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Principles of Cortical Processing Applied to and Motivated byArti�cial Object Recognition�Norbert Kr�uger, Michael P�otzsch, Gabriele PetersAbstractIn this paper we discuss the biological plausibility of the object recognition system described in detailin (Kr�uger, Peters and v.d. Malsburg 1996). We claim that this system realizes the following princi-ples of cortical processing: hierarchical processing, sparse coding, and ordered arrangement of features.Furthermore, our feature selection is motivated by response properties of neurons in striate cortex andby Biederman's theory of object representation on higher stages of visual processing (Biederman 1987).Inspired by the current discussion about aspects of cortical processing, we hope to derive more e�cientalgorithms. By discussing the functional meaning of these aspects in our object recognition system, wehope to attain a deeper understanding of their meaning for brain processing.1 IntroductionIt is an assumption of the neural computation community that the brain as the most successful patternrecognition system is a useful model for deriving e�cient algorithms on computers. But how can a usefulinteraction between brain research and arti�cial object recognition be realized? We see two questionable waysof interaction. On the one hand, a very detailed modelling of biological networks may lead to a disregard ofthe task solved in the brain area being modelled. On the other hand, the neural network community mayloose credibility by a very rough simpli�cation of functional entities of brain processing. This may result in aquestionable naming of simple functional entities as neurons or layers to pretend biological plausibility. In ourview, it is important to understand the brain as a tool solving a certain task and therefore it is important tounderstand the functional meaning of principles of cortical processing such as, hierarchical processing, sparsecoding, and ordered arrangement of features. Some researchers (e.g., (Atick 1992; Barlow 1961; F�oldi�ak 1990;Olshausen and Field in press; Palm 1980) have already made important steps in this direction. They havegiven an interpretation of some of the above{mentioned principles in terms of information theory. Others(e.g., (Hummel and Biederman 1992; Lades et al. 1992)) have tried to initiate an interaction between brainresearch and arti�cial object recognition by building e�cient and biologically motivated object recognitionsystems. Following these two lines of research, we suggest to look at a functional level of biological processingand to utilize abstract principles of cortical processing in an arti�cial object recognition system.In this paper we discuss the biological plausibility of the object recognition system described in detail in(Kr�uger, Peters and v.d. Malsburg 1996). We claim that this system realizes the above{mentioned principles.Although the system's performance is not comparable to the power of the human visual system, it is alreadyable to deal with di�cult vision problems. The object recognition system is based on banana wavelets, whichare generalized Gabor wavelets. In addition to the parameters frequency and orientation, banana waveletshave the attributes of curvature and elongation (�gure 1). The space of banana wavelet responses is muchlarger compared to the space of Gabor wavelet responses, and an object can be represented as a con�gurationof a few of these features (�gure 2v); therefore it can be coded sparsely. The space of banana wavelet responsescan be understood as a metric space, its metric representing the similarity of features. This metric is utilizedfor the learning of a representation of 2D{views of objects. The banana wavelet responses can be derived fromGabor wavelet responses by hierarchical processing to gain speed and reduce memory requirements. A setof examples of a certain view of an object class (�gure 2i{iv) is used to learn a sparse representation, which�Supported by grants from the German Ministry for Science and Technology 01IN504E9 (NEUROS) and 01M3021A4 (Elec-tronic Eye). 1
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Figure 1: Relationship between Gabor wavelets and banana wavelets. Left: four examples of Gabor waveletswhich di�er in frequency and direction only. Right: 16 examples of banana wavelets which are related tothe Gabor wavelets on the left. Banana wavelets are described by two additional parameters (curvature andelongation).contains only the important features. This sparse representation allows for a quick and e�cient localizationof objects.By discussing the functional meaning of sparse coding, hierarchical processing, and order in the arrangementsof features, as well as the implication of our feature selection for our arti�cial object recognition system, wehope to attain a deeper understanding of their meaning for brain processing. Following the discussion ofprinciples of cortical processing, we hope to be inspired to derive more e�cient algorithms. In section 2we give a short description of our system. In section 3 we discuss the above{mentioned principles of visualprocessing in their biological context, as well as their algorithmic realization in our system. We compareboth aspects, and we claim that the utilization of the above{mentioned principles supports the strength ofour system. We close with a conclusion and an outlook in section 4.
