
Andreas Grävinghoff

On the Realization of Fine-
Grained Multithreading in
Software

II

III

Für die Seerosenprinzessin

IV

V

”After a rare speech at the National Center for Atmospheric
Research in Boulder, Colorado, in 1976, programmers in the
audience had suddenly fallen silent when Cray offered to an-
swer questions. He stood there for several minutes, waiting
for their queries, but none came. When he left, the head of
NCAR’s computing division chided the programmers. ’Why
didn’t someone raise a hand ?’ After a tense moment, one pro-
grammer replied, ’How do you talk to God?’ ”

from The SUPERMEN

VI

Acknowledgments

I am grateful to Prof. Keller for our successful cooperation during the last
five years, especially for providing the time to complete this work by freeing
me from other tasks. In addition, this work would not have been possible
without the necessary equipment, e.g. the Compaq workstation that was for
development and evaluation of emulated multithreading. I am grateful to
Prof. Ungerer from the Universität Augsburg for reviewing this thesis and
our interesting discussions during the course of this work.

I thank the following people and organizations for their support dur-
ing the course of this work: the HLRS in Stuttgart and the NIC in Jülich
for granting access to their Cray T3E computer systems - software devel-
opment and evaluation would have been impossible without access to these
machines. The people from the Gastdozentenhaus ”Heinrich Hertz” at the
Universität Karlsruhe for guarding me while writing the first draft. Peter
Bach and Michael Bosch for providing useful comments on an early draft -
I am really looking forward to working with them again at ETAS GmbH in
Stuttgart. Matthias Müller from the Universität Karlsruhe for interesting dis-
cussions about the E-registers in the Cray T3E. The Universitat Politecnica
de Catalunya in Spain, namely Ernest Artiaga, for providing an implementa-
tion of the PARMACS macros based on POSIX threads that was used during
the evaluation of emulated multithreading on the Compaq workstation. The
Informatikrechnerbereich in Hagen, namely Enno deVries, for providing the
DECcampus software used during software development. My colleagues from
the chair of Prof. Schiffmann for the good teamwork even in times of stress.

My heartfelt thanks go to my family, Lutz, Ulrike and Tina Grävinghoff
for their support and encouragement during all these years. Last but not least,
I wish to thank my fiancée Kerstin Bernhardt for her outstanding support
even while pursuing her own PhD in psychology.

VIII Acknowledgments

Contents

1. Introduction . 1
1.1 Trends in Sequential Computing . 1

1.1.1 Dependencies & Hazards . 4
1.1.2 Dependency Removal . 7
1.1.3 Caches & Main Memory . 10

1.2 Trends in Parallel Computing . 14
1.3 Latency Tolerance . 18
1.4 Multithreading . 21

1.4.1 Hardware Multithreading . 22
1.4.2 Software Multithreading . 28
1.4.3 Summary. 31

1.5 Outline . 32

2. Emulated Multithreading . 33
2.1 Design Preferences . 33

2.1.1 Multithreaded Processor Model . 33
2.1.2 Context Switch Strategies . 35
2.1.3 Context Switch Overhead . 37

2.2 Basic Concept . 39
2.2.1 Assumptions . 40
2.2.2 Data Structures . 40
2.2.3 Emulation Library . 41
2.2.4 Code Conversion . 42

2.3 Performance Issues . 45
2.3.1 Number of Threads . 46
2.3.2 Caches . 47
2.3.3 Branch Prediction . 50
2.3.4 Code Scheduling . 54
2.3.5 Out-of-order Execution . 54

2.4 Architecture Support . 55

X Contents

3. Implementation . 61
3.1 Introduction . 61
3.2 Design Flow . 62
3.3 High-Level Language Converter . 64

3.3.1 Configuration File . 64
3.3.2 Conversion Tasks . 65
3.3.3 Implementation . 65

3.4 Emulation Library . 67
3.4.1 Thread Initialization Routines . 68
3.4.2 Thread Execution Routines . 69
3.4.3 Communication Routines . 69

3.5 Assembler converter . 71
3.5.1 Configuration . 72
3.5.2 Lexer & Parser . 76
3.5.3 Basic Blocks . 78
3.5.4 Super Blocks . 81
3.5.5 External Calls . 90
3.5.6 Data-Flow Analysis . 93
3.5.7 Register Allocation . 100
3.5.8 Code Conversion . 121
3.5.9 Statistics . 122

3.6 Register Partitioning . 124
3.7 Platform . 125
3.8 Compiler Integration . 129

4. Benchmarks . 133
4.1 Benchmark Suites . 133

4.1.1 LINPACK . 134
4.1.2 LFK . 134
4.1.3 ParkBench . 135
4.1.4 NPB . 138
4.1.5 Perfect Club . 139
4.1.6 SPLASH2 . 140
4.1.7 Summary. 140

4.2 SPLASH2 Benchmark Suite . 141
4.2.1 The FFT Kernel . 142
4.2.2 The LU Kernel . 145
4.2.3 The Radix Kernel . 148
4.2.4 The Ocean Application. 151
4.2.5 The Barnes application . 155
4.2.6 The FMM application . 158

Contents XI

5. Evaluation : Compaq XP1000 . 165
5.1 Compaq XP1000 . 166

5.1.1 Processor . 167
5.1.2 Cchip . 168
5.1.3 Dchip . 169
5.1.4 Pchip . 170
5.1.5 Memory . 170
5.1.6 Peripherals . 171
5.1.7 Software Environment . 171

5.2 Methodology . 172
5.3 Code Conversion . 175
5.4 FFT . 179
5.5 LU . 183
5.6 Radix . 186
5.7 Ocean . 190
5.8 Barnes . 193
5.9 FMM . 196
5.10 Summary . 199

6. Evaluation : Cray T3E . 201
6.1 Cray T3E . 202

6.1.1 Processor . 203
6.1.2 Memory . 204
6.1.3 Network . 208
6.1.4 Input/Output . 210
6.1.5 Software . 211

6.2 Methodology . 212
6.3 FFT . 213
6.4 LU . 217
6.5 Radix . 220
6.6 Ocean . 223
6.7 Barnes . 227
6.8 Summary . 230

7. Conclusions . 231

A. Alpha Architecture & Implementations 237
A.1 Introduction . 237

A.1.1 VAX Architecture . 238
A.1.2 Digital RISC Projects . 239
A.1.3 Design Goals . 240

A.2 Alpha Architecture . 242
A.2.1 Architecture State . 242
A.2.2 Address, Data and Instruction Formats 243
A.2.3 Instruction Set . 248

XII Contents

A.2.4 PALcode . 259
A.3 Implementations . 259

A.3.1 Alpha 21064 . 260
A.3.2 Alpha 21064A . 264
A.3.3 Alpha 21066 . 264
A.3.4 Alpha 21068 . 265
A.3.5 Alpha 21066A . 265
A.3.6 Alpha 21164 . 265
A.3.7 Alpha 21164A . 270
A.3.8 Alpha 21164PC . 270
A.3.9 Alpha 21264 . 270
A.3.10 Alpha 21264A . 276
A.3.11 Alpha 21264B. 276
A.3.12 Alpha 21364 . 276
A.3.13 Alpha 21464 . 277

B. Cray T3E E-Register Programming . 279
B.1 E-Register Programming . 279
B.2 E-Register Routines . 283

B.2.1 EMUereg int get() . 283
B.2.2 EMUereg int load() . 285
B.2.3 EMUereg int put() . 285
B.2.4 EMUereg int cswap() . 287
B.2.5 EMUereg int mswap() . 289
B.2.6 EMUereg int finc() . 291
B.2.7 EMUereg int fadd() . 292
B.2.8 EMUereg pending() . 294
B.2.9 EMUereg state() . 295

B.3 Programming Guidelines . 296

List of Figures

1.1 Number of Transistors . 2
1.2 Clock Frequency . 3
1.3 LINPACK Performance (n = 100) . 4
1.4 Number of Function Units . 5
1.5 Internal Cache Size . 10
1.6 Memory Bandwidth according to the STREAM Benchmark 11
1.7 Performance Improvements for Processors and Memory 13
1.8 Grand Challenge Problems . 15
1.9 Parallel LINPACK Performance . 16
1.10 Remote Memory Bandwidth in the Cray T3E 17
1.11 Remote Memory Latency in the Cray T3E . 18
1.12 Latency Tolerance via Multithreading . 22
1.13 Context Switch Strategies for Hardware Multithreading 23

2.1 Processor Utilization using a Model of Multithreading 34
2.2 Processor Utilization for R=100 and L=1000 35

3.1 Design Flow . 63
3.2 Creation of Basic Blocks - Stage I . 79
3.3 Creation of Basic Blocks - Stage II . 79
3.4 Creation of Basic Blocks - Stage III . 80
3.5 Creation of Super Blocks - Main . 84
3.6 Creation of Super Blocks - Stage I . 84
3.7 Creation of Super Blocks - Stage II . 85
3.8 Creation of Super Blocks - Stage III . 86
3.9 Example for worst-case Control-Flow Graph 89
3.10 Procedure Call Example . 91
3.11 Iterative Data-Flow Algorithm . 99
3.12 Live Range Example . 104
3.13 Live Range Example . 105
3.14 Live Range Example . 109
3.15 Merging of Live Ranges . 111
3.16 Interference Example . 112
3.17 Interference Graph Construction . 113

XIV List of Figures

5.1 Architecture of the Compaq XP1000 workstation 167
5.2 Original and Modified Instruction Mix for the FFT Benchmark . . 176
5.3 Original and Modified Instruction Mix for the LU Benchmark 176
5.4 Original and Modified Instruction Mix for the RADIX Benchmark 177
5.5 Original and Modified Instruction Mix for the OCEAN Benchmark177
5.6 Original and Modified Instruction Mix for the BARNES Benchmark178
5.7 Original and Modified Instruction Mix for the FMM Benchmark . . 178
5.8 Results for the FFT Benchmark (64 K Complex Data Points) 181
5.9 Results for the FFT Benchmark (256 K Complex Data Points) . . . 181
5.10 Results for the FFT Benchmark (1024 K Complex Data Points) . . 182
5.11 Results for the LU Benchmark (512 × 512 Matrix) 185
5.12 Results for the LU Benchmark (1024 × 1024 Matrix) 185
5.13 Results for the LU Benchmark (2048 × 2048 Matrix) 186
5.14 Results for the Radix Benchmark (256 K Integers) 188
5.15 Results for the Radix Benchmark (512 K Integers) 188
5.16 Results for the Radix Benchmark (1024 K Integers) 189
5.17 Results for the Ocean Benchmark (130× 130 Ocean) 191
5.18 Results for the Ocean Benchmark (258× 258 Ocean) 191
5.19 Results for the Ocean Benchmark (514× 514 Ocean) 192
5.20 Results for the Barnes Benchmark (16 K Particles) 194
5.21 Results for the Barnes Benchmark (64 K Particles) 195
5.22 Results for the Barnes Benchmark (256 K Particles) 195
5.23 Results for the FMM Benchmark (16 K Particles) 198
5.24 Results for the FMM Benchmark (64 K Particles) 198

6.1 Global Address Calculation - Part I . 205
6.2 Global Address Calculation - Part II . 207
6.3 Results for the FFT Benchmark (64 K Complex Data Points) 215
6.4 Results for the FFT Benchmark (256 K Complex Data Points) . . . 216
6.5 Results for the FFT Benchmark (1024 K Complex Data Points) . . 216
6.6 Results for the LU Benchmark (512× 512 Matrix) 218
6.7 Results for the LU Benchmark (1024× 1024 Matrix) 219
6.8 Results for the LU Benchmark (2048× 2048 Matrix) 219
6.9 Results for the Radix Benchmark (256 K Integers) 221
6.10 Results for the Radix Benchmark (512 K Integers) 222
6.11 Results for the Radix Benchmark (1024 K Integers) 222
6.12 Results for the Ocean Benchmark (130× 130 Ocean) 225
6.13 Results for the Ocean Benchmark (258× 258 Ocean) 226
6.14 Results for the Ocean Benchmark (514× 514 Ocean) 226
6.15 Results for the Barnes Benchmark (16 K Particles) 228
6.16 Results for the Barnes Benchmark (64 K Particles) 229
6.17 Results for the Barnes Benchmark (256 K Particles) 229

A.1 Alpha Architecture State . 243
A.2 Alpha Architecture Data Formats . 244

List of Figures XV

A.3 Alpha Architecture Instruction Formats . 247
A.4 Alpha 21064 Internal Architecture . 261
A.5 Alpha 21164 Internal Architecture . 266
A.6 Alpha 21264 Internal Architecture . 271

XVI List of Figures

List of Tables

2.1 Comparison of RISC Architectures . 57

A.1 Integer Memory Instructions . 249
A.2 Integer Control Instructions . 250
A.3 Integer Arithmetic Instructions . 251
A.4 Integer Logical & Shift Instructions . 252
A.5 Floating-Point Memory Instructions . 253
A.6 Floating-Point Control Instructions . 253
A.7 Floating-Point Arithmetic Instructions . 254
A.8 Miscellaneous Instructions . 256
A.9 Byte & Word Extension Instructions . 257
A.10 Multimedia Extension Instructions . 258
A.11 Floating-Point Extension Instructions . 259
A.12 Count Extension Instructions . 259

XVIII List of Tables

1. Introduction

This work deals with the design, implementation and evaluation of a multi-
threading system that enables fine-grained context switches without hardware
support. The current chapter explains the rationale behind such a system
and starts with an analysis of current trends in computer systems: Trends in
sequential computing, i.e. single-processor systems, are described in Section
1.1, while Section 1.2 covers trends in parallel computing, i.e. multi-processor
systems. In both cases, one of the most notable trends is the significant and
growing gap between the theoretical performance limit of a computer sys-
tem and the performance achieved in practice. Sections 1.1 and 1.2 describe
factors that limit the performance of current single- and multi-processor sys-
tems, respectively. It will be shown that one of the most important factors
in both cases is the latency of local and remote memory accesses. Since the
inherent latency associated with local and remote memory accesses is rather
large, latency reduction is only possible in a limited way. Therefore four com-
mon ways to tolerate latency instead of decreasing it are introduced in Section
1.3. Multithreading is the most general of these techniques in the sense that
it makes the least assumptions about the applications and is further inves-
tigated in Section 1.4, which includes a detailed survey of multithreading
implementations. Since none of the current commercial processors includes
multithreading support in hardware, multithreading has to be implemented
in software on these processors. Due to their coarse-grain context switches,
current approaches at software multithreading are not suitable to hide the
latency of local or remote memory accesses. Therefore a novel multithreading
system is designed that enables fine-grain context-switches and is this able
to tolerate the latency of these accesses. Section 1.5 summarizes the current
chapter and provides an overview about the remaining chapters.

1.1 Trends in Sequential Computing

In the past 20 years, sequential computing has been dominated by micro-
processors, i.e. processors implemented using very large scale or even higher
levels of integration. The dramatic advances in semiconductor technology en-
abled the implementation of ever more complex microprocessors [HJ91]. This
trend is illustrated in Figure 1.1, which depicts the number of transistors used

2 1. Introduction

Fig. 1.1. Number of Transistors

1970 1975 1980 1985 1990 1995 2000

Year of Introduction

0.04

0.2

1

5

25

125

N
um

be
r

of
 T

ra
ns

is
to

rs
 (

10
^6

)

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

in implementations of common processor architectures. The figure is based
on data from the CPU Info Center [Bur01]. Exponential regression testing
on this data reveals that the number of transistors almost doubles each year,
other published results range from 60 % to 80 % [HP96].

Apart from the higher levels of integration, the advances in semiconductor
technology have also enabled a significant increase in the clock frequency of
microprocessors. This trend is illustrated in Figure 1.2, which depicts the
internal clock frequency for implementations of several common processor
architectures. The figure is based on data from the CPU Info Center [Bur01].
Exponential regression testing on this data reveals that the clock frequency
increases by 76 % each year, a trend that will likely continue in the foreseeable
future.

The effect of the advances in semiconductor technology on both complex-
ity and speed of microprocessors is illustrated in the above figures. However,
the effect on the performance of microprocessors, as measured by the exe-
cution time of applications, is less pronounced. The performance of micro-
processors is usually compared by measuring the execution time of certain
benchmarks. The purpose of benchmarks is to predict the performance of a
microprocessor in certain application areas. In other words, the performance
of a microprocessor as measured by the execution time of the benchmarks
should reflect the performance of the microprocessor running applications
from these areas.

Benchmarks are usually small- to medium-sized applications that enable
comparisons with other microprocessors. A detailed introduction to several
popular benchmark suites can be found in Chapter 4. One of the most pop-

1.1 Trends in Sequential Computing 3

Fig. 1.2. Clock Frequency

1970 1975 1980 1985 1990 1995 2000

Year of Introduction

1

10

100

1000

In
te

rn
al

 C
lo

ck
 S

pe
ed

 (
M

H
z)

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

ular benchmarks is the LINPACK benchmark, which solves a dense system
of linear equations using LU decomposition [Don90]. The performance un-
der the LINPACK benchmark as well as the theoretical possible performance
for implementations of several common processor architectures is depicted in
Figure 1.3. Although the LINPACK benchmark reflects only a restricted area
of applications, it is well suited for long-term comparisons of performance,
as LINPACK benchmark results are available for almost every known mi-
croprocessor [DS01]. Note that nowadays the SPEC benchmarks are used to
compare the performance of microprocessors as these benchmarks provide a
broader view of microprocessor performance.

The LINPACK benchmark results as well as the theoretical performance
limits are taken from [DS01]. Based on the data depicted in Figure 1.3, two
different trends can be identified: On the one hand, the theoretical perfor-
mance limit increases by 228 % each year on average. On the other hand, the
performance achieved in practice, as measured by the LINPACK benchmark,
increases by 204 % each year on average. The reasons behind this significant
and growing gap are explained in the following paragraphs.

The maximum possible performance of a microprocessor is the internal
clock frequency fclk times the number of integer and floating-point instruc-
tions that can be issued in each cycle, i.e.

pmax = fclk · (nint + nfp)

measured in millions of instructions per second (MIPS). The above equa-
tion can be restricted to floating-point performance by considering only the
number of floating-point execution units, i.e.

4 1. Introduction

Fig. 1.3. LINPACK Performance (n = 100)

1988 1990 1992 1994 1996 1998 2000 2002

Year of Introduction

500

1000

1500

2000

2500

L
IN

PA
C

K
 P

er
fo

rm
an

ce
 (

M
FL

O
PS

)

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

pmax = fclk · nfp

measured in million floating-point operations per second (MFLOPS). As al-
ready illustrated in Figure 1.2, the advances in semiconductor technology
impact the clock speed of microprocessors. The increasing number of avail-
able transistors depicted in Figure 1.1 impacts the number of execution units,
as Figure 1.4 shows.

Note that the above equations represent the theoretical performance limit
under the assumption that all issue slots can be utilized in every clock cycle
and all execution units are fully pipelined, i.e. can accept a new instruction in
each cycle. In general, this assumption is not realistic, thereby rendering the
above equations useless for predicting the performance of microprocessors on
applications. One should think of these equations as representing the per-
formance that a microprocessor is guaranteed not to exceed. The following
sections describe some of the factors that limit the performance of current
microprocessors.

1.1.1 Dependencies & Hazards

As stated above, the assumption that all execution units can be utilized,
i.e. by executing nint + nfp instructions in parallel in each clock cycle, is
not realistic. The reason is the limited amount of available instruction-level
parallelism in an application as well as the difficulty to extract this parallelism
[Wal92][SJH89]. The instruction-level parallelism of a program is limited by
instruction dependencies, which can be grouped into data, name, and control
dependencies:

1.1 Trends in Sequential Computing 5

Fig. 1.4. Number of Function Units

1970 1975 1980 1985 1990 1995 2000

Year of Introduction

1

2

4

8

N
um

be
r

of
 F

un
ct

io
n

U
ni

ts

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

• An instruction b is data-dependent on another instruction a, if either in-
struction a produces a result that is used by instruction b, or there exists
an instruction c such that b is data-dependent on c and c is data-dependent
on a. Note that the data-flow between two data-dependent instructions can
occur either via registers or via memory locations. The former is easy to
detect, but the latter requires alias analysis due to the large number of
ways in which two instructions can access the same memory location.
• Two instructions a and b, where a is executed before b in sequential program

order, are said to be anti-dependent if instruction b writes a register or
memory location that instruction a reads. Sequential program order is the
order in which instructions would be executed on a processor with a single
function unit and in-order execution. Anti-dependency is one of the two
forms of name dependency, the other form is output dependency: Two
instructions a and b, where a is executed before b, are said to be output
dependent, if both instructions write the same register or memory location.
The difference between data and name dependencies is the absence of data
flow between the two instructions.
• An instruction a is said to be control-dependent on a branch instruction
b, if instruction b is on at least one path from the program entry point
to instruction a in the static control flow graph of the program. Control
dependencies restrict the reordering of instructions in two ways: Instruc-
tions that are control-dependent on a given branch instruction can usually
not be moved before that branch, while instructions that are not control-
dependent on a given branch instruction can usually not be moved behind
that branch.

6 1. Introduction

Two instructions that are independent on each other, i.e. are neither data-
, name-, nor control-dependent can be executed in parallel. However, the
reverse is not true: The existence of a dependency between these two in-
structions does not necessarily imply that executing those two instructions
in parallel creates a hazard on a given processor. Dependencies are a property
of the processor architecture, but the set of dependencies that lead to hazards
are a property of the processor’s implementation. There are three different
sets of hazards, i.e. structural, data and control hazards.

Given a set of instructions that would execute in parallel, a structural
hazard arises whenever one or more of the instructions cannot issue due to
resource conflicts, e.g. lack of available execution units. Therefore structural
hazards can arise even in the absence of dependencies.

Data hazards arise whenever a data or name dependency exists between
instructions and the instructions are issued too close to one another. Given
two instructions a and b, where a is executed before b in sequential program
order, there are three different cases:

• A read-after-write hazard arises if instruction b reads a register or memory
location before it is written by instruction a. If this kind of hazard is not
resolved, instruction b will use the old value of the register or memory
location.
• A write-after-write hazard arises if instruction b writes a register or memory

location before it is written by instruction a. If this kind of hazard is not
resolved, the register or memory location will hold the value written by
instruction a instead of b.
• A write-after-read hazard arises if instruction b writes to a register or

memory location before it is read by instruction a. If this kind of hazard
is not resolved, instruction a will incorrectly use the new contents of the
register or memory location.

A read-after-read situation, i.e. if instruction b reads a register or memory
location before it is used by instruction a, is no hazard since the contents of
the register or memory location are not modified by either of the instructions.

Control hazards are caused by control dependencies: Given two instruc-
tions a and b, where a is executed before b in sequential program order and b
is control dependent on a, a control hazard arises if b is executed before the
outcome of the branch a is known. Note that control dependencies are quite
frequent due to the large number of branches in programs, i.e. on average,
one out of six instructions is a branch [Wal92][SJH89].

Each of the hazards mentioned above will cause a pipeline stall upon its
detection at runtime, i.e. the execution of one or more instructions must be
delayed in order to resolve the hazard and ensure proper program semantics.
Pipeline stalls can last for one or more clock cycles and affect one or more
execution units such that these function units can perform no useful work for
the duration of the stall. As observed in Figure 1.3, pipeline stalls can have
a significant impact on the performance of a microprocessor. Therefore the

1.1 Trends in Sequential Computing 7

number and duration of pipeline stalls has to be decreased in order to close
the gap between theoretical and practical microprocessor performance.

1.1.2 Dependency Removal

As pipeline stalls are caused by hazards which occur only in the advent of
dependencies, with the exception of structural hazards, there are three ways
to handle this problem: First of all the program can be changed such that
the number of dependencies is reduced. By removing at least some of the
dependencies, all hazards and pipeline stalls that might have been caused by
these dependencies are effectively removed. Second, the internal architecture
of the microprocessor, i.e. the pipeline, can be changed such that the number
of hazards is reduced even in the presence of dependencies. Last, the pipeline
can be changed such that the duration of pipeline stalls is reduced. The
following paragraphs will describe each of these options in more detail.

The removal of dependencies is mostly performed by the compiler, al-
though hardware support is required in some cases. The compiler has to
analyze the existing dependencies before removing any of them. This de-
pendency analysis is complicated by the presence of arrays and pointers in
modern languages.

Pointers increase the complexity and introduce uncertainty in the anal-
ysis of dependencies due to aliasing, thereby causing conservative results. If
the microprocessor supports dynamic memory disambiguation, i.e. resolving
of conflicts due to aliasing, the compiler can perform more aggressive op-
timizations by ignoring some of the dependencies that arise from memory
operations.

Arrays increase the complexity of dependency analysis by making it hard
to determine the dependencies inside loops. In order to determine whether two
loop iterations are independent, constrained Diophantine equations based on
the array indices have to be solved. Unfortunately, this problem is equivalent
to integer programming, which is known to be NP-complete [MHL91]. How-
ever, most of the equations that occur in practice are quite simple, thereby
enabling the use of simple tests that determine whether a dependency exists.
Once the dependencies have been determined, the compiler uses techniques
like register renaming, loop unrolling, software pipelining, trace scheduling
or speculation to reduce the number of dependencies.

Register renaming [Sim00] eliminates name dependencies by changing the
conflicting registers. Note that name dependencies occur via registers as well
as memory locations, but renaming is done more easily for register operands.
Register renaming can be performed statically by the compiler or dynami-
cally by the microprocessor. However, the ability to remove name dependen-
cies is restricted by the limited number of available registers, hence modern
microprocessors provide more registers than the corresponding architecture
requires, thus increasing the benefits of register renaming.

8 1. Introduction

Loop unrolling reduces the number of control dependencies by replicating
the loop body several times and modifying the loop header accordingly. In
addition, loop unrolling increases the potential for instruction scheduling as
the instructions from different unrolled iterations of the loop must be inde-
pendent, otherwise loop unrolling would not be not possible.

Software pipelining [RGSL96] is related to loop unrolling and is sometimes
called symbolic loop unrolling. Software pipelining reduces the number of
data dependencies inside loop iterations by interleaving instructions from
different iterations of the loop. Loop unrolling can be used to increase the size
of the loop body, thereby increasing the effectiveness of software pipelining.
However, the management of registers in software pipelined loops can be
quite complex.

Trace scheduling [Fis81] reduces the number of control dependencies by
selecting a set of basic blocks that are likely to be executed in sequential order
and creating a larger basic block by omitting the branches between the origi-
nal basic blocks. Static branch prediction is used to determine the likelihood
that a set of basic blocks is executed in sequential order. In contrast to loop
unrolling, trace scheduling is not restricted to loop branches. However, trace
scheduling complicates the code due to the need for additional bookkeeping
code that handles mispredictions.

Speculation [EGK+94] reduces the number of control dependencies by
predicting the outcome of branches and by moving instructions across the
controlling branch. However, the speculative code must not destroy program
semantics even in the presence of mispredictions, hence the compiler has to
make conservative decisions about which instructions to move. The efficiency
of speculation is significantly increased in the presence of hardware support,
i.e. the microprocessor ensures that speculated instructions do not commit
until they are no longer speculative.

Finally, conditional or predicated instructions can be used to transform
control dependencies into data dependencies. Conditional instructions evalu-
ate a certain condition and behave like a null operation if this condition is not
true. The most common form of conditional instructions is the conditional
move between registers, which is supported by all modern architectures. Con-
ditional instructions can be used to eliminate control dependencies by trans-
forming them into data dependencies, and to protect instructions that are
moved across controlling branches. However, conditional instructions are of-
ten slower than their unconditional counterparts and still consume execution
time, even if the tested condition does not hold.

Dependencies that cannot be eliminated by the techniques presented
above do not necessarily cause hazards. Apart from instruction scheduling,
most of the techniques used to avoid hazards in the presence of dependencies
involve changes to the internal architecture of the microprocessor: dynamic
scheduling, branch prediction, and caches.

1.1 Trends in Sequential Computing 9

The compiler uses instruction scheduling to rearrange instructions in a
basic block such that pipeline stalls are minimized. Instruction scheduling
uses the available parallelism between independent instructions to hide the
latency of instructions that might cause a pipeline stall. However, it becomes
more and more difficult to find the required number of independent instruc-
tions inside a basic block as the latency to be hidden grows larger, hence
more aggressive scheduling has to be used in these cases.

Dynamic scheduling rearranges the execution of instructions at run-time
in order to prevent pipeline stalls. The instructions are issued in sequential
order as long as no structural hazards exist, but the individual instructions
are executed as soon as their operands become available, i.e. out-of-order.
Even if some instructions are stalled due to data dependencies, subsequent
instructions can be executed as long as no structural hazards arise. Note
that out-of-order execution implies out-of-order completion and is used by
almost all recent implementations of modern processor architectures. Out-of-
order execution is especially effective when combined with register renaming.
However, out-of-order execution requires a lot of resources and complicates
the pipeline control logic, e.g. to maintain precise interrupts.

Branch prediction is used by modern microprocessors to reduce the impact
of control dependencies: Additional hardware is used to predict the outcome
and/or target of branches from previous executions of the branch. A survey
of popular branch prediction strategies is included in Section 2.3. Although
the accuracy of current branch prediction schemes is quite good, modern
microprocessors have to predict several consecutive branches in order to avoid
pipeline stalls, as branches occur frequently in typical instruction streams.
The combined accuracy for a sequence of branches is given by the product
of the accuracies of the predictions for the individual branches, i.e. decreases
significantly for larger sequences.

Caches are used to decrease the latency associated with memory opera-
tions. Recall that the latency of instructions is one of the problems that keep
instruction scheduling from avoiding pipeline stalls. Caches are a part of the
memory hierarchy, a chain of memories of increasing size and latency with
growing distance from the microprocessor. Section 2.3 describes caches and
their properties in detail. Each memory in the hierarchy usually contains a
subset of the contents of the memory on the next level, although there are ex-
ceptions to this rule, e.g. exclusive caches. Frequently used memory locations
should reside in the upper levels of the hierarchy, i.e. next to the microproces-
sor. Caches exploit the principles of locality observed in programs: It is likely
that accessed memory locations will be accessed again in the near future, i.e.
temporal locality. It is likely that locations in the vicinity of accessed memory
locations will be accessed in the near future, i.e. spatial locality. However, the
effectiveness of caches depends on the particular program, e.g. programs with
irregular access patterns will seldom benefit from caches.

10 1. Introduction

Fig. 1.5. Internal Cache Size

1970 1975 1980 1985 1990 1995 2000

Year of Introduction

1

2

4

8

16

32

64

128

256

512

1024

2048

In
te

rn
al

 C
ac

he
 S

iz
e

(K
B

)

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

If the techniques presented above fail and a pipeline stall is unavoidable,
the pipeline should be designed such that the length of the pipeline stall is
minimized. This is accomplished by result forwarding, i.e. providing bypasses
between different stages of the pipeline. Result forwarding reduces the length
of pipeline stalls, as the results are passed directly to dependent instructions
in the pipeline instead of passing the results via the register file. Another
way to avoid or minimize the length of pipeline stalls is to provide enough
resources, such that structural hazards are avoided. These resources include
execution units, register file read and write ports, cache ports as well as
the units that control the pipeline. However, these resources increase the
complexity of the microprocessor, thereby potentially reducing the maximum
clock frequency.

1.1.3 Caches & Main Memory

As already mentioned, caches are used to reduce the potential for pipeline
stalls arising out of data dependencies involving main memory. As Figure 1.5
illustrates, caches use a significant portion of the transistor budget in cur-
rent microprocessors, partially because those transistors could not be usefully
exploited otherwise.

Figure 1.5 depicts the size of the internal caches for implementations of
several processor architectures. Although the size of the transistor budget is
steadily increasing, the size of the internal caches increases even faster, i.e.
the percentage of the transistor budget attributed to the internal caches is
increasing. Since caches seem to be an important part of modern micropro-

1.1 Trends in Sequential Computing 11

Fig. 1.6. Memory Bandwidth according to the STREAM Benchmark

1980 1985 1990 1995 2000

Year of Introduction

4

16

64

256

1024

B
an

dw
id

th
 (

M
B

/s
)

IA32
PowerPC
SPARC
Alpha
MIPS
HP-PA

cessors, the following section provides a detailed look at main memory, whose
latency has to be hidden by caches.

Main memory is usually made from DRAM (dynamic random access mem-
ory), while caches are usually made from SRAM (static random access mem-
ory). DRAM uses a single transistor to store each bit, SRAMs use between
four and six transistors for each bit. DRAMs are usually slower than SRAMs
and have to be refreshed periodically to maintain the contents of the mem-
ory array. On the other hand, DRAMs have a larger capacity, consume less
power and are cheaper than SRAMs. Independent of the type of the mem-
ory, the performance of a memory system can be expressed in two quantities:
bandwidth and latency.

Bandwidth. Bandwidth refers to the maximum rate at which the mem-
ory can deliver data, usually given in megabytes or gigabytes per second.
The STREAM benchmark [McC95] is often used to measure the bandwidth
of main memory. Figure 1.6 depicts the bandwidth achieved in practice for
computer systems based on the implementations of several processor archi-
tectures as measured by the STREAM benchmark. Note that the bandwidth
and latency of the main memory system depends on the microprocessor as
well as the surrounding system. However, there are several ways to increase
the bandwidth of main memory: increasing the width of the memory bank,
interleaving multiple banks of memory, and using multiple independent banks
of memory.

