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ien
e, 58183 Linköping, SwedenAbstra
t. The PRAM is an important model to study parallel algorithmi
s, yet this should besupported by the possibility for implementation and experimentation. With the advent of multi
oresystems, shared memory programming also has regained importan
e for appli
ations in pra
ti
e. Forthese reasons, a powerful experimental platform should be available. While the language Fork with itsdevelopment kit allows implementation, the sequential simulator restri
ts experiments. We develop asimulator for Fork programs on a parallel ma
hine. We report on obsta
les and present speedup resultsof a prototype.Key words: Parallel Random A

ess Ma
hine, Parallel Dis
rete Event Simulation, PRAM Simulation1 Introdu
tionThe parallel random a

ess ma
hine (PRAM) has been an important 
on
ept to study theinherent parallelism of problems, and devise parallel algorithms, without having to adapt thesolution too mu
h towards a parti
ular underlying ma
hine ar
hite
ture. The 
onje
ture thatPRAMs are highly unpra
ti
al 
ould be refuted by building a PRAM ma
hine in hardware,the SB-PRAM, and by providing the programming language Fork with a 
ompiler, a runtimesystem, the PAD library of basi
 parallel algorithms and data stru
tures, and an SB-PRAMsimulator program to support program development and debugging. See [1℄ for a detailedintrodu
tion into all of these issues.Yet, while our experien
es with programming on the SB-PRAM were quite positive, theSB-PRAM ma
hine 
ould not be maintained longer and has been disassembled in 2006. Thesimulator program being a sequential 
ode, simulation of larger program instan
es wouldtake days. As parallel algorithms and shared memory programming 
urrently gain renewedinterest be
ause of the advent of multi
ore CPUs, and tea
hing su
h a 
lass should 
ontainpra
ti
al assignments beyond toy problems [2℄, we de
ided to provide a new, powerful plat-form for Fork programming: a program to emulate the SB-PRAM instru
tion set ar
hite
tureon a 
ontemporary parallel ma
hine.As the 
ode for the SB-PRAM pro
essor instru
tion set was already available, we 
on-
entrated on simulation of and a

ess to the shared memory. While there is a wealth ofimplementations and literature of software distributed shared memory (S-DSM) [3℄, theytry to exploit lo
ality by repli
ation, i.e. 
a
hing. Yet, parallelism and shared memory a
-
ess in PRAM algorithms normally is very �ne grained and highly non-lo
al, so that theseapproa
hes show poor performan
e on PRAM algorithms, whi
h ne
essitates a 
ustomizedimplementation. Simulating a PRAM on realisti
 parallel 
omputers has been extensivelystudied [4�6℄. A
tually all presented te
hniques use a distributed memory environment as thetarget platform. Yet, the 
ommuni
ation density they require 
annot be ful�lled by today'smessage-passing ma
hines. Hen
e, we opted for a parallel 
omputer with shared memory.We de
ided to follow a strategy similar to parallel dis
rete event simulation (PDES),see e.g. [7℄. As the PRAM pro
essors are assumed to run syn
hronously on the assemblerinstru
tion level, ea
h memory a

ess 
an be tagged with a time-stamp, i.e. the instru
tion
ount sin
e system start, so that the models mat
h well. Optimisti
 simulation te
hniquesare su

essfully used in network and 
ombat simulation [7℄. Chandrasekaran et al. [8℄ report



an attempt to use optimisti
 methods for the Wis
onsin Wind Tunnel (WWT) [9℄, usingideas similar to ours. WWT and its su

essor WWT II [10℄ use 
onservative dis
rete-event,dire
t-exe
ution te
hniques to simulate parallel ar
hite
tures of all kinds on existing parallelhost ma
hines. The result of their attempt was negative in terms of speedup, but the WWThas a fo
us slightly di�erent from our work. It involves not only the pro
essor, but also
a
hes, memories, and 
ommuni
ation networks. Thus, our approa
h may well su

