features. The parameter �regulates the inuence of the local versus the global activity (our choice of parameters is shown in table 1). To reducethe time for calculating the average activities E(I; ~x0), we approximate them by taking only the banana responsesfor the smallest size and with zero curvature into account. The responses corresponding to banana wavelets withsame orientation but di�erent curvature or size are highly dependent because they represent similiar features. Forthe calculation of E(I; ~x0), which just represents some kind of average activity, only one of these similar features hastaken into account.5 LearningHere we describe an algorithm to extract invariant local features representing landmarks for a class of objects. Weassume the correspondence problem to be solved, i.e., we assume the position of certain landmarks of an object, suchas the center of left eye or the midpoint of the right edge of a can, to be known on pictures of di�erent examples ofthis objects. In some of our simulations we determine corresponding landmarks by manual construction, for the restwe replaced this manual intervention by motor controlled feedback (see section 7). For learning, it is indispensableto ensure that comparable entities are used as training data, otherwise the e�ect of learning will decrease because of12



the noise of the trainings data. Furthermore it is advantagous to split a large learning problem (like the learning of arepresentation of a face) into smaller subproblems (like learning the representation of the eye region or the top of thehead). This learning with comparable and smaller entities is the meaning of our a priori principle P0.In a nutshell the learning algorithm works as follows: We extract the signi�cant features for (as described in section4) di�erent images of an object taken at a certain pose for a speci�c landmark. For each landmark we collect thesefeatures in one bin. We de�ne a certain feature as signi�cant when this feature or a similar feature (according toour metric (7)) occurs often in the bin, i.e. it occurs often in the di�erent images of our training set. We end upwith a graph with its nodes labeled with elements of the banana coordinate space, expressing the learned signi�cantfeatures mostly representing edges of an object or invariant inner features like eyes or the nose. We refer to such arepresentation of an object class O as SRep(O) and to the set of pixels of the coordinate space representing the k{thlandmark as SRep(O)k . Figure 14 illustrates the learning algorithm.A signi�cant feature should be independent of background, illumination or accidental qualities of a certain exampleof the object class, i.e. it should be invariant under these transformations of an object class (P1). This is realizedby measuring the probability of occurence of features in a local area of the banana space for di�erent examples.Therefore its metric allows the grouping of similar features in one bin, but it also allows the reduction of redundancyof information (P2) by avoiding multiple features of small distance in the learned representation.
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Figure 14: Schematic explanation of the learning algorithm: 1. Calculate the convolution of a banana plant withcorresponding landmarks in all training images. 2. Extract the signi�cant features per instance for a speci�c landmark.3. Collect these features in one bin. 4. Learned signi�cant features for a landmark extracted from all images. 5.Learned representation for an object of a certain view.Formally speaking, let I be a set of pictures of di�erent examples of a class of objects of certain orientation andapproximately equal size. I(j;k) represents an local area in the j-th image in I with the k-th landmark as its center.Let ~skij be the i-th signi�cant feature per instance extracted in the area I(j;k). We collect all ~skij for a speci�c k in oneset Sk. Then we apply the LBG{vector quantization algorithm [20] to Sk (see �gure 15). After vector quantization acodebook C1 expresses the vectors ~skij with a constant number nC1 of code book vectors ~c1i 2 C1 � C;~c1i : 1; : : : ; nC1(�gure 15b). nC1 dependends on the number of entries in Sk: nC1 = p1jSkj; 0 < p1 � 1. In case of a large p1 the13



initial code book las a higher density in the training set.The LBG{algorithm reduces the distortion error, i.e., the average error occuring, when all elements of Sk are replacedby the nearest codebook vector in C1. In case of high densities of elements ~skij in Sk it may be advantageous in termsof the distortion error to have code book vectors ~c and ~c0 with small distance d(~c;~c0). But the signi�cant featuresfor a certain class of objects are expected to express independent qualities (P2), i.e., they are expected to have largedistances in the banana space. We construct a smaller codebook C2 in which the ~c;~c0 2 C1 with close distances arecombined to their centre of gravity: Let r1 2 IR+ be �xed. We calculate for all ~c 2 C1 the number of ~c0 2 C1 withdistance d(c; c0) < r1. (�gure 15c). If there exist one such ~c0 6= ~c we substitute all the codebook vectors in C1 withd(~c;~c0) < r1 by their center of gravity (�gure 15d). C2 now represents a code book with less or equal elements thanC1 without redundant codebook vectors. Now we can de�ne the important features for the k-th landmark of a certainobject as those codebook vectors ~c 2 C2 for which a certain percentage p of ~skij exists with d(~c;~skij) < r2 (�gure 15e,f).We collect these important features in a set SRep(O)k which is our learned representation of the k-th landmark of acertain class of objects.
a) b) c) 