Given a main memory system using a data bus width of n bytes, i.e. the
bus can transfer n bytes per clock cycle, yielding a bandwidth b of

b = n ∗ fclk

12 1. Introduction

bytes per second. According to this equation, multiplying the width of the
data bus by k increases the bandwidth of the memory system by a factor
k as long as the width of the individual memory banks is increased by the
same factor. However, the associated cost restricts the practical width of the
memory bus: Personal computers usually use an 8 byte wide memory bus,
while workstations use a memory bus that is up to 16 bytes wide.

Interleaving uses multiple banks of memory that can be accessed in paral-
lel. Each bank has the same width as the memory bus, addresses are usually
interleaved at the word level, i.e. the ith bank contains all memory locations
with addresses of the form

n · k + i ∀n ∈ N, 0 ≤ i < k

Such a mapping is useful for sequential accesses, e.g. cache fills, since all banks
are accessed in parallel, such that k consecutive words are available simulta-
neously. However, the consecutive words have to be transferred sequentially,
since the width of the memory bus equals the width of each memory bank.
A drawback of interleaving are the associated costs: All banks have to be
populated, hence a k-way interleaved memory system uses at least k memory
modules. A traditional memory system uses fewer modules of larger size for
the same amount of memory, which is usually more cost-effective.

Another form of interleaving exploits the internal structure of DRAMs
to reduce the latency and thereby increase the bandwidth: Due to pin-count
restrictions, DRAMs use a multiplexed address bus to access the internal
memory array. Each memory location is accessed by subsequently specifying
the corresponding row and column addresses. Since the row address is trans-
ferred first, subsequent accesses to locations in the same row only need to
specify another column address, thereby reducing the latency of the access.
This type of access is called page-mode and is supported by all DRAMs since
the 1 Mbit generation.

Independent memory banks are a generalization of memory interleaving:
Like before, the memory system consists of multiple memory banks. The
difference between interleaving and independent memory banks is that the
latter uses separate address and data busses for each memory bank, thereby
allowing independent accesses to each bank. Note that memory interleaving
uses a shared address and data bus, i.e. all memory banks are accessed in
parallel at the same address. The mapping of addresses to the independent
memory banks is usually the same as in the interleaved approach.

As long as memory accesses go to different memory banks, such a memory
system is very effective. Given an even number of memory banks, sequential
accesses as well as accesses that are separated by an odd number of memory
locations will access different banks. However, accesses that are separated
by an even number of memory locations will access the same bank if the
difference is a multiple of the number of banks. This problem can be solved by
providing a large number of memory banks, thereby reducing the chances that

1.1 Trends in Sequential Computing 13

Fig. 1.7. Performance Improvements for Processors and Memory

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

1

4

16

64

256

1024

4096

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t

Memory
Processor

two consecutive accesses hit the same bank. The drawback of this approach is
the associated cost, hence this approach is only used in some supercomputers.
Another solution is to change the access patterns of the program, e.g. by
having the compiler expand the size of arrays.

Latency. Latency refers to the length of time that the memory needs to de-
liver the contents of a single memory location and is usually given in nanosec-
onds. Despite advances in semiconductor technology, memory access times
have not kept up with the improvements in microprocessor clock speed, as
Figure 1.7 illustrates. Figure 1.7 is taken from [HP96] and depicts the im-
provements of microprocessor clock frequency and main memory access times,
using 1980’s performance as a baseline. Note that the number of clock cycles
that elapse during a memory access, has increased as well, making it diffi-
cult at best to avoid pipeline stalls due to data dependencies involving main
memory. The use of a memory hierarchy with one or more caches is a con-
sequence of this performance gap, since caches use replication of frequently
used memory locations in order to avoid accesses to main memory.

Given a memory hierarchy with caches, the average memory access time
is determined by several parameters: The hit time is the amount of time
required to retrieve the contents of a memory location that is found in the
cache, while the miss penalty is the amount of time required to retrieve the
contents of a memory location that is not found in the cache. The percentage
of accesses to the caches that result in a cache miss is the miss rate. According
to [HP96], the average memory access time a is given by :

a = Hit time + Miss Rate ·Miss Penalty

14 1. Introduction

Based on the above equation, three different ways to decrease the average
memory access time can be identified: decreasing the access time in case of
cache hits, decreasing the ratio of cache misses, and decreasing the penalty
associated with cache misses. Several factors affect the miss rate, e.g. cache
line size, cache associativity, hardware and software prefetching, and compiler
optimizations. Other factors affect the miss penalty as well as the hit time.
A detailed discussion of these factors is outside the scope of this chapter,
Section 2.3 includes an introduction to caches. Detailed informations about
the design of caches can be found in Handy’s book [Han93].

Caches are an integral part of modern microprocessors, since the processor-
memory performance gap is so large that accesses to main memory frequently
cause pipeline stalls. The importance of caches is reflected by the fact that a
huge portion of the transistor budget in current microprocessors is dedicated
to caches. However, the effectiveness of caches largely depends on the soft-
ware: Some programs show regular access patterns that are cache-friendly,
other programs show irregular access patterns. As the processor-memory per-
formance gap will continue to increase for the foreseeable future, the latency
of accesses to main memory is one of the major bottlenecks that limit the
performance of current microprocessors.

1.2 Trends in Parallel Computing

The performance of microprocessors is steadily increasing, in spite of the lim-
iting factors identified in the previous section. However, the computational
performance required by some important applications exceeds the capabili-
ties of even the fastest microprocessors. Some of these so-called Grand Chal-
lenge Problems were identified by the Committee on Physics, Mathematics.
and Engineering Sciences of the federal Office of Science and Technology
(OSTP). Figure 1.8 is taken from [CS99] and summarizes the findings of this
committee by characterizing several important applications from science and
engineering by their computational demands and storage requirements. Note
that new challenges will be added as computer performance increases and
new applications become feasible.

Parallel computers use several processors to achieve an aggregate per-
formance that is equal to the number of processors times the performance
of a single processor, at least in principle. The Grand Challenge Problems
mentioned above require machines with a very large number of processors,
so-called massively parallel processors (MPP). These MPPs have tradition-
ally been custom-built machines based on commercial microprocessors that
were tightly integrated such as the Cray T3E [Oed96]. Clusters are a new
class of massively parallel processor that use commercial off-the-shelf work-
stations or servers as computing nodes in connection with a custom-designed
network. As the network interfaces are based on standard busses, the mi-
croprocessors are less tightly integrated than in traditional MPPs. However,

1.2 Trends in Parallel Computing 15

Fig. 1.8. Grand Challenge Problems

0.1 1 10 100 1000

Performance Requirement (GFLOPS)

0.01

0.1

1

10

100

1000

St
or

ag
e

R
eq

ui
re

m
en

t (
G

B
)

2D
airfoil

48-hour
weather

Oil reservoir
modeling

modeling
3D plasma

72-hour
weather

Vehicle
signature

Chemical dynamics

Pharmaceutical design

Structural
biology

Grand Challenge problems
Global change
Human genome
Fluid turbulance
Vehicle dynamics
Ocean circulation
Viscous fluid dynamics
Superconductor modeling
Quantum chromo dynamics
Vision

clusters provide a good price/performance solution as the are mostly based
on commercial off-the-shelf technology. The Compaq AlphaServer SC [Cor00]
is an example for such a cluster.

Although current MPPs can support several thousand processors, most
installed MPPs use several hundred processors. These large number of pro-
cessors yield impressive maximum performance figures. However, the per-
formance achieved in practice often deviates from the theoretical maximum
performance. The situation in parallel computing is therefore similar to the
situation of sequential computing that was described in Section 1.1, although
the effects are even more pronounced. Figure 1.9 depicts the performance
achieved in practice as measured by the LINPACK benchmarks as well as
the theoretical maximum performance for several parallel computer systems.
In contrast to Figure 1.3, Figure 1.9 denotes the performance in GFLOPS
instead of MFLOPS.

As the processing nodes of massively parallel processors are built around
commercial off-the-shelf microprocessors, part of the performance gap can
be attributed to the performance limiting factors described in Section 1.1.
However, some performance limiting factors are unique to parallel comput-
ing. The three most important factors in this area are parallelization, load
balancing, and communication.

If a program is not perfectly parallelizable, i.e. is always able to utilize
all available processors, the performance is limited by Amdahl’s law: Assume
that a given program has an execution time tseq on a single-processor system
and that a fraction α of the program can be parallelized using all p processors
on a multi-processor system. According to Amdahl’s law, the Speedup s, i.e.
the factor by which performance increases from using p processors is given

16 1. Introduction

Fig. 1.9. Parallel LINPACK Performance

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Number of Processors

2500

5000

7500

10000

12500

L
IN

PA
C

K
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

PVP
MPP

by

s =
1

(1− α) + α
p

Note that the speedup is effectively bounded by 1/(1 − α), i.e. independent
of the speedup achieved in the parallel section of the program. For example,
even if 90 % of the program executes in parallel, the maximum speedup will
be less than ten instead of the desired speedup of p. Therefore programs have
to be completely parallel in order to yield competitive speedups on large-
scale MPPs with hundreds or thousand of processors. This problem applies
to parallel computing in general and is independent of the architecture of the
parallel computer.

The second problem, improper load balancing, arises even if the program
is fully parallelizable: The desired speedup of p can only be achieved if the
workload is evenly distributed among the p processors. Therefore load balanc-
ing is an important property of parallel programs. Load balancing is compli-
cated in two ways. On one hand, it might be difficult to divide the workload
into individual tasks, such that at least one task is assigned to every pro-
cessor. On the other hand, it might be difficult to determine the complexity
of a given task in advance. Nevertheless, several load balancing techniques
have been developed that work reasonably well in practice. Like before, this
problem applies to parallel computing in general and is independent of the
architecture of the parallel computer.

The third problem is the amount and type of communication between
processors. Communication arises whenever a processor needs to access data
that is stored in the memory of another processor. The obvious way to avoid

1.2 Trends in Parallel Computing 17

Fig. 1.10. Remote Memory Bandwidth in the Cray T3E

1 10 100 1000 10000 1e+05 1e+06

Message Size (bytes)

0

50

100

150

200

250

300

350

400

450

500

B
an

dw
id

th
 (

M
B

/s
)

T3E-900
T3E-1200

communication is to distribute the data across the processors, such that each
processor owns the data that it frequently accesses. Even if such a data dis-
tribution can be found, parallel algorithms possess an inherent amount of
communication. The impact of communication on performance depends on
the architecture of the parallel machine, especially the network that connects
the individual processors. The performance of the network can be defined in
the same terms that were used in Section 1.1 to define the performance of the
memory system, i.e. bandwidth and latency. In fact, the memory of another
processor can be seen as an additional level to the existing local memory hier-
archy. As Figures 1.10 and 1.11 show, the bandwidth and latency of commu-
nication links in current massively parallel processors are considerably worse
than the bandwidth and latency of the local memory system, i.e. providing
an even larger potential for pipeline stalls due to data dependencies.

Figure 1.10 depicts the bandwidth of the communication links as a func-
tion of the block size for two different models of the Cray T3E, i.e. the T3E-
900 and the T3E-1200. Note that the maximum bandwidth of the commu-
nication links is 327 MB/s for the T3E-900 and 399 MB/s for the T3E-1200.
Figure 1.10 suggests that parallel programs should use large communication
blocks whenever possible to benefit from the higher bandwidth.

Figure 1.11 depicts the latency in terms of processor clock cycles of reading
a memory location on a remote processor as a function of the machine size
for two different models of the Cray T3E, i.e. the T3E-900 and the T3E-1200.
Note that the corresponding measurements were performed in batch mode
and are affected by the allocation strategy of the NQS batch queuing system:
The allocated partitions for a given batch job can be non-contiguous, i.e.

18 1. Introduction

Fig. 1.11. Remote Memory Latency in the Cray T3E

1 2 4 8 16 32 64 128 256 512

Number of Processors

0

500

1000

1500

2000

2500

3000

3500

4000

L
at

en
cy

 (
cl

oc
k

tic
ks

)

T3E-900
T3E-1200

the distance between the individual processing elements is larger than the
minimum distance for the given number of processors. Unfortunately, it is
not possible to influence the allocation strategy short of running the whole
machine in dedicated mode.

The processor used in the T3E issues up to four instructions per clock
cycle, hence it is unlikely that a program contains enough instruction level
parallelism to avoid pipeline stalls in the presence of latencies as shown in
Figure 1.11. Unfortunately, there is an inherent latency for the communi-
cation links due to the physical size of the machine: the larger the number
of processors, the larger the physical size of the machine and therefore the
inherent latency, as electric signals propagate with limited speed.

Section 1.1 identified the latency of main memory as one of the most im-
portant bottlenecks that limit the performance of current microprocessors.
In the case of parallel computing, the bottleneck due to the latency of the
communication network is even more pronounced. As opposed to bandwidth,
latency cannot be decreased below the inherent latency by using more re-
sources. Therefore Section 1.3 describes several techniques for reducing and
tolerating long-latency events such as main memory accesses or communica-
tion.

1.3 Latency Tolerance

The previous two sections have identified the latency of the memory hierarchy
as one of the most important bottlenecks that limit the performance of single-

1.3 Latency Tolerance 19

and multi-processor systems. There are three ways to reduce the latency of
the memory hierarchy: First of all, the access time at all levels of the memory
hierarchy can be reduced by careful design. Although the inherent latency
can not be reduced in any way, one can try to design a memory hierarchy
that does not exceed the inherent latency too much. The second approach
tries to avoid long-latency accesses by using replication, i.e. providing copies
of frequently accessed data at lower levels of the memory hierarchy. As long
as the application possesses temporal and/or spatial locality, this approach
can be very effective. However, not all applications have this property, e.g.
irregular applications. Last but not least, the application itself can be re-
structured, such as to reduce the frequency of long-latency accesses and/or
improve the access patterns to better suit automatic replication. A survey
of latency reducing techniques can be found in [GHG+91]. Although these
techniques can be very effective, the remaining latency is still large enough
to impact the performance of single- and multi-processor systems.

In addition to of reducing the latency as discussed in the previous para-
graph, one can try to tolerate the remaining latency, thereby reducing the
impact on performance. There are four different ways to tolerate long-
latency events: block data transfer, prefetching, asynchronous accesses and
multithreading. A survey of latency tolerance techniques can be found in
[MCL98][GHG+91].

Block data transfer [WSH94] uses a smaller number of large messages
instead of a large number of small messages by combining communication re-
quests whenever possible. This approach benefits from the higher bandwidth
that can be achieved for large messages as well as the reduced per-message
overhead. Although the latency of the first message word is not reduced at
all, the subsequent message words arrive in short increments due to the high
bandwidth available for large messages. Block data transfer is effective as
long as the application is well-suited for this approach, i.e. has enough po-
tential for combining communication requests. However, even if block data
transfer is used, the processors will stall until the first message word is re-
ceived. The remaining three approaches address this problem as well and are
complementary to block data transfer.

Prefetching [LM96][CB94] uses a split-transaction protocol for communi-
cation requests: The communication is initiated before the data is actually
used, at which point the communication is completed. If the distance between
initiation and completion is large enough, the message data is at least par-
tially available before it is used, i.e. the latency of the communication is at
least partially hidden by the instructions between initiation and completion.
Note that the initiation must not stall the processor, otherwise no latency
hiding is possible. The major drawback of prefetching is the fact that the tar-
get of the communication request must be known a sufficient amount of time
before the data is actually used. The effectiveness of prefetching therefore
depends largely on the application. Prefetching can either be implemented in

20 1. Introduction

software, i.e. the compiler inserts corresponding prefetching instructions, or
in hardware, i.e. the processor prefetches data automatically.

Asynchronous communication [CS99] uses communication primitives that
do not stall the processor, i.e. the processor can perform independent work
while the communication is pending. Asynchronous communication is sim-
ilar to prefetching in that it uses independent instructions to hide the la-
tency of communication. However, prefetching finds these independent in-
structions before the point where the requested data is actually used, while
asynchronous communication finds independent instructions after this point.
The advantage of asynchronous communication over prefetching is that it is
no longer necessary to determine the target of the communication request
in advance. But as communications are usually performed just before the
data is needed, it may be difficult to find enough independent instructions.
Again, the effectiveness of asynchronous communication depends largely on
the application.

Multithreading [KCA91][BR92] is similar to asynchronous communication
in that it uses communication primitives that do not stall the processor until
the data is actually needed. In contrast to asynchronous communication, the
independent instructions that are used to hide the latency of the communi-
cation request are not taken from the same thread of computation, but from
another thread on the same processor. Therefore the processor has to exe-
cute several threads in parallel, and to switch between these threads in order
to hide long-latency events. Multithreading is less susceptible to application
behavior as the independent instructions are taken from other threads, i.e. is
not restricted by the limited amount of instruction level parallelism that is
available in a single thread.

All four techniques presented above are effective in hiding long-latency
events. However, these techniques have significant costs: As the first tech-
nique combines communication requests and the other three techniques use
independent instructions to hide the latency, the application has to possess
additional parallelism. In addition, all techniques increase the bandwidth
requirements of the applications, as the same amount of communication is
performed in less time. At least the last three techniques complicate the hard-
ware, e.g. by supporting multiple outstanding requests or multiple threads.
It is unlikely that enough independent instructions can be found in a single
thread to tolerate the latencies encountered in massively parallel processors.
Multithreading is the only technique that addresses this problem and is there-
fore investigated further in Section 1.4. In addition, multithreading can be
combined with block transfer and prefetching to yield even better perfor-
mance.

1.4 Multithreading 21

1.4 Multithreading

A conventional single-threaded architecture executes a single thread of con-
trol, i.e. instructions from the corresponding program are executed in sequen-
tial order. The state of such a system consists of two parts: memory state and
processor state. The memory state refers to the contents of main memory, i.e.
program code, stack, data. The processor state consists of the activity spec-
ifier, i.e. stack pointer and program counter, as well as the register context,
i.e. the contents of the architected registers. In the case of a single-threaded
architecture, the processor state is restricted to the context of a single thread.

In contrast, a multithreaded architecture executes instructions from sev-
eral threads of control, i.e. the instruction to be executed is chosen from
several candidates, one from each thread. As a consequence, the processor
state of such an architecture consists of several activity specifiers and reg-
ister contexts, i.e. thread contexts, while the memory state contains several
stacks and may contain different program code.

Multithreading can be used to tolerate long-latency events by switching to
another thread whenever the current thread encounters such an event. With
any chance, the results of the long-latency operation are available the next
time that the thread is activated, thereby effectively hiding the latency by
executing other threads in the meantime. Since context switching itself takes
some time, the context switch overhead influences the amount of latency that
can be hidden effectively. An example of this situation is illustrated in Figure
1.12.

In this example, there are four threads named A through D. The upper
part of the figure shows how these threads would be executed on a single-
threaded architecture. Note that useful work performed by the individual
threads is marked in different shades of grey, while white represents idle or
stall cycles. The lower part of the figure shows how these threads would be
executed on a multithreaded architecture, if context is switched whenever
a long-latency operation is encountered and threads are scheduled round-
robin. Note that it is useless to initiate a context switch upon encountering
any long-latency event: If the latency of the event is less than two times the
context switch time.

Multithreading can be implemented in hardware using custom-designed
processors or in software using commercial off-the-shelf processors. Section
1.4.1 surveys multithreading systems implemented in hardware, while Section
1.4.2 covers software implementations.

Multithreaded processors implement multithreading in hardware by ex-
tending conventional processors with support for multithreading, e.g. by
adding multiple program counters and/or register contexts. Therefore multi-
threaded processors follow the control-flow computing model like their con-
ventional counterparts. This restricted definition of multithreaded processors
follows the definition in [vRU99] and is used to distinguish these architec-
tures from other architectures that follow the data-flow computing model,

22 1. Introduction

Fig. 1.12. Latency Tolerance via Multithreading

D

���������������
��������������� �����

�����
���������� ���������������

��������������� �����
�����
���������� 	�	�		�	�		�	�	

�
�

�
�

�
�
 �����
�����
���������� ������

��������������� �����
�����
����������A B C D A B C D

�����
�����
�����
����������
�����

�����
�����
�����
����������
�����

B
��������������������
��������������������

��������������������
��������������������A

��������������������
��������������������

��������������������
��������������������C

�����
�����
�����
����������
�����

�����
�����
�����
 � � � �
 � �

e.g. large grain data-flow or threaded data-flow. Note that the term multi-
threaded architecture is often used in both cases.

The number of threads that can be executed on a multithreaded processor
is usually equal to the number of supported program counters and/or register
contexts. However, the number of threads can be extended by using some
form of software multithreading on top of the hardware implementation. The
capabilities of the hardware threads is determined by the software that creates
the individual threads, the hardware itself usually poses no restrictions on
thread capabilities.

1.4.1 Hardware Multithreading

The most notable difference between multithreaded processors is the context
switch strategy that can be used to group the individual processors into three
classes: interleaved multithreading, block multithreading and simultaneous
multithreading. The three different approaches are depicted in Figure 1.13
and are discussed in the following sections.

Interleaved Multithreading. Multithreaded processors based on cycle-by-
cycle interleaving perform a context switch after each instruction fetch. As
long as the number of threads exceeds the number of pipeline stages, there
is at most one instruction from each thread in the pipeline, i.e. control and
data dependencies are eliminated. Due to the absence of dependencies, the
pipeline itself is simple, i.e no pipeline interlocks or forwarding paths are
necessary. Another advantage of the cycle-by-cycle interleaving model is the
absence of any context switch overhead, as context switches are well known
in advance.

The major drawback of this model is the lack of single-thread perfor-
mance: If only one thread is executed, the maximum performance of the
processor is degraded by a factor that is equal to the number of pipeline

1.4 Multithreading 23

Fig. 1.13. Context Switch Strategies for Hardware Multithreading

c)

A A

A

B

B

C C

C

B

D D D

A A

A

A A A

B

B B

B B B

C C

A A

A

A A A

B

B B

B B B

B C C

D

B DC

DA

a) b)

stages. However, this problem can be addressed by using dependence looka-
head or interleaving [LGH94]. The former approach issues sequences of in-
structions from the same thread as long as these instructions are neither
data- or control-dependent. The instruction sequences are identified by the
compiler, the instruction format uses an additional field to store the length
of the sequence. The latter approach subsequently issues several instructions
from the same thread as well, but extends the pipeline to support forward-
ing paths and pipeline interlocks instead. The following paragraphs describe
several processors using interleaved multithreading.

The HEP (Heterogeneous Element Processor) [Smi78][Smi81a] is a shared
memory multiprocessor that supports up to 16 processors, 128 memory mod-
ules, 4 I/O modules, 4 I/O cache modules, as well as an additional I/O
processor. The individual elements are connected by a switch network made
from three-port switches. Each processor supports up to 128 threads that
share a single register file. Synchronization between threads is supported by
full/empty bits for every memory location.

The Horizion [TS88][KS88] is a shared memory multiprocessor based on
the earlier HEP design, that supports up to 256 processors and 512 memory
modules. The individual elements are connected by a three-dimensional torus
network made up from seven-port switches. Each processor supports up to
128 threads that share a single register file. Synchronization between threads
is supported by full/empty bits for every memory location. In contrast to
HEP, the Horizon was never implemented.

The Tera MTA (Multithreaded Architecture) [ACC+90][AKK+95] is a
shared-memory multiprocessor based on the earlier HEP and Horizon designs,
that supports up to 256 processors, 512 memory modules, 256 I/O cache
modules, as well as 256 I/O processors. The individual elements are connected
by a three-dimensional torus made from up to 4096 five-port switches. Each

24 1. Introduction

processor supports up to 128 threads and is based on a three-issue long-
instruction-word (VLIW) architecture with explicit dependence lookahead.
The Tera MTA is a commercial product, but only one system has been sold.

The MASA (Multilisp Architecture for Symbolic Applications) [HF88]
processor architecture is targeted at efficient execution of parallel LISP pro-
grams, e.g. MultiLisp. The processor is based on a load/store RISC architec-
ture that was extended to support multiple threads and tagged data. Synchro-
nization between threads is supported by full/empty bits for every memory
location.

The MAP (Multi-ALU Processor) [KDM+98] used in the MIT M-Machine
[FKD95] is based on a three-issue VLIW architecture. The Multi-ALU proces-
sor consists of three multithreaded clusters, each clusters supports up to four
threads in hardware as well as four software threads per hardware threads,
i.e. up to 16 threads in total. Processor coupling [KD92] is used for efficient
synchronization between threads.

The MediaProcessor [Han96] is targeted at multimedia applications and
supports up to five threads in hardware. The instruction set architecture is
based on a load/store RISC architecture, with additional support for group
instructions, e.g. shuffling, swizzling and permutation.

The SB-PRAM [ADK+92][BBF+97] implements the concurrent read, con-
current write (CRCW) parallel random access machine (PRAM) program-
ming model and supports up to 256 processing elements, that are connected
to the memory modules by a bidirectional butterfly network . Each process-
ing element supports up to 32 threads in hardware, each threads supports
another 32 software threads, i.e. 4096 threads in total.

Block Multithreading. Multithreaded processors based on the block in-
terleaved model execute a single thread until a context switch is triggered,
usually by an long-latency event. The context switch can be triggered either
statically or dynamically.

In the static approach, context switches are associated with specific in-
structions, i.e. a context switch is performed whenever one of these instruc-
tions is executed. These instructions can trigger a context switch either im-
plicitly or explicitly: In the former case, special context switch instructions
are added to the instruction set and inserted into the instruction stream by
the compiler. In the latter case, context switches are associated with cer-
tain groups of instructions, e.g. loads, stores, branches. The advantage of the
static approaches is the low context switch overhead, as context switches are
detected early in the pipeline, i.e. the instruction fetch stage. In the dynamic
approach, context switches are triggered by certain events, e.g. cache misses,
signals, or condition codes. As these events are detected rather late in the
pipeline, the context switch overhead is increased by the need to flush all
subsequent instructions in the pipeline.

Compared to the cycle-by-cycle interleaved model, the block interleaved
model allows single thread performance comparable to conventional proces-

1.4 Multithreading 25

sors, at the expense of increased complexity due to the traditional pipeline
as well as increased context switch overhead in the case of the dynamic ap-
proach. The following paragraphs describe several processors using block mul-
tithreading.

The Sparcle [Aga92] processor implements the APRIL [ALKK90] pro-
cessor architecture used in the MIT Alewife [ABC+95] distributed shared
memory machine. The Sparcle processor is based on the SPARC architec-
ture and was extended to support up to four threads as well as fine-grained
synchronization. Context switches are initiated if a remote cache miss or a
synchronization event is encountered and has an overhead of 14 clock cycles.

The MSPARC [MD96] processor is similar to Sparcle: The processor is
based on the SPARC architecture, supports up to four threads and performs a
context switch upon cache misses. However, the context switch overhead was
reduced to one cycle plus an additional four cycles for refilling the pipeline,
i.e. a total of five cycles.

The Rhamma [GU96][GU97] processor uses a decoupled architecture
[Smi82], i.e. separates execution and load/store units. The execution unit
is based on the DLX [HP96] architecture and performs a context switch
whenever a load, store, or branch instruction is executed, i.e. uses a static
approach. The load/store unit performs a context switch whenever an in-
struction, that is not a load or store instruction, is encountered , i.e. uses a
static approach. In addition, both units perform a context switch if operand
values are unavailable or an explicit switch instruction is encountered and a
certain condition is met, i.e use dynamic approaches as well. Both units access
the same register contexts and are connected by first-in, first-out queues to
pass threads. The Rhamma processor uses a context switch buffer to reduce
the context switch overhead of one cycle in the case of a switch due to a load
or store instruction. In all other cases, the context switch overhead is already
zero.

The MARS-M (Modular, Asynchronous, Expandable, Multithreaded Sys-
tem) [DW92] is a shared-memory heterogeneous processor that consists of a
control processor, a central processing unit, and a multi-ported memory. The
control processor supports up to eight threads and contains eight execution
units. The central processing unit uses a decoupled architecture, i.e. sepa-
rate address and execution processors. The address processor supports four
threads and contains twelve execution units, while the execution processor
supports four threads and contains ten execution units. The MARS-M archi-
tecture inspired the MTD (Multithreaded Decoupled Architecture) [DO95]
that combines simultaneous multithreading with a decoupled architecture.

The MIT J-Machine uses the MDP (Message-Driven Processor) [DFK+92]
that consists of a processor, router, as well as internal and external memory.
Each memory location is tagged by a four-bit value to support data types
and synchronization. Threads are created for every message that arrives in
the processor via the router.

26 1. Introduction

The four members of the RS64 processor family [BEKK00][SAB+98] are
based on the PowerPC architecture and are one of the first commercial mi-
croprocessors using multithreading. The processors are optimized for com-
mercial workloads, e.g. data bases, and support up to two threads. Context
is switched on misses to the first level cache, i.e. a dynamic approach.

Simultaneous Multithreading. Simultaneous Multithreading is a combi-
nation of the cycle-by-cycle and block interleaving models described above
with super-scalar instruction issue. As illustrated in Figure 1.13, a proces-
sor that uses simultaneous multithreading issues multiple instructions from
multiple threads in each cycle. Simultaneous multithreading combines ver-
tical instruction issue, i.e. filling unused cycles with instructions from other
threads, and horizontal instruction issue, i.e. filling unused instruction slots
in a cycle with instruction from other threads.

Simultaneous multithreaded processors can be implemented on top of
conventional super-scalar processors without adding too much complexity by
sharing resources between threads: First, the register file has to be enlarged to
support the additional register contexts. Second, the instruction fetch and re-
tire stages have to be changed in order to support fetch/retire of instructions
that belong to different threads. Finally, each instruction has to be tagged
with a thread specifier inside the pipeline, in order to detect and resolve
inter- and intra-thread dependencies. The changes are reported to increase
the transistor budget by less than 10 % compared to a conventional super-
scalar processor [Die99]. The following paragraphs describe several processors
using simultaneous multithreading.

Dynamic Interleaving [PW91] is one of the first approaches to simulta-
neous multithreading. Simulations based on a conventional load/store RISC
architecture with eight function units and support for up to four threads,
yielded speedups of 2.5 for the Livermoore Loops and several other programs.

The MRLP (Media Research Laboratory Processor) [HKN+92] is one of
the first approaches to simultaneous multithreading. The processor was based
on a load/store RISC architecture, extended by dedicated register files and
dispatch units for every thread. In addition, inter-thread synchronization is
supported by means of queue registers that can be used to directly pass
data from one thread to another. Simulations based on configurations of
the architecture with eight threads, six execution units, as well as one or
two load/store units, yielded speedups of 3.22 and 5.79 for a ray-tracing
application, respectively.

The SMT (Simultaneous Multithreading) processor from the University
of Washington [EEL+97] is based on an out-of-order super-scalar proces-
sor architecture. The processor consists of six integers execution units, three
floating-point execution units and supports up to eight threads. There are
dedicated program counters and return-address stacks for each thread, all
other resources are shared between threads. Thread identifiers are used to dis-
tinguish instructions that belong to different threads. Based on simulations, a

1.4 Multithreading 27

speedup of 2.5 on the SPEC92 benchmark suite was reported [TEE+95]. An
earlier version of the architecture was reported to achieve four-fold speedups,
but used an unrealistic number (32) of function units [TEL95].

The Karlsruhe Simultaneous Multithreading processor [vRU99] is a si-
multaneous multithreading processor based on the PowerPC architecture,
although a simplified instruction set is used. The architecture of the proces-
sor is designed to be scalable, i.e. does not limit the number of threads and
execution units as well as the size of the register sets and caches. Simulations
based on a processor with four threads, 64 renaming registers and two 8 KB
first-level caches on a multithreaded workload yielded an IPC of 4.2.

The Alpha 21464 [Die99] processor supports four threads, eight execution
units as well as out-of-order issue and efficient thread synchronization. Unlike
the other processors described in this section, the 21464 was a commercial
product that was expected in the 2003/2004 time frame. However, all work
on the 21464 was canceled after the Alpha architecture was discontinued.

The SMV (Simultaneous Multithreaded Vector) [EV97] processor com-
bines simultaneous multithreading with vector instructions, i.e. instructions
that operate on a large number of scalars in parallel. The proposed processor
supports up to eight threads and consists of an integer and floating-point
register file with 128 registers each, as well as four integer and two floating-
point execution units. The vector consists of a register file with 128 vector
registers and four vector executions units, supporting vector lengths up to
128 elements.

The SDSP (Superscalar Digital Signal Processor) [LB96] [GB96] combines
simultaneous multithreading with digital signal processing, emphasizing min-
imal hardware overhead: Adding simultaneous multithreading only required
changes in the instruction fetch and commit stages of the underlying digital
signal processor. Based on simulations, speedups between 20 % and 50 % are
reported by using up to four threads.

The MCMS (Multiple Context Multithreaded Superscalar) [LW00] pro-
cessor architecture is similar to the SMT architecture from the University
of Washington, but differs in implementation details, most notably synchro-
nization between threads. The architecture uses separate register files and
reorder buffers, instruction fetch is restricted to a single thread in each cycle.
Based on simulations, a four-thread MCMS architecture achieves a speedup
of 1.6 on the SPLASH benchmarks.

