
Emulating a PRAM on a Parallel ComputerHolger Blaar1, Jörg Keller2, Christoph Keÿler3, and Bert Wesarg1

1 Universität Halle, Institut für Informatik, 06099 Halle, Germany
2 FernUniversität in Hagen, Fak. Math. und Informatik, 58084 Hagen, Germany

3 Linköpings Universitet, Dept. of Computer and Inf. Siene, 58183 Linköping, SwedenAbstrat. The PRAM is an important model to study parallel algorithmis, yet this should besupported by the possibility for implementation and experimentation. With the advent of multioresystems, shared memory programming also has regained importane for appliations in pratie. Forthese reasons, a powerful experimental platform should be available. While the language Fork with itsdevelopment kit allows implementation, the sequential simulator restrits experiments. We develop asimulator for Fork programs on a parallel mahine. We report on obstales and present speedup resultsof a prototype.Key words: Parallel Random Aess Mahine, Parallel Disrete Event Simulation, PRAM Simulation1 IntrodutionThe parallel random aess mahine (PRAM) has been an important onept to study theinherent parallelism of problems, and devise parallel algorithms, without having to adapt thesolution too muh towards a partiular underlying mahine arhiteture. The onjeture thatPRAMs are highly unpratial ould be refuted by building a PRAM mahine in hardware,the SB-PRAM, and by providing the programming language Fork with a ompiler, a runtimesystem, the PAD library of basi parallel algorithms and data strutures, and an SB-PRAMsimulator program to support program development and debugging. See [1℄ for a detailedintrodution into all of these issues.Yet, while our experienes with programming on the SB-PRAM were quite positive, theSB-PRAM mahine ould not be maintained longer and has been disassembled in 2006. Thesimulator program being a sequential ode, simulation of larger program instanes wouldtake days. As parallel algorithms and shared memory programming urrently gain renewedinterest beause of the advent of multiore CPUs, and teahing suh a lass should ontainpratial assignments beyond toy problems [2℄, we deided to provide a new, powerful plat-form for Fork programming: a program to emulate the SB-PRAM instrution set arhitetureon a ontemporary parallel mahine.As the ode for the SB-PRAM proessor instrution set was already available, we on-entrated on simulation of and aess to the shared memory. While there is a wealth ofimplementations and literature of software distributed shared memory (S-DSM) [3℄, theytry to exploit loality by repliation, i.e. ahing. Yet, parallelism and shared memory a-ess in PRAM algorithms normally is very �ne grained and highly non-loal, so that theseapproahes show poor performane on PRAM algorithms, whih neessitates a ustomizedimplementation. Simulating a PRAM on realisti parallel omputers has been extensivelystudied [4�6℄. Atually all presented tehniques use a distributed memory environment as thetarget platform. Yet, the ommuniation density they require annot be ful�lled by today'smessage-passing mahines. Hene, we opted for a parallel omputer with shared memory.We deided to follow a strategy similar to parallel disrete event simulation (PDES),see e.g. [7℄. As the PRAM proessors are assumed to run synhronously on the assemblerinstrution level, eah memory aess an be tagged with a time-stamp, i.e. the instrutionount sine system start, so that the models math well. Optimisti simulation tehniquesare suessfully used in network and ombat simulation [7℄. Chandrasekaran et al. [8℄ report

