
Efficient Sampling of the Structure of Crypto

Generators’ State Transition Graphs

Jörg Keller

FernUniversität, LG Parallelität und VLSI, 58084 Hagen, Germany
Joerg.Keller@fernuni-hagen.de

Abstract. Cryptographic generators, e.g. stream cipher generators like
the A5/1 used in GSM networks or pseudo-random number generators,
are widely used in cryptographic network protocols. Basically, they are
finite state machines with deterministic transition functions. Their state
transition graphs typically cannot be analyzed analytically, nor can they
be explored completely because of their size which typically is at least
n = 264. Yet, their structure, i.e. number and sizes of weakly connected
components, is of interest because a structure deviating significantly from
expected values for random graphs may form a distinguishing attack that
indicates a weakness or backdoor. By sampling, one randomly chooses
k nodes, derives their distribution onto connected components by graph
exploration, and extrapolates these results to the complete graph. In
known algorithms, the computational cost to determine the component
for one randomly chosen node is up to O(

√
n), which severely restricts

the sample size k. We present an algorithm where the computational
cost to find the connected component for one randomly chosen node is
O(1), so that a much larger sample size k can be analyzed in a given
time. We report on the performance of a prototype implementation, and
about preliminary analysis for several generators.

1 Introduction

Stream cipher generators, like the A5/1 in cellular telephones [1, 2] and pseudo-
random number generators, are widely used in cryptographic communication
protocols. Basically, they are finite state machines that are initialized into a state
and then assume a sequence of states completely determined by their transition
function f : N → N , where N is their state space, i.e. a set N = {0, . . . , n− 1}.
For given N and f , one can define the state transition graph Gf = (V = N,E =
{(x, f(x)) : x ∈ N}. Such a directed graph, where each node has exactly one
outgoing edge, has a number of weakly connected components (WCC), each con-
sisting of one cycle and a number of trees directed towards their roots, where
the roots sit on the cycle. One is interested in the number of the WCCs, their
sizes and cycle lengths. The cycle length represents the generator’s period, the
component size the fraction of nodes that, when chosen as initial state, lead
to a certain period. If the period length is too small, then this may hint to-
wards predictability. Furthermore, as a cipher generator shall, in some sense,

randomize, its graph should look randomly as well. If its structure deviates sig-
nificantly from expected values for random graphs with outdegree 1, this may
hint towards a weakness or a backdoor. In this sense, the computation of such a
graph’s structure can be considered as a distinguishing attack.

Unfortunately, the period lengths of such generators cannot be derived an-
alytically. Also, typical graph algorithms with techniques like pointer doubling
fail for two reasons. First, the graph is typically of size n = 264 and more, and
thus cannot be constructed in memory. Second, even if it could be constructed,
the graph could not be explored completely as an algorithm with at least linear
complexity may take longer than our lifetime.

Parallel algorithms have been devised [4] that can explore such a graph com-
pletely, even if it cannot be constructed in memory. Yet, if the graph’s size renders
a complete exploration infeasible, they can also be used to “scan” such a graph
by sampling. One randomly chooses k < n nodes, determines the WCCs they
belong to (and detects the cycles in those components), and then extrapolates
this result to the complete graph. As determining the WCC of one node may
already need time O(

√
n), this restricts the sample size and thus the validity of

the extrapolation. Our contribution is an algorithm that reduces this overhead
to O(1), and hence allows a much larger sample of nodes to be visited.

The remainder of this article is organized as follows. In Section 2 we briefly
review the relevant facts and the previous work. In Section 3 we present the new
algorithm. Section 4 reports on preliminary performance results and on findings
for some generators. Section 5 concludes.

2 Relevant Facts and Previous Work

State transition graphs as defined in the introduction are called mappings in the
literature. An example graph for n = 16 can be seen in Figure 1. It consists
of two WCCs of sizes 12 and 4 with cycle lengths of 5 and 3. For functions f
randomly chosen from the set of all functions from N onto itself, Flajolet and
Odlyzko [5] have derived expected values for the size of the largest component
(about 0.76n), of the largest tree (about 0.5n), the expected path length from
any node to a cycle (about

√
n), the expected cycle length and the expected

length of the longest cycle (both O(
√

n), with slightly different constants close
to 1).