The MDA (Multithreaded Decoupled Architecture) [PG99] processor ar-
chitecture combines simultaneous multithreading with a decoupled architec-
ture, i.e. separates execution and load/store units. The simulated processor
consists of four execution and four load/store execution units and supports
up to eight threads. There are dedicated fetch and dispatch stages, register
files and instruction and address queues for each thread, only the issue logic,
execution units and caches are shared between threads.

28 1. Introduction

Summary. Most of the multithreaded processor architectures presented
above are research prototypes that have never been implemented or commer-
cialized. Up to now, the only commercial multithreaded processors that are
the Tera MTA and the IBM RS64 processor family: The Tera MTA is a super-
computer implemented in Gallium-Arsenide with a single installed system.
The RS64 family of processors supports only two threads and is optimized
for commercial applications. In addition, these processors are available only
in the form of the IBM pSeries server, i.e. are not commercial off-the-shelf
products. As the majority of systems still uses conventional single-threaded
processors, software multithreading as described in the next section are widely
used.

1.4.2 Software Multithreading

Due to the numerous tradeoffs between overhead and functionality, the design
space of software multithreading is rather large. Early multithreaded systems
were implemented in the operating system kernel, e.g. Mach [ABB+86]. User-
level implementations are the current state of the art, since moving from
user to kernel space and vice versa significantly increases the context switch
overhead. Note that some operating systems, e.g. Solaris, use a combination
of kernel- and user-level threads, where several user-level threads are executed
on the same kernel thread [SG98].

In contrast to hardware implementations, the number and type of the in-
dividual threads in software implementations differ significantly: The number
of threads supported by software multithreaded systems is usually unlimited,
i.e. only limited by resource constraints. However, the overhead associated
with thread management usually increases with the number of threads, hence
the feasible number of threads is limited. Based on type, the threads can
be grouped into three classes: lightweight threads, very lightweight threads
and run-to-completion threads. Lightweight and very lightweight threads are
general in the sense that their capabilities are similar to traditional pro-
cesses, with the exception of shared resources, e.g. address space, file descrip-
tors. Run-to-completion threads can not block and can not be preempted,
i.e. context switches are statically incorporated into the thread. However,
these restrictions significantly reduce the overhead associated with run-to-
completion threads. Note that lightweight and very lightweight threads stem
from research in operating systems, while run-to-completion threads stem
from research in programming languages.

The most notable difference between software multithreading systems is
the type of address space supported by the thread system, i.e. shared or
distributed. In the former case, all threads share the same address space,
while some threads may reside in a different address space, i.e. on a different
processor, in the latter case. Both alternatives are surveyed in the following
sections.

1.4 Multithreading 29

Shared Address Space. C Threads [CD88] is a user-level thread package
that enables parallel programming using the C language on the MACH op-
erating system. The library can be built on top of coroutines, threads, or
processes, depending on compile-time options. The programming model sup-
ports forking and joining of threads as well as mutexes and condition variables
for synchronization.

PCR Threads [WDH89] is a user-level thread package that distributes
the individual threads to multiple processes, instead of a single process as
used by most other thread packages. The advantage of this approach is that
only a subset of the threads are blocked whenever a process is blocked, i.e.
those threads that were assigned to the corresponding process. Note that the
processes share the same address space, hence the operating system must
support this feature.

First-Class User-Level Threads [MSLM91] are part of the Psyche oper-
ating system that supports efficient execution of user-level threads. This is
achieved by providing a shared memory for asynchronous communication
between user- and kernel-level and a scheduling strategy that allows syn-
chronization of user- and kernel-level scheduling. Note that Psyche is not
restricted to a specific user-level thread package, several such packages have
been modified to take advantage of these features.

Osprey [PE96] is a very lightweight thread package that increases effi-
ciency by separating the specification of a thread from its context. As the
corresponding data structure is much smaller than the context of a thread,
these threads can be efficiently managed, especially if the number of threads
is large. Note that the threads in Osprey are general, i.e. are not restricted
in any way.

POSIX Threads [But97] is a standardized thread package that is similar to
C threads described above. Although POSIX threads are usually implemented
as a user-level library [Mue93], there are some kernel-level implementations
[Alf94].

Presto [BLL88] is a programming system for object-oriented parallel pro-
gramming based on the C++ [Str97] language. The corresponding runtime
system supports threads as objects for parallel execution as well as locks and
condition variables for synchronization.

AWESIME (A Widely Extensible Simulation Environment) [Gru91] is an
object-oriented library for parallel programming based on the C++ language,
similar to Presto described above. The notable difference is the support for
global time ordering for the execution of threads, which is useful for simula-
tions, e.g. circuit simulations.

The Chorus [EZ93] system is a runtime system that supports the chore
programming model. A chore consists of a collection of atoms, i.e. sequential
tasks that represent multiple applications of the same function. Execution
ordering between atoms in the same chore is supported. The runtime system

30 1. Introduction

uses several Presto threads per processor, that execute the individual chores
from a work-heap. Note that only one of the threads is active at any time.

Filaments [LFA96] is a user-level thread package that supports differ-
ent types of threads, i.e. run-to-completion threads, iterative and fork/join
threads. Filaments supports stateless threads without a private stack, small
thread descriptors, and scheduling for data locality.

The TAM (Threaded Abstract Machine) [CSS+91] is a virtual machine
that supports efficient management of processor resources and thread schedul-
ing. The virtual machine is the target of a parallelizing compiler, the indi-
vidual threads are run-to-completion.

Fast Threads [ALL89] is a user-level thread package that was used to
evaluate several thread management and locking alternatives. The package
itself is similar to Presto, but is claimed to be an order of magnitude faster.
The Fast Threads package was later modified to run on top of scheduler
activations [ABLL92] instead of kernel-level threads. Scheduler activations is
a technique for efficient scheduling of user-level threads, similar to approach
in the Psyche operating system.

A user-level thread package that supports run-to-completion threads and
scheduling for cache locality is described in [PEA+96]. The scheduling strat-
egy uses several address hints associated with each thread and computes an
execution ordering that minimizes thread misses.

The Uniform system [TC88] is a runtime system for shared memory ma-
chines that uses a one-to-one mapping of processes to processors to execute
individual threads. These threads are created by task generators, i.e. sev-
eral threads are created at once and are restricted to the run-to-completion
model.

Distributed Address Space. NewThreads [FM92] is a user-level runtime
system for distributed memory machines that supports multiple threads per
processor. The thread subsystem is similar to scheduler activations described
above, threads on the same or different processors communicate via message-
passing. Note that these operations block the corresponding thread.

Chant [HCM94] is a user-level thread package for distributed memory ma-
chines that is targeted at latency tolerance. The individual threads commu-
nicate via port-to-port or remote procedure calls, the programming interface
is an extension of POSIX threads with added support to distinguish threads
on different processors.

Rthreads [DZU98b][DZU98a] is a software distributed shared memory sys-
tem based on multithreading. Rthreads provides primitives that are similar
to the primitives provided by POSIX threads, such that programs written
for POSIX threads can be transformed automatically into programs using
Rthreads. In addition, both multithreading systems can be mixed in the
same program. In contrast to POSIX threads, the Rthreads system sup-
ports distributed memory, e.g. a cluster of workstations. All global variables
are shared automatically, pointers to such variables are not supported. The

1.4 Multithreading 31

Rthreads system consists of a precompiler that transforms the source code
of programs using POSIX threads, and a small library that implements the
individual primitives. Rthreads primitives support consistency for synchro-
nization primitives, there is no restriction on the ordering of normal accesses.
In order to ensure sequential consistency, read and write accesses to global
variables have to be performed using explicit primitives. These primitives
are buffered until a subsequent flush primitive is encountered, afterwards the
affected data is transfered in a single operation. The Rthreads system has
been implemented on a cluster of workstations running the AIX operating
system. Experimental results show that the Rthreads system generates only a
slight overhead compared to the PVM system and is superior to the Adsmith
distributed shared memory systems.

UPVM [KCO+94] is a user-level thread package targeted at PVM (Par-
allel Virtual Machine) applications. Each thread uses private data and heap
spaces in contrast to other user-level thread packages. The programming
model is therefore similar to traditional processes, but in contrast to pro-
cesses, these data and heap spaces are not protected from the other threads.

Distributed Filaments [FLA94] is an extension of filaments that is targeted
at networks of workstations. The distributed filaments packages consists of a
multithreaded distributed shared memory system, as well as communication
and synchronization primitives.

Cilk [BJK+96] is a runtime system for parallel programming on dis-
tributed memory machines and networks of workstations based on the C
language. A Cilk program is a directed acyclic graph, where the nodes repre-
sent the individual threads and a set of threads comprises a procedure. The
individual threads are not general, i.e. use the run-to-completion model. Cilk
uses a work-stealing approach, i.e. supports migration of threads between
processors.

VISA [HB93] is a runtime system for functional languages on distributed
memory machines that employs multithreading to tolerate the latency of
remote references. The runtime system uses the standard setjmp() and
longjpm() routines to implement context switches, hence threads have to
be resumed in reverse order.

Virtual Processors [NS97] is a runtime system that provides a virtual
machine abstraction for fine-grained parallel code. The runtime system is
based on multithreading with very lightweight threads. The approach uses
communication-based scheduling, tight integration between communication
and scheduling, small thread descriptors, and a zero-copy strategy for internal
communication.

1.4.3 Summary

Although a large number of software multithreading systems exits, none was
specifically targeted at latency tolerance in massively parallel processors. As

32 1. Introduction

these machines usually do not support a shared memory model, such a multi-
threading system must support a distributed memory model. Unfortunately,
most software multithreading systems support only the shared memory sys-
tem. Although there are several multithreading systems that support a dis-
tributed memory model, these systems were not targeted at latency tolerance
and do not support the corresponding small grainsizes. Chapter 2 describes
the basic concept of emulated multithreading, a software multithreading sys-
tem that supports sufficiently small grain sizes to enable latency tolerance in
massively parallel processors.

1.5 Outline

The remainder of this work consists of six chapters and two appendices that
are organized as follows: Chapter 2 derives the basic features of a software
multithreading system that is designed to enable latency tolerance for remote
memory accesses in massively parallel processors. This approach is called em-
ulated multithreading. The current implementation of emulated multithread-
ing, especially the algorithms used to implement this technique, are described
in Chapter 3.

Emulated multithreading is evaluated on two different platforms: The
Compaq XP1000 workstation, a single-processor system based on the Alpha
architecture, as well as the Cray T3E, a massively parallel processor that is
based on the Alpha architecture. The choice of these systems was influenced
by the properties of the Alpha architecture, which is well suited for emulated
multithreading for reasons which are outlined in Section 2.4. A description
of these platforms, as well as results of the evaluation on a set of bench-
marks are covered in Chapters 5 and 6, respectively. The evaluation uses six
different benchmarks from a popular parallel benchmark suite, the choice of
benchmarks as well as a detailed description of the individual benchmarks
can be found in Chapter 4. Chapter 7 summarizes the individual chapters
as well as the results of the evaluation on both platforms and provides an
outlook into the future directions of emulated multithreading. The Alpha
architecture as well as implementations of this architecture are described in
Appendix A. Appendix B contains a very detailed programming guide to the
E-registers of the Cray T3E and includes information that is not publicly
available elsewhere.

2. Emulated Multithreading

The previous chapter has identified the latency of accesses to remote mem-
ory as a major bottleneck in current massively parallel processors. Emulated
multithreading is designed to tolerate this latency, thereby increasing perfor-
mance. This goal is achieved by using a combination of software multithread-
ing and split-transaction communication routines on massively parallel pro-
cessors. The current chapter covers the implementation-independent aspects
of emulated multithreading, while Chapter 3 describes the implementation-
specific issues.

Section 2.1 explains the rationale behind the preferences for the funda-
mental design, the basic concept of emulated multithreading is described in
Section 2.2 based on these preferences. The interaction between emulated
multithreading and the underlying processor architecture is described in Sec-
tion 2.3. Section 2.4 surveys current processor architectures and evaluates
each architecture with respect to emulated multithreading.

2.1 Design Preferences

This section explains the rationale behind the preferences for the design of
emulated multithreading. A simple model for multithreaded processors is
used to explain the individual design choices. This well-known model is in-
troduced in Section 2.1.1. Sections 2.1.2 and 2.1.3 cover the context-switch
strategy and the techniques used to reduce context switch overhead, respec-
tively.

2.1.1 Multithreaded Processor Model

A simple model for multithreaded processors is used to explain the individ-
ual preferences for the design. This model is widely used in literature to ex-
plain the basic issues of multithreaded processors. The model is not accurate
enough to allow detailed performance predictions, other models provide much
more detail and are better suited for this task, e.g. [SBCvE90][Aga92][BL96]
[VA00]. However, the model is detailed enough for the following discussion
regarding the fundamental design choices for emulated multithreading.

The model has four parameters, which are supposed to be constant:

34 2. Emulated Multithreading

Fig. 2.1. Processor Utilization using a Model of Multithreading

L

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

CRCR

Thread 1 Thread 2

L

CR

Thread 1

CR RCRCR

Thread 1 Thread 2 Thread N Thread 1

N The number of threads that are executed by the processor.
R The run-length, i.e. the number of cycles between long-latency events.
L The duration of the long-latency events in cycles.
C The number of cycles required to switch to another thread.

The model assumes that a thread performs useful work for R cycles, then
encounters a long-latency event, and switches execution to another thread,
i.e. it uses a block-interleaved approach.

The processor utilization u, i.e. the ratio of useful work performed in
reference to total execution time, can be determined by distinguishing two
different cases as described in the following paragraphs.

In the first case, depicted in the upper part of Figure 2.1, the number of
threads N is large enough to hide the long-latency event completely. In this
case, the processor utilization u is given by

u =
R

R+ C
=

1
1 + C

R

. (2.1)

The number of threads required to completely hide the long-latency events
can be determined as follows: The run-length of N−1 threads and N context
switches must be larger than the duration of the long-latency event, i.e.

(N − 1)R+NC ≥ L⇔ N =
R+ L

R+ C
. (2.2)

Note that equation 2.1 depends only on R and C, i.e. the context switch time
C governs the upper bound on processor utilization, since the run-length R
is application-dependent.

In the second case, depicted in the lower part of Figure 2.1, the number of
threads is too small to hide the long-latency events completely. In this case,
the processor utilization u is given by

u =
NR

R+ L
=

1
1 + L

R

·N . (2.3)

2.1 Design Preferences 35

Fig. 2.2. Processor Utilization for R=100 and L=1000

0 2 4 6 8 10 12 14 16 18

Number of Threads

0

0.2

0.4

0.6

0.8

1

Pr
oc

es
so

r
U

til
iz

at
io

n

C=1
C=10
C=100

since N threads perform useful work for R cycles each during a total of R+L
cycles. Note that equation 2.3 is linear in the number of threads N .

The impact of context switch time on processor utilization is depicted
in Fig. 2.2. This figure uses the equations derived above and assumes that
R=100, L=1000, and C=1, 10, 100. Since the upper bound on processor
utilization is governed by context switch time, the reduction of this time
is essential for achieving good performance. As emulated multithreading is
implemented in software, reducing the context switch time without additional
hardware support is one of the key challenges. Another observation is the need
for split-transaction communications, i.e. the ability to perform other work
after initializing a remote access. Unfortunately, the implementation of such
protocols is not straightforward in current massively parallel processors.

2.1.2 Context Switch Strategies

The model of multithreaded processors which has been introduced in the
previous section assumes that context is switched to another thread after
a long-latency event is encountered, thereby trying to tolerate the latency
of the event. Emulated multithreading is targeted at tolerating latencies in
massively parallel processors, hence the model corresponds with this intention
of emulated multithreading. The model makes no assumptions about the type
of events and the scheduling strategy. Therefore two decisions have to be made
regarding the context switch strategy: The type of events that cause a context
switch as well as the scheduling strategy. The next paragraphs address these
questions.

36 2. Emulated Multithreading

The selected events should have two properties: First, the latency of the
event should be at least two times larger than the context switch overhead.
Otherwise it is impossible to tolerate the latency of the event with useful
work, since the context switch itself is not considered useful work. Second,
the occurrence of the event should be identifiable in an automated fashion
with reasonable accuracy. Otherwise the context switch is performed in the
absence of the event, i.e. the total overhead is increased although no benefits
are possible.

The following long-latency events arise in current microprocessors and
massively parallel processors: complex instructions, misses at different levels
of the local memory hierarchy, and remote memory accesses. Another type
of long-latency events, i.e. I/O requests, is not considered, since these events
are usually handled by calls to the operating system. These calls are atomic
in most cases, i.e. it is not possible to split initiation and completion of I/O
requests, which is a prerequisite for latency tolerance.

Complex instructions are easily identified by inspecting the assembler
source, but the latency of these instructions is on the order of tens of cycles.
Since emulated multithreading is implemented in software, it is unlikely that
the context switch overhead is small enough to make switching on these events
feasible. The same reasoning holds for cache misses that hit in other caches:
These misses have a latency on the order of tens of cycles. Memory accesses
that miss in all caches, i.e. access local memory, are more interesting due to
their higher latency on the order of hundreds of cycles. However, it is very
hard to determine in advance, whether a given memory access instruction
will miss in all caches. Profiling information gathered from previous runs of
the program can provide hints in this regard, but requires a tight integration
with the compiler. The use of profiling information was estimated to be too
complex for the initial implementation of emulated multithreading. Therefore
the initial implementation does not switch on these events. This capability
can be retro-fitted once the necessary level of compiler integration is achieved.
Section 3.8 discusses this and other benefits of tighter compiler integration.

Apart from profiling, informing memory instructions are able to iden-
tify memory accesses, that miss in all caches at run time [HmMS98]. These
instructions perform an additional operation, e.g. a branch, if the memory ac-
cess misses in specified levels of the memory hierarchy. As already mentioned
in the previous chapter, a software multithreaded system based on informing
memory instructions is feasible and leads to encouraging results: Even if a
full context switch is performed on every miss in the second-level cache, the
simulated results show performance improvements on the order of 10 % to
23 % for several benchmarks [MR99]. Unfortunately, informing memory in-
structions have been implemented neither in commercial microprocessors nor
in research prototypes.

In the case of massively parallel processors, accesses to remote memory
incur a latency on the order of thousands of cycles. Since these accesses are

2.1 Design Preferences 37

usually performed using some form of communication library, e.g. shmem
[Cra98b], MPI [SOHL+98][GHLL+98], or PVM [GBD+94], these accesses
can be identified easily by inspecting the assembler code and looking for calls
to certain library routines. Note that some of these routines will access local
memory, but the majority of accesses will be to remote memory: If every
operation is guaranteed to access only local memory, the corresponding call
should be replaced by a normal load or store instruction, i.e. the application
should be changed.

In conclusion, emulated multithreading switches contexts on accesses to
remote memory. Future implementations might use profiling to enable switch-
ing on cache misses as well. As the latency of remote memory accesses is on
the order of thousands of cycles, the context switch overhead might seem
insignificant. However, it will be necessary to perform context switches even
in the absence of long-latency events, as will be shown later. The context
switch overhead is therefore important and should be kept small as much as
possible.

2.1.3 Context Switch Overhead

The overhead associated with a context switch is important for the overall
performance of emulated multithreading. This section derives ways to reduce
the context switch overhead. This is accomplished by looking at the different
elements of a context switch and optimizing each element for performance.
A context switch consists of storing the context of the current thread to
memory, scheduling the next thread and restoring the context of that thread
from memory. The next paragraph derives a suitable scheduling strategy as
well as optimizations of the save and restore operations of thread contexts.

There are many different scheduling algorithms, an introduction can be
found in [SG98]. The most important scheduling strategies are:

• First-Come, First-Served (FCFS) scheduling is the simplest scheduling al-
gorithm: The first thread that requests the processor is executed. This
scheduling strategy is non-preemptive, i.e. the currently executing thread
can not be interrupted, but has to release the processor voluntarily instead.
First-come, First-Served scheduling is easily implemented using a first-in,
first-out queue.
• Round-Robin (RR) scheduling is similar to FCFS scheduling, but adds

preemptiveness. Every thread is allocated a time slice, context is switched
either if the thread releases the processor voluntarily, or if the correspond-
ing time slice has elapsed. This scheduling strategy can be implemented
with a first-in, first-out queue and timer interrupts.
• Shortest-Job-First (SJF) scheduling assigns the processor to the thread

with the shortest request for processor time. This scheduling algorithm
is proven to be optimal [SG98], but the length of the individual pro-
cessor requests is usually unknown in advance and has to be estimated.

38 2. Emulated Multithreading

Shortest-Job-First scheduling can be implemented in a preemptive or non-
preemptive fashion.
• Priority scheduling assigns a priority to each thread and allocates the

processor to the thread with the highest priority. First-come, first-served
scheduling is used for threads that have the same priority. Priority schedul-
ing can be implemented in a preemptive and a non-preemptive fashion.

In order to reduce the context switch overhead, the simplest scheduling
algorithm, i.e. first-come, first-served scheduling, is chosen for emulated mul-
tithreading. This algorithm is easily implemented by using a circular queue:
The scheduling algorithm simply traverses the queue until all threads have
finished execution. Note that response time is no criterion for the purpose of
tolerating long-latency events: Even if a thread uses the processor for a pro-
longed period of time, the thread still performs useful work. The larger the
time spent performing useful work, the more latency for the other threads
can be tolerated. Preemptive scheduling is therefore not necessary for em-
ulated multithreading. Hence first-come, first-served scheduling was chosen
over round-robin scheduling. The other scheduling algorithms are too com-
plex for the purposes of emulated multithreading, where the running time of
the scheduling algorithm is the most important characteristic.

As already mentioned above, a context switch needs to store the context
of the current thread and restore the context of the next thread. The context
of a thread consists of the registers that are defined by the underlying pro-
cessor architecture, as well as some management information. Since current
RISC architectures usually define 64 general-purpose as well as some special
registers, the size of the context is dominated by the size of the register set.
The latency of the save and restore operation increases with the size of the
context, since every register has to be saved or restored by a separate load
or store instruction, respectively.

The number of general-purpose and special registers is specified by the
underlying processor architecture and cannot be changed, therefore it is im-
possible to reduce the size of the context. However, it is usually not necessary
to save and restore the whole context of a thread. Instead only the necessary
parts of the context have to be saved and restored [Wal86][LH86][GN96]. For
example, programs that perform mostly integer operations will seldom use
any of the floating-point registers, thereby providing ample opportunity to
reduce the number of save and restore instructions.

In order to exploit this opportunity, two problems have to be solved:
The first problem is the identification of those registers, that are in use at
a given program location. The second problem is the context switch routine
itself, which must be able to save and restore only those registers, that have
previously been identified to be in use.

Recall that emulated multithreading uses non-preemptive scheduling, i.e.
a thread executes until it voluntarily releases the processor. Regarding the
first problem, the identification of such registers can be restricted to specific

2.2 Basic Concept 39

locations. Note that the number and location of used registers is already
known at compile-time: The compiler gathers this information via data-flow
algorithms prior to register allocation. It is therefore possible to determine
the number and location of the used registers at compile-time and transfer
this information to the context switch routine, e.g. via a register mask. The
context switch then uses the register mask to determine which registers have
to be saved and restored. However, a generic context switch routine that han-
dles all possible cases would be fairly complex, e.g. contain lots of branches,
thereby consuming some or all of the saved overhead.

In order to keep the context switch routine simple, it is possible to use
several context switch routines that are tailored to each context switch loca-
tion. The tailored context switch routines have to be called at the start and
end of each instruction block, hence corresponding calls have to be inserted at
these locations. This approach allows the individual context switch routines
to be tailored to the individual context switches, at the expense of code size
and an increased number of calls. Note that the last problem can be solved by
integrating the tailored context switch routine in the program code. One the
one hand, this approach further increases code size as the reuse of the context
switch routines is no longer possible. On the other hand, this approach no
longer requires expensive calls at the start and end of each instruction block.
After merging the program code with the tailored context switch routines,
even further optimizations are possible by spreading the context switch code
along the instruction block, possibly filling empty instruction slots.

Due to the large numbers of registers in current RISC architectures, it
is possible to partition the register set between a small number of threads
[WW93]. If each thread uses only the registers in the corresponding partition,
the save and restore of these registers upon context switch can be omitted.
The major drawbacks of this scheme are the increased number of register
spills due to the smaller number of registers in each partition, and calls to
routines that do not use emulated multithreading. These routines adhere to
the standard calling conventions and can therefore not be restricted to one
of the partitions, hence all registers have to be saved before and restored
after the call, respectively. Otherwise the routine would destroy the contents
of registers that belong to another partition, i.e. another thread. Note that
every thread has to execute different versions of the program tailored to
the corresponding partition, thus further increasing code size. Since register
partitioning has some drawbacks and allows only a small number of threads,
it will be optional for emulated multithreading.

2.2 Basic Concept

The previous section explains the preferences for the design of emulated mul-
tithreading. Based on these preferences, this section covers the basic concept
of emulated multithreading. Section 2.2.1 describes the assumptions made

40 2. Emulated Multithreading

about programs that are transformed to use emulated multithreading. Section
2.2.2 discusses the data structures that are used by emulated multithreading,
while Section 2.2.4 describes the conversion process that merges application
and context switch code. The functionality of the emulation library that sup-
ports emulated multithreading is covered in Section 2.2.3.

2.2.1 Assumptions

In order to utilize emulated multithreading, several assumptions are made:
about the programs: First, the programs must already support multithread-
ing, e.g. by using POSIX threads. In the case of parallel programs, all accesses
to remote memory and synchronization operations must use explicit shared
memory primitives, an extension to message-passing primitives is not yet im-
plemented. As the emulation library provides primitives that are similar to
the primitives provided by POSIX threads, as well as shared memory primi-
tives, programs that meet these conditions can be automatically converted to
use emulated multithreading, e.g. by using a precompiler. Such a precompiler
is feasible, as similar programs already exists, e.g. as part of the Rthreads
package [DZU98b]. Second, the high-level language source code of the con-
verted programs is assumed to be available. The conversion process is based
on the assembler sources that are generated from the high-level language
sources by the compiler. Note that it is possible to perform the modifica-
tions described above on object files or executables, e.g. by using the EEL
library [LS95] or the OM [SW93] and ATOM [SE94] tools. However, such an
approach would unnecessarily add complexity to the conversion process. Sec-
ond, the converted program must not be self-modifying, otherwise the code
conversion is likely to break the semantics of the program. However, this is
not a serious restriction, since self-modifying code is generally considered as
unfavorable.

2.2.2 Data Structures

Emulated multithreading uses two major data structures: the thread control
block and the thread descriptor. The thread control block is used to manage a
group of threads, while the thread descriptor contains the context of a thread
as well as some management information.

The thread control block contains the following elements:

• The ActiveHead and ActiveTail pointers contain the addresses of the
thread descriptors at the head and tail of the active thread list, respec-
tively. The active thread list is a circular, doubly-linked list that contains
the thread descriptors for all threads that are currently executed.
• The IdleHead and IdleTail pointers contain the addresses of the thread

descriptors at the head and tail of the inactive thread list, respectively.
The inactive thread list contains the thread descriptors for all threads that
are currently suspended, i.e. during a barrier synchronization.

2.2 Basic Concept 41

The thread descriptor contains the following elements:

• The NextThread and PreviousThread pointers are used to insert the thread
descriptor into a doubly-linked list of thread descriptors.
• The ThreadCtrl pointer contains the address of the thread control block

that manages the corresponding group of threads.
• The Number word contains the unique number that is assigned to each

thread.
• The Status word contains the current call-depth of the thread.
• The PC pointer contains the address of the instruction block that is to be

executed upon the next invocation of the thread.
• The IReg array stores the contents of the general-purpose integer registers,

zero source and sink registers are not stored explicitly.
• The FReg array stores the contents of the general-purpose floating-point

registers, zero source and sink registers are not stored explicitly.

The elements described above are mandatory for emulated multithread-
ing. Implementations may need to add other implementation-specific ele-
ments to the thread descriptor data structure. The size s of the thread de-
scriptor is given by

s = 4 · sizeof(long) + 2 · sizeof(int) + nint · sizeof(long) + nfp · sizeof(double)

where nint and nfp are the number of general-purpose integer and floating-
point registers, respectively, minus the corresponding number of zero source
and sink registers. For example, the Alpha architecture defines 32 integer as
well as 32 floating-point registers and uses one zero source and sink register
for each register type, i.e nint = nfp = 31. Therefore the thread descriptor for
the Alpha architecture consumes 536 bytes. Note that the data structure may
be padded in order to align the individual thread descriptors on cache-line
boundaries to avoid conflict misses.

Apart from the two data structures described above, emulated multi-
threading uses several other data structures: The thread attribute data struc-
ture is used to specify attributes for a group of threads. The thread arguments
structure is used to specify the initial arguments for a group of threads. Both
data structures are passed to the thread creation routine.

2.2.3 Emulation Library

Emulated multithreading uses a small support library that is linked to the
converted application. This emulation library contains routines for thread
initialization, thread execution as well as communication and synchronization
routines. Thread initialization routines are used to initialize and manage the
thread arguments and thread attribute data structures as well as creating
the individual threads. The thread creation routine takes as arguments the
thread attribute and arguments structures as well as the entry point for the

42 2. Emulated Multithreading

threads. It creates and initializes a thread control block as well as thread
descriptors for all threads. The returned thread control block is subsequently
passed to the thread execution routine to start the execution of threads.

The thread execution routine executes the individual threads using first-
come, first-served scheduling as described in Section 2.1.3. The routine basi-
cally consists of a single loop and operates in the following way:

1. Upon entry, the FramePtr register is set to the first thread in the circular
list of active threads specified by the thread control block.

2. The program counter is loaded from the current thread descriptor and
stored in the ThreadPC register.

3. A call to the address given by the ThreadPC register is performed to
execute the corresponding instruction block. The call sets the ReturnPC
register to the next instruction, i.e. the fourth step.

4. After the instruction block has finished execution, it returns to the ad-
dress given by the ReturnPC register, and updates the ThreadPC register
accordingly. The ReturnPC register is subsequently saved to the current
thread descriptor.

5. The status of the current thread is inspected. If the current call depth
is zero, i.e. the thread has completed, the thread descriptor is removed
from the active list.

6. The FramePtr is loaded from the NextThread field of the current thread
descriptor, i.e. points to the next thread. If the updated FramePtr is
non-zero, return to step two.

The thread execution routine consists of a single loop and uses three reg-
isters: the ThreadPC, ReturnPC and FramePtr registers, respectively. Since
the loop is iterated once for every context switch, it should be compact and
fast. Fortunately, this loop can be implemented in less than 10 instructions
for most RISC architectures. Note that Section 2.3 includes a discussion of
performance issues regarding the thread execution routine.

The communication routines are largely platform-specific and provide
split-transaction memory accesses. The synchronization routines are platform-
specific as well and provide barriers and locks. These routines are described
in Chapter 3.

2.2.4 Code Conversion

As already mentioned, emulated multithreading divides the application code
into instruction blocks. These blocks are merged with context switch code,
that is tailored to each instruction block, and transformed into subroutines.
This section describes the conversion process in more detail. Note that the
following remarks make no assumptions about the size and format of the in-
struction block. The process of selecting instruction blocks is implementation-
specific and therefore covered in Chapter 3. The following paragraphs describe
the general conversion process as well as some important special cases.

2.2 Basic Concept 43

Given an instruction block B, which is assumed to be identical to a basic
block for the sake of the following discussion, the block is transformed as
follows: For each instruction I in the current block, the registers that are
used by I are identified. If Instruction I is the first instruction in the current
instruction block to use a register R, allocate a new register R’, otherwise use
the previously allocated register R’. In addition, if instruction I reads register
R, insert a restore instruction before instruction I. The restore instruction
loads register R’ with the contents of register R as stored in the descriptor
of the current thread. The restore instruction can be omitted if register R
is only written by instruction I, as the loaded value would be immediately
discarded by executing instruction I.

If instruction I is the last instruction in the current instruction block to
use a register R, a save instruction is inserted behind instruction I and register
R’ that was previously allocated to register R is freed. The save instruction
stores the contents of register R’ to register R in the descriptor of the current
thread. The save instruction can be omitted if register R’ is not modified by
any of the instructions in the current instruction block.

After parsing all instructions and modifying the individual instructions
according to the rules above, a return instruction is appended to the instruct-
ion block. This return instruction is used to return execution to the thread
execution routine after execution of the instruction block has completed.

The conversion process is illustrated by the following example, an in-
struction block that consists of three instructions. The example is taken from
a RISC architecture with a three-address instruction format: The first two
register operands specify the source registers, the last register operand spec-
ifies the target register.

addq r1, r2, r3
subq r4, r5, r6
addq r3, r6, r3

This instruction block is converted as follows: The first addq instruction
reads source registers r1 and r2 and writes the result to destination register
r3. As the addq instruction is the first instruction in the instruction block,
all three registers are used for the first time and are allocated to registers r1’,
r2’ and r3’. Since registers r1 and r2 are read by the addq instruction, two
restore instructions are inserted before the addq instruction. Register r3 does
not need to be restored, as it is initialized by the addq instruction. The first
addq instruction is the last instruction to use registers r1 and r2, but those
registers are not modified by any of the instructions in the instruction block,
hence no save instructions need to be inserted and registers r1’ and r2’ are
freed. Register r3’ does not need to be saved, since it is used later by other
instructions in the instruction block.