an attempt to use optimisti methods for the Wisonsin Wind Tunnel (WWT) [9℄, usingideas similar to ours. WWT and its suessor WWT II [10℄ use onservative disrete-event,diret-exeution tehniques to simulate parallel arhitetures of all kinds on existing parallelhost mahines. The result of their attempt was negative in terms of speedup, but the WWThas a fous slightly di�erent from our work. It involves not only the proessor, but alsoahes, memories, and ommuniation networks. Thus, our approah may well sueed wheretheirs failed. In partiular, a master thesis [11℄ produed a simple read�optimisti parallelimplementation of the simulator, with some suess for a speial lass of PRAM programs.We will develop di�erent PDES implementations of the SB-PRAM simulator and reporton the obstales along the way to speedups greater than 1. We will report on a prototypeimplementation and its performane. Finally we will give an outlook how small hanges inthe instrution set arhiteture might allow muh larger speedups.The remainder of this artile is organized as follows. In Setion 2 we provide all tehnialinformation neessary to attak the problem at hand, and present a �rst parallel PRAMsimulator. In Setion 3 we benhmark this simulator and several other variants, explain-ing this way the obstales we met. We also report the performane results of a prototypeimplementation. Setion 4 onludes and gives an outlook on further developments.2 PRAM and PRAM Simulation2.1 Parallel Random Aess MahineThe parallel random aess mahine (PRAM) is a model for parallel omputation. It iswidely aepted and used as the most ommon model to analyze parallel algorithms withoutonsideration of partiular details of the atual mahine on whih the algorithm will runon. The PRAM model is a generalization from the random aess mahine (RAM) modelof sequential omputation. In a PRAM, an arbitrary number of RAM proessors work ona shared memory, all with the same lok soure but eah with its own PC and a uniqueidenti�er (ID). The memory is aessible from all proessors in unit time. We even allowmultiple proessors to either read or write a single memory address at the same lok event,i.e. we fous on the onurrent read onurrent write (CRCW) PRAM. However, we makeno spei�ation what happens if a read and a write happen simultaneously to the sameaddress.Writing to the same memory address with more than one proessor needs a on�itresolution protool to speify whih value is written to the memory address. The mostommon protools in inreasing order of strength are:Weak All proessors must ontribute the same speial value (for example 0).Common All proessors must ontribute the same value.Arbitrary An arbitrary proessor sueeds and writes its value to the memory. All othervalues will be ignored.Priority The proessor with the highest priority sueeds and writes its value to the mem-ory. All other values will be ignored.Combining All values from the partiipating proessors will be ombined by a ommuta-tive and assoiative funtion, like addition, bit wise and, or the maximum.The PRAM model is a general purpose model for parallel omputation. It gives theability to design and analyze parallel algorithms It is still not feasible to build a omputerwhih diretly implements the PRAM model. Only for very small n, there exist memorymodules that an ful�ll requests from n proessors.

A PRAM an be simulated on a shared memory mahine by applying Brent's theorem,but this simulation would be quite ine�ient.The SB�PRAM is a distributed shared memory mahine with uniform aess time tothe global memory for all proessors and all proessors have the same lok soure. That isrealized with a bi�diretional butter�y interonnet between proessor and memory modules.Eah proessor module ontains a opy of the program memory and a loal memory, whih isusable only as I/O bu�er. To hide the network lateny eah (physial) proessor shedules32 virtual proessors in a round-robin manner. The ontext swith is impliit after oneinstrution and is ompletely implemented in hardware. As this hardware multithreadingannot fully hide network lateny, memory loads are also delayed by one instrution. Theresult from a global memory load is not available in the next instrution but in the nextbut one. The proessor is a Berkeley RISC arhiteture where all data paths are 32 bitswide and the memory is only word addressable. The global memory addresses are hashedover the memory modules with a universal hash funtion to redue ontention within thememory modules. Furthermore the global memory is logially split into shared and privatememory regions.The PRAM language Fork allows to program the SB-PRAM in a high-level language [1,Ch. 5℄. Fork is an extension of the C programming language. Fork programs are exeuted insingle program, multiple data (SPMD) style: All proessors exeute the same program, butmay take di�erent ontrol paths through it (MIMD); the number of proessors exeuting theprogram is �xed at the program start and an be aessed inside the program by a symbol.At run time, proessors are organized in groups. A Fork program is statially partitionedinto two di�erent kinds of regions: In synhronous regions, the ompiler guarantees that allproessors of a group exeute the same instrution at the same time. In asynhronous regions,no suh guarantee is given. Fork maintains a group hierarhy, beginning with the group of allstarted proessors. Synhronous exeution in synhronous regions an be relaxed to proessorsubsets by splitting groups dynamially into subgroups. Subgroups are reated impliitly atprivate branhes4 or expliitly with the fork onstrut. At any time during exeution, thisgroup hierarhy forms a tree, and Fork guarantees the synhroniity of proessors in eahleaf group that exeutes a synhronous region.2.2 Parallel Disrete Event SimulationIn the previous setion the term simulation was used to simulate one mahine with anothermahine. In this setion it is used to simulate a losed system over time on a omputer. Thesesystems reat and hange on events at disrete time values. These types of simulations arealled disrete event simulations (DES), and parallel DES (PDES) if exeuted on a parallelomputer.The losed system to be simulated is represented by a set of state variables, a globallok that indiates how far the simulation has progressed, and a list of unproessed events.Eah event has a time stamp whih indiates when this event must be proessed in globaltime. The simulation kernel repeatedly takes the event with the lowest time stamp from thelist of unproessed events, sets the global lok to this event's time stamp, and proessesthis event. The event an hange a state variable and an generate zero or more events witha time stamp greater than the urrent lok. The onstraint that the simulation alwaystakes the event with the lowest time stamp provides a su�ient ondition to guarantee thesimulation's orretness. Consider two events E1 and E2, where E1 has a lower time stampthan E2. If E2 is proessed before E1 and reads variables that will be hanged by E1, or E24 A private branh is a branh where the ondition depends on private data from the proessor, like the proessorID.