d) e) f) Figure 15: Clustering: a) Distrubution of data. b) Codebook Initialization. c) Codebook vectors after learning. d)Substituting sets of codebook vectors with small distance (< r1) by their center of gravity. e) Counting number ofelements within radius r2. f) Deleting codebook vectors representing insigni�cant features.6 MatchingTo use our learned representation for location and classi�cation of objects we have to de�ne a similarity between theextracted representation SRep(O) and a certain position in the image. A view of an object is characterized by a smallnumber of binary features (a certain banana is present or absent) from a large feature space (the banana space). Thissparse coding will allow a fast matching, because only the presence of a few features has to be checked in the pictures.Here we de�ne a simililarity function of a graph labeled with banana wavelets with certain size and position in animage. We de�ne a total similarity expressing the system's con�dence whether there is a certain object on an imageI at a certain position and size. As in [35] it simply averages local similarities, expressing the system's con�dencewhether a node of the graph represents a local feature. A graph is adapted to an image by EGM [21, 35]. The totalsimilarity is optimized in two steps: Shifting (global move) and scaling of the graph. The optimal similarity value fora graph gives the quality of its �t to the image. For each stored size of an object we perform a separate match. Thegraph with the highest similarity determines the size and position of the objects within the image, while the positionsof its nodes identify the landmarks.In a nutshell the local similarity is de�ned as follows: For each learned feature in SRep(O)k and pixel position in theimage we simply check whether the corresponding banana response is high or low, i.e., the corresponding feature is14



present or absent. Because of the sparseness of our representation only a few of these checks have to be made, thereforethe matching is very fast. Because we make use only of the important features, the matching is very e�cient.
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2 1 Figure 16: The normalization function N(t; I; ~x).More formally we introduce a normalization in the banana space to transform our real valued �lter responsesAI � ~x0;~b�into quasi binary features which are comparable to the pixels of the coordinate space in our learned representation.The normalized responses do less depend on the exact �lter response but represent the presence or absence of a certainfeature. Let the sigmoid functionN(t; I; ~x0) = 8<: 0 for s < �1E(I; ~x0)t��1E(I;~x0)�2E(I;~x0) for �1E(I; ~x0) < s < �2E(I; ~x0)1 for s > �2E(I; ~x0)be our normalization function (see �gure 16). Figure 11b) shows the normalized transformation. The valueN(AI � ~x0;~b�)represents the system's con�dence of the presence of the feature ~b at position ~x0. This con�dence is high when theresponse exceeds the average activity signi�cantly. The exact value of the response is not of any interest. We like toavoid a very strict decision at this stage, therefore we still allow a range of indicision of the system when the responseis only slightly above the average activity.Now we can de�ne a local similarity Sim(SRep(O)k ; I(x;y)) between a node labeled with banana wavelet reponses SRep(O)kand a pixel position I(x;y) in an image I by simply averaging the normalized �lter responses corresponding to thelearned representation of the k-th landmark (i.e., ~si = (xi; yi; fi; �i; ci; si) 2 SRep(O)k ) in the image at the pixel position(x; y): Sim(SRep(O)k ; I(x;y)) = 1jSRep(O)k j X~si2SRep(O)k N � ~AI ((x� xi; y � yi); (fi; �i; ci; si))� : (13)The number of pixels in the coordinate space a node of the graph SRep(O) is labeled with is very small, therefore theevaluation of 13 is very fast. In the bunch graph representation in [35] a node is labeled by a large number of vectors(approximately 70) of Gabor Filter responses, each describing a landmark of one instance of the landmark of an objectin the training set. Therefore the evaluation of the local similarity in [35] takes much longer.As in [35, 18] the total similarity Sim(SRep(O)(x; y; s); I) between a graph SRep(O)(x; y; s) at position (x; y) with sizes and the image I is simply de�ned as the average of the local similarities de�ned above:Sim(SRep(O)(x; y; s); I) = 1n nXk=1Sim(SRep(O)k ; I(x;y));with nk represents the number of nodes of the graph.7 SimulationsWe demonstrate the applicability of our algorithm to a wide range of problems. First we learn representations of cansand faces of di�erent poses. We apply these representations to the problem of locating these objects in complex scenesusing the matching algorithm described in section 6. Finally we demonstrate a classi�cation task, the discriminationof frontal faces and non{frontal faces. If not stated explicitly, we used in our simulations the standard settings de�nedin table 1. With these settings the transformation (without the approximation described in section 3) of a 128x128picture needs 21 seconds, the extraction of signi�cant features per instance takes approximately 0.7 seconds per nodeand picture and the �nal learning as described in section 5 takes 0.5 seconds for each landmark for a training set of60 examples. All simulations were performed on a Sparc Ultra.15