If one starts at a node x (called starting node), the only thing than can be
done to find out which WCC it belongs to, is to follow the unique path starting
in x, by repeatedly computing x := f(x), until a cycle is reached. As there is
only one cycle per WCC, and there is a unique node with smallest number on the
cycle (called cycle leader), the number of that node uniquely characterizes the
component. One can find out to be on a cycle by storing after a number of steps
which node has just been reached (marker node), and checking after each step,
whether any of the stored marker nodes has been reached again. If the distances
between marker nodes are always doubled, O(log n) marker nodes suffice and
the effort is only increased by a constant factor [3]. As the average path length

01

2

3

4

5

67

8

9 10

1112

13

14

15

Fig. 1. An example graph.

and cycle length are both O(
√

n), a complete exploration has expected time
O(n

√
n). This algorithm can be parallelized trivially, but even then the runtime

is prohibitive. One can improve the runtime by keeping a store, as large as the
main memory of all processors, for nodes called pebbles from which one already
knows to which WCC they belong. Then if one reaches a pebble on a path, one
can stop there.

We define a subset of the nodes called the candidate set. Only candidates
can become pebbles. The candidate set is normally chosen independently of the
function f , and in a manner that the membership to the candidate set can be
computed efficiently from the node number, e.g. by requiring that some bits
must be zero.

Several relationships between candidates and pebbles are possible. If every
candidate indeed is a pebble, and if all pebble information is gathered in advance,
then we have a completely static situation. Then in every step, we only have to
check whether a candidate is reached, which can be done efficiently, and if so, we
already know that we have reached a pebble. However, as we have to expect that
a fraction of 1/e of the nodes are leaves [5], and as the candidate set is defined
independently of the function f , we have to expect that 1/e of the pebbles are
leaves as well. Pebbles on leaves are not worthwhile because only a single path
can reach that pebble: the path originating in the leaf itself. If the candidate
set is the set of all nodes, and if the pebbles are set during the exploration of
the graph, then we have a completely dynamic situation. In this case, only a
small fraction of the candidates can indeed become pebbles, because otherwise
we would need Ω(n) memory resources to store the pebble information. While
this scenario allows to place pebbles in a manner that takes into account the
particular characteristics of the function f , it has a certain disadvantage. When
following a path from some starting node, one has to check whether a pebble
is reached after each step. Checking whether a candidate is a pebble requires a
query to a data structure such as a search tree or a hash table and thus takes
some time.

Therefore, we decided on a compromise [4]. Not every node can become a
pebble. The size of the candidate set is only a fraction of n, typically 1/2c as we

check whether the c lowermost bits of a node number are zero. The pebbles are
placed while the graph is explored. To take the function f into account, we place
pebbles in regular distances along the paths that we follow. This ensures that
pebbles are spread out over the trees. The pebble data structure can be updated
regularly to remove pebbles without visits in a certain time frame (similar to
the LRU strategy in caches), which also gives room to place further pebbles.
The pebble data structure can even be distributed over all processors to allow a
pebble set that scales with machine size when we use a parallel cluster computer
to follow many paths simultaneously [6].

However, the current approach suffers from a weakness. If n is really large,
we cannot afford to explore the graph completely, because the effort to do so
is O(n · l) if l is the average path length to a pebble1. What one can do is to
restrict to a sample of k < n starting nodes, chosen randomly among all nodes.
If ki of these k starting nodes belong to WCC i, then with standard techniques
one can compute a confidence interval [ni − δi : ni + δ] around ni = n · ki/k
such that the size of WCC i lies in this interval with probability p. The effort
for this sampling is still O(k · l′), where l′ is the average path length for the first
k starting nodes. Normally, l′ > l, as the pebbles could not yet be placed as well
as after certain update improvements.