alters a state variable that E1 will read, than this may ause errors in the simulation model.These kinds of errors are alled ausality errors.Yet, the above ondition is not neessary, as it is possible that in a disrete event simu-lation events our that do not in�uene eah other, so that a reversed order of proessingdoes not ause a ausality error. If the simulation kernel an detet suh independent events,the kernel an proess these events in parallel without violating the orretness of the sim-ulation. Suh simulation kernels are alled onservative parallel disrete event simulations,see e.g. [7℄ for a survey. Another lass of parallel simulations, alled optimisti, do not avoidausality errors, but detet and orret suh errors, e.g. by rolling bak to a system statebefore the ourrene of the error. They gain performane advantages by being able to ex-trat more parallelism, if roll bak ours seldom. The most ommonly known optimistiPDES is the Time Warp protool.The Time Warp protool is based on the onept of Virtual Time5 [12℄. In the timewarp protool, the system state is represented by a number of logial proesses (LP), eahonsisting of a loal lok, a state variable, a list of saved states, an input queue andan output queue. The loal lok indiates how far this LP has advaned in simulationtime. Eah event is transported via a message from the LP generating the event to the LPwhose state variable will be hanged by the event. In addition to the time stamp when theevent must be proessed, the message ontains a time stamp with the loal time of the LPsending the message. Eah LP behaves like a sequential DES kernel: it repeatedly takes theunproessed event with smallest time stamp from its input queue, sets the loal lok tothis time, and proesses the event.Whenever an event arrives at an LP with a time stamp smaller than the LP's loallok, a ausality error has happened. Suh an event is alled a straggler. To reover from theausality error all ations from proessed events with a time stamp greater than the stragglermessage are undone, and the loal lok is set bak to the time stamp of the straggler. Tobe able to restore the state variable of the LP to the value it had before the straggler's timestamp, the state is saved periodially. The events undone may have generated other events,whih have already been sent to other LPs. To undo these events, Je�erson introdued theonept of the anti�message. Whenever an LP sends a message the kernel generates a seondmessage (the anti�message) whih is stored in an output queue of the sending LP in sendtime order. These two messages are idential exept that the anti-message is tagged with anegative sign. In a rollbak situation the proess sends all anti�messages from the outputqueue whih have a send time stamp greater than the straggler message.If an LP reeives an anti�message, there are three possible situations:1. If the positive message orresponding to the anti�message has not yet been proessed,both messages will be deleted. This su�es as the state of the destination LP has notbeen altered yet by the positive message to be undone.2. If the positive message has not yet arrived in the destination proess, then the anti�message is stored in the input queue. When the positive message will arrive, both mes-sages will be deleted.3. If the positive message has already been proessed, then the destination LP must rollbak to a loal time prior to the proessing time of the positive message, and bothmessages are deleted.Thus, messages and anti�messages are always reated and destroyed in pairs.The global ontrol uses the global virtual time (GVT) as a lower bound on how far thesimulation has progressed. The GVT is the minimum of all loal loks and all time stampsof messages in transit. As no LP an roll bak to a time prior to the GVT, saved states5 Virtual Time is de�ned on a real time spae but an trivially be used in a disrete time spae.