eed wheretheirs failed. In parti
ular, a master thesis [11℄ produ
ed a simple read�optimisti
 parallelimplementation of the simulator, with some su

ess for a spe
ial 
lass of PRAM programs.We will develop di�erent PDES implementations of the SB-PRAM simulator and reporton the obsta
les along the way to speedups greater than 1. We will report on a prototypeimplementation and its performan
e. Finally we will give an outlook how small 
hanges inthe instru
tion set ar
hite
ture might allow mu
h larger speedups.The remainder of this arti
le is organized as follows. In Se
tion 2 we provide all te
hni
alinformation ne
essary to atta
k the problem at hand, and present a �rst parallel PRAMsimulator. In Se
tion 3 we ben
hmark this simulator and several other variants, explain-ing this way the obsta
les we met. We also report the performan
e results of a prototypeimplementation. Se
tion 4 
on
ludes and gives an outlook on further developments.2 PRAM and PRAM Simulation2.1 Parallel Random A

ess Ma
hineThe parallel random a

ess ma
hine (PRAM) is a model for parallel 
omputation. It iswidely a

epted and used as the most 
ommon model to analyze parallel algorithms without
onsideration of parti
ular details of the a
tual ma
hine on whi
h the algorithm will runon. The PRAM model is a generalization from the random a

ess ma
hine (RAM) modelof sequential 
omputation. In a PRAM, an arbitrary number of RAM pro
essors work ona shared memory, all with the same 
lo
k sour
e but ea
h with its own PC and a uniqueidenti�er (ID). The memory is a

essible from all pro
essors in unit time. We even allowmultiple pro
essors to either read or write a single memory address at the same 
lo
k event,i.e. we fo
us on the 
on
urrent read 
on
urrent write (CRCW) PRAM. However, we makeno spe
i�
ation what happens if a read and a write happen simultaneously to the sameaddress.Writing to the same memory address with more than one pro
essor needs a 
on�i
tresolution proto
ol to spe
ify whi
h value is written to the memory address. The most
ommon proto
ols in in
reasing order of strength are:Weak All pro
essors must 
ontribute the same spe
ial value (for example 0).Common All pro
essors must 
ontribute the same value.Arbitrary An arbitrary pro
essor su

eeds and writes its value to the memory. All othervalues will be ignored.Priority The pro
essor with the highest priority su

eeds and writes its value to the mem-ory. All other values will be ignored.Combining All values from the parti
ipating pro
essors will be 
ombined by a 
ommuta-tive and asso
iative fun
tion, like addition, bit wise and, or the maximum.The PRAM model is a general purpose model for parallel 
omputation. It gives theability to design and analyze parallel algorithms It is still not feasible to build a 
omputerwhi
h dire
tly implements the PRAM model. Only for very small n, there exist memorymodules that 
an ful�ll requests from n pro
essors.



A PRAM 
an be simulated on a shared memory ma
hine by applying Brent's theorem,but this simulation would be quite ine�
ient.The SB�PRAM is a distributed shared memory ma
hine with uniform a

ess time tothe global memory for all pro
essors and all pro
essors have the same 
lo
k sour
e. That isrealized with a bi�dire
tional butter�y inter
onne
t between pro
essor and memory modules.Ea
h pro
essor module 
ontains a 
opy of the program memory and a lo
al memory, whi
h isusable only as I/O bu�er. To hide the network laten
y ea
h (physi
al) pro
essor s
hedules32 virtual pro
essors in a round-robin manner. The 
ontext swit
h is impli
it after oneinstru
tion and is 
ompletely implemented in hardware. As this hardware multithreading
annot fully hide network laten
y, memory loads are also delayed by one instru
tion. Theresult from a global memory load is not available in the next instru
tion but in the nextbut one. The pro
essor is a Berkeley RISC ar
hite
ture where all data paths are 32 bitswide and the memory is only word addressable. The global memory addresses are hashedover the memory modules with a universal hash fun
tion to redu
e 
ontention within thememory modules. Furthermore the global memory is logi
ally split into shared and privatememory regions.The PRAM language Fork allows to program the SB-PRAM in a high-level language [1,Ch. 5℄. Fork is an extension of the C programming language. Fork programs are exe
uted insingle program, multiple data (SPMD) style: All pro
essors exe
ute the same program, butmay take di�erent 
ontrol paths through it (MIMD); the number of pro
essors exe
uting theprogram is �xed at the program start and 
an be a

