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Abstract

We propose a reinforcement learning approach for an adaptive selection
and application of 3D point cloud feature descriptors for the purpose of 3D
object classification. The result of the learning process is an autonomously
learned strategy of selection of descriptors with the property that the
successive application of these descriptors to a 3D point cloud yields high
classification rates among a large number of object classes. The order in
which the descriptors are applied to an unfamiliar point cloud depends
on the features calculated in previous steps of the descriptor sequence,
i.e., the sequence of descriptors depends on the object to be classified,
thus it is highly adaptive. Our approach starts with a given number
of descriptors and object classes, but it is able to adapt dynamically to
changes in the environment. For example, further descriptors can be
added during the learning process, and new object classes are created
autonomously if necessary.

1 Introduction

Due to a wide range of applications such as scene understanding, navigation or
applications in robotics like grasping or scene manipulation, the classification
and recognition of 3D point clouds has been a fundamental part of computer
vision research in the last few years. Additionally, the appearance of cheap 3D
cameras like the Microsoft Kinect made these fields of application available to
a broader public.

Most of the current algorithms compare objects pairwise by matching the
descriptions of whole objects or of local feature descriptions. Global descriptors
like the frequency domain approaches from Saupe [SV01] and Vranić [VS02]
are rather rare. Over the years local feature descriptions have emerged as the
most promising means to compare 3D point clouds and surfaces. Mentionable
approaches from the 1990s are ”splashes” by Stein and Medioni [SM92] and
”spin images” from Johnson and Herbert [JH98]. There are many other state of
the art 3D point cloud feature descriptors with different recognition rates and
time complexities, from which a selection is introduced in section 2. However, in
general the computational costs of calculation and comparison for local feature
descriptors are high. Furthermore, always more than only a few local feature
vectors are necessary to accurately match corresponding point clouds. To reduce
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the computational costs of potentially useless and insignificant feature vectors,
keypoint detectors are used to select regions of interest in the point cloud.

As with many other problems, there is not one best solution in the domain
of 3D object recognition and classification [Ale12]. Especially when the feature
vectors have to be compared with a large set of other feature vectors, for ex-
ample if the classification structure contains many objects or object classes, the
application of only a single feature descriptor, whether it is accurate but slow or
fast but inaccurate, is questionable. This raises the question which descriptors
should be used and in which order they should be applied.

This proposal provides a concept which may offer an answer to this question.
We present a method, where we use reinforcement learning to learn an order in
which point cloud descriptors have to be applied to obtain high classification
rates, hereafter referred to as ”sequences of point cloud descriptors”. Section
2 gives a short overview over the required components and section 3 describes
our approach in detail.

2 Related Work

In this section we give a short overview over existing 3D point cloud descriptors.
We first present a selection of different global point cloud descriptors, which can
be used by the reinforcement learning agent to perform the first comparisons in
the sequence of descriptors with low computational costs. Afterwards we give a
draft overview of state of the art local 3D feature descriptors. Finally we give a
short introduction to reinforcement learning.

2.1 Global Point Cloud Descriptors

One straightforward way to describe a 3D point cloud, is a bounding box aligned
along the principle axes. In this way, we will be able to describe a point cloud
with just two length ratios in a very simple manner. Suzuki et al.[SKO00]
use the PCA in a similar manner to get a stable orientation. They fit the
point cloud into a unit cube, divide the cube into a coarse grid and count the
points in each grid cell. Vranić and Saupe [VS01] and Lucchese et al.[LDC02]
divide the 3D point cloud into voxel grids and use it as input for a 3D Fourier
transform. While Vranić and Saupe use the absolute values of the obtained
coefficients as feature vector, Lucchese et al. use the slice theorem to calculate
radial projections, which they compare. There are several other approaches
[Kei99, PR99, PRM+00] which compare the similarity of voxel grids.

A different approach from Heczko et al.[HKSV02] consists in the creation of
a parallel projection onto the 6 faces of a bounding cube aligned by PCA and the
application of a Fourier transform on the so obtained silhouettes. The absolute
Fourier coefficients are used for the feature vectors. In a second approach Heczko
et al. create depth images on the 6 faces of the bounding cube, apply the
Fourier transform and use the absolute values of the Fourier coefficients as
feature vectors. Saupe [SV01] and Vranić [VS02] use a spherical projection
of the inner centred point cloud. They calculate a depth image with the surface
distance to the surrounding sphere and an image with the values of the scalar
product of the surface normals and the projection rays. With the spherical
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harmonics representation of both 2D representations in a complex function, the
Fourier transform is reversible.

In addition, there are many other approaches. However, there is one thing
that most of the mentioned global methods have in common: they need the
complete model for a successful classification, which is a problem particularly
with regard to depth images taken from a single point of view, e. g., from the
Microsoft Kinect.