The subq instruction reads source registers r4 and r5 and writes the result
to destination register r6. Although the subq instruction is not the first in-
struction in the instruction block, all three registers are used for the first time

44 2. Emulated Multithreading

and are allocated to registers r1’, r2’ and r4’. Since registers r4 and r5 are
read by the addq instruction, two restore instructions are inserted before the
subq instruction. Register r6 does not need to be restored, as it is initialized
by the addq instruction. The subq instruction is the last instruction to use
registers r4, r5, but those registers are not modified by any of the instructions
in the instruction block, hence no save instructions have to be inserted and
the registers r1’ and r2’ are freed. Register r6 does not need to be saved, since
it is used later by other instructions in the instruction block.

The second addq instruction reads registers r3 and r6 and writes the result
to register r3. All registers used by this instruction have been used by previous
instructions, hence there is no need to insert any restore operations or allocate
any registers. However, the second addq instruction is the last instruction in
the instruction block and contains the last reference to registers r3 and r6.
As both registers have been modified by this or other instructions in the
instruction block, two save instructions have to be inserted after the second
addq instruction and the registers r3’ and r4’ are freed afterwards. The return
instruction is appended to the instruction block.

The converted instruction block is given below. The ldq Rx. #O(Ry) in-
structions load the contents of the memory location given by Ry + O into the
destination register Rx.

ldq r1’, #Ireg[r1](FramePtr)
ldq r2’, #Ireg[r2](FramePtr)
addq r1’, r2’, r3’
ldq r1’, #Ireg[r4](FramePtr)
ldq r2’, #Ireg[r5](FramePtr)
subq r1’, r2’, r4’
addq r3’, r4’, r3’
stq r3’, #Ireg[r3](FramePtr)
stq r4’, #Ireg[r6](FramePtr)
ret ThreadPC, (ReturnPC)

The above description of the conversion process covers only non-control-
flow instructions, i.e. instructions that do not change the flow of the program.
There are three different types of control flow instructions: conditional, un-
conditional, and indirect branches. Recall that instruction blocks are identical
to basic blocks for the sake of this discussion. As branches end basic blocks, a
branch is always the last instruction in an instruction block. Hence branches
are replaced by a sequence of instructions that calculate the address of the
updated program counter, store this address in the ReturnPC register and
return to the thread execution routine. For example, the conditional branch
beq r1, target that performs a branch if register r1 is equal to zero, would
be replaced by the following instruction sequence:

ldq r1’, #Ireg[r1](FramePtr)
lda r2’ target

2.3 Performance Issues 45

lda ThreadPC, next
cmoveq r1’, r2’, ThreadPC
ret r31, (ReturnPC)
next:

The first ldq instruction restores the contents of register r1 from the thread
descriptor to register r1’, while the first lda instruction loads the target con-
stant into register r2’. The second lda instruction loads the ThreadPC register
with the address of the instruction that follows the original branch instruct-
ion, i.e. the instruction marked with the next label. The cmoveq instruction
checks whether r1’ is equal to zero and moves the contents of register r2’
to register ThreadPC in that case, i.e. performs a conditional move. If r1’
is equal to zero, the ThreadPC register contains the target constant, the
address of the next instruction otherwise. The ret instruction performs an
indirect branch to the location given in the ReturnPC register, i.e. the fourth
step in the thread execution routine. Recall that the thread execution routine
automatically stores the contents of the ReturnPC register to the PC field of
the current thread descriptor.

Procedure calls are handled differently, depending on the type of the called
procedure. If the called procedure (callee) does not use emulated multithread-
ing, i.e. an external call, the procedure call instruction is treated like a nor-
mal instruction and converted accordingly. The only difference to a normal
instruction is the register assignment, which has to follow the calling con-
ventions of the operating system. This allows the call to be executed in the
normal way, i.e. no modifications to the callee are necessary. As a conse-
quence, emulated multithreading can be applied to selected procedures only,
handling other procedures like external calls. Therefore the overhead of em-
ulated multithreading can be reduced by applying emulated multithreading
only to those procedures that may benefit from the conversion, e.g. proce-
dures that access remote memory.

If the callee uses emulated multithreading, the call is the last instruction
in the instruction stream by definition. Similar to branches, the subroutine
call is therefore replaced by a sequence of instructions that store the address
of the callee in the ReturnPC register, increment the call depth field of the
current thread descriptor, and return to the thread execution routine.

2.3 Performance Issues

As mentioned in the previous section, emulated multithreading requires mod-
ifications of the original source code. The possible impact of these modifica-
tions on the performance, i.e. the overhead associated with emulated multi-
threading, is discussed in the current section. The discussion emphasizes the
interaction of emulated multithreading with the characteristics of modern mi-

46 2. Emulated Multithreading

croprocessors and addresses several issues: the number of threads, instruction
and data caches, branch prediction, and out-of-order execution.

2.3.1 Number of Threads

Recall that the loop in the thread execution routine can be implemented in
less than 10 instructions, which may seem not many at first sight. However,
the loop contains at least one conditional branch as well as one subroutine
call, two instructions that can impact performance if not predicted correctly.
The interaction of emulated multithreading and branch prediction is covered
in Section 2.3.3. Nevertheless, in order to reduce the overhead associated
with emulated multithreading, it is important to reduce the number of loop
iterations as much as possible. The next paragraph derives and analyzes a
formula for the number of loop iterations.

A formula for the number of loop iterations can be derived as follows:
Assume that the source code was divided into N instructions blocks, num-
bered from 1 to N , and that block i is executed ni times by each thread for
a given input set. The values for the ni can be obtained via profiling, for
example. Let us further assume that t threads are used and that all ni values
are independent of the number of threads. Based on these assumptions, the
number L of loop iterations is

L = t ·

(
N∑
i=1

ni

)
. (2.4)

Note that this equation is simplistic, since the ni may be different for
each thread and usually depend on the number of threads, but it is accurate
enough for the sake of the following discussion. Looking at the above equation,
three ways to decrease the number of loop traversals are possible:

First of all, reducing the number of threads will reduce the number of
loop iterations, since the equation depends linearly on t. However, reducing
the number of threads decreases the amount of latency that can be hidden.
As a consequence, the number of threads should be as large as needed, but
as small as possible.

Second, reducing the number of instruction blocks, e.g. via merging, re-
duces the number of iterations. Since the number of merged blocks is smaller
and none of the merged blocks is executed more often than one of the original
instruction blocks, instruction blocks should be as large as possible. However,
instruction blocks must end at remote memory accesses in order to hide the
latency, hence there is an upper limit on the useful size of instruction blocks.

Third, reducing the number of executions for individual instruction blocks
will reduce the number of loop traversals. Like before, this is possible by
increasing the size of instruction blocks: If an instruction block is large enough
to contain a whole loop, i.e. head, body, and tail, the number of executions
for the instruction block is equal to the number of executions of the head and

2.3 Performance Issues 47

tail blocks, but independent on the number of executions for the loop body.
As a consequence, instruction blocks should be as large as possible, but the
restrictions mentioned above still apply.

2.3.2 Caches

Caches reside in the upper levels of the memory hierarchy, i.e. are used to
bridge the performance gap between the clock frequency of current micro-
processors and the latency of main memory. The importance of caches was
already outlined in Chapter 1: Caches are an integral part of current micro-
processors, therefore the interaction of emulated multithreading with caches
is relevant for the performance of emulated multithreading. The following
paragraphs provide a short introduction to caches as well as a discussion of
the interactions between caches and emulated multithreading. More detailed
information about caches can be found in computer architecture textbooks
[HP96][PH98][Fly95][Sto93], or Handy’s book [Han93], which is a useful ref-
erence to the design of caches.
Cache Functionality. Caches are based on the principles of locality in
program behavior: spatial and temporal locality. Spatial locality means that if
a program accesses a memory location, it is likely that the program will access
nearby locations in the future. Temporal locality means that if a program
accesses a memory location, it is likely that the program will access the same
location again in the near future.

A cache is a type of memory that resides between the processor and
main memory and contains a subset of the contents of main memory, i.e.
uses replication. Since caches are usually much smaller than main memory,
they can be built from faster memory, thus reducing the latency associated
with accesses to memory locations found in the cache. Caches consist of a
number of cache-lines, where the size of a cache-line is usually a multiple of
the machine word size in order to exploit spatial locality. The size of a cache
is given by the number of cache-lines times the number of bytes that can be
stored in each cache-line.

Caches exploit the principles of locality mentioned above in the following
way: If the processor issues a read request to a location in main memory, the
cache checks whether it contains the contents of the desired location. If the
contents are found in the cache (cache hit), they are immediately returned
to the processor. In the case of a cache miss, the cache-line that contains the
desired location is fetched from main memory and stored in the cache for later
references. The contents of the desired location are subsequently forwarded
to the processor.

If the cache is already full, i.e. each cache-line contains a valid entry,
one of the existing entries has to be evicted from the cache if the cache-line
can reside in more than one entry. Several strategies to select the entry to
be evicted exist. The two most common are random replacement and least-
recently-used (LRU). In the case of random replacement, one of the existing

48 2. Emulated Multithreading

entries is selected pseudo-randomly, which is easy to implement. In the case
of least-recently-used replacement, the entry that has been unused for the
largest time is selected for eviction. Least-recently-used replacement requires
recording of accesses to cache-lines and is therefore harder to implement.

If the processor issues a write request to a location in main memory, the
cache checks whether it contains the contents of the desired location. In the
case of a cache hit, the contents in the cache are updated. There are two
different ways to subsequently update the location in main memory: write-
through and write-back. If the cache uses the write-through protocol, the
contents of main memory are updated simultaneously with the contents of
the cache. If the cache uses the write-back protocol, the contents in main
memory are only updated in case the location is evicted from the cache.

In the case of a cache miss, only the contents of main memory are updated,
if the cache does not use the write-allocation protocol. Otherwise the contents
are fetched from main memory and stored in the cache, evicting other cache-
lines as necessary. Afterwards the contents in the cache are updated in the
same way as for a write hit.

Cache Organization. One important aspect of caches is the mapping of
memory location to cache-lines, i.e. where a given memory location can be
placed in the cache. Three different types of cache organizations exist, namely
direct-mapped, n-way set-associative and fully associative.

In a direct-mapped cache, each memory location has exactly one place to
reside, usually the cache-line that is specified by the address of the memory
location modulo the number of cache-lines. Caches of this type are easy to
implement, since only one cache-line has to be checked in order to determine
whether the contents of a given memory location are already in the cache. In
addition, direct-mapped caches do not use one of the replacement strategies
mentioned above, as the cache-line to be replaced is unique. However, the
miss rates of caches using this organization are usually higher than the miss
rates using any of the other organizations.

In a n-way set-associative cache, the cache is organized in sets, each set
contains n entries. Memory locations are mapped to the individual sets by
the address of the memory location modulo the number of sets, but can reside
in any of the n entries in the set. Caches of this type are more expensive than
direct-mapped caches, since n entries have to be checked in parallel in order
to determine whether the contents of a given memory location are already in
the cache. The parameter n is therefore usually quite small, i.e. n = 2, 4, 8.
As a rule of thumb, the miss rate of a 2-way set-associative cache is the same
as for an direct-mapped cache with doubled size [HP96].

In a fully associative cache, a location in memory can be placed in every
entry of the cache, i.e. there are no restrictions in the mapping of memory
locations to cache-lines. Caches of this type are very expensive, as all entries
have to be checked in parallel in order to determine whether the contents of

2.3 Performance Issues 49

a given memory location are already in the cache. Therefore fully-associative
memories are usually quite small.

Caches can be used to store instructions, data, or a combination of both:
An instruction cache holds only memory locations that contain program code,
whereas a data cache holds only memory locations that contain data. A
unified cache holds both types of memory locations. Current microprocessors
usually use separate first-level instruction and data caches and a larger unified
second-level cache, sometimes backed by an even larger external third-level
cache.

Cache Misses. There are three different kinds of cache misses: compulsory,
capacity, and conflict misses [HP96]. Compulsory misses are caused by ac-
cesses to memory locations that have never been accessed before, i.e. have
never been in the cache. Capacity misses are caused by accesses to mem-
ory locations that have been in the cache before but have been evicted from
the cache in the meantime due to the insufficient number of entries in the
cache, i.e. the cache is too small to hold all the memory locations needed
by the program. Conflict misses are caused by accesses to memory locations
that have been in the cache before but have been evicted from the cache in
the meantime due to the sharing of cache-lines, i.e. some of the intermediate
accesses were to memory locations that mapped to the same cache-line.

Emulated Multithreading and Caches. Caches are essential for achiev-
ing high performance on current microprocessors. The interaction between
emulated multithreading and caches is therefore important to the overall
performance of emulated multithreading. Potential problems include the fol-
lowing:

• Emulated multithreading merges the program code with context switch
code, which leads to an increase in code size. This may lead to increased
cache miss rates for the instruction caches, as the instruction cache is usu-
ally already too small to hold the original code. The impact of this issue
will depend on the application code as well as the conversion process.
• Emulated multithreading executes several threads that execute the same

program code. If the threads operate in different areas of the program, this
may lead to an increased number of conflict and/or capacity misses in the
instruction cache. The impact of this issue will depend on the application
code, the conversion process, as well as the number of threads.
• Emulated multithreading traverses the loop in the thread execution routine

once for every context switch. The code of this loop should therefore always
reside in the first-level instruction cache. As the main loop is executed fairly
often, this can be expected.
• Emulated multithreading stores the contexts of the individual threads in

memory. The converted program, especially the context switch code, will
access these data structures fairly often. The data structures are therefore
likely to reside in the first-level data cache, which may lead to an increase

50 2. Emulated Multithreading

in the number of conflict and/or capacity misses in the cache. However, the
thread execution routine can be extended to prefetch the thread descrip-
tors if the underlying architecture supports prefetching. Again, the impact
of this issue will depend on the application code, the working set, the con-
version process, the size of the data structures, as well as the number of
threads.

Experimental results will be necessary to answer the question whether
these or other problems exist, and to which extent they impact the perfor-
mance of emulated multithreading. This question is discussed in Chapters 5
and 6, which cover the experimental results of emulated multithreading on
a set of benchmarks on the Compaq XP1000 workstation and the Cray T3E
massively parallel processor, respectively.

2.3.3 Branch Prediction

In order to obtain high performance on current microprocessors, it is neces-
sary to avoid pipeline stalls, especially for modern multiple-issue and out-of-
order processors. Control dependencies are a major source of pipeline stalls
as branch instructions are frequently used: in typical integer code, one out
of six instructions is a branch [Wal92][SJH89]. In addition, these dependen-
cies can only be resolved late in the pipeline, which forces the flushing of all
subsequent instructions in the pipeline if the instruction stream is discontin-
ued. Branch prediction is used to resolve control dependencies early in the
pipeline, thus avoiding or at least minimizing pipeline stalls, provided that
the prediction is correct. Current microprocessors therefore invest consider-
able resources for branch prediction logic.

Recall that there are three types of control-flow instructions: condi-
tional branches, unconditional branches and indirect branches. Conditional
branches test a condition and perform a branch relative to the program
counter if the tested condition is true. Unconditional branches perform a
branch relative to the program counter without testing any condition. Indi-
rect branches perform an unconditional branch, the target location is spec-
ified by a register operand. Indirect branches are mostly used for subrou-
tine calls and returns. Note that conditional branches require the predic-
tion of the branch direction (taken/not-taken) as well as the branch tar-
get, whereas the latter is sufficient for unconditional and indirect branches.
The following paragraphs describe several branch prediction strategies with
a special emphasis on strategies that are found in current microprocessors.
More complete surveys of branch prediction strategies can be found in [HP96]
[HCC89][MH86][LS84][Smi81b].

Branch Direction. Static prediction is the simplest way to predict the
direction of a branch: The outcome of a branch is predicted independent
of program behavior, i.e. the outcome of previous executions of the branch.
The simplest static strategy is to predict all branches as taken, resulting in

2.3 Performance Issues 51

a prediction accuracy of 41 % to 91 % for a subset of the SPEC92 programs
[HP96]. Another variant predicts all forward branches as not-taken and all
backward branches as taken. However, as usually more than 50 % of the
branches are taken, this strategy is unlikely to achieve a prediction accuracy
greater than 60 % [HP96].

As a prediction accuracy of 50 % corresponds to random prediction, i.e.
static branch prediction is not very successful, at least for certain types of
programs. However, the prediction accuracy for static approaches can be
increased to 78 % - 95 % for the same subset of the SPEC92 programs by
using profiling information from previous runs to guide the code generation
process [HP96][FF92].

Dynamic prediction strategies predict the branch direction based on pre-
vious executions of a branch, i.e. the branch history. One such strategy uses
a branch history table with m entries, where each entry contains a n-bit sat-
urating counter to record the branch history. Given a specific branch, the
direction of the branch is predicted as follows: The address of the branch to
be predicted is used to select an entry in the branch history table, usually
specified by the branch address modulo m. If the value of the corresponding
counter is larger than 2n−1, the branch is predicted as taken, otherwise it is
predicted as not-taken. After the branch has been resolved, the branch history
table is updated by incrementing the counter if the prediction was correct,
decrementing otherwise. Different branches can map to the same entry in the
branch history table, as long as the low-order address bits are identical. The
accuracy of these branch predictors does not increase significantly beyond
n = 2, hence n = 2 is commonly used. The prediction accuracy for a branch
history table with 4096 entries and 2-bit saturating counters ranges between
82% and 100% for the SPEC89 programs [HP96].

A more accurate version of dynamic branch prediction based on the
branch predictor described above are two-level or correlated branch predic-
tors [PSR92][YP92]. A (m,n) correlated branch predictor combines 2m branch
history tables using n-bit saturating counters as described above with a m-
bit history register that records the outcome of the last m branches. The
contents of this history register are used to select a branch history table, af-
terwards the prediction proceeds as described above. This description covers
only the basic properties of this type of branch predictor, several different
versions are investigated in [YP93]. The accuracy of the two-level or corre-
lated branch predictors ranges between 89 % and 100 % for a subset of the
SPEC89 benchmarks [HP96].

Combining branch predictors [McF93] are an even more complicated
branch prediction strategy that is used in recent microprocessors, e.g. the
Alpha 21264. The basic idea behind combined predictors is to use three dif-
ferent branch predictors: a local, a global, as well as a choice branch predictor.
The choice predictor is organized like a branch prediction table, but the re-
sult of the prediction is used to select between the local and global branch

52 2. Emulated Multithreading

predictors. The local and global branch predictors can be of any type, but
usually two-level branch predictors are used with a single history register for
the global predictor and a branch history table for the local predictor. The
average accuracy of the combined branch predictors is 98.1 % for the SPEC89
programs, compared to 97.1 % for the two-level branch predictors [McF93].

Branch Target. The target of a branch is usually predicted with a branch
target buffer [LS84]. The branch target buffer is a small cache that contains
the address of a branch as well as the most recent target address in each entry.
The target of a given branch is predicted as follows using a branch target
buffer: If a branch is executed, the branch target buffer is looked up with the
address of the branch instruction. If a corresponding entry is found in the
branch target buffer and the branch is predicted as taken, the target address
stored in the branch target buffer is used to predict the target of the branch.
If no corresponding entry can be found, a new entry is allocated. After the
branch has been resolved, the branch target buffer is updated with the actual
branch target address. The accuracy of branch target buffers depends on the
size of the buffer as well as the replacement strategy, prediction accuracies of
95.2 % for a buffer with 512 entries have been reported [LS84].

Return-address stacks are used to predict the target of indirect branches
[KE91]. A return-address stack is a small stack that stores return addresses
and works as follows: A subroutine call pushes the updated program counter,
i.e. the address of the next instruction, onto the return-address stack. These
return addresses are used by the subroutine returns, which pop the top-most
return address from the stack and use this address to predict the target
address. A special case are coroutine calls which perform both operations,
i.e. pop the top-most entry to predict the call target and push the address
of the next instruction onto the stack. As long as the return-address stack
is larger than the maximum call-depth, the return-address stack will predict
all return addresses correctly. Note that procedure calls themselves can be
predicted using branch target buffers with reasonable accuracy.

Emulated Multithreading and Branch Prediction. Emulated multi-
threading uses a procedure call and return instruction pair to execute an
instruction block of a given thread, i.e. significantly increases the number of
executed subroutine calls and returns compared to the original program. The
conditional and unconditional branches in the program are either unchanged
or replaced by instruction sequences that contain a subroutine return in-
struction. In the case of floating-point conditional branches, these instruction
sequences contain the original conditional branch as well, since there are no
conditional moves for floating-point operands. Hence the number of executed
subroutine return instruction increases even further. The number of executed
unconditional branches will decrease in the same way as these branches are
replaced by the instruction sequences mentioned above. The number of ex-
ecuted conditional branches increases due to the conditional branch in the
main loop of the thread execution routine that is executed for each instruction

2.3 Performance Issues 53

block. However, this branch is only taken if a thread has finished execution
and is removed from the list of active threads, hence even simple dynamic
branch predictors will predict the direction of this branch correctly.

Of greater concern are the subroutine return instructions at the end of
each instruction block and the subroutine call in the main loop of the thread
execution routine. Note that all subroutine returns at the end of an instruct-
ion block return to the same location, i.e. the instruction that follows the
subroutine call in the main loop. Since the target address never changes, the
target address of these subroutine returns can be predicted with reasonable
accuracy using a branch target buffer. Using a return-address stack is even
more effective: The subroutine return at the end of an instruction block will
always be predicted correctly using a return-address stack, since the subrou-
tine call in the main loop pushes the correct address on the stack. Note that
code using emulated multithreading has a maximum call depth of one relative
to the main loop, hence the size of the return-address stack is of less concern
and can only be exceeded by calls to subroutines that do not use emulated
multithreading.

The subroutine call in the main loop of the thread execution routine is
problematic: The target of this call will likely be different upon every execu-
tion, unless one or more threads subsequently execute the same instruction
block. This behavior renders a branch target buffer useless: Since the subrou-
tine call is executed fairly often, it is likely that a corresponding entry in the
branch target buffer will be created. However, the predicted target address
will be wrong in most cases, each time causing a mispredict penalty.

Likewise, a return-address stack is useless, since the subroutine calls only
push values onto the stack, i.e. a return-address stack is only useful for pre-
dicting subroutine returns. A possible alternative is to replace the subroutine
call in the main loop as well as the subroutine returns at the end of each
instruction block with a coroutine call. In this way, the return-address stack
can be used to predict the target of the subroutine call in the main loop, the
subroutine returns are predicted as described above. However, the prediction
of the subroutine call will only be correct if there is a single thread that exe-
cutes a linear sequence of instruction blocks. Otherwise the subroutine return
instructions will push the wrong addresses on the return-address stack. This
restriction conflicts with the purpose of emulated multithreading, i.e. to use
several threads to hide the latency of accesses to remote memory locations.

On the other hand, the target of the subroutine call in the main loop of
the thread execution routine is already stored in the thread descriptor, i.e.
is well known in advance. On architectures that support branch prediction
instructions, the subroutine call could be predicted by issuing a branch pre-
diction hint prior to the call. Since branch prediction instructions must be
issued a minimum distance from the branch to be effective, these instructions
could be used to predict the target of the next but one thread, similar to the
prefetching of thread descriptors.

54 2. Emulated Multithreading

2.3.4 Code Scheduling

Static and dynamic hazards are the cause of pipeline stalls that decrease the
performance of pipelined microprocessors, especially in the case of multiple
instruction issue. Code scheduling is used by the compiler to reduce the num-
ber of static data and structural hazards in the generated code, thereby in-
creasing performance. The importance of code scheduling is illustrated by the
fact that all modern compilers employ more or less aggressive forms of code
scheduling. Note that code scheduling is usually NP-hard [GJ79], hence most
algorithms are based on heuristics. Popular approaches are global instruction
scheduling [BR91] and selective scheduling [ME97]. A good introduction to
various code scheduling techniques can be found in [Muc97].

Emulated multithreading affects code scheduling, since the conversion
process merges tailored context switch code with the application program.
The conversion process inserts save and restore instructions into the original
program, which is likely to render the previous code scheduling useless, hence
the converted code should be scheduled again after the conversion process. If
the assembler supports code scheduling optimizations, this rescheduling can
be performed by the assembler, otherwise a code scheduling pass has to be
added to the conversion program.

2.3.5 Out-of-order Execution

Out-of-order execution is a technique used to extract more instruction-level
parallelism from the instruction stream: A processor that supports out-of-
order execution issues instructions out of sequential program order to the
execution units, provided that the instructions are independent. Some pro-
cessors combine out-of-order issue with speculation, i.e. issue instructions
out-of-order even if the independence has not been established. Note that
out-of-order execution implies out-of-order completion, i.e. instructions do
not finish in sequential order.

The goal of the instruction fetch stage is to find enough independent
instructions that can be issued in parallel. The limiting factor is the size of
the instruction window, i.e. the number of instructions that are inspected
for dependencies. On the one hand, a larger instruction window will increase
the potential to find independent instructions. On the other hand, a larger
instruction window requires accurate branch prediction in order to fill the
instruction window correctly due to the frequent use of branches.

The issue stage forwards the instructions to the execution stage, provided
that enough execution units are available. The scheduling phase assigns the
issued instructions to designated execution units at designated times. There
are two different forms of scheduling:

• Control-flow scheduling [Tho70] does not issue instructions until all data
and resource dependencies have been resolved and is usually implemented
with a central resource called the scoreboard.

2.4 Architecture Support 55

• Data-flow scheduling [Tom67] issues instructions immediately to the execu-
tion units, where the instructions are stored in buffers until all resources are
available. Data-flow scheduling is implemented using distributed resources
and is usually combined with register renaming [Sim00].

Emulated multithreading benefits from out-of-order execution, since there
are no data dependencies between individual threads: All registers used in an
instruction block are initialized upon first use either via a restore operation
or via a normal instruction. A processor that uses register renaming will be
able to detect the absence of data dependencies. Apart from the data depen-
dencies within the instruction blocks, the only data dependencies between the
instruction blocks and the main loop of the thread execution routine exist
via the ThreadPC register, since that register is updated at the end of the
instruction block and is used inside the main loop.

Control dependencies exist between instruction blocks and the main loop
via the subroutine return and between other instruction blocks via the main
loop. As long as the processor fills the instruction window across predicted
branches and the branches are predicted correctly, these control dependencies
present no problems. As mentioned above, the subroutine returns at the end
of the instruction blocks will be predicted correctly using a return-address
stack, but the subroutine call to the next instruction block will always be
mispredicted in the absence of specific branch prediction instructions. Unless
the subroutine calls can be predicted correctly, out-of-order execution will
only cover the current instruction block and the loop in the thread execution
routine, it will not cover the next instruction block. Therefore accurate branch
prediction is important to the performance of emulated multithreading.

2.4 Architecture Support

The previous section has described the interaction between emulated multi-
threading and the underlying architecture. During this discussion, a set of
architectural characteristics has emerged that improve the performance of
emulated multithreading:

• The number and size of the integer and floating-point registers dominates
the size of the thread descriptor. Larger thread descriptors could increase
problems with the data caches, thereby affecting performance. The number
of the integer and floating-point registers should therefore not be too large.
• The number of special registers increases the size of the thread descriptor as

well as the performance of the generated code, e.g. if exception barriers are
required to save and restore these registers. The number of these registers
should therefore be quite small.
• Prefetch instructions can be used to prefetch thread descriptors in the main

loop of the thread execution routine, potentially increasing performance.

56 2. Emulated Multithreading

An architecture that supports such instructions is therefore beneficial to
emulated multithreading.
• Branch prediction hints are essential to predict the target of the subroutine

call in the main loop of the thread execution routine correctly. Since this
subroutine call will be executed fairly often, this can have a significant
impact on performance. An architecture that supports such instructions is
therefore beneficial to emulated multithreading.
• The emulation library contains synchronization routines that require some

form of atomic read-modify-write instructions, e.g. load-locked and store-
conditional, in order to implement locks and barriers.
• Out-of-order execution potentially improves the performance of programs

using emulated multithreading, especially in combination with branch pre-
diction hints. Implementations that support out-of-order execution are
therefore beneficial to emulated multithreading, hence such implementa-
tions should exist for the underlying architecture.
• Emulated multithreading was designed to hide the latency of remote mem-

ory access in massively parallel processors. Such machines should therefore
exist for a given architecture.

The characteristics of six currently popular commercial processor archi-
tectures are summarized in Table 2.1. The following paragraphs discuss the
suitability of each of these architectures in detail before choosing the archi-
tecture that is used for the first implementation of emulated multithreading.

The Power architecture is a 64 bit architecture that defines 32 integer as
well as 32 floating-point registers, each 64 bits wide. There are no dedicated
zero source and sink registers: Register r0 provides a zero operand only if
used as a base register during addressing. There are five special registers: the
condition, link and count registers, the integer exception register as well as
the floating-point status and control register. Instructions have a fixed size of
32 bits, while byte, word, longword, and quadword integers as well as single-
and double-precision floating-point formats are supported. The architecture
defines prefetch and synchronization instructions and supports static branch
prediction for conditional branches. All implementations of the Power archi-
tecture, e.g. Power1, Power2, Power3, have supported out-of-order execution
right from the start. The IBM SP2 is a massively-parallel processor based
on the Power architecture and supports thousands of processors. Information
about the Power and PowerPC architectures can be found in [MSSW94].

The Sparc V9 architecture is a 64 bit architecture that defines 32 integer
as well as 32 floating-point registers, each 64 bits wide. Note that the Sparc
architecture uses overlapping register windows. Register r0 is a zero source
and sink register, all other registers are general-purpose. There are four spe-
cial registers: the multiply/divide register, the condition code register, the
floating-point state register, and the address space identifier. Instructions
have a fixed size of 32 bits, while byte, word, longword, and quadword inte-
gers as well as single- and double-precision floating-point formats are sup-

2.4 Architecture Support 57

Table 2.1. Comparison of RISC Architectures

Power Sparc V9 IA64
Int Registers (Number) 32 32 128
Int Registers (Size) 64 bit 64 bit 64 bit
FP Registers (Number) 32 32 128
FP Registers (Size) 64 bit 64 bit 82 bit
Special Registers 5 4 205
Instruction Format 32 bit 32 bit 128 bit
Data Formats 8,16,32,64 bit 8,16,32,64 bit 8,16,32,64 bit
Prefetch Instructions

√ √ √

Synchronizations
√ √ √

Branch Hints (
√

) (
√

)
√

Out-of-Order Impl.
√ √

–
MPPs ≥ 64 PEs

√
(
√

) –

HP-PA 2.0 MIPS IV Alpha
Int Registers (Number) 32 32 32
Int Registers (Size) 64 bit 64 bit 64 bit
FP Registers (Number) 32 32 32
FP Registers (Size) 64 bit 64 bit 64 bit
Special Registers 8 3 1
Instruction Format 32 bit 32 bit 32 bit
Data Formats 8,16,32,64 bit 8,16,32,64 bit 8,16,32,64 bit
Prefetch Instructions

√ √ √

Synchronizations
√ √ √

Branch Hints – (
√

) (
√

)
Out-of-Order Impl.

√ √ √

MPPs ≥ 64 PEs (
√

)
√ √

ported. The architecture defines prefetch and synchronization instructions
and supports static branch prediction for conditional branches. The Ultra-
Sparc processors from Sun do not support out-of-order execution, but the Fu-
jitsu Sparc64-III is an out-of-order implementation of the Sparc architecture.
The Sun UltraEnterprise 10 000 is the largest multi-processor based on the
Sparc architecture and supports up to 64 processors. Moreover, the succes-
sor machine based on the UltraSparc-III will support hundreds of processors.
Information about the SPARC architecture can be found in [Cat91][WG93].

The Intel IA64 architecture is a 64 bit VLIW architecture that defines
128 integer as well as 128 floating-point registers, each 64 and 82 bits wide,
respectively. There is a large number of special registers: 64 single-bit pred-
icate registers, eight branch registers, 128 application registers, the register
stack configuration register, the floating-point status register, the loop and
epilog count registers, as well as the user mask. Instructions have a fixed size
of 128 bits and contain up to three instructions, while byte, word, longword,
and quadword integers as well as single- and double-precision floating-point
formats are supported. The architecture defines prefetch and synchronization
instructions and supports special branch prediction instructions, which can
be used to manipulate the return-address stack. The first implementation

58 2. Emulated Multithreading

of the IA64 architecture, the Itanium, does not support out-of-order execu-
tion. As the architecture is rather new, there are only workstations and small
servers, but no massively-parallel processors available. Information about the
IA64 architecture can be found in [Ita01].

The HP-PA 2.0 architecture is a 64 bit architecture that defines 32 inte-
ger as well as 32 floating-point registers, each 64 bits wide. Register r0 is a
zero source and sink register, all other registers are general-purpose. There
are eight special registers: five space registers, the shift amount register, the
branch nomination register, as well as the floating-point status register. In-
structions have a fixed size of 32 bits, while byte, word, longword, and quad-
word integers as well as single- and double-precision floating-point formats
are supported. The architecture defines prefetch and synchronization instruc-
tions. The PA-8x00 line of processors is based on the HP-PA 2.0 architecture
and supports out-of-order execution. The HP SuperDome is the largest multi-
processor based on the HP-PA architecture and supports up to 64 processors.
Information about the HP-PA architecture can be found in [Kan95].