essed inside the program by a symbol.At run time, pro
essors are organized in groups. A Fork program is stati
ally partitionedinto two di�erent kinds of regions: In syn
hronous regions, the 
ompiler guarantees that allpro
essors of a group exe
ute the same instru
tion at the same time. In asyn
hronous regions,no su
h guarantee is given. Fork maintains a group hierar
hy, beginning with the group of allstarted pro
essors. Syn
hronous exe
ution in syn
hronous regions 
an be relaxed to pro
essorsubsets by splitting groups dynami
ally into subgroups. Subgroups are 
reated impli
itly atprivate bran
hes4 or expli
itly with the fork 
onstru
t. At any time during exe
ution, thisgroup hierar
hy forms a tree, and Fork guarantees the syn
hroni
ity of pro
essors in ea
hleaf group that exe
utes a syn
hronous region.2.2 Parallel Dis
rete Event SimulationIn the previous se
tion the term simulation was used to simulate one ma
hine with anotherma
hine. In this se
tion it is used to simulate a 
losed system over time on a 
omputer. Thesesystems rea
t and 
hange on events at dis
rete time values. These types of simulations are
alled dis
rete event simulations (DES), and parallel DES (PDES) if exe
uted on a parallel
omputer.The 
losed system to be simulated is represented by a set of state variables, a global
lo
k that indi
ates how far the simulation has progressed, and a list of unpro
essed events.Ea
h event has a time stamp whi
h indi
ates when this event must be pro
essed in globaltime. The simulation kernel repeatedly takes the event with the lowest time stamp from thelist of unpro
essed events, sets the global 
lo
k to this event's time stamp, and pro
essesthis event. The event 
an 
hange a state variable and 
an generate zero or more events witha time stamp greater than the 
urrent 
lo
k. The 
onstraint that the simulation alwaystakes the event with the lowest time stamp provides a su�
ient 
ondition to guarantee thesimulation's 
orre
tness. Consider two events E1 and E2, where E1 has a lower time stampthan E2. If E2 is pro
essed before E1 and reads variables that will be 
hanged by E1, or E24 A private bran
h is a bran
h where the 
ondition depends on private data from the pro
essor, like the pro
essorID.



alters a state variable that E1 will read, than this may 
ause errors in the simulation model.These kinds of errors are 
alled 
ausality errors.Yet, the above 
ondition is not ne
essary, as it is possible that in a dis
rete event simu-lation events o

ur that do not in�uen
e ea
h other, so that a reversed order of pro
essingdoes not 
ause a 
ausality error. If the simulation kernel 
an dete
t su
h independent events,the kernel 
an pro
ess these events in parallel without violating the 
orre
tness of the sim-ulation. Su
h simulation kernels are 
alled 
onservative parallel dis
rete event simulations,see e.g. [7℄ for a survey. Another 
lass of parallel simulations, 
alled optimisti
, do not avoid
ausality errors, but dete
t and 
orre
t su
h errors, e.g. by rolling ba
k to a system statebefore the o

urren
e of the error. They gain performan
e advantages by being able to ex-tra
t more parallelism, if roll ba
k o