7.1 Learning of RepresentationFirstly we apply the learning algorithm described in section 5 to data consisting of manually provided landmarks. Insubsection 7.1.2 we replace this manual intervention by motor controlled feedback.7.1.1 Learning with manually provided ground truthOur training sets consist of a set of approximately 60 examples an object viewed in a certain pose. As objects we usedcans, frontal faces and half pro�le faces. Corresponding landmarks are de�ned manually on the di�erent representativesof a class of objects (see �gure 17).
a) b) c) Figure 17: Manual de�ned graphs for a: cans, b: frontal faces and c: half pro�les.Figure shows 18 the signi�cant features per instance for some of the can examples in the training set as well as thelearned representations. Figure 19 shows the learned representations for faces using manual de�ned graphs as shownin �gure 17.

a) 

b) 

i) ii) iii) iv) v) Figure 18: a: Pictures for training. bi{iv: Extracted signi�cant features per instance. c: the learned Representation.In �gure 20a) the variability of representation for di�erent runs of the learning algorithm is demonstrated caused bythe random initialization of the LBG{algorithm. The learned representations for di�erent p2 is shown in �gure 20b).The parameter p2 determines the fraction of features needed to be present in the training data to de�ne a signi�cantfeature. The change of representation for di�erent size of the training set is demonstrated in �gure 20c).7.1.2 Learning with automatic landmark de�nitionTo avoid the manual generation of ground truth we made use of motor controlled feedback. Our aim is the constructionof training data in which a certain object is shown under changing conditions like di�erent background and di�erentillumination but without change of the position of the landmarks. Then we can simply apply our learning algorithmusing a rectangular grid to this data.We put a can on a rotating plate and changed background and lighting conditions in a sequence of pictures (see �gure21). The whole generation of training data just took about 30 seconds. For the generation of ground truth for frontalfaces we recorded a sequence of pictures in which a person is sitting �xed on a chair. Illumination and backgroundis changed as for cans (see �gure 22). To extract representations for di�erent scales we simply apply the learningalgorithm to the very same pictures of the di�erent sequences scaled accordingly.16



 