a) 

b) 

i) ii) iii) iv) v) Figure 2: i{iv) Di�erent examples of cans and faces used for learning. v) The learned representations.2



2 Object Recognition with Banana WaveletsIn this section we give a description of the basic entities of our system (for details see (Kr�uger, Peters and v.d.Malsburg 1996). We restrict ourselves to those aspects relevant to the discussion in section 3. In our approachwe limit ourselves to form processing and we ignore color, movement, texture, and binocular information. Inthe literature (see e.g., (Treisman 1986)) a largely independent processing of these di�erent clues is assumedwith the shape clue as the most powerful one for higher level classi�cation tasks. The object recognitionsystem is inuenced by an older system developed in the von der Malsburg group (Lades et al. 1992; Wiskottet al. 1997) and by Biedermans criticism (Biederman and Kalocsai in press) of this system.The system introduced here di�ers from the older system in two main aspects: Firstly we introduce curvatureas a new feature. Secondly, and even more important, we introduce a sparse object representation: we describean object by an ordered arrangemant of a few binary features which can be interpreted as local line segments.From this reduced representation the original image is not reconstructable but the object is represented in itsessential entities. In the older system, which is based on Gabor wavelets, an object is described by a muchlarger amount of data representing the object as sets of local Gabor wavelet responses, called \jets", fromwhich the original image is almost completely recoverable.In (Biederman and Kalocsai in press) it is shown that there is a high correlation of the older system'sperformance and human performance for face recognition but only low correlation for object recognitiontasks. As one of the main weaknesses he points to Gestalt principles not utilized by the older system butby humans. We think the object recognition system described here represents an important step towards anintegration of higher perceptual grouping mechanisms.2.1 The Banana SpaceBanana Wavelets: A banana wavelet B~b is a complex{valued function, parameterized by a vector ~b offour variables ~b = (f; �; c; s) expressing the attributes frequency (f), orientation (�), curvature (c), andelongation (s). It can be understood as a product of a curved and rotated complex wave function F~b and astretched two{dimensional Gaussian G~b bent and rotated according to F~b (�gure 3):B~b(x; y) = G~b(x; y) � �F~b(x; y)� e��x2 �G~b(x; y) = exp�� f22 � (x cos�+y sin�+c(�x sin�+y cos�)2)2�2x + (�x sin�+y cos�)2�2ys2 ��F~b(x; y) = exp�if �x cos� + y sin� + c (�x sin� + y cos�)2�� :
 

=Figure 3: A banana wavelet (real part) is the product of a curved Gaussian G~b(x; y) and a curved wavefunction F~b(x; y) (only the real part of the kernel is shown).Our basic feature is the magnitude of the �lter response of a banana wavelet extracted by a convolution withan image: AI �~x0;~b� = ����Z B~b (~x0 � ~x) I (~x) d~x���� :A banana wavelet B~b causes a strong response at pixel position ~x0 when the local structure of the image atthat pixel position is similar to B~b.The Banana Space: The six{dimensional space of vectors ~c = (~x;~b) is called the banana (coordinate) spacewith ~c representing the banana wavelet B~b(~x) with its center at pixel position ~x in an image. In (Kr�uger,3



Peters and v.d. Malsburg 1996) we de�ne a metric d(~c1;~c2), two coordinates ~c1;~c2 are expected to have asmall distance d(~c1;~c2) when their corresponding kernels are similar, i.e., they represent similar features.Approximation of Banana Wavelets by Gabor Wavelets: The banana response space contains a hugeamount of features, their generation requiring large computation and memory capacities. In (Kr�uger, Petersand v.d. Malsburg 1996) we de�ne an algorithm to derive banana wavelets from Gabor wavelets which makesit possible to derive banana wavelet responses from Gabor wavelet responses. This approximation can beperformed for all banana wavelet responses (we call it the complete mode) before matching (see below) starts.Alternatively, the Gabor wavelet responses can be calculated in a virtual mode, which means that only themuch faster Gabor transformation is performed before matching, and only those banana wavelet responses areevaluated during matching which are actually required. Because of the sparseness of our representations ofobjects only a small subset of the banana space is actually used for matching and can therefore be evaluatedvery quickly. In the complete mode the hierarchical processing leads to a speed{up of a factor 5 compared tothe computation of the banana wavelet responses directly from the image. In the virtual mode we can reducememory requirements by a factor 20. Figure 4 gives the idea of the approximation algorithm the hierarchicalprocessing is based on.