urs seldom. The most 
ommonly known optimisti
PDES is the Time Warp proto
ol.The Time Warp proto
ol is based on the 
on
ept of Virtual Time5 [12℄. In the timewarp proto
ol, the system state is represented by a number of logi
al pro
esses (LP), ea
h
onsisting of a lo
al 
lo
k, a state variable, a list of saved states, an input queue andan output queue. The lo
al 
lo
k indi
ates how far this LP has advan
ed in simulationtime. Ea
h event is transported via a message from the LP generating the event to the LPwhose state variable will be 
hanged by the event. In addition to the time stamp when theevent must be pro
essed, the message 
ontains a time stamp with the lo
al time of the LPsending the message. Ea
h LP behaves like a sequential DES kernel: it repeatedly takes theunpro
essed event with smallest time stamp from its input queue, sets the lo
al 
lo
k tothis time, and pro
esses the event.Whenever an event arrives at an LP with a time stamp smaller than the LP's lo
al
lo
k, a 
ausality error has happened. Su
h an event is 
alled a straggler. To re
over from the
ausality error all a
tions from pro
essed events with a time stamp greater than the stragglermessage are undone, and the lo
al 
lo
k is set ba
k to the time stamp of the straggler. Tobe able to restore the state variable of the LP to the value it had before the straggler's timestamp, the state is saved periodi
ally. The events undone may have generated other events,whi
h have already been sent to other LPs. To undo these events, Je�erson introdu
ed the
on
ept of the anti�message. Whenever an LP sends a message the kernel generates a se
ondmessage (the anti�message) whi
h is stored in an output queue of the sending LP in sendtime order. These two messages are identi
al ex
ept that the anti-message is tagged with anegative sign. In a rollba
k situation the pro
ess sends all anti�messages from the outputqueue whi
h have a send time stamp greater than the straggler message.If an LP re
eives an anti�message, there are three possible situations:1. If the positive message 
orresponding to the anti�message has not yet been pro
essed,both messages will be deleted. This su�
es as the state of the destination LP has notbeen altered yet by the positive message to be undone.2. If the positive message has not yet arrived in the destination pro
ess, then the anti�message is stored in the input queue. When the positive message will arrive, both mes-sages will be deleted.3. If the positive message has already been pro
essed, then the destination LP must rollba
k to a lo
al time prior to the pro
essing time of the positive message, and bothmessages are deleted.Thus, messages and anti�messages are always 
reated and destroyed in pairs.The global 
ontrol uses the global virtual time (GVT) as a lower bound on how far thesimulation has progressed. The GVT is the minimum of all lo
al 
lo
ks and all time stampsof messages in transit. As no LP 
an roll ba
k to a time prior to the GVT, saved states5 Virtual Time is de�ned on a real time spa
e but 
an trivially be used in a dis
rete time spa
e.



and messages in input and output queues with time stamps lower than the GVT 
an beremoved6. This is 
alled fossil 
olle
tion (FC). The GVT also helps in the termination ofthe simulation, yet we will not go into details here.2.3 Sequential SB�PRAM simulationThe programming environment of Fork in
ludes a sequential simulator program of the SB�PRAM 
alled PRAMsim, to enable program development and test without a

ess to theSB�PRAM itself. The PRAMsim fo
uses only on simulating the SB�PRAM on instru
tionset level and thus does not simulate the network, memory modules, and hashing. The simu-lator takes as input an exe
utable for the SB�PRAM. The exe
utable 
ontains the programtext, initialized global and lo
al memory, relo
ation data, and the symbol table. The simu-lator 
alls the pram loader from the SB�PRAM tool 
hain, whi
h relo
ates the binary andprodu
es the initial program, global, and lo
al memory images. After initializing the physi-
al and virtual pro
essors, the simulation loop is started. This simulation loop is illustratedin the pseudo 
ode depi
ted in Algorithm 2.1.As we do not simulate the network, and do not a

ess the spe
ial purpose registers ofphysi
al pro
essors, we do not 
onsider the partitioning of virtual pro
essors on physi
alpro
essors, i.e. we assume identity of physi
al and virtual pro
essors.Algorithm 2.1 PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V P do3: exe
ute one instru
tion of virtual pro
essor vp4: end for5: end whileThe ordered set V P 
ontains all virtual pro
essors in in
reasing order of their pro
essorIDs. Thus the while loop pro
esses one instru
tion of all virtual pro
essors in a round-robinmanner, and obeys the priority for 
on
urrent a