 Figure 19: Training Set and Learned Representation. Top: half pro�le faces. Middle: female faces. Bottom: malefaces. Note that even the �ne di�erences between male and female faces can be expressed by banana wavelets.7.2 MatchingTable 3 gives the results for various matching tasks, the location of cans and faces in scenes of di�erent complexity.In row one to four the matching with banana wavelets is compared to the matching with bunch graphs as describedin [35, 18]. We tested both approaches on two data sets (row 1 and 3 gives the results with the approach describedhere, row 2 and 4 gives the results for the bunch graph matching). The �rst set (set 1) contains frontal faces withvery controlled illumination in front of a homogenous background (column 7 gives information about the background,h = homogenous, n.h. = non homogenous) . The faces vary in size between 50 and 100 pixels (column 4) and there isa modest pose variation (column 5 & 6). To handle the size variation we do matching with two graphs labeled withbanana wavelets resp. two bunch graphs. Both approaches have comparable performance, but the matching for thebanana approach is faster. More interesting are the results for a more complex task (set 2). Figure 23 shows someexamples of matches and mismatches on this data set. The size variation of the faces is between 15 and 100 pixel.The pose and illumination is much less controlled and the background is non homogenous for most of the pictures,therefore this data set represents a very hard task. Row 3 and 4 give the results for the matching with bananas androw four gives the results for the bunch graph matching. We see a big gap of performance, the bunch graph matchingfound 46% of the faces but the matching with banana wavelets 75%.Match ResultsData Repres. Trafo perf.object nb. size rot pl rot dp bg nb. reps rep mode approx sec. sec. match perf.1) faces 100 50-100 �15o �15o h. 2 a.g. ban v. 1.4 1.8 95%2) faces 100 50-100 �15o �15o h. 2 m.g. bunch 1.3 3.9 97%3) faces 100 15-100 �30o �30o n.h. 3 a.g. ban v. 1.4 2.6 75%4) faces 100 15-100 �30o �30o n.h. 3 m.g. bunch 1.25 5.8 46%5) cans 60 �10% �10o �10o n. h. 1 m.g. ban. n.a. 21 0.3 95%6) cans 60 �10% �10o �10o n. h. 1 m.g. ban. a. 4.6 0.3 95%7) cans 60 �10% �10o �10o n. h. 1 m.g. ban. v. 1.0 0.5 95%8) cans 60 �10% �10o �10o n. h. 1 a.l. ban. v. 3 0.5 84%Table 3:
17
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0.3 0.5 0.6 0.7 1.0 

15 30 60 115 Figure 20: Representations learned with di�erent parameters. a: Di�erent representations caused by random initial-ization of the LBG-algorithm. b: Variation of p2, the number of features which have to be in a cluster to call itscentroid signi�cant. c: Variation when the size of the training data is varied from 15 to 115 examples.7.3 Discrimination: The False Positive TestWe applied our representation to the problem of �nding a face and classifying it into the classes frontal face and nonfrontal. Our test set consists of 100 pictures generated from a face �nder based on color and disparity informationdeveloped by Hartmut Neven [24]. It consists of 75 non{frontal faces (especially hands found by the color detector orfaces looking rotated in plane or depth) and 25 frontal faces. The size of the faces varied between 30 and 80 pixel.Our system rejected 67 non frontals correctly by identifying 22 frontals correctly. 3 frontal faces were not found and8 non frontals were characterized as frontals by the system.
Figure 21: Automatical generation of ground truth for cans. i{iv: Rotated Cans on a rotating table with varyingillumination (note the shadow of the can). i,ii: Rotated cans with rectangular grid. v) Learned Representation.
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a) 

b) 

c) d) Figure 22: Learned representations for frontal faces with automatically generated ground truth. a: One of the threesequences with a persons face �xed, but with di�erent background and illumination. b: Positioning of the grid learninga representation for largest size on one example for each sequence. The faces have approximately same position andsize, therefore the nodes of the �xed grid represent comparable features. c: Representation for medium size. d:Representation for small size.8 Comparison with other systemsComparison with earlier versions of Elastic Graph Matching: In earlier versions [21, 35, 18] was based onthe concept of \jets"[5, 21] which were used as labels of the graph. A jet gives a local description of an image at acertain pixel position. It is a vector, with its coe�cients representing Gabor wavelet responses of di�erent orientationand frequency7 at a certain pixel position. the norm of the jets is set to one by dividing each coe�cient by the normof the array of Gabor wavelet responses. This normalization ensures the jet's independence of the average grey levelintensity of an image.The concept of jet is one possible formalization of our a priori principle P0 (Locality) which enables us to handlelandmarks of di�erent localities separately. In the locality of jets we see an conceptual advantage compared to systemsbased on non local features like, e.g., the principal components of a whole image [34]8. As a problem of jets we criticisethe mixing of features within one jet. E.g., if the top of the head occurs in a certain image in front of a textured7Our standard settings were 5 levels of frequency and 8 orientations.8Hancock et. al. [11] suggests for the problem of face recognition it is easier for our localized jet features to deal with varying backgroundor symmetry changes than for a PCA{based approach.
a) 