3 Efficient Sampling

We want to improve the algorithm of the previous section by taking into account
the following observation: while for each starting node of the sample, only this
node is attributed to a WCC, one has visited many nodes of this WCC! The bad
thing is, that it is not clear how many of those nodes we have already visited in
previous runs. If a path from a starting node reaches a pebble, we do not know
how many of those nodes are on a path that has been visited in the past. Hence
we extend our pebble data structure in order to be able to find this out.

Each pebble a now contains links all pebbles, from which paths reach a. Those
pebbles are called child pebbles. Furthermore, we require that the tree root must
be a pebble (so that we can guarantee that each path in the tree reaches a
pebble), and also that each previous starting node is a pebble2, if it contributed
any newly visited starting nodes. In the unlikely event that a new starting node
lies on a path visited before, it will not contribute any newly visited node and
hence need not be considered further. If those requirements are maintained with
every following starting node, then we can formulate the following invariant:
The pebbles, and the nodes on the paths between them, contain exactly the set of

nodes already visited.

1 In the overwhelming majority of cases, a path ends in a pebble. Only in a tiny
fraction of cases, a cycle is reached.

2 This requires that only nodes that are candidates are chosen as starting nodes. This
is however not a serious restriction as the set of candidates will be much larger than
the set of starting nodes.

5

i

a’

sa

a

s’

Fig. 2. Reaching a pebble.

Now, if the path from a new starting node s reaches a pebble a, we have
only to find out where it met a path already visited. To do this, we visit the
child pebbles of a, named a1, a2,. . . , which are in distances d1, d2, . . . from a.
We will assume that the distances are in decreasing order. Now we find a node
s′ on the path from s to a in distance d1 to a. If the distance from s to a is d (we
assume d > d1), then we can follow the path from s for d − d1 steps. However,
as we store marker nodes on the way, the effort normally is much smaller. Now
we follow the paths from s′ and a1 step by step until they both reach the same
node a′

1
, where the paths meet. We do the same for all other child pebbles. If d′

is the maximum distance of any a′

i from a, then the path from s to a contributes
d− d′ newly visited nodes. If s is now made a pebble, and a further child pebble
to a with distance d, then the invariant is maintained.

Figure 2 depicts an example situation. When starting from node s, the pebble
a is reached after 7 steps. Pebble a has a pebble child ai in distance 5. To find
a node s′ on the path from s to a with distance 5 to a, one starts at node s and
follows the path for 2 = 7−5 steps, to reach node s′. Now the paths from ai to a
and s′ to a are followed simultaneously step by step, until both paths reach the
same node a′ after 3 steps. Hence, on the path from s to a, 5 = 2+3 nodes have
been visited for the first time. The node s will be made another child pebble of
a with distance 7.

The overhead, defined as the number of evaluations of function f for com-
puting d′ is O(d), if the number of child pebbles to a pebble is not more than
a constant. This however can be achieved by adapting the pebble data struc-
ture (introducing new pebbles at places where paths from child pebbles meet)
without changing the invariant. If we assume that the path length d from the

starting point to the pebble is not more than a constant factor longer than the
number d−d′ of the newly visited nodes, the overhead will also be O(d−d′), and
hence the overhead per newly visited node will be O(1). The latter assumption
is based on the fact that only a small fraction of the nodes will be pebbles and
already visited nodes, and hence from a randomly chosen node, one will have on
average have a long way to go until a path between pebbles is met. An additional
overhead has to be accounted for the case where a starting node lies on a path
that is already visited, and where no newly visited nodes will be contributed.
However, if one assumes that the size n of the state space is so large that less
than 10−3n nodes can be visited in total, then the probability for this event is
smaller than 10−3 and hence this event is seldom.

One may also argue that if a WCC i has a size ni, then a starting node was
chosen from this WCC with probability ni/n, and thus the nodes attributed
to WCC i were done so independently in the original algorithm. If the new
algorithm chooses a starting node s from WCC i, then it attributes d− d′ nodes
to that WCC, the newly visited nodes on the path starting in s. Yet, the average
path length will depend on the placement of the pebbles, which will not directly
depend on the WCCs, and so will the path length. Furthermore, if WCC i has
had more visited nodes (in relation to its size) than other WCCs, then one has to
take into account that the probability to choose an unvisited node from WCC i
will sink below ni/n, and the other WCCs will receive accordingly more starting
nodes and thus more visited nodes, so that the balance is approached again.