esses and operations su
h as multi-pre�x.Consider the following example: Let Qs ⊆ V P be an ordered subset with n = |Qs| pro
essors
qi, ea
h performing in step t the multi�pre�x operation mpadd with operand vj on memoryaddress s. Let vs denote the value in the memory at address s prior to time step t. Pro
essor
qi gets the return value

ri = vs +
∑

0≤j<i

vj , 0 ≤ i < nand the value stored in s afterwards will be
v∗

s = vs +
∑

0≤j<n

vjNote that for multi-pre�x and load operations on the global memory, the return valuefrom the memory is not dire
tly written to the target register of the pro
essor, but delayedfor one instru
tion as in the SB�PRAM ma
hine itself. This is done by keeping it in atemporary variable together with the target register index.This simulation s
heme is obviously very simple and thus very e�
ient. Therefore thisalgorithm should be re
ognized as the fastest known sequential solution for simulating theSB�PRAM.Ea
h physi
al pro
essor has a lo
al memory atta
hed, whi
h only 
an be a

essed fromthe asso
iated virtual pro
essors. Further this memory is only visible to the operating system6 However, at least one saved state must remain to enable roll ba
k.



and 
annot be used for user 
ode. In 
ontrast to the global memory, loads from the lo
almemory are not delayed. Hen
e, a global memory load dire
tly followed by a lo
al memoryload must be handled spe
ially by the simulator.System input and output (I/O) is provided through the system 
all interfa
e whi
h isa

essible by the assembler instru
tion sys
. This system 
all interfa
e is simulated nativelyon the host system of the simulator. These simulated routines (like open, 
lose, read, write,...) a

ess the global memory dire
tly without the delayed load and without in
reasing theinstru
tion 
ounter of the pro
essor.Beside the simulation loop the PRAMsim provides 
ommands to inspe
t and modifyall registers and memories of the simulated SB�PRAM. Also debugging is supported viabreakpoints and interrupts by the user.2.4 Parallel SB�PRAM SimulationIn order to a

elerate the simulation of an SB�PRAM program, we model the simulationas a parallel DES. As the virtual time, we use the number of exe
uted instru
tions as it isdis
rete. Ea
h SB�PRAM pro
essor is modeled as an LP, the state being its register set. Theinstru
tion 
ounter is used as the lo
al time 
lo
k. For the rollba
k me
hanism the wholeregister set is 
opied and stored in a 
ir
ular linked list. The list provides easy and e�
ientrollba
k and fossil 
olle
tion. The global memory might be modeled as a single LP, but weuse multiple LPs for performan
e reasons, as explained below.Events are a

esses to the global memory, i.e. ea
h pro
essor exe
utes instru
tions untilit en
ounters a global memory a

ess. In 
ase of a store instru
tion, the pro
essor sends thestore event to the global memory, and 
ontinues. In 
ase of a load instru
tion, the pro
essorsends the load request event to the global memory, and waits for the reply. This seemsto 
ontradi
t the time warp philosophy, but it is 
lear that the pro
essor 
annot advan
ewithout the reply, and furthermore, it is also 
lear that the pro
essor will not re
eive anyother events, that it may pro
ess.The global memory 
ould be modeled on several levels of granularity. To sket
h bothextremes, either ea
h global memory 
ell 
ould be one LP, or the global memory as a whole
ould be one LP. The former solution has the advantage that a roll ba
k in a 
ell-LP willonly a�e
t pro
essor LPs that have a

essed this 
ell. Its disadvantage is the huge number(billions) of LPs to be simulated. In the latter extreme advantage and disadvantage areinter
hanged: there is only one obje
t, but a roll ba
k 
aused by one memory 
ell wouldhave to a�e
t all memory a

esses. Furthermore, it is to be expe
ted that this LP wouldserialize the simulation. As a 
ompromise, we model ea
h global memory page as an LP.Events pro
essed by a page 
onsist of the di�erent memory a