b) 

i) ii) iii) iv) v) Figure 23: Good matches and mismatches for the set 2.a i{v, b,i) good matches. b,ii-iv) Mismatches. In b,ii) thealgorithm found a face like form in the picture. In b,iii) the learned form with shoulders did not �t to the person'sface with his hands behind the head. In b,iv) the face is too small. In b,v) the rotation of the head is too large.19



background the texture of this background is inherently part of the corresponding jet coe�cients and its separation isa non trivial task [30]. For learning it is advantageous to represent both qualities separately, then the convex contourof the head can be recognized as important feature compared to the varying background representing an accidentalfeature. Our learning algorithm is able to separate important and accidental features based on the quality of bananawavelets to represent structure of the background separately from the structure of the head. As an additional advantagecompared to the application of Gabor wavelets in [21, 35, 18] we remark that the concept of sparseness found a moreconvincing and consistent realization in our banana wavelet approach. Already the representation of an image byGabor wavelets of di�erent orientation and frequency leads to an increase of data: instead of one grey-level image wehave the same amount of data for each pair of orientations and frequency. The expansion of the feature space can befound analogously in the visual cortex of vertebrates [14, 26] and in this aspect is fundamental di�ering from PCAapproaches [34, 31] in which the data space is reduced in early stages of processing. Our banana wavelet approachenhances the data expansion of the earlier versions based on Gabor Wavelets by adding the qualities curvature andsize. Di�ering from the feature binarity request in our formulation of sparseness (see introduction) the similarityfunction in [21, 35, 18] was highly dependent on the exact value of the �lter responses. In the banana approach wesubstituted the �lter response value by binary features which are present or absent.In [35] the idea of \bunch graphs" is introduced to represent the variation of a certain view of an object class. In abunch graph a landmark is labeled by a \bunch of jets", each jet representing an instance of this landmark in form ofa jet extracted from pictures of di�erent persons at the corresponding landmark. E.g., in a bunch graph a left eye ofa frontal face is represented as a set of jets extracted from the left eye of frontal faces of di�erent persons. The bunchgraph idea is successfully applied to other object recognition problems, e.g., the discrimination of hand gestures [33]and pose estimation [18]. In [35] each landmark was described by approximately 70 jets, each containing 40 complexvalues. Especially to represent contour edges hitting the background a large amount of jets would be necessary tocover all possible combinations of this edge and the di�erent backgrounds. With our banana approach we can reducethe data needed to represent a landmark to a few banana wavelets. Furthermore in [35] and [33] the creation of anobject representation is very time consuming, because for each view of an object an object dependent grid has tobe de�ned and the landmarks has to be positioned manually for the pictures used to create the bunch graphs. Firststeps towards an automatic generaition of an object representation (based on the bunch graph approach) are madein [18] where important nodes and suitable jets were learned utilizing the principles P0, P1 and P2. But still a lotof manual intervention for the generaition of ground truth was necessary. In contrast to these manual interventionshere we introduced methods to learn a representation autonomously. Anyway, there might be situations in which alandmark can not be su�ciently described by only one combination of banana wavelets, e.g., in case of an eye withand without glasses or a chair with and without armrests. In those cases a bunch graph of combination of bananawavelets might be more appropriate to represent this landmark. But still a much smaller amount of data than in the\jet{bunch" approach should be su�cient.Comparison with other object recognition systems: There exists a large variety of object recognition systemsutilizing di�erent amount of a priori knowledge. As one extreme we refer to systems which apply learning algorithmsdirectly to the grey level pictures. These algorithms can be called \neural" like backpropagation or RBF{Networks[12, 28] or strategies of classical pattern recognition like Bayesian estimation methods [9]. These systems apply avery small amount of a priori knowledge and theoretical statements about their general applicability can be made,presupposing that the number of free variables of those systems grows to in�nity [13, 9]. Unfortuntately generalizationand learning time is a fundamental restriction of those systems. The lack of a priori knowledge makes them applicableto any kind of problem, let it be the prediction of time series, speech recognition or vision, but they pay for thisgenerality with bad generalization properties and unrealistic learning time. In other words, those systems fall intothe trap of the variance problem [10]. The variance problem can be reduced by choosing a suitable preprocessingof the data reducing the search space, but this manual intervention destroys the general applicability by leaving thechoice of a suitable preprocessing to the creator of the system. As an extreme on the other side of the bias/variancedilemma there exist a large variety of systems putting a huge amount of a priori knowledge into their system. Asonly one example in [15] football players are tracked. As a priori knowledge the structure of the background, i.e.,the football �eld with its strict regulated lines and signs is explicitly used. It is unthinkable to use those systems inanother surrounding. Having in mind a system in which a large amount of di�erent objects can be represented andrecognized in complex scenes we see our systems in the middle of the two extremes mentioned above. Our systemexplicitly makes use of a priori knowledge, but because of the generality of our a priori assumptions we aim to avoida too narrow specialization of our system.In [34, 31] an object recognition system based on principle component analysis (PCA) applied to the grey level pictureis introduced. PCA leads to a fast reduction of data by a linear transformation. Taking the human visual system asa model of the most successful vision algorithm existing so far there are no hints for a data compression but a lot ofhints for a data spreading in the �rst stages of visual processing [14, 8, 26]. We assume that this data spreading isneeded to allow a sparse coding which inherently has a lot of advantages for the processing of visual information (seesection 9). Furthermore it seems that non{linear transformations play an important role in visual processing [26].20