and messages in input and output queues with time stamps lower than the GVT an beremoved6. This is alled fossil olletion (FC). The GVT also helps in the termination ofthe simulation, yet we will not go into details here.2.3 Sequential SB�PRAM simulationThe programming environment of Fork inludes a sequential simulator program of the SB�PRAM alled PRAMsim, to enable program development and test without aess to theSB�PRAM itself. The PRAMsim fouses only on simulating the SB�PRAM on instrutionset level and thus does not simulate the network, memory modules, and hashing. The simu-lator takes as input an exeutable for the SB�PRAM. The exeutable ontains the programtext, initialized global and loal memory, reloation data, and the symbol table. The simu-lator alls the pram loader from the SB�PRAM tool hain, whih reloates the binary andprodues the initial program, global, and loal memory images. After initializing the physi-al and virtual proessors, the simulation loop is started. This simulation loop is illustratedin the pseudo ode depited in Algorithm 2.1.As we do not simulate the network, and do not aess the speial purpose registers ofphysial proessors, we do not onsider the partitioning of virtual proessors on physialproessors, i.e. we assume identity of physial and virtual proessors.Algorithm 2.1 PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V P do3: exeute one instrution of virtual proessor vp4: end for5: end whileThe ordered set V P ontains all virtual proessors in inreasing order of their proessorIDs. Thus the while loop proesses one instrution of all virtual proessors in a round-robinmanner, and obeys the priority for onurrent aesses and operations suh as multi-pre�x.Consider the following example: Let Qs ⊆ V P be an ordered subset with n = |Qs| proessors
qi, eah performing in step t the multi�pre�x operation mpadd with operand vj on memoryaddress s. Let vs denote the value in the memory at address s prior to time step t. Proessor
qi gets the return value

ri = vs +
∑

0≤j<i

vj , 0 ≤ i < nand the value stored in s afterwards will be
v∗

s = vs +
∑

0≤j<n

vjNote that for multi-pre�x and load operations on the global memory, the return valuefrom the memory is not diretly written to the target register of the proessor, but delayedfor one instrution as in the SB�PRAM mahine itself. This is done by keeping it in atemporary variable together with the target register index.This simulation sheme is obviously very simple and thus very e�ient. Therefore thisalgorithm should be reognized as the fastest known sequential solution for simulating theSB�PRAM.Eah physial proessor has a loal memory attahed, whih only an be aessed fromthe assoiated virtual proessors. Further this memory is only visible to the operating system6 However, at least one saved state must remain to enable roll bak.