4 Experimental Results

We have programmed a simple, sequential version of the new algorithm. As only
values of n up to 107 are used for evaluation purposes, we could use a variant
where a bit could be stored for each node, to find out whether this node was
visited before. Thus, the algorithm immediately knows how many nodes have
newly been visited on this path. The pebbles are placed randomly for the sake
of simplicity, which will lead to a constant average distance between pebbles on
a path. As overhead, we only counted the way from the first visited node to the
next pebble. If we assume that on average, a path from a starting node will meet
a known path in the middle between two pebbles, and that a pebble on average
has two child pebbles, then we would have to increase the overhead by a factor
of 6, because the length would double, and three paths would have been followed
(two starting in child pebbles, one starting on the new path).

4.1 Performance Results

We tested our algorithm on a number of functions generated randomly with the
help of the lrand48 pseudo random number generator, with different seeds. We
first tested functions of size n = 106. Figure 3 depicts the average number of
nodes newly visited, and the corresponding average overhead, for a sequence of
starting nodes. The x-axis represents the starting nodes as percentage of n, i.e.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

newly visited
overhead

Fig. 3. Newly visited nodes and overhead per starting node for n = 106, in percentages
of n.

1% of all nodes has been used as starting nodes, and the y-axis represents newly
visited and overhead nodes also as percentage of n. Figure 4 presents the integral
of the functions from Figure 3. We clearly see that after a certain threshold, only
few nodes per path are added, while the overhead increases very much. Hence,
our improved algorithm should only be applied up to this threshold. As the
functions from Figure 4 can be computed while the algorithm is executed, the
algorithm can stop automatically when a certain threshold is reached.

Figure 5 presents a detailed view of Figure 4 for x ≤ 0.05%. One sees that in
this region, which is a more realistic application scenario than to use 1% of all
nodes as starting nodes, the algorithm performs much more favorably.

To find out how the algorithm scales with increasing n, we plot the newly
visited nodes and overhead for n = 107 in Figure 6. We see that this function
looks as before, and conclude that the algorithm scales well. The same holds for
the sum of visited nodes and summed overhead, which is omitted due to space
restriction.

4.2 Generator Properties

For reference, we first investigated two functions that are known for a long time,
one unbroken and one broken. We started with the Data Encryption Standard
(DES) (see e.g. [7]), which has been a standard blockcipher from the seventies till
today, although it has been replaced officially by the AES (Advanced encryption
standard). The DES is a Feistel cipher with 16 rounds. In each round, one half
of the 64-bit codeword is combined with a 48-bit round key by a round function.
The round function contains a non-linear part. First, by doubling some of the
bits of the code word (so-called expansion permutation), it is increased from 32

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sum visited
sum overhead

Fig. 4. Sum of visited nodes so far and summed overhead for n = 106, in percentages
of n.

 0

 2

 4

 6

 8

 10

 12

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sum visited
sum overhead

Fig. 5. Detailed view of Fig. 4 for x ≤ 0.05%.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

newly visited
overhead

Fig. 6. Newly visited nodes and overhead per starting node for n = 107, in percentages
of n.

to 48 bits. This is followed by the S-box transformation back to 32 bits. There
are eight different non-linear S-boxes, each with a 6-bit input and a 4-bit output.
As the expansion permutation followed by the S-box transformation is the only
non-linear part of DES, and the one protecting DES against differential crypt
analysis, we chose this part as a kind of generator transition function. Because
of the small size n = 232, this graph could be explored completely. It revealed
11 WCCs (16 would be expected), the largest WCC had a size of 0.8n (0.76n
would be expected), and an average cycle length of 0.73

√
n (0.63

√
n would be

expected). Hence, this graph looks quite as expected.