2.2 Local Feature Point Descriptors

While in recent years only a few new global descriptors have been published,
the number of published local feature point descriptors has grown considerably.
Two early approaches were already mentioned in the introduction. The ”splash”
by Stein and Medioni [SM92] is a surface description based on surface normals
along a geodesic circle. The widely used ”spin image” by Johnson and Herbert
[JH98] is created for an oriented point while counting the surrounding points
of the point cloud in the bins of a 2D histogram. Regarding to the oriented
point’s normal vector, the bins are selected by the horizontal and vertical dis-
tance to the compared point. In [Ale12] Alexandre provides a wide comparison
of state of the art local feature point descriptors. The methods in this paper
are restricted to those provided within the point cloud library (PCL) version
1.6 [RC11], but work on pure 3D point cloud data. Without the use of the
color information, PFH [RBMB08] and SHOT [TSDS10] perform best. In ad-
dition, Heider et al.[HPPLG11] compare a large number of different local shape
descriptors. The conclude, that the distribution descriptor is consistently the
best.

2.3 3D Keypoint Detectors

3D keypoint detectors are essential for local feature point descriptors. They re-
duce the computational complexity by identifying particularly those regions of
3D point clouds, which are interesting for descriptors, in terms of high informa-
tional density. There has been a lot of research in this field in the last few years.
A good overview of the differences and the keypoint detector’s performance is
provided in the comparative evaluations of Salti et al.[STS11] and Filipe and
Alexandre [FA13]. In our case scale invariant detectors are of particular inter-
est, since we do not make any assumptions about the point cloud source. While
Salti et al. prefer MeshDoG [ZBVH09], Filipe and Alexandre prefer SIFT3D
[FDH07] as scale invariant detector. Since the latter algorithm is present in the
PCL, we’ll use this method for a first implementation.

2.4 Reinforcement Learning

In general, reinforcement learning (RL) [SB98, Kapitel 6] describes a class of
machine learning algorithms, in which an agent tries to achieve a goal by trial
and error. The agent acts in an environment and learns to choose optimal actions
in each state of the environment. The strategy of chosen actions is called policy.
Further, it is assumed that the goals of the agent can be defined by a reward
function that assigns a numerical value to each distinct action the agent may
take in each distinct state of the environment. In this environment the task of

3



the agent is to choose and apply one of the available actions in the current state.
This changes the environment which leads the agent to the next state and the
agent can observe the consequences (the immediate reward). While repeating
this steps the RL agent can learn a policy. Typically, it is desired to find a
policy that maximizes the accumulated reward.

Watkins [Wat89] introduced a RL algorithm called Q-learning. In his method
the agent exists within a world that can be modelled as a Markov Decision Pro-
cess, consisting of a finite number of states and actions, as well as transition
probabilities, which reflect the probabilities that chosen actions result in partic-
ular states. In each step the agent selects one of the available actions, observes
the new state and receives the immediate reward. This reward and the expected
future reward result in the so-called quality-value (q-value). With ongoing iter-
ations all q-values for each possible state-action pair will be approximated.

Watkins and Dayan [WD92] proved that the discrete case of Q-learning will
converge to an optimal policy under certain conditions. These conditions are,
that the learning rate α ∈ [0, 1] (the update ratio of q-values) should decrease
over time, that each state should be visited an infinite number of times and that
each action in those states has do be used an infinite number of times.

3 Our approach

As already mentioned, the computational costs of calculations and comparisons
of local feature descriptors are high. On the other hand, global descriptors are
too imprecise for an accurate assignment of a 3D point cloud to an object class
in most cases. In particular with a rising number of different object classes,
the number of possible result classes should be restricted first of all by efficient
methods, so that the computational costs of subsequent calculations of local
feature descriptors remain within tolerable limits.

One naive approach to reach this goal would be, to evaluate a huge bunch of
descriptor sequences with global and local 3D point cloud descriptors. Maybe
this evaluation results in one or more well-functioning sequences. But even if
this would yield high classification rates for many objects, this approach has
to be rejected on principle because of its lack of generalizability and its lack of
adaptivity, e.g., in the case of adding new descriptors.

We think that our approach, using a RL framework to learn an optimal
application order of descriptors online, is a way to solve this questions.

3.1 Environment

Our RL framework consists of a finite Markov Decision Process with a finite
number of actions and a finite number of states, as described in section 2.4.
Furthermore it includes a structure, with a small set of already classified 3D
point clouds and preprocessed feature vectors for all implemented point cloud
descriptors, as shown in figure 1.