and annot be used for user ode. In ontrast to the global memory, loads from the loalmemory are not delayed. Hene, a global memory load diretly followed by a loal memoryload must be handled speially by the simulator.System input and output (I/O) is provided through the system all interfae whih isaessible by the assembler instrution sys. This system all interfae is simulated nativelyon the host system of the simulator. These simulated routines (like open, lose, read, write,...) aess the global memory diretly without the delayed load and without inreasing theinstrution ounter of the proessor.Beside the simulation loop the PRAMsim provides ommands to inspet and modifyall registers and memories of the simulated SB�PRAM. Also debugging is supported viabreakpoints and interrupts by the user.2.4 Parallel SB�PRAM SimulationIn order to aelerate the simulation of an SB�PRAM program, we model the simulationas a parallel DES. As the virtual time, we use the number of exeuted instrutions as it isdisrete. Eah SB�PRAM proessor is modeled as an LP, the state being its register set. Theinstrution ounter is used as the loal time lok. For the rollbak mehanism the wholeregister set is opied and stored in a irular linked list. The list provides easy and e�ientrollbak and fossil olletion. The global memory might be modeled as a single LP, but weuse multiple LPs for performane reasons, as explained below.Events are aesses to the global memory, i.e. eah proessor exeutes instrutions untilit enounters a global memory aess. In ase of a store instrution, the proessor sends thestore event to the global memory, and ontinues. In ase of a load instrution, the proessorsends the load request event to the global memory, and waits for the reply. This seemsto ontradit the time warp philosophy, but it is lear that the proessor annot advanewithout the reply, and furthermore, it is also lear that the proessor will not reeive anyother events, that it may proess.The global memory ould be modeled on several levels of granularity. To sketh bothextremes, either eah global memory ell ould be one LP, or the global memory as a wholeould be one LP. The former solution has the advantage that a roll bak in a ell-LP willonly a�et proessor LPs that have aessed this ell. Its disadvantage is the huge number(billions) of LPs to be simulated. In the latter extreme advantage and disadvantage areinterhanged: there is only one objet, but a roll bak aused by one memory ell wouldhave to a�et all memory aesses. Furthermore, it is to be expeted that this LP wouldserialize the simulation. As a ompromise, we model eah global memory page as an LP.Events proessed by a page onsist of the di�erent memory aess operations possible:load, store, multi-pre�x, syn. While eah memory page LP follows the time warp protool,the state saving must be handled di�erently, in order to avoid storing omplete pages. Weadopt the reverse omputation approah [13℄. When events perform funtions that have aninverse, then instead of storing the state one may store events, and undoes them, i.e. performthe inverse funtions, in reverse order of storing. Stritly speaking, store instrutions do nothave an inverse, but we store the old value of the ell (known as before image in databasesystems) with the event in this ase.When modeling the memory in this way, it beomes lear that system I/O, whih isexeuted natively on the host mahine, would either require to stop the simulation, orwould lead to omplex integration with high overhead. Therefore, we do not onsider it atthis time.Note also that delayed load now an be modeled aurately. Remember that the resultof a memory request in time step i is available in the register of the proessor at time step

i + 2. A proessor sends a message in time step i to the memory, onsequently the messagehas a send time of i and a reeive time of i+1. The memory module proesses this messageat time step i + 1 and will return a reply message with send time i + 1 and reeive time
i + 2, if requested. So the reply message is available in the proessor at time step i + 2 andan be loaded into the destination register before the instrution at time step i + 2 will beexeuted.3 Prototypes and Experiments3.1 Overhead DeterminationWe have implemented a sequential time warp variant of PRAMsim and ompared it withthe original PRAMsim, to �nd out the amount of overhead introdued by the time warpprotool. The measurements were taken on a omputer with 4 Opteron proessors runningat 2.4 GHz, and 4 GByte of main memory. Only one proessor was used to exeute thesimulation, the other proessors arried the remaining system load. As a benhmark, we usethe startup ode of the Fork runtime system, by running a Fork program where the mainroutine diretly returns. For this benhmark, about 8600 instrutions are exeuted by eahPRAM proessor. As the proessor LPs are simply sheduled round-robin in the sequentialtime warp PRAMsim, and all exeute idential ode, ausality errors do not our. Thus theomparison of the runtimes shows the overheads quite learly. Figure 1 shows the runtimesfor di�erent numbers of PRAM proessors simulated, and reveals a slowdown of 13.68 for
p = 216.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 4096 8192 16384 32768 65536

si
m

ul
at

io
n

tim
e

[s
ec

]

simulated processors [#]

pramsim

timewarp pramsim

Fig. 1. Comparing Time Warp PRAMsim and original PRAMsimThis result an be explained by the fat that the simulation of one PRAM instrution onaverage needs 32 Opteron instrutions only. Thus queue management, fossil olletion andother parts of the time warp protool greatly inrease this number, onsidering that morethan 20% of the instrutions aess the global memory. Yet it means that at least 14 Opteronproessors would be neessary to break even on the runtime, even under the very optimisti