Cootes et. al. [4] introduce an object recognition system which is also based on line segments, they learn the variationof an object class by applying PCA to di�erent instances of an object class. The line segments are not as local as inour approach but they describe larger regions, e.g. the contour of the face from the left ear down to the chin up tothe right ear. The representation of objects has to be de�ned manually. For learning the variation of an object classthis representation has to be positioned manually for the di�erent examples. A similarity between this and our systemwe see in the restriction of local lines to describe objects. As an advantage of our system we regard the locality andmetric organization of our features which enable an autonomously learning of our representations of objects.9 Conclusion and OutlookIn section 7 we illustrated the applicability of our system to a wide range of di�cult problems in vision. For theproblem of face �nding we demonstrated a signi�cant improvement of performance compared to the older systembased on jet bunch graphs [35]. Our system is able to learn an e�ective representation of a wide range of objectsautonomously, we chose cans (arti�cial, rigid) and faces (natural, slightly deformable) as two very distinct examples.For faces we demonstrated that our representation is able to cover pose di�erences and even the �ne di�erences of facesof males and females. We assume that any object locally describable by line segments can be represented with oursystem. The class of representable objects principally covers therefore most of the objects humans have to deal with.Nevertheless we have also shown that our system is far away from being as powerful as the human visual system, butwe like to argue here that it might be seen as an intermediate step towards a system with even better performance.Among others Biederman [3] suggests that it is not a single feature which is important in the representation of anobject but the relations of features. At the present stage of our approach only metric relations expressed in the graphstructure are represented. Banana wavelets represent features with certain complexity which describe suitable abstractproperties (orientation, curvature). In future work we aim to utilize this abstract properties to de�ne Gestaltrelationsbetween Banana wavelets like parallelism, symmetry or connectivity. These abstract properties of our features enablethe formalization of these relations. Furthermore sparse coding leads to an decrease of the number of possible relationsfor an object description (only the relations between the few \present" features have to be taken into account).Therrefore the reduction of the space of relations and the describable abstract properties of these features makes thespace of those relations manageable. In the reduction of the space of relations we see an additional advantage of sparsecoding not mentioned in the literature so far.In our approach the correspondence problem must be solved before learning can start. In section 7 we used motorcontrolled feedback to reduce the amount of manual intervention for the generation of ground truth. In future work welike to apply a robotor arm to position landmarks correctly. By moving the robotor hand with an object in front of annon homogenous background in a surrounding with varying illumination and background and utilizing the knowledgeof the actual position of the roboter hand to solve the correspondance problem we can easily create a large amount oftraining examples automatically. Another mechanism supporting the generation of ground truth can be the continuityof movement. Following an object which is moving continuously is a much easier task than �nding an object withoutany a priori knowledge. Even a \primitive" representation of an object may solve this task and may be utilized forthe generation of ground truth used as training data for the learning of a more sophisticated representation. In [22]the \jet{bunch approach" is already successfully applied to the problem of tracking a moving object.As an important open question of the object recognition system described here remains its extension from the rep-resentation of di�erent 2D{views to a powerfull representation of the complete three{dimensional object. In [18, 35]faces of di�erent sizes and rotated in depth within a range of 180 degrees are represented by the jet{bunch approach,applying 15 di�erent bunch graphs for three sizes (small, medium and large) and �ve poses (pro�le left, half pro�leleft , frontal, half pro�le right and pro�le right). In [33] 10 di�erent hand gestures are represented by bunch graphs.Analogously we could apply our banana wavelet representation by learning di�erent representation for di�erent sizes(as already done in some of our simulations) and di�erent poses. In [35, 18] an object is simply represented as aloosely connected set of 2D-views of the object. A more structured connection of 2D{views is de�ned in [16]. Inthis approach the two dimensional views are connected by complex arrangements of line segments, called geons [3].These geons are presupposed as a priori knowledge and mediate between 2D and 3D representation. We hope thatby formalizing Gestaltrelations between banana wavelets (see below) we can learn geon{like structures by looking atstatistical relevant relations or in terms of [3] by extracting non{accidental features.As a further improvement we intend to introduce instead of the constant metric (6) task dependent metrics. In oursimilarity function (13) we simply look at the �lter responses of the banana wavelets in our representation but wedo not distinguish between the di�erent qualities like curvature, size or orientation. E.g., to tell the top of a head(expressed by a banana wavelet with horizontal orientation bent downwards) from a horizontal door beam it is not theorientation or size which is important but only the curvature. In our actual representation also the door beam achieveshigh values because its horizontal orientation leads also to a strong response of the banana wavelet representing thetop of the head, i.e., it shares the quality horizontal orientation with the door beam. For other tasks, e.g., posediscrimination the top of the head is not important at all and only the inner face features are important. In this case21