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+ Figure 4: The banana wavelet on the left is approximated by the weighted sum of Gabor wavelets on theright.2.2 Learning and MatchingExtracting Signi�cant Features for one example: Our aim is to extract the local structure in an image Iin terms of curved lines expressed by banana wavelets. We de�ne a signi�cant feature for one example bytwo qualities. Firstly, it has to cause a strong response (C1); secondly, it has to represent a local maximumin the banana space (C2). Figure 5bi{iv shows the signi�cant features for a set of cans (each banana waveletis described by a curve with same orientation, curvature, and elongation).C1 represents the requirement that a certain feature or similar feature is present, whereas C2 allows a morespeci�c characterization of this feature. Banana responses vary smoothly in the coordinate space. Thereforethe six{dimensional function AI( ~x0;~b) is expected to have a properly de�ned set of local maxima. We canformalize C1 and C2 as follows: A banana responseAI( ~x0;~b0) represents a signi�cant feature for one exampleifC1 AI(~x0;~b) > T , for a certain threshold T andC2 AI(~x0;~b0) � AI(~xi;~bi) for all neighbours of (~x0;~b0).Clustering: After extracting the signi�cant features for di�erent examples we apply an algorithm to extractimportant local features for a class of objects. Here the task is the selection of the relevant features for theobject class from the noisy features extracted from our training examples. We assume the correspondenceproblem to be solved, i.e., we assume the position of certain landmarks (such as the tip of the nose or themiddle of the right edge of a can) of an object to be known in images of di�erent examples of these objects.In our representation each landmark is represented by a node of a graph. In some of our simulations wedetermined corresponding landmarks manually, for the rest we replaced this manual intervention by motorcontrolled feedback (see (Kr�uger, Peters and v.d. Malsburg 1996)). In a nutshell the learning algorithm worksas follows: For each landmark we divide the signi�cant features of all training examples into clusters. Featureswhich are close according to our metric d are collected in the same cluster. A signi�cant feature for an objectclass is de�ned as a representative of a large cluster. That means this or a similar feature (according to ourmetric d) occurs often in our training set. Small clusters are ignored by the learning algorithm. We end4



up with a graph whose nodes are labeled with a set of banana wavelets representing the learned signi�cantfeatures (see �gure 5bv).
a) 

b) 

i) ii) iii) iv) v) Figure 5: a: Pictures used for training. bi){iv): Signi�cant features for di�erent cans describing, besidesrelevant information, also accidental features such as background, shadow or surface textures. c: the learnedrepresentation.Matching: We use elastic graph matching (Lades et al. 1992) for the location and classi�cation of objects.To apply our learned representation we de�ne a similarity function between a graph labeled with the learnedbanana wavelets and a certain position in the image. A graph similarity simply averages local similarities. Thelocal similarity expresses the system's con�dence whether a pixel in the image represents a certain landmarkand is de�ned as follows (for details see (Kr�uger, Peters and v.d. Malsburg 1996)): A local normalizationfunction transforms the banana wavelet response to a value in the interval [0; 1] representing the system'scon�dence of the presence or absence of a local line segment. For each learned feature and pixel position inthe image we simply check whether the corresponding normalized banana response is high or low, i.e., thecorresponding feature is present or absent. During matching the graph is adapted in position and scale byoptimizing the graph similarity. The graph with the highest similarity determines size and position of theobject within the image.For the problem of face �nding in complex scenes with large size variation a signi�cant improvement in termsof performance and speed compared to the older system (Lades et al. 1992; Wiskott et al. 1997) (which isbased on Gabor wavelets) could be achieved. We also successfully performed matching with cans and otherobjects, as well as various discrimination tasks.To improve the use of curvature in our approach we introduce a non{linear modi�cation of the banana waveletresponse. Using similar criteria than C1 and C2 we determine for each orientation in a local region whetherthe maximal banana wavelet responses represents a straight, convex, or concave line segment. The bananawavelet reponses corresponding to the detected class of curvature are inforced and the other banana waveletresponse are reduced. For the problem of face �nding we could achieve a further improvement of performanceby this non{linear modi�cation of the banana wavelet responses.