ess operations possible:load, store, multi-pre�x, syn
. While ea
h memory page LP follows the time warp proto
ol,the state saving must be handled di�erently, in order to avoid storing 
omplete pages. Weadopt the reverse 
omputation approa
h [13℄. When events perform fun
tions that have aninverse, then instead of storing the state one may store events, and undoes them, i.e. performthe inverse fun
tions, in reverse order of storing. Stri
tly speaking, store instru
tions do nothave an inverse, but we store the old value of the 
ell (known as before image in databasesystems) with the event in this 
ase.When modeling the memory in this way, it be
omes 
lear that system I/O, whi
h isexe
uted natively on the host ma
hine, would either require to stop the simulation, orwould lead to 
omplex integration with high overhead. Therefore, we do not 
onsider it atthis time.Note also that delayed load now 
an be modeled a

urately. Remember that the resultof a memory request in time step i is available in the register of the pro
essor at time step



i + 2. A pro
essor sends a message in time step i to the memory, 
onsequently the messagehas a send time of i and a re
eive time of i+1. The memory module pro
esses this messageat time step i + 1 and will return a reply message with send time i + 1 and re
eive time
i + 2, if requested. So the reply message is available in the pro
essor at time step i + 2 and
an be loaded into the destination register before the instru
tion at time step i + 2 will beexe
uted.3 Prototypes and Experiments3.1 Overhead DeterminationWe have implemented a sequential time warp variant of PRAMsim and 
ompared it withthe original PRAMsim, to �nd out the amount of overhead introdu
ed by the time warpproto
ol. The measurements were taken on a 
omputer with 4 Opteron pro
essors runningat 2.4 GHz, and 4 GByte of main memory. Only one pro
essor was used to exe
ute thesimulation, the other pro
essors 
arried the remaining system load. As a ben
hmark, we usethe startup 
ode of the Fork runtime system, by running a Fork program where the mainroutine dire
tly returns. For this ben
hmark, about 8600 instru
tions are exe
uted by ea
hPRAM pro
essor. As the pro
essor LPs are simply s
heduled round-robin in the sequentialtime warp PRAMsim, and all exe
ute identi
al 
ode, 
ausality errors do not o

ur. Thus the
omparison of the runtimes shows the overheads quite 
learly. Figure 1 shows the runtimesfor di�erent numbers of PRAM pro
essors simulated, and reveals a slowdown of 13.68 for
p = 216.
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Fig. 1. Comparing Time Warp PRAMsim and original PRAMsimThis result 
an be explained by the fa
t that the simulation of one PRAM instru
tion onaverage needs 32 Opteron instru
tions only. Thus queue management, fossil 
olle
tion andother parts of the time warp proto
ol greatly in
rease this number, 
onsidering that morethan 20% of the instru
tions a

ess the global memory. Yet it means that at least 14 Opteronpro
essors would be ne
essary to break even on the runtime, even under the very optimisti




assumption that a parallel exe
ution does not introdu
e additional overheads su
h as rollba
ks.This initial failure lead to two 
onsequen
es. First, given the �ne granularity of the
ommuni
ation between the LPs, a message-passing implementation on a 
luster 
omputerseems out of rea
h, even when a low-laten
y network su
h as myrinet would be used. Thus,in the sequel we 
on
entrate on a parallelization on a shared memory parallel 
omputer.Se
ond, we have to redu
e the overhead of the pure time warp proto
ol by in
orporatingother simulation te
hniques.3.2 Shared Memory ParallelizationWe start with a straightforward parallelization of the sequential PRAMsim. The for-loop ofAlgorithm 2.1 is distributed over a number of threads, the PRAM global memory is allo
atedin the shared memory of the host 
omputer. In order to avoid ra
es during 
on
urrentexe
ution of multi-pre�x 
ommands, whi
h �rst read a 
ell and then write it again, theexe
ution of all memory a

esses in one step is postponed until all PRAM pro
essors have�nished that step. This is dete
ted by a barrier 
ommand, then one of the threads performsall memory a