not only certain qualities of a banana wavelet (like curvature and size) are insigni�cant but the importance of thewhole banana wavelet has to be reduced in the similarity function applied for this task. In [17] an algorithm for thelearning of metrics is introduced which is based on the principles P0, P1 and P2. This algorithm is applied withinthe frame of the \bunch{jet" approach but in future work we intend to adapt this algorithm to the object recognitionsystem described in this paper.In the long run we aim to a system equipped with a small number of mechanisms of small complexity (like followingmoving objects, shifting objects with its arm and coordinating the camera according to the movement) to initiatelearning strategies representing more complex interrelations underlying the system's experience. We think that thesystem described in this paper is a very promising basis and an important step towards this challenging goal.10 AcknowledgementWe like to thank Laurenz Wiskott, Michael P�otzsch and Jan Vorbr�uggen for fruitful discussion. Furthermore we liketo thank Thomas Maurer for solving the integral in equation (1).A AppendixA.1 A Banana Wavelet expressed by Matrix OperationsB~b(x; y) := ~be� f22 � x2G�2x +y2G�2y � � �eifxF �DC~b� (14)with ~xF =Mc (M�~x)~xG =Ms ~x0:and M� = � cos� sin�� sin� cos� � ;Mc(~x) = � x+ cy2y � ;Ms = � 1 00 1s � ;A.2 A Path ~p~b expressed by Matrix Operations~t = � 0t �~t0 = � 1fM 1s�y~t~p~b(t) = M2��� �E~t0 +M�c(~t0)�with E = � 1 00 1 �and the other matrices as in A.1.References[1] H. B. Barlow, \Possible principles underlying the transformationof sensorymessages," in Sensory Communication,W. A. Rosenblith, Ed. pp. 217{234, MIT 1961.[2] E. B. Baum, J. Moody, F. Wilczek, \Internal Representation for associative memory," Biological Cybernetics, pp.217{228, 1988.[3] I. Biederman, \Recognition by Components: A theory of human image understanding", Psychological Review,Vol: 94, No. 2, 1987. 22
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