Figure 6: Face �nding with banana wavelets. The mismatch (right) is caused by the person's unusual armposition. 5



3 Analogies to Visual Processing and Their Functional MeaningIn this section we discuss four analogies of our object recognition system to the visual system of primatesconcerned with� feature selection,� feature coding and hierarchical processing,� sparse coding, and� ordered arrangement of features.For each item we �rst give a short overview of the current knowledge about its occurrence and functionalmeaning in brain processing as discussed in the literature. Then we describe the realization of the fouraspects in our approach. At the end of each subsection, we discuss the relationship of the functional meaningof the aspects in the human visual system and the object recognition system. We are aware of the problem todiscuss four fundamental aspects of visual processing within such a limited space. However, such a compresseddescription may enable the detection and characterization of important relationships between the di�erentaspects.3.1 Feature selectionAccording to (Hubel and Wiesel 1979) in the area V1 of primates there is a huge amount of local featuredetectors sensitive to orientated edges, movement, or color. A data extension seems to arise from the retinato V1: for every position of the retina a large amount of features are extracted. In more recent studiesalso neurons maximally sensitive to more complex stimuli, such as cross{like �gures (Shevelev et al. 1995)or curved lines (Dobbins and Zucker 1987) were found in striate cortex. A contributory factor for curvatureas a feature computed preattentively (i.e., processed at very early stages of visual processing) arises frompsychophysical experiments in (Treisman 1986) who showed that a curved line \pops out" in a set of straightlines. A question that is still open is the role of feedback in early stages of visual processing. It has beenargued (Oram and Perrett 1994) that the short recognition time humans need for unknown objects (in therange of 100ms) makes computationally costly feedback loops unlikely. Others criticize this opinion, pointingto the huge amount of feedback connections between adjacent areas or to context sensitivity of cell responses(see, e.g., (Kapadia et al. 1995; Zipser, Lamme and Schiller 1976)).For a representation of objects on a higher level of cortical processing in (Biederman 1987), psychophysicalevidence is given for an internal object representation based on volumetric primitives called \geons" (see�gure 7a{c). A selection of geons combined by basic relations such as \on top" or \left of" and the relativesizes of geons are used to specify objects.In our object recognition system banana wavelets, i.e., \curved local lines detectors", are used as basic featureswhich are given a priori. The restriction to banana wavelets gives us a signi�cant reduction of the searchspace. Instead of allowing, e.g., all linear �lters as possible features, we restrict ourselves to a small subset.We propose that a good feature has to have a certain complexity but an extreme increase of complexityresulting in a specialization to a very narrow class of objects has to be avoided. Banana wavelets �t thischaracterization well. They represent more complex features than Gabor wavelets but they are not restrictedto a certain class of objects. Considering the risk of a wrong feature selection it is necessary to give goodreasons for our decision. Firstly, the use of curvature improves matching because it is an important featurefor discrimination. Secondly, and even more important, our application of banana wavelets mediates betweena representation of objects in a grey level image and a more abstract, binary, and sparse representation.The representation of the gray level image by the full set of continuous banana wavelet responses allows foran almost complete reconstruction of the image, even a much smaller set of �lters would be su�cient forthis purpose. A representation of an object by binarized banana wavelets, e.g., by the corresponding curves,allows for a sparse representation of an object by its essential features. We think banana wavelets are a goodfeature choice because they enable an e�cient representation of almost any object, because almost any objectcan be composed of localized curved lines. Aiming at a more abstract representation of objects embedded in6