esses sequentially, and �nally another barrier guarantees that none of thethreads starts simulation of the next step before the memory a

ess phase is �nished. Theresult is displayed as Algorithm 3.1, where V Pid is the part of the PRAM pro
essors to besimulated by thread id.Algorithm 3.1 Threaded PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V Pid do3: exe
ute one instru
tion of virtual pro
essor vp without memory a

ess4: end for5: barrier6: if id = 0 then7: for vp ∈ V P do8: perform the memory request of virtual pro
essor vp, if any9: end for10: end if11: barrier12: end whileThis s
heme is obviously very simple and does not introdu
e any new data stru
tures.Yet it introdu
es overhead for the syn
hronization inside the barrier. Figure 2 depi
ts theruntimes for 1, 2, and 4 threads, where 1 thread means the sequential PRAMsim. Thesyn
hronization 
ost is expe
ted to be about the same independently of the number ofPRAM pro
essors simulated, and the number of threads used. This is 
learly re�e
ted by the2� and 4-threaded versions having almost identi
al runtimes, and the 
urves having almostsimilar slopes, i.e. 
onstant o�set, for larger numbers of PRAM pro
essors simulated.To redu
e this overhead, we 
ombine this s
heme with ideas from the time warp PRAM-sim: like an LP, ea
h pro
essor is simulated for several instru
tions until it rea
hes a globalmemory read. The simulation of this pro
essor is only 
ontinued if a reply from the globalmemory LP arrives. Yet in order to avoid roll ba
ks (and thus the overhead for the asso
iateddata stru
tures), the memory LP only pro
esses those read requests with time stamps lessthan or equal to the GVT, where the GVT in this simulation s
enario is the minimum timestamp of the requests not yet pro
essed by the memory. We 
all this simulation s
hemeC�PRAMsim, it is depi
ted in Algorithm 3.2. The only overhead whi
h is left from theTime Warp PRAMsim is a sorted global input queue at the memory, and the generation ofrequests.
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Algorithm 3.2 C�PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V Pid do3: exe
ute instru
tions of virtual pro
essor vp before �rst load request4: issue load request5: end for6: barrier7: if id = 0 then8: determine GVT9: pro
ess all requests less or equal to the GVT10: end if11: barrier12: end while



We assess C�PRAMsim by 
omparing it with the Time Warp PRAMsim and the sequen-tial PRAMsim. The Time Warp PRAMsim is parallelized in a simple manner by distributingall LPs onto 1, 2 and 4 threads, and simulating them in a round-robin manner. Figure 3depi
ts the runtime results on the startup 
ode. While the C�PRAMsim on 2 threads per-forms mu
h better than the Time Warp PRAMsim, it is still slower than the parallel versionfrom Algorithm 3.1 and the version with 4 threads is slower than the one with 2 threads.
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Fig. 3. Assessment of C�PRAMsimIn order to further test the idea of C�PRAMsim, we 
hoose a di�erent ben
hmark, tobe seen in Algorithm 3.3. The s-loop is programmed in assembler, and thus does not a

essthe global memory at all. The i-loop a

esses global memory for ea
h iteration, as the Fork
ompiler pla
es variables in the global memory. Also the Fork 
ompiler pla
es a barrier afterthe s-loop. Thus, by varying the value of s, the density of memory reads 
an be 
ontrolled:at least 2s instru
tions7 without memory reads o

ur between a

esses to i and the barrier.In order to see the e�e
t of this ben
hmark, the simulation time is redu
ed by the time tosimulate the startup 
ode, denoted as normalized in the �gures.Algorithm 3.3 Syntheti
 ben
hmark routine to redu
e memory a

esses1: for i ∈ [1, n] do2: for j ∈ [1, s] do3: {do nothing}4: end for5: {impli
it barrier from Fork 
ompiler}6: end forFigure 4 depi
ts the runtime results for varying values of s, for n = 128 and p = 8192.We see that for s ≥ 48, the C�PRAMsim on 2 threads gets faster than the sequentialPRAMsim. However, 2 · 48 = 96 instru
tions without memory a

ess is unlikely in an7 One arithmeti
 instru
tion and one 
onditional jump per iteration.