assumption that a parallel exeution does not introdue additional overheads suh as rollbaks.This initial failure lead to two onsequenes. First, given the �ne granularity of theommuniation between the LPs, a message-passing implementation on a luster omputerseems out of reah, even when a low-lateny network suh as myrinet would be used. Thus,in the sequel we onentrate on a parallelization on a shared memory parallel omputer.Seond, we have to redue the overhead of the pure time warp protool by inorporatingother simulation tehniques.3.2 Shared Memory ParallelizationWe start with a straightforward parallelization of the sequential PRAMsim. The for-loop ofAlgorithm 2.1 is distributed over a number of threads, the PRAM global memory is alloatedin the shared memory of the host omputer. In order to avoid raes during onurrentexeution of multi-pre�x ommands, whih �rst read a ell and then write it again, theexeution of all memory aesses in one step is postponed until all PRAM proessors have�nished that step. This is deteted by a barrier ommand, then one of the threads performsall memory aesses sequentially, and �nally another barrier guarantees that none of thethreads starts simulation of the next step before the memory aess phase is �nished. Theresult is displayed as Algorithm 3.1, where V Pid is the part of the PRAM proessors to besimulated by thread id.Algorithm 3.1 Threaded PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V Pid do3: exeute one instrution of virtual proessor vp without memory aess4: end for5: barrier6: if id = 0 then7: for vp ∈ V P do8: perform the memory request of virtual proessor vp, if any9: end for10: end if11: barrier12: end whileThis sheme is obviously very simple and does not introdue any new data strutures.Yet it introdues overhead for the synhronization inside the barrier. Figure 2 depits theruntimes for 1, 2, and 4 threads, where 1 thread means the sequential PRAMsim. Thesynhronization ost is expeted to be about the same independently of the number ofPRAM proessors simulated, and the number of threads used. This is learly re�eted by the2� and 4-threaded versions having almost idential runtimes, and the urves having almostsimilar slopes, i.e. onstant o�set, for larger numbers of PRAM proessors simulated.To redue this overhead, we ombine this sheme with ideas from the time warp PRAM-sim: like an LP, eah proessor is simulated for several instrutions until it reahes a globalmemory read. The simulation of this proessor is only ontinued if a reply from the globalmemory LP arrives. Yet in order to avoid roll baks (and thus the overhead for the assoiateddata strutures), the memory LP only proesses those read requests with time stamps lessthan or equal to the GVT, where the GVT in this simulation senario is the minimum timestamp of the requests not yet proessed by the memory. We all this simulation shemeC�PRAMsim, it is depited in Algorithm 3.2. The only overhead whih is left from theTime Warp PRAMsim is a sorted global input queue at the memory, and the generation ofrequests.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 4096 8192 16384 32768 65536

si
m

ul
at

io
n

tim
e

[s
ec

]

simulated processors [#]

pramsim

pramsim 2 threads

pramsim 4 threads

Fig. 2. Simple parallel PRAMsim

Algorithm 3.2 C�PRAMsim simulation loop1: while not end of simulation do2: for vp ∈ V Pid do3: exeute instrutions of virtual proessor vp before �rst load request4: issue load request5: end for6: barrier7: if id = 0 then8: determine GVT9: proess all requests less or equal to the GVT10: end if11: barrier12: end while

We assess C�PRAMsim by omparing it with the Time Warp PRAMsim and the sequen-tial PRAMsim. The Time Warp PRAMsim is parallelized in a simple manner by distributingall LPs onto 1, 2 and 4 threads, and simulating them in a round-robin manner. Figure 3depits the runtime results on the startup ode. While the C�PRAMsim on 2 threads per-forms muh better than the Time Warp PRAMsim, it is still slower than the parallel versionfrom Algorithm 3.1 and the version with 4 threads is slower than the one with 2 threads.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 4096 8192 16384 32768 65536

si
m

ul
at

io
n

tim
e

[s
ec

]

simulated PRAM processors [#]