The MIPS-IV architecture is a 64 bit architecture that defines 32 integer
as well as 32 floating-point registers, each 64 bits wide. Register r0 is a zero
source and sink register, all other registers are general-purpose. There are
three special registers: the high and low registers as well as the floating-point
status register. Instructions have a fixed size of 32 bits, while byte, word, long-
word, and quadword integers as well as single- and double-precision floating-
point formats are supported. The architecture defines prefetch and synchro-
nization instructions and supports static branch prediction. The R10 000,
R12 000 and R14 000 processors are out-of-order implementations of the
MIPS architecture, the SGI Origin 2000 and 3000 are massively parallel
systems that support hundreds of processors. Information about the MIPS
architecture can be found in [KH92].

The Alpha architecture is a 64 bit architecture that defines 32 integer as
well as 32 floating-point registers, each 64 bits wide. Registers r0 and f0 are
zero source and sink registers, all other registers are general-purpose. There
is only one special register, i.e. the floating-point control register. Instruc-
tions have a fixed size of 32 bits, while byte, word, longword, and quadword
integers as well as single- and double-precision floating-point formats are
supported. The architecture defines prefetch and synchronization instruc-
tions and supports static branch prediction. The 21264 processor was the
first out-of-order implementation of the Alpha architecture, the Cray T3D,
T3E and the Compaq AlphaServer SC are massively parallel systems that
support thousands of processors. Information about the Alpha architecture
can be found in [Com98].

The Alpha architecture was chosen for the first implementation of emu-
lated multithreading since it is best suited for this technique: The number and
size of the integer and floating-point registers is comparable to other RISC
architectures, but there is only one special register which is only infrequently

2.4 Architecture Support 59

used. The architecture supports prefetch instructions, synchronization in-
structions, as well as static branch prediction. Implementations of the Alpha
architecture make extensive use of multiple issue and out-of-order execution,
e.g. Alpha 21264, and have always been the world’s fastest microprocessor
according to the SPEC benchmarks. In addition, several massively parallel
processors based on the Alpha architecture exist and are in widespread use,
e.g. the Cray T3E and the Compaq AlphaServer SC. The only major draw-
back of using this architecture is the absence of explicit branch prediction
instructions similar to the IA64 architecture. The next chapter discusses the
current implementation of emulated multithreading on the Alpha architec-
ture.

60 2. Emulated Multithreading

3. Implementation

The last chapter has described the basic concept of emulated multithreading.
This chapter covers the current implementation of emulated multithreading,
special emphasis is placed on the tools and algorithms used in the code con-
version process. The chapter is organized as follows: Section 3.1 introduces
the capabilities of the implementation, while Section 3.2 describes the design
flow and the tasks of the individual tools. These tools are described in de-
tail in Sections 3.3, 3.4 and 3.5. Section 3.6 covers register partitioning, an
enhanced optimization technique. Section 3.7 covers platform-specific imple-
mentation details, while Section 3.8 discusses the benefits of integrating the
individual tools into an existing compiler.

3.1 Introduction

As described in the previous chapter, code conversion is the major element
of emulated multithreading. The code conversion process is performed after
code generation, i.e. the conversion process operates on assembler code or
an equivalent low-level representation. Tools that operate on these kind of
representations are called postpass-optimizers [Kae00]. There are two basic
ways to implement such postpass-optimizers: They can be integrated into the
compiler or they can be implemented as stand-alone tools that operate on as-
sembler source files. The next paragraphs discuss the benefits and drawbacks
of both approaches.

Integrating the conversion process into the compiler allows the conversion
process to utilize the existing compiler infrastructure, e.g. register allocation,
instruction scheduling, optimization passes, as well as the corresponding data
structures. In addition, it is possible to instruct other compilation phases to
generate code that is better suited for the conversion. This phase-combining
approach was shown to be effective in other areas, e.g. integrating scheduling
and register allocation [BEH91]. A major drawback of the integrated ap-
proach is that the source code of the compiler is usually needed for a success-
ful integration. However, at least for commercial products the source code is
not available. The notable exception is the Gnu Compiler Collection [LO96],
but this compiler suite is not available on all of the platforms used during the

62 3. Implementation

evaluation of emulated multithreading. An alternative is the Stanford Univer-
sity Intermediate Format (SUIF) compiler system [WFW+94][Lam99]. The
integration of the conversion process into this highly modular compiler sys-
tem is discussed in Section 3.8.

Implementing the conversion process as a stand-alone tool allows the use
of different compilers: As long as the compilers use the same assembler syntax,
the same conversion tool can be used, since the compilers generate code for
the specified assembler. Even if the compilers use different assemblers on the
same platform, at most those parts of the conversion tool that parse the
assembler code needs to be changed.

Another benefit is the portability of separate tools: it is not necessary to
port a whole compiler to support a new platform, only the conversion tool
itself has to be ported. Even a separate tool can reuse the existing program-
ming environment, e.g. leave the instruction scheduling phase to the native
assembler. A major drawback of the stand-alone approach is the need to
reimplement at least parts of the compiler structure, e.g. lexer, parser, reg-
ister allocation. The separate conversion tool is therefore more complex to
implement, but is not constrained by the structure of the existing compiler.

The code conversion process was implemented as a stand-alone tool for
several reasons: First, the SUIF compiler system, especially the machineSUIF
backend was undergoing major revisions, making it hard to decide whether
such an integration would be feasible. For example, the optimization pro-
gramming interface was totally undocumented at the time. Second, the im-
plementation of emulated multithreading should use the native compiler on
each platform in order to ensure that the results are not biased by using
another compiler that might generate suboptimal code.

The code conversion process is implemented in a stand-alone tool called
asmconv. This tool operates on the assembler source generated by the com-
piler and performs the code conversion process. The assembler converter is
augmented by another converter called hllconv that operates on the high-
level language. This converter is used to generate configuration files for the
assembler converter. In addition, the high-level language converter performs
the required procedure duplication and call substitutions on the high-level
language source code, if register partitioning as described in Section 2.1.3 is
used. The next section discusses the design flow as well as the capabilities of
the converters in detail.

3.2 Design Flow

The code conversion process is based on two stand-alone tools, i.e. the asm-
conv and hllconv converters, as well as the existing programming environ-
ment, i.e. compiler, assembler, linker. The design flow and interaction between
these tools is illustrated in Figure 3.1. The left part of the figure depicts the

3.2 Design Flow 63

Fig. 3.1. Design Flow

executable

source code

compiler

assembler

linker

hllconv

compiler

linker

asmconv

assembler

EMUlib

machine.confproject.conf

libslibs

procedure list

design flow for modules that contain no procedures using emulated multi-
threading. The right part of the figure shows the design flow for modules
that contain at least one such procedure.

In the standard design flow, the source code of the module in a language
such as C, C++, or Fortran is passed to the corresponding compiler. The
compiler generates a source file in assembly language for the module. This
source file is subsequently passed to the assembler, which generates the corre-
sponding object file. After all object files have been generated, the object files
as well as the referenced libraries are processed by the linker, which produces
the corresponding executable.

The standard design flow described above was slightly modified to incor-
porate the conversion process: The high-level language converter is executed
before the compiler, while the assembler converter is executed after the com-
piler, but before the assembler. The converted code references routines from
the emulation library, hence this library is passed to the linker in addition to
the object files and the other libraries. A detailed description of the library
can be found in Section 3.4.

The high-level language converter parses the source code, searching for
procedure definitions, declarations or calls to procedures from list of pro-
cedures to be converted. Based on this information, the high-level language
converter generates a project-specific configuration file for the assembler con-
verter and performs procedure duplication and call substitution in the case
of register partitioning. A detailed description of the converter is given in
Section 3.3.

The assembler converter operates on the assembler source generated by
the compiler. Based on the information in the platform-specific configuration
file (machine.conf) as well as the module-specific configuration file generated
by hllconv, the assembler converter performs the code conversion process on
selected procedures as described in Section 2.2.4. The converter generates

64 3. Implementation

a new assembler source file that contains the converted code and which is
transformed into an object file by the assembler. A detailed description of
the converter is given in Section 3.5.

3.3 High-Level Language Converter

The high-level language converter hllconv is responsible for generating a
module-specific configuration file for the assembler converter as well as pro-
cedure duplication and call substitution in the case of register partitioning.
Section 3.3.1 describes the structure and contents of this configuration file,
while Sections 3.3.2 and 3.3.3 cover the conversion tasks of the high-level
language converter as well as the implementation, respectively.

3.3.1 Configuration File

The module-specific configuration file contains information about every pro-
cedure to be converted as well as every procedure called by such an proce-
dure. Since the assembler converter obtains information about system and
other platform-specific calls from the platform-specific configuration file, the
high-level language converter can omit these calls. For each procedure, the
configuration file contains an entry that consists of a name and type as well
as several register fields.

The name field consists of the name keyword followed by a string enclosed
in quotes that contains the name of the procedure. The type field consists of
the type keyword followed by a space-separated list of keywords: The intern
keyword marks the procedure as internal, the code conversion process will be
applied to all internal procedures. External procedures, e.g. system calls, are
marked by the extern keyword. Either the intern or extern keywords have
to be specified. Calls to procedures marked with the switch keyword force
the call instruction to end an instruction block, i.e. initiate a context switch.
The switch keyword is mandatory for internal procedures and optional for
external procedures. The fixarg keyword is used for procedures with a fixed
number of arguments, variable-argument procedures use the vararg keyword.

A register field can be of several types: The rreq register field consists
of the rreq keyword followed by a string enclosed in quotes. The string con-
tains a colon-separated list of register names, the designated registers are
expected by the call, but are not the argument registers, e.g. frame and stack
pointers. The ropt register field consists of the ropt keyword followed by a
string enclosed in quotes. The string contains a colon-separated list of reg-
ister names, the designated registers are expected by the call, but are not
argument registers. The rarg register field consists of the rarg keyword fol-
lowed by a string enclosed in quotes. The string contains a colon-separated
list of register names, the designated registers are the argument registers of

3.3 High-Level Language Converter 65

the call. The string must be empty for procedures that use a variable number
of arguments. The rret register field consists of the rret keyword followed
by a string enclosed in quotes. The string contains a colon-separated list of
register names, the designated registers are the return registers of the call.

3.3.2 Conversion Tasks

The primary task of the high-level language converter is the creation of the
configuration file described above. This configuration file has an entry for
each procedure, whose name is in the list of user-supplied procedure names.
These procedures are called internal procedures because the corresponding
assembler code will be converted by the assembler converter. In addition,
the configuration file has an entry for every procedure that is called by an
internal procedure.

The necessary information can be gathered by inspecting the declara-
tion and body of all internal procedures and the declaration of all proce-
dures called by internal procedures. The procedure declaration contains in-
formation about the number and type of arguments and return values. To-
gether with the platform-specific calling conventions, this information can be
translated to the four individual register fields described above. Hence the
platform-specific calling conventions must be incorporated into the high-level
language converter. Inspection of the procedure body reveals all calls to ex-
ternal or internal procedures. The information for the external procedures
can be gathered in the same way as for internal procedures, i.e. by inspecting
the corresponding procedure declaration.

If register partitioning is used, the high-level language converter has to
perform the necessary code duplication and call substitutions: For every in-
ternal procedure, the corresponding procedure declaration and body have to
be duplicated p times, where p is the number of register partitions. The p ad-
ditional procedures are distinguished from the original procedure by adding
a prefix as well as an postfix to the procedure name: The prefix is a fixed
string, while the postfix contains the number of the partition. Note that the
original procedure must be preserved, since it may be called by one of the
external procedures. Inside the duplicated procedure bodies, calls to internal
procedures must be substituted with calls to the partition-specific copies of
these procedures.

3.3.3 Implementation

The transformations described above are easy to perform on the call graph:

Definition 3.3.1. The call graph of a program P containing the procedures
p1, . . . , pn is the graph G = (N,S,E, r), where N = {p1, . . . , pn} is the set
of nodes, S is the set of call sites denoted by byte offsets, r is the node that
contains the program entry point and E ⊂ N×N×S is a set of labeled edges.

66 3. Implementation

Each e = (pi, s, pj) ∈ E represents a call of procedure pj at the call site s in
procedure pi.

Constructing such a graph is straight-forward except for two problems:
separate compilation and procedure pointers. If the program P consists of
multiple modules that are compiled separately, the call graph must be con-
structed incrementally or all modules have to be processed simultaneously.
The second problem is more serious, since the existence of procedure pointers
makes the construction of a call graph PSPACE-hard [Wei80], hence usually
a conservative approximation of the call graph is used. At the moment, pro-
cedure pointers are not allowed.

Given the call graph G, the transformations described above can be per-
formed as follows: Let I be the set of internal procedures given by

I = {p ∈ N | the name of procedure p is in the user-supplied list}

Based on the set I, the set X of external procedures can be described as

X = {pj ∈ N | ∃(pi, s, pj ,) ∈ E : pi ∈ I ∧ pj 6∈ I}

Note that system calls are omitted by default, since only the set N of proce-
dures in the program itself are inspected. After the sets I and X have been
determined, it is sufficient to translate the procedure declaration for each pro-
cedure in both sets into an entry in the configuration file. This translation is
straight-forward if the calling conventions are known.

If register partitioning is used, procedure duplication and call substitution
have to be performed. These operations can be implemented by transforming
the call graph as follows: Given the call graph G = (N,S,E, r) and the set
I of internal procedures, let p be the number of partitions. Duplicating all
internal procedures yields the call graph G′ = (N ′, S′, E′, r′), where

G′ = G ∪ {pki | pi ∈ I, 1 ≤ k ≤ p}
S′ = S ∪ {skj | ∃(pi, sj , pj) ∈ E : pi ∈ I, 1 ≤ k ≤ p}
E′ = E ∪ {(pki , sk, pj) | ∃(pi, s, pj) ∈ E ; pi, pj ∈ I , 1 ≤ k ≤ p}

∪{(pki , sk, pkj) | ∃(pi, s, pj) ∈ I : pi, pj ∈ I , 1 ≤ k ≤ p}
r′ = r

The call graph transformations described above provide the basis for the
implementation of the high-level language converter. The converter therefore
constructs the call graph of a program, performs the transformation described
above on the call graph, and creates the configuration file afterwards. The
high-level language converter inspects all modules of the program simultane-
ously to address the issue of separate compilation.

There are several call graph constructors available, a quantitative survey
can be found in [MNL96]. Instead of implementing a call graph extractor in

3.4 Emulation Library 67

the high-level language converter, the converter uses the output from one of
these call graph extractors, i.e. cflow. This requires only a lexer and parser
to translate the output of the extractor into an internal representation. The
lexer and parser stage can be implemented using automatic code generators,
e.g. lex [LMB92] and yacc [LMB92], respectively.

The translation of procedure declarations into types and register fields
can be handled as follows: If the procedure is internal, the intern keyword
is added to the type field, otherwise the extern keyword is added. If the
procedure expects a variable number of arguments, the vararg keyword is
added to the type field, otherwise the fixarg keyword is added. The required
and optional register fields are determined by the calling convention.

The argument registers are determined as follows: If the procedure expects
a variable number of arguments, the corresponding field is left empty. Oth-
erwise the argument list in the procedure declaration is processed from left
to right in order to determine the type, i.e. integer or floating-point, of each
argument. Integer and pointer arguments are usually passed in the integer
argument registers, while the floating-point arguments are usually passed in
the floating-point argument registers. If the number of arguments exceeds the
number of argument registers, the remaining arguments are usually passed
via the stack.

After the type of all arguments has been determined, the individual argu-
ments are mapped to the corresponding argument registers according to the
calling conventions. For example, the Tru64 operating system assigns the ith
argument to the ith integer or floating-point argument register, depending
on the type of the argument. Note that this assignment uses either the ith
integer or the ith floating-point register, but never both at the same time,
hence does not utilize all available argument registers in all situations.

The return register field is determined in the same way as the argument
register fields by inspecting the return type of the procedure as given by the
procedure declaration and assigning the corresponding return value register
according to the calling convention.

3.4 Emulation Library

The emulation library contains routines that are called by the transformed
code and contains three different groups of routines: thread initialization,
thread execution, and communication routines. As the implementation of al-
most all routines in the library is platform-specific, the following sections
describe only the functionality as well as platform-independent implementa-
tion issues. The platform-specific details can be found in Section 3.7. Section
3.4.1 covers the thread initialization routines, while Section 3.4.2 describes
the thread execution and local synchronization routines. The remote commu-
nication and synchronization routines are described in Section 3.4.3.

68 3. Implementation

3.4.1 Thread Initialization Routines

The thread initialization routines initialize the required data structures men-
tioned in Section 2.2.2, e.g. the thread control block and the thread descrip-
tors. Apart from these data structures, two additional data structures are
used during initialization: The thread arguments structure is used to store
the arguments for the thread and contains two arrays for the integer and
floating-point arguments as well as the number of integer and floating-point
arguments. The thread attribute structure is used to pass thread attributes,
i.e. stack size and number of threads, to the thread creation routine.

The EMUthread args init() routine allocates and initializes a thread argu-
ment structure, while the EMUthread args destroy() routine frees the mem-
ory associated with a thread argument structure. The EMUthread args set()
routine copies the individual arguments into the given thread argument struc-
ture and expects the corresponding integer and floating-point arguments as
input. These arguments are copied to the integer and floating-point argument
arrays of the thread arguments structure according to the calling convention.
Note that the routine currently does not support the passing of arguments
via the stack, i.e. all arguments for the thread startup procedure have to be
passed via registers.

The EMUthread attr init() routine allocates and initializes a thread at-
tribute structure, while the EMUthread attr destroy() routine frees the mem-
ory associated with a thread attribute structure. The EMUthread attr set-
numthreads() routine expects the number of threads as an argument and
initializes the corresponding field of the specified thread attribute struc-
ture, while the EMUthread attr getnumthreads() routine returns the num-
ber of threads as stored in the specified thread attribute structure. The
EMUthread attr setstacksize() routine expects the stacksize for the individ-
ual threads as an argument and initializes the corresponding field of the
specified thread attribute structure, while the EMUthread attr getstacksize()
routine returns the stacksize as stored in the specified thread attribute struc-
ture.

The EMUthread create() routine is used to create the thread control block
as well as the thread descriptors for the individual threads. The routine ex-
pects a thread control block, thread argument, and attribute structures as
well as a pointer to the thread startup procedure as arguments. The routine
initializes the thread control block, allocates and initializes the thread de-
scriptors for each thread. The number of threads as well as the stacksize are
taken from the thread attribute structure. In order to reduce the number of
memory allocations, the thread descriptors and thread stacks are allocated
in two subsequent memory allocations.

Each thread descriptor is assigned a unique number in the range from 0 to
t−1, where t is the number of threads. The integer and floating-point register
fields are initialized by copying the arguments from the thread argument
structure to the corresponding argument registers. In addition, the stack and

3.4 Emulation Library 69

frame pointers are set to the threads stack and the return address register is
initialized to the fourth step in the main loop of the thread execution routine.
The program counter is set to the value of the procedure pointer.

The thread descriptors are organized in a circular, doubly-linked list, the
head and tail pointers of the thread control block are initialized accordingly.
After all thread descriptors have been initialized, the EMUloop() thread ex-
ecution routine is used to start the execution of the threads.

3.4.2 Thread Execution Routines

The second group of routines in the emulation library is used during thread
execution and contains the following four routines:

The EMUloop() routine is the thread execution routine that has already
been described in Section 2.2.3. The routine is written in machine language for
performance reasons and therefore platform-specific. The EMUthread self()
routine expects no arguments and returns the unique number that identifies
the current thread. The EMUthread switch() routine expects no arguments
and returns immediately without performing any operations. The platform-
specific configuration file instructs the assembler converter to force a context
switch after each call to this routine.

The EMUthread cswap() routine performs a conditional swap and expects
three arguments, i.e. the address of a memory location as well as the condition
and value arguments. If the contents of the specified memory location are
equal to the condition value, an atomic read-modify-write sequence is used
to store the value at the specified memory location. The routine returns the
old contents of the memory location in either case. The EMUthread cswap()
routine is useful for implementing inter-thread synchronization locks.

The EMUthread barrier() routine expects no arguments and performs a
barrier synchronization among all threads. The barrier is not restricted to a
single processor, but covers all threads on all processors. Upon entry of the
barrier, a thread is removed from the active list and stored in the inactive list
instead. After the last local thread has entered the barrier, a system-wide bar-
rier is performed to synchronize all processors in the system. Afterwards the
head and tail pointers of the active and inactive lists are simply exchanged,
thereby effectively moving all local threads from the inactive to the active
list. Recall that each processor maintains its own thread control block with
local active and inactive lists.

3.4.3 Communication Routines

The third and last group of routines in the emulation library covers inter-
processor communication and synchronization routines. These routines im-
plement a split-transaction protocol, i.e. the initialization and completion
of requests is separated in order to support latency tolerance. The separa-
tion is based on the concept of E-registers, i.e. external registers, that are

70 3. Implementation

used to perform the actual data transfer. These E-registers are either imple-
mented in hardware, e.g. Cray T3E, or in software, e.g. Compaq XP1000. The
group consists of the EMUereg get(), EMUereg put(), EMUereg cswap(),
EMUereg mswap(), EMUereg finc(), EMUereg fadd(), EMUereg pending(),
and EMUereg state() routines.

The EMUereg get() routine is available for several different data types
and expects three arguments: the number of an E-register, the address of the
memory location at the remote processor, as well as the number of the remote
processor. The routine initializes a remote read operation to the specified
memory location at the remote processor, storing the result in the specified
E-register. The routine returns after initializing the read request, i.e. usually
before the actual data transfer has been finished. The only difference between
the versions of the EMUereg get() routine is the amount of transferred data,
which is equal to the size of the data type.

The EMUereg load() routine is available for several data types and ex-
pects the number of an E-register as argument. The routine returns the con-
tent of the specified E-register converted to the corresponding data type. If
the corresponding data transfer has not been finished, the routine waits until
the data transfer is completed before returning the content of the E-register.
This routine is used in conjunction with the other routines to complete re-
quests that have been issued from one of the other routines.

The EMUereg put() routine is available for several data types and expects
four arguments: the number of an E-register, the address of the memory
location at the remote processor, the value to store, as well as the number of
the remote processor. The routine stores the specified value at the memory
location of the remote processor, using the specified E-register to perform the
data transfer. The routine returns after the remote write request has been
initialized, i.e. usually before the actual data transfer takes place. Note that it
is not necessary to wait for the completion of the remote write request, since
such a request returns no result. The only difference between the versions of
the EMUereg put() routine is the amount of transferred data, which is equal
to the size of the data type.

The EMUereg cswap() routine performs a conditional swap operation sim-
ilar to the EMUthread cswap() routine described above, but operates on re-
mote memory instead. The routine expects five arguments: the number of an
E-register, the address of a memory location, the condition, value, as well
as the number of the remote processor. If the original contents of the mem-
ory location at the remote processor are equal to the specified condition, the
specified value is stored to this location The original contents of the remote
memory location is returned in either case and is stored in the specified E-
register. The routine returns after the conditional swap operation has been
initialized, i.e. usually before the actual data transfer has been finished.

The EMUereg mswap() routine performs a remote swap operation and
expects four arguments: the number of an E-register, the address of a memory

3.5 Assembler converter 71

location, the value, as well as the number of the remote processor. The routine
stores the specified value to the remote memory location, simultaneously
returning the original contents of the memory location in the specified E-
register. The routine returns after the swap operation has been initialized,
i.e. usually before the actual data transfer has been finished.

The EMUereg finc() routine performs a remote fetch-and-increment oper-
ation and expects three arguments: the number of an E-register, the address
of a memory location, as well as the number of the remote processor. The
routine increments the contents of the remote memory location and returns
the original contents of the location in the specified E-register. The routine
returns after the fetch-and-increment operation has been initialized, i.e. usu-
ally before the actual data transfer has been finished.

The EMUereg fadd() routine performs a remote fetch-and-add operation
and expects four arguments: the number of an E-register, the address of a
memory location, the addend, as well as the number of the remote processor.
The routine adds the addend to the contents of the remote memory location
and returns the original contents of the location in the specified E-register.
The routine returns after the fetch-and-add operation has been initialized,
i.e. usually before the actual data transfer has been finished.

The EMUereg pending() and EMUereg state() routines are used to obtain
the E-register state: The former routine expects no arguments and returns a
value that indicates whether any remote memory accesses are outstanding.
The latter routine returns the state of the specified E-register. This is useful
for determining whether any remote memory operations using this E-register
are still outstanding.

3.5 Assembler converter

The assembler converter performs the actual code conversion as described in
Section 2.2.4. The assembler converter operates on the assembler source gen-
erated by the compiler and uses several configuration files and command-line
arguments to steer the conversion process. The structure of these configura-
tion files as well as the various configuration options are described in Section
3.5.1.

The assembler converter uses two passes to parse the assembler source,
although the first pass is optional, i.e. is only performed on some platforms.
The task of the first pass is therefore described in Section 3.7 along with
other platform-specific issues. During the second pass, internal procedures are
detected and the corresponding instructions are translated into a sequence of
internal data structures. The lexer and parsers used to process the assembler
source are described in Section 3.5.2.

The sequence of instructions is subsequently grouped into basic blocks: A
basic block is a maximal sequence of sequential instructions, i.e. is bounded
by branch instructions and labels. In addition the maximum size of the basic

72 3. Implementation

blocks can be limited via command-line options, thus forcing a new basic
block after the current basic block exceeds the maximum number of instruc-
tions. The basic block creation process is described in Section 3.5.3.

Basic blocks can be grouped into larger super blocks if the corresponding
optimization is enabled. A super block is a set of basic blocks that has a single
point of entry, but can have multiple exit points. The super block creation is
described in Section 3.5.4.

After creating the basic and super blocks, external calls are detected and
the corresponding call prolog/epilog sequences are determined. This process
includes the merging of basic and super blocks, if these sequences cross basic
or super block boundaries. The handling of external calls is handled in Section
3.5.5.

After the final shape of the basic and super blocks has been determined,
several data-flow analyses are performed, the registers are allocated. These
data-flow analyses are covered in Section 3.5.6. The allocation of registers is
described in Section 3.5.7.

After register allocation, the actual code conversion process is performed
by updating the instruction sequence, modifying the individual instructions
and writing the converted procedure to the output file. These steps are cov-
ered in Section 3.5.8.

The assembler converter produces detailed statistics about original and
modified instructions in a basic block, super block, procedure, or module.
The individual statistics are covered in Section 3.5.9.

3.5.1 Configuration

The assembler converter is configured via command-line arguments and sev-
eral configuration files: a platform-specific configuration file and a module-
specific configuration file. The individual command-line arguments, the struc-
ture and contents of the platform-specific configuration file are covered in the
following section. The structure and contents of the module-specific configu-
ration file has already been described in Section 3.3.1.

Command-Line Arguments. The assembler converter supports the fol-
lowing command-line arguments:

• The -f 〈name〉 argument is mandatory and specifies the name and location
of the platform-specific configuration file.
• The -l 〈name〉 argument is mandatory and specifies the name and location

of the module-specific configuration file.
• The -o 〈name〉 argument is optional and specifies the name and location

of the output file, i.e. the converted assembler code is written to this file.
If this option is omitted, the converter uses the standard output instead.
• The -g 〈num〉 argument is optional and specifies the maximum grainsize

in instructions. If the grainsize is larger than zero, the size of basic blocks

3.5 Assembler converter 73

is forced to be smaller than the specified number of instructions. Other-
wise the size of basic blocks is only limited by branch targets and branch
instructions.
• The -p 〈num〉 argument is optional and specifies the number of register

partitions to use. The assembler converter supports between one and four
partitions on the currently supported platforms. If this option is omitted,
the individual threads share the whole register set.
• The -O 〈type〉 argument is optional and enables the specified optimizations.

It is possible to specify multiple such arguments in order to enable several
optimizations simultaneously. All optimizations are disabled by default,
using one of the argument with a no prefix can be used to disable the
specified optimization. The following optimization types are supported:
– The ropt keyword enables or disables the optimization of register stores

during the actual code conversion.
– The rreg keyword enables or disables the random selection of registers

during register allocation.
– The sblk keyword enables or disables the super block optimization.
– The trap keyword is platform-specific and enables or disables the op-

timization of traps and exception barriers during the code conversion
process.

– The fpcr keyword is platform-specific and enables or disables the op-
timization of save and restore operations to the floating-point control
register.

– The arch keyword is platform-specific and enables implementation-
specific optimizations as described in Section 3.5.1.

– The emufix keyword enables or disables the use of fixed registers for the
ThreadPC and ReturnPC registers which is the default. Disabling this
option causes these registers to be allocated like normal registers, which
can be useful for large basic or super blocks with a high register pressure,
as these registers are usually used only at the end of such a block.

• The -d 〈num〉 argument is optional and specifies the debug level. Valid
debug levels are 1, 2, 4, and 8, the amount of debug messages increases
with the debug level. See the description of the -D argument for a way to
restrict the amount of debug messages.
• The -D 〈num〉 argument is optional and restricts the debug messages pro-

duced during register allocation to those messages that concern the register
with the specified number.
• The -s 〈num〉 argument is optional and specifies the statistics level. Valid

levels are 1, 2, 4, 8, and 16, which produces a statistics summary after each
program, module, procedure, super block, basic block, respectively.

Configuration Files. The assembler converter uses two configuration files
to steer the code conversion process: the platform-specific configuration file
and a module-specific configuration file. The module-specific configuration
file is usually produced by the high-level language converter and contains

74 3. Implementation

information about the internal and external procedures encountered in a
given module. The structure of this configuration file has been described in
Section 3.3.1.

The platform-specific configuration file is divided into three sections: The
first section provides information about available instruction styles, i.e. the
syntax of instructions and operands. The second section provides information
about individual instructions using several instruction styles. The last section
provides information about platform-specific system and library calls. The
structure of the individual entries in the first two sections is described in
the following paragraphs, the structure of the entries in the third section is
identical to those in the module-specific configuration file.

An instruction style is a string that represents the instruction syntax and
is determined by the number and type of operands. The individual entries
in the first section of the platform-specific configuration file consist of the
name and type fields: The type field consists of the type keyword followed
by a non-negative integer and is used to assign a unique number to each
instruction style, as these styles are later referenced by this number.

The name field consists of the format keyword followed by a string en-
closed in quotes, which contains a representation of the instruction syntax.
The 〈exp〉 and 〈reg〉 keywords are used to represent expressions and register
names, respectively. For example, the syntax of an indirect addressing mode
is represented by the following string:

"<reg>, <exp>(<reg>)"

The first 〈reg〉 keyword represents the name of the source or destination reg-
ister, the 〈exp〉 keyword represents the offset, while the second 〈reg〉 keyword
represents the name of the base register. Note that the first section must
contain entries for all instruction styles that are used by entries in the second
section, that is described below.

Each entry in the second section defines an instruction and style pair and
consists of the name, type, info, qualifier, original, modified, and tune fields:
The name field consists of the name keyword followed by a string enclosed in
quotes that specifies the name of the instruction. The type field consists of
the type keyword followed by an integer that specifies the instruction style.
The number should reference one of the instruction styles that are defined in
the first section of the configuration file.

The info field consists of the info keyword followed by a space-separated
list of keywords and is used to provide semantic information about the in-
struction. The following keywords are supported:

• The CT OPi keyword specifies that the ith operand of the instruction/style
pair is a constant, i.e. a literal.
• The LD OPi keyword specifies that the ith operand, which must be a

register, of the instruction and style pair is read by the instruction.

3.5 Assembler converter 75

• The ST OPi keyword specifies that the ith operand, which must be a
register, of the instruction and style pair is written by the instruction.
• The LD FPCR, ST FPCR keywords are platform-specific and specify that

the instruction reads and writes the floating-point control register, respec-
tively.
• The INT x, FP x keywords are used to group instructions into several

sets as described in Section 3.5.9. This information is used for statistical
purposes.
• The BR CTRL keyword specifies that the instruction changes the control-

flow, i.e. is a conditional, unconditional, or indirect branch.
• The BR COND keyword is used in conjunction with the BR CTRL key-

word to specify that the instruction is a conditional branch.
• The BR CALL keyword specifies that the instruction is a subroutine call,

i.e. a type of indirect branch.
• The NOP keyword specified that the instruction is a null operation, i.e.

performs no useful work.
• The TRAPB keyword specifies that the instruction is a trap barrier. This

information is used in conjunction with the trapb optimization.
• The SWITCH keyword specifies that the instruction forces the end of an

instruction block, thus causing a context switch.
• The SPECIAL keyword is used for some instructions that are only used by

the assembler converter, e.g. procedure prologs.

The qualifier field consists of the qual keyword followed by a string en-
closed in quotes. The string contains a list of supported instruction qualifiers
for this instruction. An instruction qualifier is used as a postfix to an instruct-
ion and changes the behavior of the instruction, e.g. by enabling overflow
checking or specific rounding modes.