a) b) c) d) Figure 7: a{c) A subset of geons. d) A sparse representation of the geon in c) by banana wavelets.Biedermans geon theory we argue that with an ordered set of curved lines we are able to represent the full setof geons in a sparse and e�cient way (see �gure 7d). Therefore we suggest that banana wavelets represent asuitable intermediate stage between lower and higher level representations of objects and we aim to de�ne aframework in which geon{like constellations of line segments can be learned by visual experience.Our feature selection is motivated by the functional advantages described above and the implicit necessity todecrease the dimension of the learning task, i.e., to face the bias/variance dilemma (see, e.g., (Geman et al.1995)): If the starting con�guration of the system is very general, it can learn from and specialize to a widevariety of domains, but it will in general have to pay for this advantage by having many internal degrees offreedom. This is a serious problem since the number of examples needed to train a system scales very poorlywith the system's dimension, quickly leading to totally unrealistic learning time | the \variance" problem. Ifthe initial system has few degrees of freedom, it may be able to learn e�ciently but there is great danger thatthe structural domain spanned by those degrees of freedom does not cover the given domain of applicationat all | the \bias" problem. Like any other learning system the brain has to deal with the bias/variancedilemma. As a consequence, it has to have a certain amount of a priori structure adapted to its speci�cinput (the idea to overcome the bias/variance dilemma by appropriate a priori knowlege is elaborated inmore detail in (Kr�uger 1997a; Kr�uger, P�otzsch and v.d. Malsburg 1997)). Being aware of the risk of a wrongfeature selection leading to a system unable to detect important aspects of the input data | a wrong bias| and also being aware of the necessity to make such feature selection in order to restrict the dimension ofthe learning task | to decrease variance | we have chosen banana wavelets as a basic feature. We havejusti�ed this choice by the functional reasons given in the preceding paragraph and by the performance ofour system.In our system, feedback in the sense of local interaction of banana wavelet responses is used by the criteriaC1 and C2 for sparsi�cation and non{linear curvature enhancement. We also think that Gestalt principlescan be coded within our approach by a similar kind of interaction. In a recent work (Kr�uger 1997b) we couldgive a mathematical characterization of the Gestalt principles collinearity and parallelism in natural imageswithin the framework of our object recognition system.Gabor wavelets as a subset of banana wavelets can be learned from visual data by utilizing the abstractprinciples sparse coding and information preservation (Olshausen and Field 1996). But does this kind oflearning happen on the time scale of a human life? At least the experiment in (Wiesel and Hubel 1974), whohave shown that an ordered arrangement of orientation columns develop in the visual cortex of monkeys withno visual experience, contradicts this assumption. The fact that Gabor wavelets result from an applicationof sparseness to natural image and not banana wavelets may support the objection that the suitability ofcurvature as basic feature does not necessarily follow from the statistics of natural images. However, thenumber of possible �lters is restricted in (Olshausen and Field 1996). A similar learning algorithm enablingthe coding with a larger number of �lter may lead to additional attributes (such as, e.g., curvature) in the setof resulting �lters. The more recent results about single cell responses in V1 (Shevelev et al. 1995) suggestthat a larger set of features than Gabor Wavelet responses may be computed in V1.To sum up this subsection, we have given references to biological and psychophysical �ndings which supportthe view that local curved lines are an important feature in early stages of visual processing. Furthermore, wehave justi�ed our feature choice by functional advantages of these features, such as discriminative power andthe ability of an e�cient representation of geons, for vision tasks. We have given reasons for the necessity ofsuch a feature choice by pointing to the bias/variance dilemma which has to be faced by any learning system.7



3.2 Feature Coding and Hierarchical ProcessingIn the visual cortex of primates hierarchical processing of features of increasing complexity and increasingreceptive �eld size occurs. As a functional reason for processing of this type the advantages of capacitysharing, minimization of wiring length, and speed{up have been mentioned (see e.g., (Oram and Perrett1994)). Di�erent coding schemes for features are discussed in the literature. The concept of \local coding" inwhich one neuron is responsible for one feature (Barlow 1972) leads to problems: Because for each possiblefeature a separate neuron has to be used, a large amount of neurons is required. Another concept is called\assembly coding" (Georgopoulus 1990; Sparks, Lee and Rohrer 1990) in which a feature is coded in theactivity distribution of a set of neurons. Assembly coding allows the coding of a larger amount of features fora given