pramsim

timewarp pramsim

timewarp pramsim 2 threads

timewarp pramsim 4 threads

c-pramsim 2 threads

c-pramsim 4 threads

Fig. 3. Assessment of C�PRAMsimIn order to further test the idea of C�PRAMsim, we hoose a di�erent benhmark, tobe seen in Algorithm 3.3. The s-loop is programmed in assembler, and thus does not aessthe global memory at all. The i-loop aesses global memory for eah iteration, as the Forkompiler plaes variables in the global memory. Also the Fork ompiler plaes a barrier afterthe s-loop. Thus, by varying the value of s, the density of memory reads an be ontrolled:at least 2s instrutions7 without memory reads our between aesses to i and the barrier.In order to see the e�et of this benhmark, the simulation time is redued by the time tosimulate the startup ode, denoted as normalized in the �gures.Algorithm 3.3 Syntheti benhmark routine to redue memory aesses1: for i ∈ [1, n] do2: for j ∈ [1, s] do3: {do nothing}4: end for5: {impliit barrier from Fork ompiler}6: end forFigure 4 depits the runtime results for varying values of s, for n = 128 and p = 8192.We see that for s ≥ 48, the C�PRAMsim on 2 threads gets faster than the sequentialPRAMsim. However, 2 · 48 = 96 instrutions without memory aess is unlikely in an7 One arithmeti instrution and one onditional jump per iteration.

appliation program. Also the 4 thread variant is still slower than the 2 thread variant,mainly beause the memory requests are proessed sequentially.

 0

 50

 100

 150

 200

 250

 1 8 16 32 64 128 256

no
rm

al
iz

ed
 s

im
ul

at
io

n
tim

e
[s

ec
]

idle steps [#]

pramsim

c-pramsim 2 threads

c-pramsim 4 threads

Fig. 4. C�PRAMsim with syntheti benhmarkThus, we �nally parallelize the memory aess phase. We partition the memory requestsaording to their target address ranges, in order to be able to employ multiple threads inparallel. Also we have to �nd a way to ompute the GVT on all threads without introduingnew overhead.Let T be the number of threads, B a two dimensional array of bukets with size T × T ,and M an array of size T . In the proessor phase eah thread t ∈ [1, T] uses only the buketsin row t of B. A request is put into buket B(t, i) if the request will be performed by thread
i in the memory phase. The thread t also maintains the minimum read request time stampin M(t). In the memory phase thread t aesses only the olumn t of B and sorts all newrequests from this olumn into its memory input queue. All threads read the array M toalulate the new simulation horizon. This sheme guarantees that the simulation horizonis orretly maintained and no additional synhronization is needed.The result of this PRAMsim implementation (alled C2�PRAMsim) is presented in Fig-ure 5. We see that the C2�PRAMsim performs better than the C�PRAMsim, and that the4 thread variant is faster than the 2 thread variant.Lastly, we replae the assembler oded s�loop of Algorithm 3.3 by Fork ode. This willbring bak dense memory aesses, beause of the private loop variable j. The runtime resultsare depited in Figure 6, where the C2�PRAMsim performs better than the C�PRAMsim,and is faster for 4 threads.4 Conlusion and Future WorkThe idea to use optimisti simulation tehniques for parallelizing the PRAM simulator wasvery promising. The Time Warp mehanism an explore almost any parallelism that thesimulated model exposes, and the PRAM simulator possesses a high degree of parallelism.Yet, it turned out that the PRAM simulator is very sensitive to added overhead beause

 0

 50

 100

 150

 200

 250

 1 8 16 32 64 128 256

no
rm

al
iz

ed
 s

im
ul

at
io

n
tim

e
[s

ec
]

idle steps [#]

pramsim

c-pramsim 2 threads

c-pramsim 4 threads

c2-pramsim 2 threads

c2-pramsim 4 threads

Fig. 5. C2�PRAMsim with syntheti benhmark

 0

 100

 200

 300

 400

 500

 600

 700

 1 4 8 16 32 64

no
rm

al
iz

ed
 s

im
ul

at
io

n
tim

e
[s

ec
]

idle steps [#]