The original field begins with the original keyword and is limited by curly
brackets. Inside the brackets are one or more line fields. Each line field consists
of the line keyword followed by a string enclosed in quotes, the style keyword
followed by an integer as well as an optional tag keyword followed by one or
more keywords. The string contains an instruction template that is used to
print the original instruction. The template string contains several keywords
that are substituted during the code conversion process:

• The 〈qual〉 keyword is substituted with the actual instruction qualifiers.
• The 〈expi〉 keywords are substituted with the ith instruction operand,

which must be a literal or expression.
• The 〈Mregi〉 keywords are substituted with the reallocated register for the
ith instruction operand, which must be a register.
• The 〈Ooffi〉 keywords are substituted with the offsets of the original register

for the ith instruction operand, which must be a register. The offset is
provided for special instructions that save or restore registers to or from
the thread descriptor, respectively. The keyword denotes the offset of the
corresponding register inside the descriptor structure.

76 3. Implementation

• The 〈Inum〉 is substituted with the number of instructions that have been
converted so far. This keyword is used to generate unique labels.

The style specifies the instruction style used by the template string and
is required for proper processing of the template string. This field is similar
to the type field and is used during the conversion process. The tag field is
used to suppress individual lines under several conditions:

• The EMUFIX tag specifies that the corresponding line should be sup-
pressed if the emufix optimization is enabled.

• The EMUVAR tag specifies that the corresponding line should be sup-
pressed if the emufix optimization is disabled.

• The RiZERO tag specifies that the corresponding line should be suppressed
if the ith instruction operand is a zero source and sink register.

The modified field begins with the modified keyword and is limited by
curly braces. Inside the brackets are one or more line fields similar to the ones
described above. The only difference is the support for additional keywords
in the line field:

• The 〈Iregi〉 and 〈Fregi〉 keywords are substituted with the name of the ith
temporary integer and floating-point register, respectively.
• The 〈Moffi〉 keywords are substituted with the offsets of the reallocated

register for the ith instruction operand, which must be a register. The
offset is provided for special instructions, that save or restore registers to
or from the thread descriptor and denotes the offset of the corresponding
register inside the descriptor structure.

The tune field is optional and provides implementation-specific informa-
tions about the instruction. The field begins with the tune keyword and is
enclosed in curly braces. Inside the braces are three entries that specify the
name of the implementation, the execution pipelines that can be used to exe-
cute the instruction, as well as the latency of the instruction. If the platform-
specific configuration file contains multiple entries for the same instruction
and style pair that only differ in their implementation-specific details, one
entry is chosen according to the -O arch command-line argument.

3.5.2 Lexer & Parser

The assembler converter uses two passes to convert the assembler source: The
first pass gathers platform-specific information and is therefore described in
Section 3.7. The second pass identifies internal procedures and translates the
corresponding instructions into an internal representation. Since the syntax
of the assembler sources depends on the assembler, the second pass is usually
platform-specific as well. Note that this holds even for platforms that use the
same processor architecture. However, the platform-specific differences in the
second pass concern only low-level details, the same tasks are performed on

3.5 Assembler converter 77

all platforms. The two passes use a combination of lexer and parser for the
lexical and syntactical analysis of the assembler source, which is described in
the following paragraphs.

An assembler source file is a sequence of statements and comments which
may cross multiple lines. Each statement is either an instruction, a directive,
or a label. An instruction is an mnemonic as defined by the instruction set
architecture followed by zero or more operands. Note that some assemblers
define additional mnemonics for commonly used functions to ease the task
of the assembler programmer. A directive is an instruction for the assembler
itself. Directives are usually used for bookkeeping, storage reservation, and
other control functions. Labels assign a name to a specific location in the
program, such that branch instructions can reference the location by that
name.

The lexer extracts the individual statements from the assembler source
and divides each statement into individual tokens. These tokens represent the
elements of a statement, e.g. mnemonics, constants, registers, operators, and
punctuation. The individual tokens that make up a statement are passed to
the parser, which handles the semantic analysis of the statement.

The assembler converter uses the lex program [LMB92] to construct the
lexer for the assembler source. The lex program uses a specification of the
individual tokens as regular expressions and produces a routine that is able
to identify these tokens. This routine is automatically incorporated into the
assembler converter. Note that the lexer must be able to distinguish between
identifiers, instructions, directives, and register names in order to properly
divide statements into tokens. Therefore the lexer maintains a list of all in-
structions, directives, and register names to identify these and separate them
from the identifiers.

The parser processes the individual tokens from the lexer, checks the
syntax of the corresponding statement, and performs statement-specific op-
erations. The assembler converter uses the yacc program [LMB92] to con-
struct a parser for the assembler source. The yacc program takes a grammar
in Backus-Naur-Form, consisting of statements and associated actions, and
turns it into a routine written in C. These routine is able to turn a sequence
of tokens into a statement from the grammar and perform the corresponding
actions.

The parser in the assembler converter operates as follows: By default,
all statements are written to the output file until a directive is found that
signals a procedure entry point. In this case the next label, i.e. the name
of the procedure, is compared with the names of the internal procedures. If
the procedure is external, the parser returns to the default mode. Otherwise,
i.e. the procedure is internal, all statements are translated into an internal
representation until a directive is found that signals the end of the procedure.
After the whole procedure has been translated, the corresponding code is

78 3. Implementation

converted and the parser examines the rest of the source file in order to
identify other internal procedures.

3.5.3 Basic Blocks

A basic block is usually defined as a maximal sequence of instructions that
can be entered only at the beginning and can be left only at the end of the
sequence. The first instruction in a basic block is therefore either a branch tar-
get or an instruction that immediately follows a branch instruction. Likewise,
the last instruction in a basic block is either a branch or an instruction that
immediately precedes a branch target. Note that branch targets are usually
denoted by labels, hence both terms are used interchangeably.

The assembler converter uses an extended definition of basic blocks: The
length of the instruction sequence must be less than or equal to the grain-
size g if a non-zero grainsize g was defined via the command-line. Calls to
internal procedures are treated as branches in respect to the definition above,
because these calls require a context switch. Recall from Section 2.3.1 that
larger instruction blocks are beneficial to the performance of emulated multi-
threading. Therefore calls to external procedures are not treated as branches
in order to increase the size of the instruction block.

The assembler converter uses a three-stage algorithm to create basic
blocks: The first stage, illustrated in Figure 3.2, determines the size of the
individual basic blocks. The second stage, illustrated in Figure 3.3, creates
the actual basic blocks, while the third stage, illustrated in Figure 3.4, links
the basic blocks according to the control-flow graph. The separation between
these stages is not strictly necessary, but makes the implementation of the
algorithm easier to debug and maintain.

The first stage processes all instructions in sequential order and marks
those instructions that end a basic block. An instruction ends a basic block
under one of the following conditions:

• The instruction is a branch, but not a call to an external procedure.
• The instruction always causes a context switch.
• The size of the current basic block is equal to the grainsize.
• The instruction immediately precedes a label.

Note that the last instruction in the procedure always ends a basic block.
The individual basic blocks are created during the second stage of the

algorithm. The instructions are again processed in sequential order, adding
instructions to the current basic block, until an end-of-bblock instruction is
encountered. If the basic block has an associated label, this label is stored
together with a pointer to the block for later reference during the third stage
of the algorithm.

During the third stage, the individual basic blocks are linked according to
the control-flow graph. The list of basic blocks created during the second stage
is processed in the following way: The last instruction of every basic block is

3.5 Assembler converter 79

Fig. 3.2. Creation of Basic Blocks - Stage I

while(inst_ptr = walk_list(proc_ptr->inst_list)) {

if(inst_ptr->flag & INST_INSTRUCTION) {
current_grainsize++;

if((GET_BR_CTRL(inst_ptr) && !GET_BR_CALL(inst_ptr)) ||
(GET_BR_CTRL(inst_ptr) && GET_BR_CALL(inst_ptr) &&
GET_CTYPE_SWITCH(inst_ptr)) ||
(current_grainsize >= max_grainsize) ||
(inst_ptr->flag & INST_SWITCH)) {

inst_ptr->flag |= INST_END_BBLOCK;
current_grainsize = 0;
}
}

else if(inst_ptr->flag & INST_LLABEL) {
inst_ptr->prev_ptr->flag |= INST_END_BBLOCK;
current_grainsize = 0; }

}

Fig. 3.3. Creation of Basic Blocks - Stage II

bblock_ptr = new_bblock();

while(inst_ptr = walk_list(proc_ptr->inst_list)) {

list_append(bblock_ptr->inst_list, inst_ptr);

if(inst_ptr->flag & INST_LABEL) {
list_append(bblock_ptr->labels_list, inst_ptr->name); }

else if((inst_ptr->flag & INST_INSTRUCTION) &&
(inst_ptr->flag & INST_END_BBLOCK)) {

if(bblock_ptr->flag & BBL_NOP_ONLY) {
merge_bblocks(proc_ptr->bblock_list.tail_ptr, bblock_ptr); }
else {
list_append(proc_ptr->bblock_list, bblock_ptr); }

bblock_ptr = new_bblock();
}

}

80 3. Implementation

Fig. 3.4. Creation of Basic Blocks - Stage III

while(bblock_ptr = walk_list(proc_ptr->bblock_list)) {
inst_ptr = bblock_ptr->last_inst;

if(GET_BR_CTRL(inst_ptr) && !GET_BR_CALL(inst_ptr)) {
label = inst_get_label(inst_ptr);

if(GET_BR_COND(info)) {
link_bblocks(bblock_ptr, bblock_ptr->next_ptr); }

link_bblocks(bblock_ptr, search_label(label));
}

else {
link_bblocks(bblock_ptr, bblock_ptr->next_ptr); }

}

inspected. If the instruction is not a branch or is an conditional branch, the
current basic block is linked to the next basic block in the list. Note that the
basic blocks are created, stored, and retrieved in sequential program order.
If the last instruction is an conditional or unconditional branch, the branch
target is looked up in the list of labels created during the second stage of the
algorithm. The current basic block is then linked to the basic block that is
associated with the label.

Lemma 3.5.1. Let n be the number of instructions in the current procedure
and k ≤ n be the number of basic blocks in the current procedure. The algo-
rithm described above has a worst case runtime of O(n · k) or O(n log(k)),
depending on the type of data structure used to store the labels.

Proof. The first stage of the algorithm processes all n instructions in the pro-
cedure and marks some of them as end-of-bblock instruction. Each instruction
can be processed in constant time, hence the first stage of the algorithm has
a worst-case runtime of O(n).

Like the previous stage, the second stage processes all n instructions in
the procedure. Instructions are added to the current basic block until an end-
of-bblock instruction is encountered and is stored for later reference during
the third stage. As the third stage references the basic blocks in the same
order as they were stored in the second stage, a linked list is sufficient to
store the individual blocks, hence insertion of a basic block takes constant
time.

However, if a label is encountered, the label and a reference to the corre-
sponding basic block are stored for later reference during the third stage. If
a linked list is used to store the labels, the insertion takes constant time, but
each search during the third stage will take linear time. Using more advanced

3.5 Assembler converter 81

data structures, e.g. red/black trees, both insertion and searching take loga-
rithmic time [CLR90]. Assume that every basic block has at most one label
in order to determine the worst-case runtime of the second stage. Hence the
worst-case runtime of the second stage is O(k) or O(k log(k)), depending on
the data structure used to store the labels.

The third stage processes all basic blocks and creates links between the
basic blocks according to the control-flow graph. It takes constant time to
link two basic blocks, but determining the branch target requires a search
for the corresponding label. As mentioned above, each search takes linear
or logarithmic time, depending on the data structure that is used to store
the labels. In the worst case, each basic block requires a search of this data
structure, i.e. every basic block ends with a conditional branch instruction.
As there are at most n basic blocks, the worst-case runtime of the third stage
is O(n · k) or O(n log(k)), which is also the overall runtime. �

In practice, the number k of basic blocks will be much smaller than n, i.e.
k � n. The assembler converter uses a linked list to store the labels, since
the runtime of basic block creation is insignificant compared to other parts
of the converter, e.g. register allocation.

3.5.4 Super Blocks

The size of the instruction blocks has a significant impact on the performance
of emulated multithreading: The larger the instruction blocks, the fewer itera-
tions of the main loop in the thread execution routine are required, especially
if the instruction blocks are large enough to contain whole loops.

Basic blocks, as introduced in Section 3.5.3, are not well-suited as in-
struction blocks, since they are often too small: On the average every 6th
instruction is a branch, which limits the average size of basic blocks to six in-
structions [Wal92]. Optimizing compilers use several techniques to extend the
size of basic blocks, e.g. loop unrolling and trace scheduling, thereby provid-
ing benefits to emulated multithreading. However, instruction blocks should
extend across loops in order to decrease the number of iterations in the main
loop of the thread execution routine. An instruction block should therefore
consist of several basic blocks. These sets of basic blocks must satisfy the
following conditions:

• The control-flow graph induced by the sets of basic blocks should form a
subgraph of the control-flow graph of the program, i.e. two of these sets
are connected if and only if two basic blocks from the corresponding sets
are connected in the control-flow graph. This condition ensures that the
program semantics are maintained.
• The set of basic blocks should have a single point of entry, i.e. there are no

edges from basic blocks outside the set to other basic blocks inside the set
in the control-flow graph. This condition ensures that all basic blocks in

82 3. Implementation

the set are reachable via the entry point. This property is exploited during
the creation of super blocks and simplifies the integration of context switch
code.
• The set must not extend across designated basic blocks. If context switches

are performed at each exit point of the set, this condition ensures that
context switches are performed after these basic blocks.

As there is no restriction on the number of exit points, i.e. such a set must
have a single entry point, but may have multiple exit points. Structures
with similar properties have been published in literature, e.g. extended ba-
sic blocks, super blocks, minimum and maximum intervals. The following
paragraphs describe these structures in detail and discuss their merits with
respect to emulated multithreading.

An extended basic block [Muc97] is a maximal sequence of basic blocks
such that only the basic block at the beginning can have more than one
predecessor. The extended basic blocks of a control-flow graph is constructed
using a depth-first-search algorithm in O(n+m) time, where n is the number
of basic blocks and m is the number of edges in the flow graph [Muc97].
Extended basic blocks meet the first two conditions from above, but can only
include a single loop.

Super blocks are structures that are based on trace scheduling: Trace
scheduling divides the flow graph into a set of traces that represent the fre-
quently executed paths in the flow graph [Fis81]. Traces may contain side
exits, i.e. branches out of the trace as well as side entries, i.e. branches from
other traces into the middle of the trace. A super block is a trace that has
no side entrances [HMC+93]. Super blocks are formed in two steps: First,
traces are identified using either profiling information [HMC+93] or static
program analysis [HMB+93]. Second, tail duplication [Fis81] is performed to
eliminate any side entrances to the trace. A related structure is the hyper
block, which uses predication to integrate multiple paths of control in the
same hyper block [MLC+92]. The super and hyper blocks meet the first two
conditions from above, but cannot include loops, since all side entrances, even
those from the trace itself, are removed.

Intervals are used for control-flow analysis and come in two forms: maxi-
mal and minimal intervals [Muc97]. A maximal interval with header h is the
maximal, single entry subgraph of the control-flow graph, such that h is the
only entry node and all closed paths in the subgraph contain h. A minimal
interval is defined to be either a natural loop, a maximal acyclic subgraph
or a minimal irreducible region. A natural loop of a back edge (p, q) in the
control-flow graph, where p dominates q, is the subgraph consisting of the
set of nodes containing q, all the nodes from which p can be reached without
passing through q, as well as the corresponding edges. Note that both types
of intervals allow only a single loop per interval.

3.5 Assembler converter 83

The above approaches are too restricted for the purpose of emulated mul-
tithreading, hence a new structure called a super block1 is defined: A super
block is a maximal set of basic blocks that meets the conditions presented
above. Apart from the conditions, there are no further restrictions. The des-
ignated basic blocks that limit the size of these super blocks are called end-
of-sblock blocks, while the entry block in in a super block is called start-
of-sblock. The assembler converter uses super blocks as instruction blocks if
the corresponding optimization is enabled, otherwise basic blocks are used.
The algorithm used to identify the super blocks is based on depth-first search
(DFS) and is described in the following paragraphs.

Algorithm. The main routine of the algorithm is depicted in Figure 3.5.
The algorithm maintains a list of super block headers, i.e. entry points to a
new super block, initialized to the entry point of the procedure. Note that all
basic blocks in the procedure are reachable via the procedure entry point.

The first and last step in the algorithm reset the level information for
all basic blocks that belong to the current procedure. This information is
used during the discovery of new super blocks as well as some of the other
algorithms in the assembler converter. The main loop is executed until all
basic blocks have been processed. Inside the loop, the first entry in the header
list is removed from the list and a new super block is created from this entry.
Afterwards links to predecessor super blocks are created for all predecessor
basic blocks that are already part of a super block. The remaining links will
be completed during the later stages.

Three subroutines are used to extend the current super block, the follow-
ing paragraphs describe these three subroutines in detail.

The first subroutine, illustrated in Figure 3.6, is based on the visit stage
of depth-first search and visits all basic blocks that are reachable from the
current header. Upon entry to a basic block, the following operations are
performed: If the level of the basic block is different from the current level,
the level of the basic block is set to the current level and the number of visits
is cleared. This is necessary because the number of visits may still contain
information from previous traversals of the control-flow graph. Afterwards
the number of visits is incremented. If the basic block is visited for the first
time and is not an end-of-sblock block, all children of the basic block are vis-
ited recursively. The end-of-sblock condition ensures that the third condition
above is met.

The first subroutine differs in two ways from the visit stage of the depth-
first search algorithm: The initialization of the number of visits in case of
left-over information, and the additional check of the end-of-sblock condition
before the children are visited recursively.

The second subroutine, illustrated in Figure 3.7, is based on the visit
stage of the depth-first search algorithm as well. The subroutine is used to
determine the actual size of the super block and updates the end-of-sblock,
1 The name was chosen independently of [HMC+93].

84 3. Implementation

Fig. 3.5. Creation of Super Blocks - Main

int level = 1;

while(bblock_ptr = walk_list(proc_ptr->bblock_list)) {
bblock_ptr->level = 0; }

list_init(&header_list);
list_append(&header_list, proc_ptr->bblock_list.head_ptr);

while(!list_empty(header_list)) {

bblock_ptr = list_remove(header_list, header_list.head_ptr;);
sblock_ptr = new_sblock();

while(bblock_ptr = walk_list(bblock_ptr->parent_list))
if(bblock_ptr->sblock_ptr)
link_sblocks(bblock_ptr->sblock_ptr, sblock_ptr);

visit_sblock(bblock_ptr, level);

size_sblock(sblock_ptr, bblock_ptr);

fill_sblock(sblock_ptr, bblock_ptr);

level++;
}

while(bblock_ptr = walk_list(proc_ptr->bblock_list)) {
bblock_ptr->level = 0; }

Fig. 3.6. Creation of Super Blocks - Stage I

void visit_sblock(struct bblock *bblock_ptr, int level)
{

if(bblock_ptr->level != level) {
bblock_ptr->num_visits = 1;
bblock_ptr->level = level;

if((bblock_ptr->num_visits == 1) &&
!(bblock_ptr->flag & BBL_END_SBLOCK))
while(child_ptr = walk_list(bblock_ptr->childs_list)) {
visit_sblock(child_ptr, level); }

}
else {
bblock_ptr->num_visits++; }

}

3.5 Assembler converter 85

Fig. 3.7. Creation of Super Blocks - Stage II

static void size_sblock(struct sblock *sblock_ptr,
struct bblock *bblock_ptr)

{
if(bblock_ptr->level != 0) {
bblock_ptr->level = 0;

while(child_ptr = walk_list(bblock_ptr->childs_list)) {

if(!(bblock_ptr->flag & BBL_END_SBLOCK)) {
if(childs_ptr->sblock_ptr) {
if(childs_ptr->sblock_ptr != sblock_ptr) {
bblock_ptr->flag |= BBL_END_SBLOCK; }
}
else {
if(childs_ptr->num_visits ==

childs_ptr->parent_list.num_elements) {
if(!(childs_ptr->flag & BBL_NEW_SBLOCK)) {
size_sblock(sblock_ptr, childs_ptr); }

else {
bblock_ptr->flag |= BBL_END_SBLOCK; }

}
else {
bblock_ptr->flag |= BBL_END_SBLOCK;
childs_ptr->flag |= BBL_NEW_SBLOCK; }
}
}
else if(childs_ptr->sblock_ptr == NULL) {

childs_ptr->flag |= BBL_NEW_SBLOCK; }
}

}
}

start-of-sblock flags accordingly. Upon entry to a basic block, the following
operations are performed:

The subroutine checks the level to ensure that each basic block is pro-
cessed only once. If the level information is already zero, the basic block has
been processed before and the subroutine returns immediately. Otherwise the
level is set to zero and all children of the basic block are examined. If the
basic block is an end-of-sblock basic block and the current child is not part of
any super block, the child is marked with the start-of-sblock flag. This child
will be added to the header list by the third subroutine.

Otherwise the child is examined in the following way: If the child already
belongs to a different super block, the current basic block is marked with an
end-of-sblock flag and the subroutine returns. If the child does not belong
to any super block, the number of visits is compared with the number of
predecessors of the child. If both numbers are equal, the child can be added

86 3. Implementation

Fig. 3.8. Creation of Super Blocks - Stage III

static void fill_sblock(struct sblock *sblock_ptr,
struct bblock *bblock_ptr)

{

bblock_ptr->sblock_ptr = sblock_ptr;
list_append(&sblock_ptr->bblock_list, bblock_ptr);

while(child_ptr = walk_list(bblock_ptr->childs_list)) {

if(!(bblock_ptr->flag & BBL_END_SBLOCK)) {
if(child_ptr->sblock_ptr) {
if(child_ptr->sblock_ptr != sblock_ptr) {
link_sblocks(sblock_ptr, child_ptr->sblock_ptr); }
}
else {
if(child_ptr->flag & BBL_NEW_SBLOCK) {
if(search_bblock(header_list, child_ptr) == NULL) {
list_append(header_list, child_ptr); }
}
else {
fill_sblock(sblock_ptr, childs_ptr); }
}
}

else {
if(child_ptr->sblock_ptr) {
link_sblocks(sblock_ptr, child_ptr->sblock_ptr); }
else {
if(search_bblock(header_list, child_ptr) == NULL) {
child_ptr->flag |= BBL_NEW_SBLOCK;
list_append(&header_list, child_ptr); }
}
}

}
}

to the super block without violating the single-entry property. However, if
the child is marked with the start-of-sblock flag, it cannot be added to the
current super block, hence the basic block is marked with the end-of-sblock
flag. Otherwise the second subroutine is recursively called for the child in
order to explore other basic blocks that may be added to the super block.

If the number of visits is not equal to the number of predecessors, the
current child cannot be added to the super block, hence the basic block is
marked with the end-of-sblock flag, while the current child is marked with
the start-of-sblock flag. The child will be added to the header list by the third
subroutine.

Like the previous two subroutines, the third subroutine, illustrated in
Figure 3.8, is based on the visit stage of the depth-first search algorithm. This

3.5 Assembler converter 87

subroutine adds the individual basic blocks to the super block and updates
the header list. Upon entry to a basic block, the following operations are
performed:

The basic block is added to the current super block and all children of
the block are examined similar to the second subroutine: If the current basic
block is marked with the end-of-sblock flag, it is checked whether the child
belongs to another super block. If the child already belongs to another super
block, the corresponding links between these two super blocks are created.
Otherwise the child is marked with the start-of-sblock flag and added to the
header list, if it is not already present.

If the current basic block is not marked with the end-of-sblock flag, it
is checked whether the current child belongs to another super block. If the
child already belongs to another super block, the corresponding links between
these two super blocks are created. If the child does not belong to another
super block, but is marked with the start-of-sblock flag, it is added to the
header list, if it is not already present. Otherwise, the child is added to the
super block by recursively calling the third subroutine.

The assembler converter uses the algorithm described above to create
the individual instruction blocks. Recall that these instruction blocks must
meet the three conditions described above, i.e. the single-entry, subgraph,
and end-of-sblock conditions. The correctness of the algorithm as well as the
worst case runtime for two different versions of this algorithm is proven in
the remainder of this section.

Lemma 3.5.2. The super blocks created by the algorithm above have a single
point of entry.

Proof. This property is proven by contradiction: Given two different super
blocks s1, s2 with headers h1, h2, assume that an edge (u, v) exists, such that
the nodes u, v belong to super blocks s1, s2, respectively and v 6= h2 holds.
Since all basic blocks in the flow graph are reachable by the procedure entry
point h, there exists at least one path from h to v. This path does not contain
h2, otherwise u and v would be in the same super block: The first subroutine
visits all basic blocks that are reachable from h2 and updates the number of
visits accordingly. After completing the first stage, the number of visits of v is
smaller than the number of predecessors of v, since a path from h to v exists
that does not contain h2. Node v can only be added to the super block s2 if
both numbers are equal, hence h2 does not belong to s2. This contradiction
completes the proof. �

Lemma 3.5.3. The super blocks created by the algorithm above are disjoint
and cover the whole control-flow graph.

Proof. If a basic block is added to a super block, that basic block will neither
be added to another super block nor to the header list. Hence, the created
super blocks are disjoint.

88 3. Implementation

In the flow graph, each basic block is reachable from the entry point, and
is either placed in the header list or added to a super block. Unless a basic
block is added to a super block, it will be the header of another super block.
Therefore the union of all super blocks covers the whole flow graph. �

Lemma 3.5.4. The links between the super blocks form an abstract flow
graph.

Proof. This property is proven by contradiction: Given two super blocks s1, s2

and basic blocks b1, b2 that belong to s1, s2, respectively, assume that (b1, b2)
are linked in the flow graph induced by the basic blocks, while (s1, s2) are
not linked in the flow graph induced by the super blocks.

Without loss of generality, assume that b1 was created before b2. b2 cannot
be the header of s2, otherwise (s1, s2) would have been linked in the main
routine, since s1 was already present at that time. On the other hand, b2
cannot be any other block in s2, otherwise (s1, s2) would have been linked by
the third subroutine during the creation of s2. Therefore b2 cannot belong to
s2, which is a contradiction. �

Theorem 3.5.1. The worst case runtime of the super block algorithm as
described above is O(n(n+m)), where n is the number of basic blocks and m
is the number of edges in the abstract flow graph induced by the basic blocks.

Proof. The first and last stages in the algorithm, i.e. the clearing of the level
information for all basic blocks, have a worst-case runtime of O(n).

The first subroutine is executed for every header block and visits all basic
blocks that are reachable from the header block without crossing end-of-
sblock boundaries. In the worst case, every basic block is a header, hence
there are at most n headers. It is possible to construct a flow graph that has
n headers and almost all n basic blocks have to be visited for each header, i.e.
a full depth-first-search has to be performed. Such a flow graph is depicted
in Figure 3.9. Note that only the last basic block is marked with the end-of-
sblock flag. A single depth-first search has a worst-case runtime of O(n+m),
hence the first stage of the super block algorithm has a worst-case runtime
of O(n(n+m)).

The second stage of the algorithm is executed for all header blocks. For
each header, all basic blocks that will be added to the corresponding super
block in the third stage are visited. Since the individual super blocks do
not overlap, each node in the flow graph is visited and each edge is traversed
exactly once. The worst-case runtime of the second stage is therefore identical
to the worst-case runtime for depth-first search, which is O(n+m).

The third stage of the algorithm is executed for each header block. For
each header block, all basic blocks that belong to the corresponding super
block are visited. Using the same argument as above, the worst-case runtime
for the third stage of the algorithm is O(n+m). �

3.5 Assembler converter 89

Fig. 3.9. Example for worst-case Control-Flow Graph

.

.

.

The overall worst-case runtime algorithm is dominated by the worst-case
runtime of the first stage, i.e. O(n(n + m)). This result can be significantly
improved by changing the first stage of the algorithm as described below.

Theorem 3.5.2. The worst-case runtime of the super block algorithm can
be improved to O(n+m), where n is the number of basic blocks and m is the
number of edges in the abstract flow graph induced by the basic blocks.

As described above, the first stage of the algorithm visits some basic
blocks unnecessarily, i.e. nodes that can never be part of the corresponding
super block. In order to avoid these visits, the notion of dominance is useful:
Given a flow graph G = (V,E) with entry point r, a vertex u is said to
be dominated by another vertex v, if every path from r to u contains v.
The following lemma provides the connection between dominance and super
blocks.

Lemma 3.5.5. All basic blocks in an super block are dominated by the
header.

Proof. This lemma can be proven by contradiction: Given a super block s
with header h, assume that a basic block b in s exists, such that h does not
dominate b. If b is not dominated by h, there exists at least one path from the
entry point r to b that does not contain h. This contradicts the single-entry
property proven in Lemma 3.5.2. �

90 3. Implementation

Proof. Based on the above lemma, the algorithm is changed by computing all
dominators for all basic blocks in the abstract flow graph and changing the
first stage in the following way: A child is only visited if it is dominated by
the header of the current super block. This modification reduces the worst-
case runtime of the first stage to O(n + m), since the first stage now visits
all basic blocks and traverses all edges in the flow graph exactly once.

The dominance for all nodes in a flow graph can be determined in near-
linear time, i.e. O(mα(m,n)), where α(m,n) is a functional inverse of Ack-
ermanns function, i.e. an extremely slow growing function [LT79]. �

3.5.5 External Calls

Emulated multithreading distinguishes two types of procedures, i.e. internal
and external procedures. An internal procedure is a procedure that uses emu-
lated multithreading, i.e. the corresponding code is modified during the code
conversion process. An external procedure is a procedure that does not use
emulated multithreading, i.e. the corresponding code is not modified during
the code conversion process.

The distinction between internal and external procedures has two ad-
vantages: First, emulated multithreading can be applied on a procedure-by-
procedure basis, i.e. restricted only to those procedures that benefit from em-
ulated multithreading. Second, calls to procedures for which no source code
is available, e.g. system calls, can be executed. However, calls to external
procedures must follow the standard calling conventions, which complicates
the code conversion process.

The following paragraphs describe the approach used by the assembler
converter to handle external calls: Based on a general description of pro-
cedure calls, implications for external calls in combination with emulated
multithreading are derived. Two solutions that address the corresponding
problems are presented, a simple and a complex one. The latter solution is
described in detail, including the algorithmic implementation.
Procedure Calls. A procedure call can be divided into three parts: the
call prolog, the actual call, and the call epilog. The call prolog assembles
the arguments and stores them in the corresponding argument registers or
stack locations according to the calling convention. Apart from assembling
the arguments, the call prolog is also responsible for saving any callee-save
registers to memory as well as calculating the address of the callee. The actual
call transfers control to the callee and saves the return address in a register.
The call epilog handles the return values and restores any register that may
have been destroyed during the call. The calling conventions are platform- as
well as operating-system-specific.

An example for a procedure call is depicted in Figure 3.10. This example
was taken from a program compiled for the Alpha architecture under the
Tru64 operating system. The semantics of the individual instructions and
addressing modes are described in Appendix A.

3.5 Assembler converter 91

Fig. 3.10. Procedure Call Example

ldq $27, getopt($gp)!literal!11
mov $9, $16
mov $10, $17
jsr $26, ($27), getopt!lituse_jsr!11
ldah $gp, ($26)!gpdisp!13
lda $gp, ($gp)!gpdisp!13

According to the Tru64 calling conventions [Tru96] the integer registers,
i.e. r0-r31, are used in the following way: Arguments are passed in registers
r16-r21, return values are returned in register r0. Register r26 holds the return
address, while r27 holds the procedure value, i.e. the address of the callee.
Register r28 is reserved for the assembler and registers r29, r30 hold the
global and stack pointers, respectively. The remaining registers are temporary
registers that are used for expression evaluation. Note that only registers
r9-r15 and r26 are callee-save, all other registers are not preserved across
procedure calls.

The call prolog ranges from the ldq instruction to the mov instruction, the
actual call is performed by the jsr instruction. The call epilog consists of the
ldah, lda instruction pair after the actual call. The address of the procedure
is assembled in register r27 by the lda/ldah instruction pair. This register
is used in the actual call, i.e. the jsr instruction, to provide the address of
the callee. The arguments are assembled in register r16 and r17, register r30
contains the stack pointer. The call epilog restores the global pointer after
the call, since the register used for the global pointer is not callee-save. The
procedure return value is returned in register r0.

Procedure calls present a problem for emulated multithreading: On the
one hand, the called procedure expects arguments in specified registers, on
the other hand all registers are reallocated during the code conversion process.
If both the caller and the callee use emulated multithreading, the problem
does not exist: The entry point of the callee is the header of a super block by
definition. Therefore all internal procedures can only be called via a context
switch, such that the basic block that contains the call ends the corresponding
super block. Hence the caller automatically saves all modified registers to the
thread descriptor, while the callee loads all register values from the same
descriptor after one or more context switches. Both the caller and the callee
are free to reallocate all registers and ignore the calling conventions, as these
conventions are preserved via the context stored in the thread descriptor.

The situation is different for external calls, since the callee further expects
the register at the locations specified by the calling conventions. This problem
can be solved by saving all modified registers to the thread descriptor prior
to the call and inserting instructions that restore all registers needed by
the call from the thread descriptor to the registers specified by the calling

92 3. Implementation

conventions. In the same way, instructions to save the return value to the
thread descriptor have to be inserted after the call. Otherwise the modified
code that follows would use outdated values for these registers.