set of neurons, but the labeling of the set of active neurons with a certain feature remains a problem(see, e.g., (Singer 1995)).In our object recognition system the main advantage of hierarchical processing is speed{up and reduction ofmemory requirements. We utilize hierarchical processing in two modes (see section 2.1): In the \completemode" we gain a speed{up but no memory reduction and in the \virtual mode" we additionally gain areduction of memory requirements.In the virtual mode we utilize \local coding" and \assembly coding" for features of di�erent complexity. In thevirtual transformation we may interpret the Gabor transformation as a �rst description of the data (in a localcoding). However, a response of a banana wavelet is coded in the distribution of Gabor wavelet responses andis only calculated if requested by the actual task of the system, i.e., if the matched representation comprisesthis speci�c feature. For frequently used low level features (such as Gabor wavelets) the advantage of fastdata access outweighs the disadvantage of increase of memory requirements in the \local coding" concept.But for less frequently and more complex features (such as banana wavelet responses) the decrease of memoryrequirements may outweigh the increase of costs for a dynamical extraction of these features from lower levelfeatures (i.e., the costs of the interpretation of the actual activity distribution in the assembly coding). We donot claim that curvature is processed in the brain by assembly coding. Maybe curvature is such a frequentlyused feature that it is more likely to be computed in a local coding. Nevertheless, the general trade o�between the two coding schemes can be exempli�ed.To sum up, we have successfully applied hierarchical processing in our object recognition system resulting inspeed{up and reduction of memory requirements. Furthermore, in our algorithm we have demonstrated theapplication of coding schemes which have analogies to coding schemes currently discussed in brain researchand we have described their advantages and disadvantages within our object recognition system.3.3 Sparse CodingSparse coding is discussed as a coding scheme of the �rst stages of visual processing of vertebrates (Field1994; Olshausen and Field 1996). An important quality of this coding scheme is that \only a few cells respondto any given input" (Field 1994). If objects are considered as input this means that a certain feature is onlyuseful for coding a small subset of objects and is not applicable for most of the other objects. Sparse codinghas the biologically motivated advantage to minimize the wiring length for forming associations. (Baum,Moody and Wilczek 1988; Palm 1980) point to the increase of associative memory capacity provided by asparse code. In (Olshausen and Field in press) it is argued that the retinal projection of the three{dimensionalworld has a sparse structure and therefore a sparse code meets the principle of redundancy reduction (Barlow1961) by reducing higher{order statistical correlations of the input.In our object recognition system a certain view of an object is represented by a small number of banana �lters.The total amount of �lters in the standard setting (2 levels of frequency, 12 orientations, 5 curvatures, and 3elongations) is 360 �lters per pixel (which can be reduced without loss of information in the banana domainbecause especially the low frequency �lters are oversampled). Sparse coding is achieved by determining localmaxima in the space of all �lter responses (criterion C2), which only leads to about 60 responses remainingin an image of size 128� 128, which means only 0,004 responses per pixel are needed (i.e., about 10�6 of allavailable features are required). Only these 60 responses are needed for the representation of an object ina 2D{view which means 0 up to 3 responses are needed for every node of the graph. In a setting withoutdi�erent curvatures and elongations, that is if Gabor �lters are applied, the total number of responses is ofsame order compared to the above mentioned standard setting.8



The aim of our system is to solve a certain task, namely the recognition of a class of objects, such ashuman heads or cans. The representation of an object class by sparse banana responses is validated by thesuccess with which the system solves this task, as measured by the recognition rate. The principles of ourapproach di�er from those in Olshausen's and Field's approach (Olshausen and Field 1996), who demandinformation preservation in addition to sparseness to create Gabor-like �lters1. We doubt that informationpreservation is a suitable criterion for higher visual processing. The aim of human visual processing is toextract the information which is needed to survive and react in the environment by solving tasks such asinterpreting a scene and recognizing an