pramsim

c-pramsim 2 threads

c-pramsim 4 threads

c2-pramsim 2 threads

c2-pramsim 4 threads

Fig. 6. C2�PRAMsim with syntheti benhmark and dense aesses

of the very �ne granularity of the simulation. This also prevents a simple parallelizationwith shared memory programming tehniques. In the end, a ombination of ideas fromTime Warp PDES and shared memory programming proved suessful to gain a moderatespeedup.The fous of this work was on hanging the simulator while leaving the instrutionarhiteture unaltered. If the fous is shifted to the omplete tool hain, more preisely theFork language and ompiler, it seems possible to use language harateristis to work out newideas. Distinguishing aesses to shared and private regions redues the density of aessesto be synhronized. The group hierarhy of a Fork program is another potential soure forimprovement. If the simulator an aess the group information it only needs to synhronizeaesses within a group. Also, if the mapping of PRAM proessors onto luster proessorsre�ets the group hierarhy, this an be pro�tably used to simplify synhronization. Pushedto the extreme, all proessors of a group may be simulated sequentially on one lusterproessor, eliminating synhronization alltogether. As speedup now depends on the groupstruture of the simulated program, this is only a partial solution. Finally, if synhronizationsof groups are not handled in software but by the simulator, aesses to shared memory anbe further redued.There also is another idea to use group information. Within a group, synhronizationmay happen with write requests, as the PRAM proessors within that group reah thesame write. Subsequent shared reads an then be performed immediately without furthersynhronization. As writes typially are less frequent than reads, this would further reduethe density of synhronizations.The hanges required in the tool hain to expose the group struture are moderate, sothat the insights gained here will lead to muh higher speedups at a fair prie.Referenes1. Keller, J., Kessler, C., Trae�, J.L.: Pratial PRAM Programming. John Wiley & Sons, In., New York, NY,USA (2000)2. Kessler, C.W.: A pratial aess to the theory of parallel algorithms. In: Pro. of ACM SIGCSE '04 Symposiumon Computer Siene Eduation. (2004)3. Huseynov, J.: (Distributed shared memory home pages) http://www.is.ui.edu/~javid/dsm.html.4. Harris, T.J.: A survey of PRAM simulation tehniques. ACM Comput. Surv. 26(2) (1994) 187�2065. Karp, R.M., Luby, M., auf der Heide, F.M.: E�ient PRAM simulation on a distributed memory mahine. In:STOC '92: Proeedings of the twenty-fourth annual ACM symposium on Theory of omputing, New York, NY,USA, ACM Press (1992) 318�3266. Pietraaprina, A., Pui, G.: The omplexity of deterministi PRAM simulation on distributed memory ma-hines. Theory of Computing Systems 30(3) (1997) 231�2477. Fujimoto, R.M.: Parallel disrete event simulation. Commun. ACM 33(10) (1990) 30�538. Chandrasekaran, S., Hill, M.D.: Optimisti simulation of parallel arhitetures using program exeutables. In:Workshop on Parallel and Distributed Simulation. (1996) 143�1509. Reinhardt, S.K., Hill, M.D., Larus, J.R., Lebek, A.R., Lewis, J.C., Wood, D.A.: The wisonsin wind tunnel:virtual prototyping of parallel omputers. In: SIGMETRICS '93: Proeedings of the 1993 ACM SIGMETRICSonferene on Measurement and modeling of omputer systems, New York, NY, USA, ACM Press (1993) 48�6010. Mukherjee, S.: Wisonsin wind tunnel II: A fast and portable parallel arhiteture simulator. In: Workshop onPerformane Analysis and Its Impat on Design (PAID). (1997)11. Clauÿ, C.: Paralleler PRAM�Simulator. Master thesis, Computer Siene Department, FernUniversität Hagen,Germany (2007)12. Je�erson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3) (1985) 404�42513. Carothers, C.D., Perumalla, K.S., Fujimoto, R.: E�ient optimisti parallel simulations using reverse omputa-tion. In: Workshop on Parallel and Distributed Simulation. (1999) 126�135