This solution is easy to implement once the registers that are needed for
an individual call are known. Note that this information is already provided
in one of the configuration files, as described in Section 3.3.1. Therefore the
assembler converter only has to identify calls to external procedures and
insert the corresponding save and restore instructions. However, this solution
is not very efficient, as it causes a lot of accesses to the thread descriptor.
Most of these accesses are unnecessary, because the call prolog already uses
all of these registers.

Instead of the simple solution presented above, the assembler converter
uses a more sophisticated solution: Inside the call prologue and epilogue, all
registers that are needed by the call are allocated to themselves, hence the
calling conventions are preserved. However, this solution requires the identi-
fication of the call prologue and epilogue, a complex task if no informations
beside the assembler source is available. The algorithm used by the assembler
converter is described in the following paragraphs.

The algorithm processes all basic blocks in the procedure. For each basic
block, all instructions are processed in sequential order. If a procedure call
instruction is encountered, the type of the called procedure is determined:
In the case of internal procedures, a platform-specific routine is executed for
bookkeeping reasons. In the case of external procedures, the register mask c1
is created that contains all argument registers needed by the called procedure.
If the call uses a fixed number of arguments, this register mask is obtained
from one of the configuration files.

For procedures with a variable number of arguments, a heuristic is used
to create the call mask: Beginning with the call instruction, all instructions
are examined in reverse order, until an instruction is found that has more
than one predecessor. All argument registers that are written by one of these
instructions are recorded in the register mask. This heuristic is usually suf-
ficient to find all argument registers that a procedure expects. It is possible
to construct a flow graph that causes this heuristic to fail. However, the
assembler converter operates on assembler code that was generated by the
compiler, i.e. the generated code is ”well-behaved”, such that this heuristic
works in practice. This situation can be resolved if the assembler converter
is integrated into the compiler, since the compiler already has the required
information.

After all argument registers have been determined, the call mask c1 is
updated with the mask of optional registers, which is obtained from one of
the configuration files. A second call mask c2 is created that contains all
registers modified by the call instruction as well as the required registers.
Taken together, the two call masks represent all registers that are expected

3.5 Assembler converter 93

by the callee. The first mask is used to identify the call prologue as described
below, the second call mask is used afterwards to update the first call mask.

The call prologue is identified by processing all instructions in reverse
order, starting with the call instruction. Each instruction is examined and all
registers that are written by one of these instructions are recorded in the c3
live mask. The processing continues until all registers from the c1 call mask
have been recorded, another call prologue, epilogue, or an end-of-sblock block
is encountered. In the latter two cases, the call prologue reaches from the call
instruction to the last instruction that made a useful contribution to the c3
mask, i.e. writes a register that is present in the c1 mask, but has not been
written by one of the previous instructions. The simple solution presented
above is used for the remaining registers, i.e. these registers are reloaded just
before the call.

All instructions in the call prologue are marked accordingly and the com-
bined c1 and c2 call masks are stored in each instruction for later reference
during register allocation. Inside a call prologue or epilogue, the register al-
locator will allocate all registers present in these masks onto themselves.

Note that the algorithm crosses basic block boundaries as long as the ba-
sic blocks are sequential, i.e. the current basic block has only one predecessor.
These basic blocks as well as the corresponding super blocks are subsequently
merged. The merging of super blocks is only possible if the super block op-
timization is disabled, i.e. super blocks are identical to basic blocks: The
algorithm presented above would have added these basic blocks to the same
super block. As a consequence, the final shape of basic and super blocks is
only known after all external calls have been processed. For this reason, the
original statistics as well as the pre- and post-order traversals of the abstract
flow graph induced by the basic blocks are created only after the processing
of external calls has been completed.

3.5.6 Data-Flow Analysis

Data-flow analysis is used to gather information about the way data is manip-
ulated within a program. This information is a prerequisite for most optimiza-
tion passes in modern compilers. As such, data-flow analysis must provide in-
formation that is accurate enough to enable optimizations, yet is conservative
enough to prevent the optimization from changing the program semantics.

There are two different forms of data-flow analysis: inter-procedural anal-
ysis and intra-procedural analysis. Inter-procedural data-flow analysis is con-
cerned with the flow of data between the individual procedures in a program,
while intra-procedural analysis is concerned with the flow of data within
procedures. The remainder of this section covers intra-procedural analysis,
although the theoretical concepts apply to inter-procedural analysis as well.

One of the most important data-flow problems is the determination of
reaching definitions and live variables:

94 3. Implementation

Definition 3.5.1. A definition of a variable, i.e. an assignment, is reaching
at a given point in the procedure, if a path in the control-flow graph exists,
such that the variable may still have the assigned value at that point. In this
case, the goal of data-flow analysis is to determine the reaching definitions at
all nodes in the control-flow graph.

Definition 3.5.2. A variable is live at a given point in the procedure, if a
path in the control-flow graph from that point to an exit point exists, such
that this path contains an use, i.e. a reference, of this variable. In this case,
the goal of data-flow analysis is to determine the live variables at all nodes
in the control-flow graph.

Data-flow problems can be grouped into three different classes based on
the direction of the information flow: forward flow, backward flow, and bidi-
rectional problems. Forward flow problems process information in the direc-
tion of program flow, backward flow problems process information in the
opposite direction. Bidirectional problems process information in both direc-
tions, but are rare in practice.

The remainder of this section introduces the theoretical foundations for
data-flow analysis as well as a simple iterative algorithm to solve data-flow
problems. The algorithm solves data-flow problems under certain conditions,
the example problems based on the two definitions above are shown to satisfy
these conditions. These results will be used to introduce the new data-flow
analyses required to determine the shape of the individual live ranges prior
to register allocation.

Lattice Theory. Lattice theory provides the foundation for data-flow anal-
ysis. Data-flow analysis is performed on elements of a structure called semi-
lattice:

Definition 3.5.3. A semi-lattice is a pair (S,t), where S is a non-empty
set and t is a binary operation on S that is idempotent, commutative, and
associative:

u : S × S → S
x t x = x ∀x ∈ S
x t y = y t x ∀x, y ∈ S

x t (y t z) = (x t y) t z ∀x, y, z ∈ S

Either the u or the t symbols are used for the binary operation: In the
former case, the operation is called join, in the latter case, the operation is
called meet. This nomenclature is based on the definition of a larger structure
called a lattice:

Definition 3.5.4. A lattice is a triple (S,u,t), where S is a non-empty set
and (S,u) and (S,t) are semi-lattices.

3.5 Assembler converter 95

An example for a lattice is the set of m-bit vectors with the logical and (∧)
and or (∨) bit operations as the meet and join operations, respectively. Since
there are 2m different m-bit vectors, the set is non-empty. The fact that the
logical bit operations are idempotent, commutative, and associative can be
derived from the corresponding properties of the boolean and/or operations.

Given a lattice (S,u,t), the meet and join operations induce partial or-
derings on the set S, denoted by v,w for the join and meet operations,
respectively:

x v y ⇔ x u y = x

x w y ⇔ x t y = x

Based on the above definition, the operations @, A and w are defined
correspondingly. Note that all operations can be defined either in terms of
the meet or in terms of the join operation.

Lemma 3.5.6. The v operation is reflexive, symmetric, and transitive:

x v x ∀x ∈ S
x v y ∧ y v x⇒ x = y ∀x, y ∈ S
x v y ∧ y v z ⇒ x v z ∀x, y, z ∈ S

Proof. The reflexivity follows directly from the fact that u is idempotent.
The symmetry follows from the definition of the v operation and the fact
that u is commutative:

x v y ⇔ x u y = x
y v x⇔ y u x = x u y } ⇔ x = y

The transitivity follows from the definition of the v operation and the
associativity of u:

x v y ⇔ x u y = x
y v z ⇔ y u z = y

} ⇔ x v z

�

A (semi-)lattice can have two unique elements, the bottom element ⊥ and
the top element >, that satisfy the following conditions:

x u ⊥ = ⊥ ∀x ∈ S
x t > = > ∀x ∈ S

A (semi-)lattice is said to be of finite length, if every strictly increasing
chain of elements

⊥ = x1 @ x2 @ . . . @ xn = >

is finite. Obviously, if S is finite the semi-lattice is of finite length.

96 3. Implementation

Definition 3.5.5. Let L = (S,t) be a semi-lattice of finite length with a
bottom element. A set F of functions on S is a monotone operation space
associated with L, if and only if each f ∈ F is monotone, F contains the
identity operation , F is closed under composition, and F is complete [Hec77]:

∀f ∈ F : x v y ⇒ f(x) v f(y) ∀x, y ∈ S
∃e ∈ F : e(x) = x ∀x ∈ S

∀f, g ∈ F : f ◦ g(x) = f(g(x)) ∈ F ∀x ∈ S
∀x ∈ S : ∃f ∈ F : x = f(⊥)

A monotone operation space associated with L is called distributive if the
functions in F are distributive under the meet or join operation:

∀f ∈ F : f(x t y) = f(x) t f(y) ∀x, y ∈ S

Note that the last condition implies that all functions in F are monotone:

x v y ⇔ x t y = x⇔ f(x) = f(x t y) = f(x) t f(y)⇔ f(x) v f(y)

Definition 3.5.6. A monotone data-flow analysis framework is a triple
D = (S,t, F) such that (S,t) is a semi-lattice of finite length with a bot-
tom element and F is a monotone operation space associated with the semi-
lattice L = (S,t). A distributive data-flow analysis framework is a monotone
data-flow analysis framework D = (S,t, F) where F is distributive.

The connection between a data-flow analysis problem and the previous
definitions is provided by the following definition:

Definition 3.5.7. An instance I of a monotone data-flow analysis frame-
work D = (S,t, F) is a tuple I = (G,M), such that G = (N,E, s) is a flow
graph with entry point s and M : N → F maps each node in N to a function
in F .

The two examples presented above, i.e. reaching definitions and live vari-
ables, can be modeled as distributive data-flow analysis frameworks: In both
cases, let S be the set of m-bit vectors and let t be the logical or operation.
As mentioned above, (S,t) is a semi-lattice. Since the number of elements
in S is 2m, i.e. finite, each strictly increasing chain of elements from S is
finite, hence the semi-lattice is of finite length. The bottom element ⊥ of S
is represented by the bit vector of all zero, since

x t ⊥ = x ∨ (0, . . . , 0) = x

Let F be the set of functions 〈k, g〉, such that

〈k, g〉(x) = ((x ∧ k) ∨ g)

Lemma 3.5.7. The triple REACH = (S,t, F) is a distributive data-flow
analysis framework.

3.5 Assembler converter 97

Proof. The monotonicity will be handled at the end. The identity operation
in F is given by 〈0, 0〉:

〈0, 0〉(x) = ((x ∧ 0) ∨ 0) = x ∀x ∈ S

Let 〈k1, g1〉, 〈k2, g2〉 be two functions from F . The composition of these
functions is a function in F :

〈k1, g1〉(〈k2, g2〉(x)) = 〈k1, g1〉((x ∧ k2) ∨ g2)
= (((x ∧ k2) ∨ g2) ∧ k1) ∨ g1

= ((x ∧ (k2 ∧ k1)) ∨ (g2 ∧ k1 ∨ g1)
= 〈(k2 ∧ k1), (g2 ∧ k1 ∨ g1)〉

For x ∈ S, the function 〈0, x〉 meets the condition:

〈0, x〉(0) = (0 ∧ 0) ∨ x = x

To show that F is distributive, let x, y ∈ S and f = 〈k, g〉 ∈ F . For every
1 ≤ i ≤ m, two cases must be considered:

• Suppose the ith bit of x t y is zero, i.e. the ith-bits of both x and y are
zero. Therefore the ith bit of f(x), f(y) equals the ith bit of g, as

f(x) = 〈k, g〉(x) = ((x ∧ k) ∨ g)
f(y) = 〈k, g〉(x) = ((y ∧ k) ∨ g)

It follows that the ith bit of f(x)tf(y) equals the ith bit of g, which equals
the ith bit of f(x t y) by the same reasoning, as the ith bit of x t y was
supposed to be zero.
• Suppose the ith bit of xt y is one, i.e. at least one of the ith bits of x, y is

one. Without loss of generality, assume that the ith bit of x is one. Then
the ith bit of

f(x) = ((x ∧ k) ∨ g) = k ∨ g ,

which equals the ith bit of f(x) t f(y). Applying the same reasoning to
f(x t y) yields that the ith bit of f(x t y) is k ∨ g.

Note that the distributiveness of F implies the monotonicity.

Note that the triple LIVE = (S,t, F) is a distributive data-flow analysis
framework that uses the same semi-lattice (S,t) and the associated operation
space F and solves the live variables problem. The only difference between
the two data-flow problems is the mapping function M and the direction:
reaching definitions is a forward problem, while live variables is a backward
problem.

The desired result of solving data-flow analysis problems is the meet-over-
all-paths (MOP) solution:

98 3. Implementation

Definition 3.5.8. Let G = (N,E, s) be a flow graph with starting point
s. For every b ∈ N , let Path(b) be the set of all paths from s to b, and
Fb represent the flow function associated with node b. Given a path p =
(p1, . . . , pn) ∈ Path(b), Fp is the composition of the individual Fpi :

Fp = Fp1 ◦ . . . ◦ Fpn

The meet-over-all-paths solution is

MOP(b) =
⊔

p∈Path(b)

Fp(0)

for all b ∈ N .

Unfortunately, it is generally undecidable, whether an algorithm exists
that computes the MOP solution for all possible flow graphs [Hec77]. The
algorithms therefore compute the maximum fixed point (MFP) solution:

Definition 3.5.9. Let G = (N,E, s) be a flow graph with starting point s.
For every b ∈ N , let Fb represent the flow function associated with node b,
Pred(b) the set of predecessors, and let the nodes in N be numbered from
1 to n, where n is the number of nodes in N , in reverse postorder. The
maximum-fixed-point solution is defined as the maximum fixed point of the
following equations:

DF(1) = ⊥ DF(i) =
⊔

p∈Pred(i)

Fb(DF(j)) 2 ≤ i ≤ n

The MFP solution is a solution of the data-flow analysis equations that is
maximal in the ordering of S. For distributive data-flow analysis frameworks,
the MFP solution is equal to the MOP solution [Kil73].

The algorithm presented in Figure 3.11 computes the MFP solution for
a given instance of a monotone data-flow analysis framework [KU75]. The
algorithm maintains a queue of nodes to be processed. Upon startup, this
queue is initialized with all nodes in the flow graph. Note that the ordering
of the nodes is important: The algorithm achieves maximum performance
if the queue contains the nodes in reverse post-order, i.e. a node is visited
before any of its successor have been visited. The data-flow information that
reaches node b ∈ N is given by DF(b) and is initialized to the bottom element
of the corresponding lattice.

The algorithm consists of a single loop that is iterated as long as the
worklist is not empty. In each iteration, the first element of the worklist is
removed from the list and the data-flow information for all predecessors is
computed and combined with the meet or join operation. If the combined
data-flow information from all predecessors of the current node is different
from the data-flow information at the node, the node is updated and all suc-
cessors of the node are appended to the worklist in order to propagate the

3.5 Assembler converter 99

Fig. 3.11. Iterative Data-Flow Algorithm

void iterate_reach(struct procedure *proc_ptr)
{
list_init(&work_list);

while(bblock_ptr = walk_list(proc_ptr->post_order)) {
list_append(&work_list, bblock_ptr); }

while(bblock_ptr = walk_list(work_list)) {

bblock_ptr = list_remove(&work_list, work_list.head_ptr);

totalmask = 0;
while(parent_ptr = walk_list(bblock_ptr->parent_list)) {
totalmask |= dflow_reach(&work_list, parent_ptr); }

/* special case for single-bblock procedures */
if((bblock_ptr->parent_list.num_elements == 0) &&

(bblock_ptr->childs_list.num_elements == 0)) {
dflow_reach(&work_list, bblock_ptr);}

if(totalmask != bblock_ptr->reach_mask1) {
bblock_ptr1->reach_mask1 = totalmask1;

if(bblock_ptr->childs_list.num_elements != 0) { /* childless ? */

/* add successors of current bblock to work_list */
while(child_ptr = walk_list(bblock_ptr->childs_list)) {
list_append(&work_list, child_ptr); }
}
else { /* special case for childless bblocks */
dflow_reach(&work_list, bblock_ptr1); }
}

else if(bblock_ptr1->childs_list.num_elements == 0) {
dflow_reach(&work_list, bblock_ptr1); }

}
}

data-flow information. Note that the description above assumes a forward
flow problem. The corresponding algorithm for backward flow problems ini-
tializes the list in reverse pre-order, computes and combines the data-flow
information from all successors and appends all predecessors to the worklist
instead.

The runtime of the algorithm depends on the meet or join operation and
the complexity of the flow functions. However, the number of loop traversals
is bounded by A + 2, where A is the maximum number of back edges on
any path through the flow graph [HU75]. Note that A can be on the order

100 3. Implementation

of |N |, i.e. the number of nodes in the flow graph, but usually A ≤ 3. While
there are more efficient algorithms, the iterative algorithm presented above
is simple to implement and widely used.

3.5.7 Register Allocation

Register allocation is a major component of all compilers: Given a set of values
that might reside in registers, such as variables, temporaries, and constants,
register allocation determines those values that reside in registers. Since the
number of registers is usually much smaller than the number of values that
might reside in registers, and instructions operate significantly faster on reg-
isters than on memory, register allocation is important for performance. This
is especially true for RISC processors, where usually all instructions, except
load and store instructions, operate on registers only.

Register allocation should not be confused with register assignment, i.e.
determining the actual register for the allocated values. Register assignment
is a trivial task for modern RISC architectures, as the register sets are usually
divided into two uniform sets, the integer and floating-point registers, but are
otherwise general purpose.

Early approaches used local methods such as usage counts [Fre74] or bin-
packing [Lev83] to solve the register allocation problem. The former approach
counts the number of uses and definitions in each basic block for all potential
register residing values, e.g. variables, temporaries, constants. These usage
counts are used together with the loop depth to prioritize the individual
register residing values. Registers are allocated for values in decreasing order
of priority.

The latter approach divides all values into groups, ranks all values within
each group by priority, and tries several permutations to pack values into
registers or memory locations. A similar approach is still used in Digital’s
GEM compiler system [BCD+92].

Global methods based on graph coloring provide a more effective approach
to register allocation. Graph coloring determines the minimum number of
colors required to color a graph, such that no two adjacent nodes have the
same color. Register allocation can be transformed into a graph coloring
problem by mapping values to nodes and connecting two nodes, whenever
the corresponding values interfere, i.e. cannot reside in the same register.
However, graph coloring is known to be NP-complete [GJ79], hence powerful
heuristics are required for an effective algorithm.

The assembler converter uses a register allocator that is based on graph
coloring, but is quite different from any of the other register allocators known
from literature. As the register allocator is a major component of the assem-
bler converter, it is described in detail: The following sections introduce the
graph coloring problem as well as two popular approaches to register alloca-
tion based on graph coloring, since the register allocator uses elements from

3.5 Assembler converter 101

both approaches. Afterwards, the data-flow analyses used to identify the allo-
catable objects, i.e. live ranges, as well as the interference model used in the
assembler converter is described. Last, the actual allocation algorithm and
the algorithm used to determine the location of save and restore instructions
are described.
Graph Coloring.

Definition 3.5.10. Let G = (V,E) be an undirected graph, where V is the
set of nodes and E is the set of edges. A k-coloring of such a graph assigns
each node one of k different numbers such that all adjacent nodes have dif-
ferent colors. Formally a k-coloring is a function c : V → {1, . . . , k}, such
that c(u) 6= c(v) for all edges (u, v) ∈ E. The k-graph-coloring problem is to
determine a coloring that uses less than or equal to k colors.

The k-graph coloring problem is NP-complete for all k ≥ 2 [GJ79], hence
all practical algorithms for computing graph colorings are based on heuristics.
Several powerful heuristics exist [BG95], the two approaches to register allo-
cation based on graph coloring presented below use different sets of heuristics.

Register allocation can be transformed into a graph-coloring problem as
follows: Determine the set of allocatable objects, and construct a so-called
interference graph, where the nodes of the graph represent the individual
allocatable objects. Two nodes are connected by an edge if the corresponding
objects interfere, i.e. cannot be allocated to the same register since they are
in use simultaneously. After the interference graph has been constructed, it
is colored with n colors, where n is the number of available registers, i.e. the
size of the register set. If the register set is not uniform, a subset of the colors
must be associated with every allocatable object. If an n-coloring is found,
allocate each object to the register represented by the assigned color.

There are two major approaches to register allocation based on graph
coloring: The first approach is called graph coloring and was developed
by Chaitin [CAC+81][Cha82]. The second approach is called priority-based
graph-coloring and originates with Chow and Hennessy [CH84][CL90]. Both
approaches use graph coloring to solve the register allocation problem, but
are quite different otherwise, as the following comparison shows.

Chaitin’s approach performs register allocation on a machine-level rep-
resentation, i.e. after code generation, whereas the latter performs register
allocation on an intermediate-level representation, i.e. before code genera-
tion. Consequently, the former approach uses machine-level instructions as
the unit of coloring, while the latter uses basic blocks as the unit of coloring.
Chaitin’s algorithm can achieve a lower chromatic number, i.e. a coloring that
uses fewer colors, due to the smaller units of allocation. Since Chaitin’s algo-
rithm operates on the machine-level, all references and definitions of registers
are already known, which is not the case for the intermediate representation
used in the other approach. Therefore Chaitin’s algorithm applies graph col-
oring to all available registers, whereas the priority-based approach has to
reserve several registers, that are used during code generation.

102 3. Implementation

Another major difference between the two approaches is the model of al-
location: The priority-based approach uses a pessimistic model, i.e. assigns a
memory location for every object and tries to allocate some of these objects
to registers. The other approach uses an optimistic model, i.e. assumes that
all objects start in registers and generates spill code as necessary. Note that
Chaitin’s approach always spills objects to the corresponding memory loca-
tion, while the latter spills objects onto the stack. Due to the different models
of allocation, the priority-based approach omits local temporaries, while the
other approach omits global temporaries from allocation.

The two approaches use a different model for interferences as well: While
Chaitin’s algorithm uses live ranges that interfere if one live range is live at the
definition point of the other, the priority-based algorithm uses live ranges that
interfere if both live ranges are simultaneously live. Since Chaitin’s algorithm
uses live ranges with finer granularity, i.e. machine-level instructions, than
the live ranges of the priority-based algorithm, i.e. basic blocks, the latter
approach produces an interference graph that may be less precise in certain
situations.

Both approaches use cost-saving estimates to steer the allocation of regis-
ters. However, Chaitin’s algorithm spills those objects that are least costly to
spill, while the priority-based algorithm allocates those objects that benefit
the most, another consequence of the different allocation models.

Both approaches use heuristics to lower the chromatic number of the in-
terference graph. Chaitin’s algorithm spills live ranges to memory, thereby
eliminating the corresponding nodes from the interference graph. However,
the spilled object must be restored and saved before and after each reference
or definition, respectively, introducing several new nodes to the interference
graph. In contrast, the priority-based algorithm splits live ranges into two or
more smaller ones, effectively reducing the chromatic number of the interfer-
ence graph. There is no need to add new nodes to the interference graph for
spilled objects, as each object has a corresponding memory location. Note
that Chaitin’s algorithm either spills an object or allocates a register for it,
but never splits live ranges.

The assembler converter uses a register allocator that is based on graph
coloring and combines elements from both approaches. The fundamental dif-
ference between the register allocator in the assembler converter and tradi-
tional register allocators are the allocatable objects: Traditional approaches
allocate objects such as variables, temporaries, and constants to registers,
while the assembler converter allocates registers to registers.

Spilling of allocatable objects is not possible, as each register must be
reallocated to another register. Note that the thread descriptor provides
a memory location for each register, hence the allocation model from the
priority-based approach is used. As the assembler converter operates on as-
sembler instructions, i.e. after code generation, the register allocator uses

3.5 Assembler converter 103

assembler instructions as the unit of allocation, as well as the corresponding
interference model.

Since spilling of registers is not an option, the register allocator splits live
ranges to lower the chromatic number of the interference graph. Together
with the small unit of allocation, this ensures that a coloring without any
spills is achieved, as long as live ranges are split early enough. Therefore the
register allocation in the assembler converter uses the heuristics from the
priority-based graph coloring.

Live Ranges. The register allocator in the assembler converter allocates
registers instead of variables, temporaries, and constants like traditional allo-
cators. Therefore some of the definitions need to be translated for this special
case:

Definition 3.5.11. A given point in the control-flow graph is a definition of
a register, if the register is written by the corresponding machine instruction.
A given point in the control-flow graph is a use of a register, if the register is
read by the corresponding machine instruction.

Definition 3.5.12. A register is said to be reaching at a particular point in
the control-flow graph, if there exists a path in the graph from a definition
or use of the register to that particular point. A register is said to be live at
a particular point in the control-flow graph, if a path in the graph from that
point to an exit node exists that contains a use or definition of the register.

Data-flow analysis can be used to determine the set of nodes in the control-
flow graph where a register is live/reaching, respectively. The reaching prob-
lem is an instance of the reaching definition problem presented in Section
3.5.6. The only difference is the function M that maps the nodes to a par-
ticular flow function: For each node, two m-bit masks k, g are created, where
m is the total number of registers. The ith bit of mask g is set if the corre-
sponding instruction contains a use or definition of register number i, cleared
otherwise. The ith bit of mask k is only set in the context of external calls.
The register masks k, g determine the corresponding flow function 〈k, g〉.

The same mapping is used to solve the live register problem as an instance
of the live variable problem presented in Section 3.5.6. As both problems are
distributive data-flow analysis frameworks, the iterative algorithm presented
in Section 3.5.6 can be used to compute the meet-over-all-paths solution for
the reaching register and live register problems.

Definition 3.5.13. A live range of a register is a contiguous group of nodes
of the control-flow graph, in which a register is reaching and live.

The current implementation of the assembler converter uses a more re-
stricted form of live ranges that always begin and end at a definition or use
of the register. Without this restriction, the efficiency of the allocation may
be reduced, as Figure 3.12 illustrates: The register is reaching and live in

104 3. Implementation

Fig. 3.12. Live Range Example

use x

Header

Body

Tail

B1

B2

B3

use x

the loop body, thus the insertion of save and restore instructions at the top
and bottom of the loop body is required. Note that moving the save/restore
instructions out of the loop body may cause the creation of new basic blocks.
As the assembler converter does not support optimizations that require a
re-layout of the code, this is not possible in the current implementation.
However, once the assembler converter is integrated into a compiler, this re-
striction no longer applies. Using the restricted definition of live ranges, the
save and restore instructions are still inside the loop body, but there is an
additional available register outside the restricted live range.

Under the restricted definition, a live range is said to start at a given node
in the control-flow graph, if the node is a definition or use of the register and
satisfies one of the following conditions:

• The register is live and reaching at this node, but not at any of the prede-
cessor nodes.
• Any acyclic path in the control-flow graph from this node to any other node

that satisfies the first condition contains neither a use nor a definition of
the register.

Similarly, a live range is said to end at a given node in the control-flow
graph if the node is a definition or use of the register and satisfies one of the
following conditions:

• The register is live and reaching at this node, but not at any of the successor
nodes.
• Any acyclic path in the control-flow graph from this node to any other node,

that satisfies the first condition, contains neither a use nor a definition of
the register.

As the following paragraphs show, the list of nodes that start and end a live
range can be determined by data-flow analysis.

3.5 Assembler converter 105

Fig. 3.13. Live Range Example

B3

B1 B2

Data-Flow Analysis. Let S be the set of pairs of m-bit vectors, i.e. formally

S = {(n, r)|n, r are m-bit vectors}

where m is the number of registers. Given such a pair (n, r), the elements are
interpreted in the following way: The ith bit of the r mask is set if register
number i is reaching, cleared otherwise. The ith bit of the n mask is set if an
acyclic path in the control-flow graph exists that contains neither a use nor
a definition of register number i.

Based on the above interpretation, the meet operation on S is defined as:

(n1, r1) t (n2, r2) = ((n1 ∨ (n1 ∨ n2)r1 n1) ∧ (n2 ∨ (n1 ∨ n2)r2 n2), r1r2)

Note that the meet operation is identical to the join operation for the reaching
definition problem if restricted to the r masks. The operations for the n mask
can be interpreted as follows: The ith bit of the n mask is set if the ith bit
of both n masks is set, or the ith bit is set in either one of the n masks and
the ith bit of the other r mask is cleared, respectively.

The reasoning behind this is illustrated in Figure 3.13. If the ith bit of
both n masks is set, there exists a path from any of the two predecessor nodes
to any node that satisfies the first condition, i.e. register i is live and reaching
at that node, but not at any of the preceding nodes. Consequently, no such
paths exists that starts at node B2. If the ith bit of the n masks at either
node B1 or B2 is set, the ith bit of the reaching mask is cleared at node B2
or B1, respectively. Since register i is neither reaching at nodes B1 or B2, a
path that satisfies the second condition cannot exist.

Lemma 3.5.8. The tuple (S,t) as defined above forms a semi-lattice.

Proof. Note that the proofs for the reach-masks are omitted, as the meet
operation on these masks is identical to the join operation defined for the
reaching definition problem, which was proven to be a semi-lattice in Section
3.5.6.

The t operation is idempotent:

106 3. Implementation

(n1, r1) t (n1, r1) = (n1 ∨ (n1 ∨ n1)r1 n1) ∧ (n1 ∨ (n1 ∨ n1)r1 n1)
= (n1 ∨ (n1 ∨ n1)r1 n1)
= (n1 ∨ n1r1 n1)
= n1

The t operation is reflexive:

(n1, r1) t (n2, r2) = (n1 ∨ (n1 ∨ n2)r1 n1) ∧ (n2 ∨ (n1 ∨ n2)r2 n2)
= (n2 ∨ (n2 ∨ n1)r2 n2) ∧ (n1 ∨ (n2 ∨ n1)r1 n1)
= (n2, r2) t (n1, r1)

The t operation is associative:

((n1, r1) t (n2, r2)) t (n3, r3) = (n1 ∨ (n1 ∨ n2)r1 n1) ∧
(n2 ∨ (n1 ∨ n2)r2 n2) t (n3, r3)

= (n1n2 ∨ n1r2 n2 ∨ n2r1 n1)︸ ︷︷ ︸
n′

t(n3, r3)

= n′n3 ∨ n′r3 n3 ∨ n3r′ n′

= (n1n2n3 ∨ n1n2n3r2 ∨ n1n2n3r1) ∨
(n1n2n3 r3 ∨ n1n2 n3 r3 ∨ n1n2n3 r1 r3) ∨
(n1n2 ∨ n1r2 n2 ∨ n2r1 n1)r1 r2n3

= (n2n3n1 ∨ n2n3n1r3 ∨ n2n3n1r2) ∨
(n2n3n1 r1 ∨ n2n3 n1 r1 ∨ n2n3n1 r2 r1) ∨
(n2n3 ∨ n2r3 n3 ∨ n3r2 n2)r2 r3n1

= (n1, r1) t ((n2 ∨ (n2 ∨ n3)r2 n2) ∧
(n3 ∨ (n2 ∨ n3)r3 n3))

= (n1, r1) t ((n2, r2) t (n3, r3))

Let the set of operations F be defined as follows:

F = {〈k1, g1, k2, g2〉(x) | 〈k1, g1, k2, g2〉(x1, x2) = ((x1∧k1)∨g1, (x2∧k2)∨g2)}

The mapping M of nodes in the control-flow graph to operations in F is
determined as follows: The ith bit of the k1, g2 masks is set if the node
contains a use/definition of register number i, cleared otherwise. The ith bit
of k2 is set in connection with external calls, cleared otherwise. The ith bit
of g1 is set if the node is a loop header and register number i is reaching and
live inside the loop body, but not outside.

Lemma 3.5.9. The triple (S,t, F) is a distributive data-flow analysis frame-
work.

3.5 Assembler converter 107

Proof. The monotonicity is implied by the distributiveness shown below, the
identity operation in F is given by 〈0, 0, 0, 0〉:

〈0, 0, 0, 0〉(x) = ((x ∧ 0) ∨ 0) = x ∀x ∈ F

Let 〈k1
1, g

1
1 , k

1
2, g

1
2〉, 〈k2

1, g
2
1 , k

2
2, g

2
2〉 be elements of F . The composition of

these elements is an element in F :

〈k1
1, g

1
1 , k

1
2, g

1
2〉(〈k2

1, g
2
1 , k

2
2, g

2
2〉(x)) = 〈k1

1, g
1
1 , k

1
2, g

1
2〉((x ∧ k2

2) ∨ g2
2)

= (((x ∧ k2
2) ∨ g2

2) ∧ k1
2) ∨ g2

2

= ((x ∧ (k2
2 ∧ k1

2)) ∨ (g2
2 ∧ k1

2 ∨ g1
2)

= 〈(k2
2 ∧ k1

2), (g2
2 ∧ k1

2 ∨ g1
2)〉

For x ∈ S, the function 〈0, x, 0, x〉 meets the condition:

〈0, x, 0, x〉(0) = (0 ∧ 0) ∨ x = x

The t operation is distributive, there are two different cases:

• Suppose that the ith bit of x t y is zero, i.e.