A state consist on the one hand of the number of remaining candidates from
the object-classes. In addition, it contains the set of remaining actions, since
one descriptor will be applied only once. Finally it is envisaged, that descriptors
should be able to contribute their results to the state. It is not intended, that
this option is used for all descriptors, but it can be used where it makes sense.
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Figure 1: Building an initial structure of already classified 3D point clouds and
preprocessed feature vectors for all implemented point cloud descriptors.

An example might be the transfer of basic shape attributes (e. g., flat, longish or
uniformly), which can be obtained by PCA, to the state. The intention to embed
the elementary results of different, probably predominant global descriptors, is
to enable the RL agent to use different actions due to different descriptor results
which correspond to different states, respectively.

An action corresponds to the application of a 3D point cloud descriptor.
More precisely, it consists of three steps: 1) the selection of the descriptor,
2) the calculation of the feature vector and 3) the elimination of candidates
from the object-classes by comparing the current feature vector with all feature
vectors learned so far in the previous steps. This process is shown in figure 2.

The transition probabilities are unknown in advance. However, they arise
from the actions, respectively, from the following three properties: firstly the
number of the remaining candidates from object-classes, secondly the history
of previously applied descriptors and thirdly the results of the already applied
descriptors, if available.

3.2 Learning Process

Without any restrictions the reinforcement learner terminates naturally, if the
number of remaining object-classes is zero or all 3D point cloud descriptors
have been used. But the natural termination is not desirable, since we propose
a time limit how long a single object classification should take. Without this
limitation the RL framework would probably learn to use a descriptor with
high accuracy like PFH [RBMB08] or SHOT [TSDS10], but it would take a
very long computational time to compare the feature vectors with all objects in
the classification structure. Moreover, it makes no sense to wait until the set of
object-class candidates is empty. Thus, the learning process terminates at the
latest when only one class remains.

At this point we have to clarify among which conditions the RL agent gets
an immediate reward. Determining the quality of the states during the learning
and classification process, is the goal of our approach. Thus, there will be no
rewards for the achievement of any state. The only states at which an evaluation
of the result is possible, are the terminal states. When a terminal state is
reached where only one class remains and the class does match, the reward is 1.
Otherwise, if there are more classes left or the class does not match, the reward
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Figure 2: The basic process. From the current state the RL chooses one of the
available descriptor algorithms. With this algorithm the feature vector(s) are
calculated for an input object. By comparing this feature vector(s) to all classi-
fied feature vectors within the object-classes, an object class can be marked as
unsuitable, if the quality and quantity of matching feature vectors is insufficient.
This process will repeat until one or no suitable classes remain.
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Figure 3: Adding new feature descriptors.

is -1. This so-called delayed reward and the trial and error learning are the most
characteristic features of RL.

The application of a RL method is always coupled with the question, how
much exploration and exploitation should be granted to the RL agent. Typically,
the RL starts with a random policy for maximum exploration. In this phase, we
start with the already known and classified objects from the classification struc-
ture, since the decision whether the final class fits or not is straightforward. If
the q-values get more stable, the exploration is reduced in favor of exploitation.
This method is called ε-greedy, meaning that most of the time those actions
are selected, where the expected reward is maximized, but with probability ε
a random action is selected. In this way it is possible that the system adapts
to changes of the environment over time. This balance of exploration and ex-
ploitation allows the system to grow online and allows us to add new descriptors
to the system (see figure 3). The new descriptors will be selected from time to
time, so that the q-values will be adapted over time.

3.3 Handling New Categories

A big advantage of our approach compared to classical object classification ap-
proaches (e. g., neural networks based ones) consist in the fact that the number
of object classes can change dynamically. Thus, the decision regarding a valid
classification of a 3D point cloud must be independent from the explicit knowl-
edge of an object-class, as used in the early exploration phase mentioned in the
section above. For this purpose, an explicit comparison with accurate descrip-
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Figure 4: Automatically learned object classes. If the classification of an unclas-
sified object fails multiple times while increasing random selections of descriptor
algorithms (increasing ε), the RL will generate a new unlabeled object class.

tors such as PFH and SHOT is envisaged. To compensate for possible faulty
decisions of the RL agent, the classification of an unclassified object will be
repeated multiple times. In case, the object cannot be assigned to one of the
object classes at hand, a new class is created, which means that the agent has
learned a new object class autonomously, as shown in figure 4.

4 Conclusion

This proposal suggests a system which learns a strategy to select and apply
3D point cloud descriptors with the goal to classify a point cloud with high
accuracy, namely among a large number of object classes and within a preset
time limit. The proposed approach is based on reinforcement learning. The
initial learning stage will be based on a 3D keypoint detector and a number
of 3D point cloud descriptors. Due to properties of reinforcement learning we

8



expect the approach to be highly adaptive, e.g., allowing the integration of new
descriptors and the online learning of new object classes.
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