object or a facial expression, that means the aim is not reconstructionbut interpretation. We believe that task driven principles should substitute the principle of informationpreservation for learning features of higher complexity. Our system creates abstract representations (see�gure 2v) of a class of objects by reducing the information of a local area to line-like features from whichgraylevel images cannot be reconstructed. Since these representations can be recognized by humans and sincelinedrawings in general can be recognized as fast as graylevel images (Biederman and Ju 1988) this kind ofabstract representation seems to contain the information needed to solve the recognition task.In addition to the advantages of sparse coding already mentioned, we now discuss the following advantages:reduction of memory requirements, speed-up of the matching process, and simpli�cation of determiningrelations among the features. A sparse code leads to representations with low memory requirements. Inthe former system (Lades et al. 1992; Wiskott et al. 1997) (from which our system is derived) an objectis represented by a graph whose nodes are labeled by jets, where a jet contains the responses of a setof Gabor �lters (all centered at the same pixel position). This kind of representation stores all the �lterresponses independent of whether they are needed to describe the considered object or not. Our representationonly contains those responses which have high values before sparsi�cation and thus represent the salientinformation of a 2D{view of an object in a speci�c scene. For the representation of one view of a speci�cobject the requiredmemory is reduced by a factor 40 compared to the former system and for the representationof classes of objects the reduction is even in the order of factor 1500.2A functional advantage of a sparse representation is a fast matching process, since the time needed to comparea representation with the features at a certain position in an image goes nearly linearly with the number offeatures in the representation. This functional advantage is achieved on a sequential computer. Requiringonly a small amount of processing capacities may be advantageous even for parallel systems, such as thebrain, if many potential objects are tested in parallel.Among others, (Biederman 1987) suggests that it is not a single feature which is important in the represen-tation of an object but the relations among features. At the present stage of our approach only topographicrelations expressed in the graph structure are represented. Banana wavelets represent features with certaincomplexity which describe suitable abstract properties (e.g., orientation and curvature). In future work wewill aim to utilize these abstract properties to de�ne Gestalt relations between banana wavelets, such asparallelism, symmetry, and connectivity. These abstract properties of our features enable the formalizationof these relations. Furthermore, sparse coding leads to a decrease in the number of possible relations foran object description (only the relations between the few \active" features have to be taken into account).Therefore, the reduction of the space of relations and the describable abstract properties of these featuresmake the space of those relations manageable. In the reduction of the space of relations we see an additionaladvantage of sparse coding which, to our knowledge, has not been mentioned in the literature.In summary, sparse coding allows for representations with low memory requirements, which lead to a speed-up in the matching process. Furthermore, sparse coding potentially simpli�es the determination of relationsamong features.1Since the �lters are not learned but only valued in our system, only the principles of both approaches and not the algorithmsthemselves can be compared.2In the former system (Lades et al. 1992; Wiskott et al. 1997) a typical graph with 30 nodes and 40 complex-valued entries inevery jet contains 2400 real values. If a representation of a class of objects is considered, even about 105 real values are neededbecause a bunch of about 50 object graphs is taken to represent a class of, e.g., human heads in frontal pose. For single objectsthe 2400 real values have to be compared with the about 60 integer values needed for our sparse representation (every of theabout 60 binary features has to be stored by one index specifying the six labels frequency, orientation, curvature, elongation, x-and y-position). For classes of objects the 105 real values have also to be compared with about 60 integer values because oursparse representations of classes of objects require an amount of binary features which is similar to the amout for single objects.9