appli
ation program. Also the 4 thread variant is still slower than the 2 thread variant,mainly be
ause the memory requests are pro
essed sequentially.
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Fig. 4. C�PRAMsim with syntheti
 ben
hmarkThus, we �nally parallelize the memory a

ess phase. We partition the memory requestsa

ording to their target address ranges, in order to be able to employ multiple threads inparallel. Also we have to �nd a way to 
ompute the GVT on all threads without introdu
ingnew overhead.Let T be the number of threads, B a two dimensional array of bu
kets with size T × T ,and M an array of size T . In the pro
essor phase ea
h thread t ∈ [1, T ] uses only the bu
ketsin row t of B. A request is put into bu
ket B(t, i) if the request will be performed by thread
i in the memory phase. The thread t also maintains the minimum read request time stampin M(t). In the memory phase thread t a

esses only the 
olumn t of B and sorts all newrequests from this 
olumn into its memory input queue. All threads read the array M to
al
ulate the new simulation horizon. This s
heme guarantees that the simulation horizonis 
orre
tly maintained and no additional syn
hronization is needed.The result of this PRAMsim implementation (
alled C2�PRAMsim) is presented in Fig-ure 5. We see that the C2�PRAMsim performs better than the C�PRAMsim, and that the4 thread variant is faster than the 2 thread variant.Lastly, we repla
e the assembler 
oded s�loop of Algorithm 3.3 by Fork 
ode. This willbring ba
k dense memory a

esses, be
ause of the private loop variable j. The runtime resultsare depi
ted in Figure 6, where the C2�PRAMsim performs better than the C�PRAMsim,and is faster for 4 threads.4 Con
lusion and Future WorkThe idea to use optimisti
 simulation te
hniques for parallelizing the PRAM simulator wasvery promising. The Time Warp me
hanism 
an explore almost any parallelism that thesimulated model exposes, and the PRAM simulator possesses a high degree of parallelism.Yet, it turned out that the PRAM simulator is very sensitive to added overhead be
ause
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of the very �ne granularity of the simulation. This also prevents a simple parallelizationwith shared memory programming te
hniques. In the end, a 
ombination of ideas fromTime Warp PDES and shared memory programming proved su

essful to gain a moderatespeedup.The fo
us of this work was on 
hanging the simulator while leaving the instru
tionar
hite
ture unaltered. If the fo
us is shifted to the 
omplete tool 
hain, more pre
isely theFork language and 
ompiler, it seems possible to use language 
hara
teristi
s to work out newideas. Distinguishing a

esses to shared and private regions redu
es the density of a

essesto be syn
hronized. The group hierar
hy of a Fork program is another potential sour
e forimprovement. If the simulator 
an a

ess the group information it only needs to syn
hronizea

esses within a group. Also, if the mapping of PRAM pro
essors onto 
luster pro
essorsre�e
ts the group hierar
hy, this 
an be pro�tably used to simplify syn
hronization. Pushedto the extreme, all pro
essors of a group may be simulated sequentially on one 
lusterpro
essor, eliminating syn
hronization alltogether. As speedup now depends on the groupstru
ture of the simulated program, this is only a partial solution. Finally, if syn
hronizationsof groups are not handled in software but by the simulator, a

esses to shared memory 
anbe further redu
ed.There also is another idea to use group information. Within a group, syn
hronizationmay happen with write requests, as the PRAM pro
essors within that group rea
h thesame write. Subsequent shared reads 
an then be performed immediately without furthersyn
hronization. As writes typi
ally are less frequent than reads, this would further redu
ethe density of syn
hronizations.The 
hanges required in the tool 
hain to expose the group stru
ture are moderate, sothat the insights gained here will lead to mu
h higher speedups at a fair pri
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