Second, we took a pseudo random number generator based on a cellular
automaton by Stephen Wolfram [8], which is already known to be predictable
[9]. The cellular automaton consists of k linearly connected cells, each being
either in state 0 or 1. Each cell’s next state is dependent on its own state and
the state of its neighbours. Thus, the automaton can assume n = 2k states. For
an automaton with k = 24 cells, i.e. n = 224, we revealed 49 WCCs, the largest
WCC having a size of 0.94n, with an average cycle length of 42.5

√
n. Also this

graph could be explored completely. Compared to the expected values, there are
too many WCCs, the largest WCC is much too large, and the longest cycle is
much longer than expected.

Finally, we explored the A5/1 generator. It consists of three coupled linear
feedback shift registers (LFSR) of lengths 23,22, and 19. Each LFSR has a clock
bit. In each cycle, there is a majority vote over the three clock bits, and the
registers with clock bits corresponding to the majority are clocked, i.e. each
register is clocked in 3 out of 4 cases. The history of A5/1 is quite strange. It has
been designed by ETSI (European Telecommunication Standards Institute), but

not been laid open for public scrutiny. We follow the presentation in [1] which
refer to other sources that re-engineered the algorithm in a GSM mobile phone
and finally got confirmation from GSM about the algorithm. Wagner et. al. also
present an attack on this stream cipher, hence the security is not clear, and we
felt it to be a good test case.

The state of the generator consists of the concatenated contents of the three
LFSRs, thus n = 264. With 326,131 starting nodes we detected 59,661 WCCs.
At most 103 starting nodes belonged to one WCC. The largest cycle found
had a length of 0.13

√
n. A 32-CPU cluster needed one week to compute this

result. Hence, the graph looks definitely non-random. Most cycles have length
(4/3) · (223 − 1), i.e. they are defined by the period of the longest LFSR, and
its frequency of clocking! Similar observations, albeit not with respect to the
number of WCCs are made on slide 8 of [10].

5 Conclusions and Future Work

We have presented an algorithm that allows to explore large random graphs
better than previous methods. We applied this algorithm to reveal the graph
structure of several generators in the cryptographic field. Our next aim is to
refine and tune our algorithm, and to explore a larger part of the state graph
of A5/1, because the preliminary results indicate a quite unusual structure. Our
feeling is that the surprising structure of the A5/1 state graph may also give rise
to a further distinguishing attack on the A5/1 output stream.

References

1. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Fast Software Encryption Workshop 2000, Springer LNCS (2001) 1–18

2. Eberspächer, J., Vögel, H.J., Bettstetter, C.: GSM — Global System for Mobile
Communication. 3rd edn. Teubner-Verlag (2001)

3. Keller, J.: Parallel exploration of the structure of random functions. In: 6th
Workshop on Parallel Systems and Algorithms (PASA), VDE (2002) 233–236

4. Heichler, J., Keller, J., Sibeyn, J.F.: Parallel storage allocation for intermediate
results during exploration of random mappings. In: 20th Workshop Parallel Algo-
rithms, Strctures and System Software (PARS). GI (2005) 126–134

5. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: EUROCRYPT ’89,
Springer LNCS (1990) 329–354

6. Heichler, J., Keller, J.: A distributed query structure to explore random mappings
in parallel. In: 14th Euromicro Conference on Parallel, Distributed and Network-
based Processing. IEEE CS (2006) 173–177

7. Schneier, B.: Applied Cryptography. Wiley (1995)
8. Wolfram, S.: Cryptography with cellular automata. In: Proc. Crypto ’85, Springer

LNCS (1985) 429–432
9. Meier, W., Staffelbach, O.: Analysis of pseudo random number sequences generated

by cellular automata. In: Proc. Eurocrypt ’91, Springer LNCS (1991) 186–189
10. Gong, G.: ECE 710 Sequence design and cryptography (Fall 2005) lecture slides.

http://calliope.uwaterloo.ca/∼ggong/ECE710T4/lec8-ch6b.pdf