3.4 Ordered Arrangement of FeaturesThe order in the arrangement of features is a major principle aplied throughout the brain, both in the earlystages of signal processing (Hubel and Wiesel 1979) and in the higher stages (Tanaka 1993). It is realized bycomputational maps (Knudsen, du Lac and Esterly 1987). These maps are organized in a columnar fashion.According to (Oram and Perrett 1994; Tanaka 1993) the columnar organization enables the assignment ofa feature to a more general feature class (generalization) and also to discriminate between �ne di�erenceswithin a feature class (specialization).In our system, the ordered arrangement of the banana features is achieved by the metric described in sec-tion 2.1. This metric de�nes a similarity between two features in the six-dimensional banana space. Themetric organization of the banana responses is essential for learning in our object recognition system, becauseit allows to cluster similar features and thus to determine representatives for such clusters (section 2.2). Bythis kind of generalization we are able to reduce redundancies in our representation. A columnar organiza-tion is not yet de�ned in our system and thus general and special feature responses as described above arenot distinguished. However, if columns may be de�ned as small local areas in the banana space, the crite-rion C2 utilized for the extraction of `signi�cant features for one example' may represent an intercolumnarcompetition giving a more speci�c coding of the unspeci�c response of the whole small region.In summary, in our system an ordered arrangement of features is achieved by a metric in banana space.This metric enables a competition of neighboring features resulting in sparsi�ed responses. Furthermore, themetric is essential to learn representations of object classes.4 Conclusion and OutlookWe have discussed the biological plausibility of the arti�cial object recognition system described in (Kr�uger,Peters and v.d. Malsburg 1996). We were not interested in the detailed modelling of certain brain areas,we did not even utilize \neurons" or \hebbian plasticity" in our algorithm. Instead, we tried to applyprinciples of biological processing, i.e., we tried a modelling of the brain on a more functional level. As oursystem is already able to solve di�cult vision tasks with high performance (not comparable to the humanvisual system but comparable to other arti�cial object recognition systems) we can evaluate the quality ofour system by the performance for a certain task. This enables us to justify modi�cations of our systemnot by biological plausibility but by e�ciency. As the human visual system is the best visual patternrecognition system we believe that biological plausibility and e�ciency are not contradictory qualities butcan be increased simultaneously. However, for this kind of interaction it is necessary to look at the brain as asystem solving a certain task, i.e., as an algorithm. We think that the insight in abstract principles of corticalprocessing as utilized in our arti�cial object recognition system helps to create e�cient arti�cial systems,and the understanding of the functional meaning of these principles in the arti�cial system can support theunderstanding of their role in cortical processing.Following that line of thinking we have applied such principles within an object recognition system and havedecribed their functional meaning: the bias/variance dilemma and the ability of a representation of objectson a higher level leads to a certain feature choice; local feedback is used for the processing of curvature andfor sparsi�cation; with hierarchical processing and a sparse representation we could reduce time for matchingand memory requirements; the value of a sparse coding for the detection and utilization of Gestalt principleswas discussed; the trade o� between memory requirements and speed of processing for coding schemes suchas \local coding" and \assembly coding" could be exempli�ed; and we have utilized an ordered arrangementof features for learning and redundancy reduction.We claim that in the current state the object recognition system gives a reasonable model of the form pathof lower levels of the visual system. We have demonstrated an e�cient application of a biologically plausiblefeature selection utilizing sparse coding, hierarchical processing, and ordered arrangement of features. Con-cerning higher level processing, i.e., on a higher level than V1, we do not claim that our object recognitionhas the same plausibility. Giving just one example of an aspect of higher visual processing not covered byour system, we point to the Gestalt principles utilized by humans for the interpretation of natural scenes.However, we assume our system is also a good basis to model higher stages of visual processing, because itis a plausible approximation of lower stages of visual processing. In section 3 we already discussed a possible10
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