(n1 ∨ (n1 ∨ n2)r1 n1) ∧ (n2 ∨ (n1 ∨ n2)r2 n2) = 0

This situation arises in the following three cases:

n1 = 0, n2 = 0 and n1 = 0, n2 = 1, r1 = 1 and n1 = 1, n2 = 0, r2 = 1

The last two cases are symmetric, hence only the first two cases are shown.
– The ith bit of f(x), f(y) equals the ith bit of g1, since

((0 ∧ k1) ∨ g1) = g1

As the t operator is idempotent, f(x) t f(y) equals the ith bit of g1,
which equals the ith bit of f(x t y). Note that the ith bit of x t y was
supposed to be zero.

– The ith bit of f(x) equals the ith bit of g using the same reasoning as
above. The ith bit of f(y) equals the ith bit of

((1 ∧ k1) ∨ g1) = (k1 ∨ g1)

Therefore the ith bit of f(x) t f(y) equals

= (gi ∨ (g1 ∨ (k1 ∨ g1))r1 g1) ∧ ((k1 ∨ g1) ∨ (g1 ∨ (k1 ∨ g1))r2(k1 ∨ g1))

= (g1((k1 ∨ g1) ∨ (k1 ∨ g1)r2(gik1)))
= (g1(g1 ∨ k1)
= g1

which equals the ith bit of f(x t y) using the same reasoning as in the
first case.

108 3. Implementation

• Assume that x t y = 1, i.e.

(n1 ∨ (n1 ∨ n2)r1 n1) ∧ (n2 ∨ (n1 ∨ n2)r2 n2) = 1

This situation arises in the following three cases:

n1 = 1, n2 = 1 and n1 = 0, n2 = 1, r1 = 0 and n1 = 1, n2 = 0, r2 = 0

The last two cases are symmetric, hence only the first two cases are shown.
– The ith bit of f(x), f(y) equals the ith bit of (k1 ∨ g1) as

(1 ∧ k1) ∨ g1 = ki ∨ g1

As the t operator is idempotent, the ith bit of f(x)tf(y) equals the ith
bit of k1∨ g1 as well. Since the ith bit of xt y is supposed to be one, the
ith bit of f(xt y) equals the ith bit of k1 ∨ g1 using the same reasoning.

– The ith bit of f(x) equals the ith bit of g1, since

(0 ∧ k1) ∨ g1 = g1

while the ith bit of f(y)equals the ith bit of (k1 ∨ g1) as

(1 ∧ k1) ∨ g1 = k1 ∨ g1

The ith bit of f(x) t f(y) is

=
(

(ki ∨ gi) ∨ (gi ∨ (ki ∨ gi))r2(ki ∨ gi)
)
∧ (gi ∨ (gi ∨ (ki ∨ gi))r1 gi)

= ((ki ∨ gi) ∨ (ki ∨ gi)r2(ki ∨ gi) ∧ (gi ∨ (ki)gi ∨ gi)
= (ki ∨ gi)

Since the ith bit of x t y is supposed to be one, the ith bit of f(x t y)
equals the ith bit of ki ∨ gi.

The end points of a live range in the control-flow graph can be determined
in the same way: The only difference is the direction of the data-flow analysis
and the mapping M , that maps a node to the corresponding flow function:
The ith bit of the k1, g2 masks is set if the node contains a use or definition
of register number i, cleared otherwise. The ith bit of k2 is set in connection
with external calls, cleared otherwise. The ith bit of g1 is set if the node is a
loop header and register number i is reaching and live inside loop body, but
not outside.

After the four data-flow analyses presented above have been completed,
all nodes in the control-flow graph, that are the start or end of a live range,
are marked accordingly. Note that live ranges can only start at nodes, but
can end at nodes or edges, as Figure 3.14 shows. Therefore all edges are
inspected and those that are an end point for a live range are marked as well.
Afterwards the actual live range data structures are created.

3.5 Assembler converter 109

Fig. 3.14. Live Range Example

B1

B2 B3

use x

use x

use x

Splitting & Merging. The live range data structure contains the following
elements:

• A mask of registers that are available for this live range.
• A mask of registers that are forbidden for this live range.
• A priority that is used to steer the allocation of live ranges.
• The number of instructions in the live range as well as the number of use

and definitions of the corresponding register in the live range.
• A list of interfering live ranges, i.e. live ranges that cannot be allocated to

the same register as the live range itself.
• A list of subranges, one for each starting point of the live range.

Each subrange contains those instructions in depth-first search order from
the corresponding live range, that are reachable from the starting point of
the subrange and are not in any of the other subranges. As the live range is a
contiguous set of nodes, the individual subranges connect. The instructions
in a subrange form a tree with the corresponding starting point as the root,
while the instructions on the whole live range form a forest with one tree for
each starting point in the live range.

The data structures are created by allocating a new data structure at
each starting point of a live range and adding instructions to the live range
until an endpoint is encountered on all paths from the starting point. Note
that all live ranges created in this way contain only one subrange, hence live
ranges overlap if a live range has more than one starting point.

The individual live ranges are now splitted at super block boundaries
to ensure that no live range extends across a context switch. Note that this
splitting of live ranges is omitted if register partitioning is used. The splitting
algorithm exploits the fact that all live ranges contain only one subrange at
this point and works in the following way:

110 3. Implementation

The algorithm processes all basic blocks and checks them for the end-of-
sblock flag. If the current basic block ends an super block, all children of the
block are processed. For each child block, the list of live ranges in the current
basic block is compared with the list of live ranges in the child. If a match is
found, i.e. a live range that crosses the super block boundary, the live range
is split across the corresponding edge.

The split is performed in two steps: First, all instructions in the live range
that can be reached from the top of the child block are extracted from the
original live range and moved to a new live range. Note that the remaining
instructions in the original live range are still in depth-first search order, but
the live range may no longer end at a use/definition point of the corresponding
register. Therefore all loose ends are removed from the list of instructions in
the original live range in order to maintain the live range properties.

The extracted instructions are used to spawn one or more live ranges. The
spawning of live ranges is a special case of the general algorithm described
below, therefore a description of the algorithm is omitted here. The only
difference between the two algorithms is that the one used during initial
splitting of live ranges operates only in one direction, as each live range
contains only one subrange, and ignores interferences between live ranges, as
the interference graph has not been constructed yet.

The splitting pass ensures that all live ranges are contained in super
blocks, at least in the absence of register partitioning. But the live ranges
still consist of a single subrange and several subranges may overlap. Hence
the overlapping live ranges are merged by the algorithm described in Figure
3.15, taken from [Muc97].

For each register, the algorithm separates all live ranges for that register
from the total list of live ranges and stores these live ranges in a temporary
list. This separation significantly reduces the number of live ranges that have
to be processed in each step, thereby increasing performance. Note that only
live ranges for the same registers can be merged.

The algorithm uses several rounds to merge all live ranges for the current
register, initiating a new round as long as the stop flag is cleared. The stop
flag is set at the beginning of each round, but is cleared if at least two live
ranges were merged, since the merged live range may now overlap with other
live ranges. In each round, all pairs of live ranges are processed. If both live
ranges in the pair share a use or definition, i.e. overlap, these live ranges are
merged. The algorithm does always converge since the number of live ranges
is finite and decreases with every merge operation.

This condition is checked by processing all instructions in one live range
and checking for each use and definition point whether it is present in the
other live range. The merging is performed by moving all subranges from one
live range to the other live range, such that the individual subranges in the
merged live range do not overlap. The remaining empty live range is removed
from the temporary list and destroyed afterwards.

3.5 Assembler converter 111

Fig. 3.15. Merging of Live Ranges

void merge_graph(struct IFgraph *graph_ptr)
{

list_init(&LRlist);

for(i = 0;i < REG_NUM_REGS;i++) {

while(lrange_ptr1 = walk_list(&graph_ptr->constrained)) {
if(lrange_ptr1->orig_reg->pnum == i) {
list_append(&LRlist, lrange_ptr1); }

}

stop = 0;
while(!stop) {
stop = 1;

while(lrange_ptr1 = walk_list(LRlist)) {

lrange_ptr2 = lrange_ptr1->next_ptr;
while(lrange_ptr2) {

while(srange_ptr = walk_list(lrange_ptr1->SRlist) && stop) {

while(inst_ptr = walk_list(srange_ptr->inst_list) && stop) {

if((inst_ptr->flag & ALC_PD_DEF) ||
(inst_ptr->flag & ALC_PD_USE)) {

if(search_PDitem1(lrange_ptr2, inst_ptr)) {
merge_lranges(lrange_ptr1, lrange_ptr2); stop = 0; }

}
}

}

lrange_ptr2 = lrange_ptr2->next_ptr;
}
}

}

while(lrange_ptr1 = list_remove(&LRlist, LRlist.head_ptr)) {
list_append(&graph_ptr->constrained, lrange_ptr1); }

}
}

112 3. Implementation

Fig. 3.16. Interference Example

exit

.

.

.

.

.

.

.

.

.

.

.

B1

B4

B3B2

B5 B6

B7

def a1

def an

def b1

def bn

use a1

use an use bn

use b1

use left

use left

.

After all overlapping live ranges for the current register have been merged,
the live ranges in the temporary list are moved to the total list of live ranges.
Once all live ranges for all registers have been merged, i.e. the final shape of
all live ranges is known, the interference graph is constructed as described
below.

Interferences. The two register allocators described above use different
models for the interferences between live ranges: In Chaitin’s algorithm, two
live ranges interfere, if they overlap at a definition point of one or both live
ranges. A definition point is a node in the control-flow graph that contains
a use or definition of the corresponding register. In the priority-based algo-
rithm, two live ranges interfere if they overlap at an arbitrary point, hence
providing a less precise model of interference.

The difference between these two models is illustrated by looking at the
example in Figure 3.16 taken from [Muc97]. In the interference model used by
the priority-based algorithm, there are interferences between the a1, . . . , an,
b1, . . . , bn, and left, i.e. the interference graph has 2n+1 nodes and 2n(2n+1)
edges. As block B4 is neither a definition point for the a1, . . . , an, nor for the
b1, . . . , bn , the ai do not interfere with the bi at all if the interference model
from Chaitin’s algorithm is used. Note that the corresponding interference
graph has 2n+ 1 nodes and n(n+ 1) edges.

3.5 Assembler converter 113

Fig. 3.17. Interference Graph Construction

void build_graph(struct procedure *proc_ptr,
struct IFgraph *graph_ptr)

{

while(bblock_ptr = walk_list(&proc_ptr->pre_order)) {

while(inst_ptr = walk_list(&bblock_ptr->inst_list) {

if(inst_ptr->flag & INST_INSTRUCTION)
while(lrange_ptr1 = walk_list(&inst_ptr->LRlist)) {
reg_mask1 = pnum2mask(lrange_ptr1->orig_reg->pnum);

while(lrange_ptr2 = walk_list(&inst_ptr->LRlist)) {
reg_mask2 = pnum2mask(lrange_ptr2->orig_reg->pnum);

if(((inst_ptr->def_mask | inst_ptr->use_mask) & reg_mask1) ||
((inst_ptr->def_mask | inst_ptr->use_mask) & reg_mask2))

if((reg_mask1 & reg_mask2) == 0)
if(!(((LRitem_ptr1->flag & ALC_LR_END) &&

(reg_mask1 & inst_ptr->use_mask) &&
(LRitem_ptr2->flag & ALC_LR_NEW) &&
(reg_mask2 & inst_ptr->def_mask) &&

!(reg_mask2 & inst_ptr->use_mask)) ||
((LRitem_ptr2->flag & ALC_LR_END) &&
(reg_mask2 & inst_ptr->use_mask) &&
(LRitem_ptr1->flag & ALC_LR_NEW) &&
(reg_mask1 & inst_ptr->def_mask) &&

!(reg_mask1 & inst_ptr->use_mask)))) {
link_lranges(LRitem_ptr1->lrange, LRitem_ptr2->lrange); }
else if(inst_ptr->use_mask & reg_mask1)
if(inst_ptr->rst_after & reg_mask1) {
inst_ptr->rst_after &= ~reg_mask1;
inst_ptr->rst_before |= reg_mask1; }

else if(inst_ptr->use_mask & reg_mask2)
if(inst_ptr->rst_after & reg_mask2) {
inst_ptr->rst_after &= ~reg_mask2;
inst_ptr->rst_before |= reg_mask2; }

}
}

}

114 3. Implementation

Given a list of live ranges, the algorithm in Figure 3.17 creates the corre-
sponding interference graph. The algorithm processes all instructions in the
procedure in basic block order. For each instruction, each pair of live ranges in
the list of live ranges at the instruction is inspected. If the current instruction
is a definition point for at least one of the two live ranges, the corresponding
interferences are added to both live ranges.

However, if one of the live ranges ends in a use, while the other starts
with a definition, both live ranges do not interfere: The save instruction for
the live range that ends can be inserted before the current instruction, no
restore instruction is necessary for the live range that starts at the current
instruction.

Coloring. The register allocator uses priority-based graph coloring to color
the interference graph constructed above. The interference graph consists of
three lists: the list of constrained, unconstrained, and finished live ranges. A
live range is constrained if the number of interferences is larger than or equal
than the number of available registers, unconstrained otherwise. A live range
is finished if it has already been colored.

The interferences themselves are stored at each live range, i.e. each live
range contains a list of interfering live ranges. Note that after construction
of the interference graph, all live ranges reside in the constrained list. The
coloring algorithm works as described in the following paragraphs:

All live ranges that have only one available register, i.e. are used in an
external call prologue or epilogue, are colored. These live ranges are identi-
fied by processing all live ranges in the list of constrained live ranges. After
coloring these live ranges, the interfering live ranges are updated by marking
the allocated register as forbidden. The colored live range is then moved from
the constrained list to the finished list.

All unconstrained live ranges are identified and moved to the uncon-
strained list. The live ranges in the unconstrained list can be easily colored
after all constrained live ranges have been colored, as the number of avail-
able registers is larger than the number of interferences for these live ranges.
Unconstrained live ranges can become constrained and vice versa due to the
splitting of live ranges described below.

The following steps are repeated until all constrained live ranges have
been colored:

• Compute the priority function p from the priority-based algorithm as a
measure of the relative benefits of assigning a register to a given live range:

p =
uses ∗ LD SAVE + # defs ∗ ST SAVE

instructions

The priority function uses two machine specific parameters: LD SAVE
is the cost associated with saving a register to the thread descriptor,
ST SAVE is the cost associated with restoring a register from the thread
descriptor. Note that the priority function is normalized by the number of

3.5 Assembler converter 115

instructions in the live range to favor smaller live ranges that provide the
same benefit.
• The live range with the highest priority is colored. The coloring algorithm

uses bit vector operations on the masks of the available and forbidden
registers in the live range to determine the set of registers that is available
and not forbidden. If the ropt optimization is enabled, one of the registers
from the set is selected at random, otherwise the register with the smallest
number is selected.
• After coloring, the live range is removed from the constrained list and

appended to the list of finished live ranges.
• All live ranges that interfere with the live range that was colored in the

previous step, are updated by marking the allocated register as forbidden.
In addition, each live range is checked, whether it should be split in order to
lower the chromatic number of the interference graph. A live range is split
if either all available registers are forbidden, or the number of interfering
live ranges is RT SPLIT times larger than the number of remaining avail-
able registers. This heuristic is taken from the priority-based approach and
ensures that splitting is initiated early enough to avoid deadlock situations.
The RT SPLIT parameter is set to two as suggested by Chow/Hennessy
[CL90].

After all constrained live ranges have been colored, the unconstrained
live ranges are colored. As the number of available registers is larger than
the number of interferences and therefore the number of forbidden registers,
these live ranges can be colored without further splitting of live ranges. After
coloring an unconstrained live range, the interfering live ranges are updated
by marking the allocated register as forbidden.

After the interference graph has been colored, all colored live ranges reside
in the list of finished live ranges. The results of the coloring are applied to the
instructions of the current procedure in the following way: For each live range,
all instructions that belong to the live range and contain a use/definition of
the corresponding register, are updated with the newly allocated register.

Splitting. The splitting process works by spawning one or more live ranges
from the top of each subrange in the original live range. Due to the smaller
unit of allocation, i.e. assembler instructions, the splitting process is more
complex than the one proposed for priority-based graph coloring.

The splitting algorithm operates on regions of the original live range: A
region is a continuous part of the live range that contains no more than one
use or definition of the corresponding register and is bounded by the start
or end of a basic block. These regions are maintained in the boundary list as
well as two candidate lists. The boundary list contains regions that cannot
be added to the spawned live range. The elements of this list are used to
spawn other live ranges. The candidate lists contain regions that can still
be added to the spawned live range, sorted in decreasing order of priority.

116 3. Implementation

The corresponding priority function is similar to the one used in the coloring
algorithm.

Given an instruction that belongs to the original live range, the algorithm
spawns new live ranges in the following way:

Starting with the given instruction, instructions are examined and re-
moved from the original live range in program-flow order until either a basic
block boundary or a use or definition of the corresponding register is found.
If a basic block boundary is encountered, regions are created for every child
block that belongs to the live range and appended to the boundary list. The
algorithm is then recursively called for each item in the boundary list.

If a use or definition of the corresponding register is found, a region is
created and appended to the candidate list. This ensures that the new live
range starts at a use or definition of the corresponding register. The algorithm
then repeats the following steps until the candidate list is empty:

• The first region of the candidate list, i.e. the one with the highest priority,
is selected and subsequently removed from the list. The instructions that
belong to this region are moved to the spawned live range in program-flow
or reverse program-flow order, as indicated by the type of the region. The
region contains a pointer to the anchor point, i.e. the instruction where the
spawned live range and the region connect. Note that the anchor point must
already belong to the spawned live range. Since the live range properties
must be maintained at all times, moving the instructions may cause the
addition of subranges to the spawned live range.
• Since the spawned live range was changed during addition of the region

in the previous step, all candidate regions must be reexamined in order to
determine whether they can still be added to the spawned live range.
Therefore each region is processed in the following way: If the region over-
laps completely with the region that was added in the previous step, and
both regions use the same direction, the region is discarded. If both regions
overlap completely, but use different directions, the subrange associated
with the region in reverse program-flow order is folded into the subrange
that is associated with the other region. The join operation is necessary to
maintain the live range properties, e.g. the ordering of the instructions. If
both regions overlap at their boundaries, both regions are marked.
If the current region is not overlapping completely, the size and the priority
of the region are recalculated. The priority p of a region is given by the
number of additional interferences that would be caused by adding the
region, normalized by the number of instructions in the region, i.e.

p = 1.0− # interferences
instructions

If the region can still be added to the spawned live range, it is moved to
the second candidate list. Otherwise, the region is moved to the boundary
list.

3.5 Assembler converter 117

• After all regions in the candidate list have been evaluated, all regions in the
first candidate list have either been moved to the second candidate list or
the boundary list. The second candidate list contains all regions that can
still be added to the spawned live range. Hence the two candidate lists are
exchanged. Afterwards new candidates that connect at the recently added
region are explored as described below.
If the current region was added in program-flow order, new regions are
explored in three different ways: If the first instruction of the region is
at the start of a basic block, all parents of the corresponding block that
belong to the original live range are explored. If the last instruction of the
region is at the end of a basic block, all children of the corresponding block
that belong to the original live range are explored. If the last instruction
of the current region is not at the end of an basic block, a new region is
explored starting from the next instruction in the corresponding block. In
all three cases, the explored regions are added to the candidate list if they
can be added to the spawned live range, else the regions are added to the
boundary list.
If the region was added in reverse program-flow order, new regions are
explored in three different ways: If the first instruction of the region is at
the end of a basic block, all children of the corresponding block that belong
to the original live range are explored. If the last instruction of the region
is at the start of a basic block, all parents of the corresponding block,
that belong to the original live range are explored. If the last instruction
is not at the start of a basic block, a new region is explored starting from
the previous instruction in the basic block. In all three cases the explored
regions are added to the candidate list if they can be added to the spawned
live range. Otherwise the individual regions are added to the boundary list.

After all regions in the candidate list have been added to the spawned
live range, the spawned live range may violate live range properties, e.g. may
not start or end at a use or definition of the corresponding register. In order
to maintain live range properties, any dangling heads and tails are removed
from the spawned live range. After the final shape of the spawned live range
has been determined, the save and restore flags are calculated as described
in Section 3.5.7.

Since the shape of the original live range was altered and a new live
range is added, the interference graph has to be updated. Note that the
modifications are restricted to live ranges that interfere with the original
live range. Therefore the interference graph is updated by processing all live
ranges that interfere with the original live range. There are four different
cases:

• The live range interferes neither with the original nor with the new live
range. Therefore the interference to the original live range can be removed.
Since the number of interferences decreases, the live range may become

118 3. Implementation

unconstrained. In that case, the live range is moved from the list of con-
strained live ranges to the list of unconstrained live ranges.
• The live range still interferes with the original live range, but not with the

spawned live range, i.e. no changes are made to the interference graph.
• The live range interferes with the spawned live range, but no longer in-

terferes with the original live range. Therefore the interference with the
original live range is replaced by the interference with the spawned live
range. Note that the number of interferences is unchanged for the inter-
fering live range, but decreases for the original live range. However, the
original live range is deleted after the spawning process, hence there is no
need to check whether the original live range is still constrained.
• The live range interferes with the original as well as the spawned live

range. The live range already interfered with the original live range, hence
it is sufficient to add the interference to the spawned live range. As this
increases the number of interferences for the live range, the live range may
become constrained. In that case, the live range is moved from the list of
unconstrained live ranges to the list of constrained live ranges.

After all interferences have been updated and the spawned live range is
non-empty, it is appended to the list of constrained or unconstrained live
ranges depending on the number of interferences. If the live range is empty,
i.e. contains no instructions, it is discarded.

Finally, all regions in the boundary list are used to recursively spawn new
live ranges. This ensures that all uses/definitions in the original live range
are covered by the spawned live ranges.

Context Switch Code. Save and restore instructions that save and re-
store the allocated registers to and from the corresponding locations in the
thread descriptor must be inserted at the boundaries of a live range, respec-
tively. Therefore every instruction contains four additional register masks,
i.e. RLoadBefore, RLoadAfter, RStoreBefore, RStoreAfter.

If the ith bit of the RLoadBefore mask is set, a restore operation for
register number i is inserted before the current instruction. If the ith bit
of the RLoadAfter mask is set, a restore operation for register number i is
inserted after the current instruction. If the ith bit of the RStoreBefore mask
is set, a save operation for register number i is inserted before the current
instruction. If the ith bit of the RStoreAfter mask is set, a save operation for
register number i is inserted after the current instruction.

The individual masks are updated during the creation of live ranges by
processing all instructions of the live range. Recall that live ranges are either
created during initial live range creation or by splitting of live ranges during
register allocation. The following rules govern the insertion of save and restore
instructions:

• Save and restore instructions are only inserted at use or definition points
of the corresponding register.

3.5 Assembler converter 119

• A restore instruction before a use is required if a path from the use to an
instruction outside the live range exists that does not contain any other
use or definitions.
• A save instruction after a use or definition is required if the use or definition

is at the end of the live range or a path from the use or definition to a restore
instruction exists, that is inside the live range.
• A save instruction before a use is used instead of a save instruction after

a use, if the instruction is a branch at the end of a super block, or the
live range overlaps, but does not interfere, with another live range at the
current instruction.

Note that the RLoadAfter mask is currently unused, since the placement
of save and restore instruction is not optimized by moving such instructions
outside of loops. However, this optimization may cause the creation of ad-
ditional basic blocks, thereby requiring a re-layout of the code, which is not
supported in the current implementation.

Algorithm. The placement of save and restore instructions can be solved by
data-flow analysis for each live range. The placement of the restore instruc-
tions is a special case (m = 1) of the distributive data-flow analysis framework
for reaching definitions defined in Section 3.5.6. The single bit is interpreted
as follows: The bit is set if a path from an instruction outside of the live
range to the current instruction exists that contains no use or definition of
the corresponding register, cleared otherwise.

Note that a live range constitutes a flow graph, although it may have
multiple entry points. Instead of operating on basic blocks, the data-flow
analysis operates on regions that are bounded by live range or basic block
boundaries. These two facts require slight modifications to the iterative data-
flow algorithm presented in Section 3.5.6.

The mapping of regions to functions from the operation space is done as
follows: If the start of the region is on a live range boundary, i.e. one of the
predecessor instructions is outside the live range, the g bit is set. If the region
contains a use or definition of the corresponding register, the k bit is set and
the g bit is cleared if it was set by the previous rule. Note that a restore
instruction is only inserted if the incoming bit is set and the first occurrence
is a use.

As described above, the placement of restore instructions can be trans-
formed into an instance of the reaching definition problem with m = 1. The
placement of save instructions can be transformed into an instance of the live
variable data-flow problem with m = 1 in the same way. The only difference
is the interpretation of the data-flow information as well as the mapping of
regions to functions from the operation space.

The g bit is set if a path from an instruction outside of the live range
to the current instruction exists that contains no use or definition of the
corresponding register, cleared otherwise. If the end point of a region is on
a live range boundary, i.e. one of the successor instructions is outside the

120 3. Implementation

live range, the g bit is set. If the region contains a use or definition of the
corresponding register, the k bit is set and the g bit is cleared if set by the
previous rule. A save instruction is only inserted before or after the last use or
definition in the region, if the individual data-flow bit is set. However, if the
last use or definition is inside a call prologue and the corresponding register
is an argument register of the call, the save instruction is omitted, since the
content of the register is destroyed by the call.

The individual masks are recalculated for every new live range, either
during initial live range creation or during splitting of live ranges. After the
interference graph has been colored, the individual register masks are updated
in a final pass over all live ranges. This pass identifies all live ranges that
overlap, but do not interfere, at a definition point. Recall from Section 3.5.7
that this situation occurs if one live range ends with a use at that point, while
the other starts with a definition.

If two such live ranges are encountered, the masks are modified in the
following way: If the RStoreAfter mask contains an entry for the register
corresponding to the live range that ends with a use, the entry is cleared
and set in the RStoreBefore mask instead. This moves the corresponding
restore instruction before the current instruction. Since the last access of the
associated register is a use, this does not change program semantics.

The algorithm used to determine such pairs of live ranges operates in the
same way as the algorithm used to construct the interference graph.

Optimization. If the rstore optimization is enabled, an optional pass over the
procedure flow graph removes any restore instructions that are not needed.
A restore instruction can be removed if it is the last restore instruction on a
path to an exit node and the corresponding register is not used by the calling
procedure. This applies to all registers with the exception of return value and
callee-save registers. The following algorithm is used to identify such restore
instructions:

• All exit basic blocks of the procedure, i.e. basic blocks with no children, are
identified and put into a worklist. For all registers that are neither return
value nor callee-save registers, the corresponding bit is set in the ExitMask
associated with each exit block, cleared otherwise.
• The algorithm processes basic blocks until the worklist is empty. The first

basic block in the worklist is removed and the individual instructions in
the block are processed to update the ExitMask. If the ith bit of the mask
is set and the block contains a restore instruction for the corresponding
register, the bit is cleared and the restore instruction is removed. If the
ith bit of the exit mask is set and the first occurrence is a use, the bit is
cleared, but the restore instruction is left in place.
If the block contains a call prolog, the corresponding bits in the ExitMask
for all argument registers are cleared. Otherwise the restores prior to the
call would be removed, causing the subsequent loads in the call prologue
to restore outdated register contents.

3.5 Assembler converter 121

• After the bit mask of the current block is updated, the information is prop-
agated to the parent blocks in the following way: Each parent is appended
to the worklist after all children of the parent have been processed and the
logical and of the ExitMasks from all children is non-zero. The ExitMask
of the parent is set to the logical bit-vector and of all child masks.

The algorithm presented above ensures that all unnecessary save instructions
are removed on paths to exit nodes. However, the performance impact of this
optimization is usually negligible, hence this optimization is not enabled by
default.

3.5.8 Code Conversion

The actual code conversion process is quite simple, the main tasks were al-
ready performed during register allocation. The conversion is performed in
three steps: In the first step, the instruction sequence is updated by insert-
ing the required instructions, e.g. save and restore operations to the thread
descriptor. In the second step, the instructions are modified based on the
informations from the platform-specific configuration file. Last but not least,
the modified instructions are printed to the output file. The following para-
graphs describe the steps in detail.

Updating Instructions. The instructions are updated separately for each
super block in several steps: In the first and last step, the level information is
cleared for all basic blocks that belong to the super block. This is required,
since the basic blocks are updated in depth-first order and the level infor-
mation is used to mark those basic blocks that have already been updated.
Before the individual basic blocks are updated, all special registers that are
used in this super block, e.g. the floating-point control register, have to be
restored. Therefore instructions that restore the contents of these special reg-
isters from the thread descriptor are inserted at the top of the header block.

Afterwards the individual basic blocks are updated by traversing the
blocks via depth-first search, starting with the header block. Note that the
subgraph formed by the basic blocks of a super block is an abstract flow
graph of the control-flow graph, i.e. all basic blocks are reachable from the
header block.

Upon entry to the basic block, the level information is checked. If the
level is non-zero, the block has already been updated and the routine returns
immediately. If the level is zero, the level is incremented prior to updating all
instructions in the basic block in sequential order. After the instructions have
been updated, the children of the current block are processed recursively as
long as the basic block does not end the current super block.

For each instruction, the necessary save and restore instruction are in-
serted before and after the instruction in the following way: The live ranges
associated with the instruction are examined and the corresponding register
mask is determined. This register mask is compared with the RLoadBefore,

122 3. Implementation

RLoadAfter, RStoreBefore and RStoreAfter fields of the instruction that were
set up during register allocation. If a match is found between the live mask
and the RStoreBefore, RLoadBefore masks, the corresponding save or re-
store instructions are inserted before the current instruction, respectively. If
a match is found between the live mask and the RStoreAfter, RLoadAfter
masks, the corresponding save or restore instructions are inserted after the
current instruction, respectively.

If the current instruction ends a super block and one of the special regis-
ters is used in the super block, instructions to restore these special registers
are inserted. If the current instruction ends a super block and the super block
contains instructions that may cause a trap, a trap barrier is inserted. If the
current instruction is a branch, these instruction are always inserted before
the branch. Otherwise, these instructions are inserted after the current in-
struction, along with a return instruction that transfers control to the main
loop in the thread execution routine. If the last instruction is a branch, this
return instruction is already part of the instruction sequence that replaces
the branch during modification of instructions.

In the second step, all instructions are modified based on the information
in the configuration files. To this end, all super blocks in the procedure are
processed sequentially. Furthermore, all basic blocks that belong to the cur-
rent super block and all instructions that belong to the current basic block
are processed sequentially as well.
Modifying Instructions. Each instruction is modified in the following way:
First of all, either the original or modified templates from the correspond-
ing entry in the configuration file are chosen in order to modify the current
instruction. The modified templates are only used for branch instructions at
super block boundaries as well as special instructions defined by the assembler
converter.

After the appropriate set of templates has been chosen, the individual
instruction templates are transformed into instructions by substituting all
keywords with the actual values from the current instruction. The individ-
ual keywords have already been described in Section 3.5.1. Afterwards, the
current instruction is replaced by the list of transformed instructions.

In the third step, the individual instructions are printed to the output
file. All instructions in the procedure are processed in the original sequence in
order to maintain program semantics without a re-layout of the basic blocks.
The instructions are transformed into text strings via the styles defined in
the platform-specific configuration file.

3.5.9 Statistics

The code conversion process associated with emulated multithreading mod-
ifies all instructions that belong to internal procedures. In order to evaluate
the impact of these modifications, the assembler converter maintains two dif-
ferent sets of detailed statistics about the conversion process: The first set

3.5 Assembler converter 123

covers the original instruction sequence, i.e. before the code conversion pro-
cess. The second set covers the modified instruction sequence, i.e. after the
code conversion process. The statistics for the original instructions are gath-
ered after the final shape of basic and super blocks has been determined, i.e.
after the processing of external calls. The statistics for the modified instruc-
tions are gathered during the code conversion process.

Depending on the selected level of statistics, information about both
statistics is inserted into the modified assembler code after each basic block,
super block, procedure, module, or program. Note that the gathered statistics
themselves do not depend on the selected level, only the amount of statistics
messages is affected.

The assembler converter uses counters to maintain both kinds of statistics
on the five different levels mentioned above. Each level provides a separate
set of counters to record the individual events on this level. If the current
basic block, super block, procedure, or module is finished, the contents of the
individual counters are added to the corresponding counters on the next level
and cleared afterwards. For example, if the current basic block is finished,
the statistics for this block are added to the statistics for the current super
block and are cleared afterwards in order to process the next basic block.

The assembler converter provides a rich set of events that can be easily ex-
tended by adding counters and inserting corresponding calls to update these
counters into the assembler converter. The following events are supported:

• The number of read accesses for each integer and floating-point register.
• The number of write accesses for each integer and floating-point register.
• The number of instructions in the current basic block, super block, proce-

dure, module, or program.
• The number of instructions of a given type in the current basic block, super

block, procedure, module, or program.
• The number of basic blocks in the current super block, procedure, module,

or program.
• The number of super blocks in the current procedure, module, or program.
• The number of procedures in the current module, or program.
• The number of modules in the current program.

The assembler converter partitions the individual instructions to one
of several groups. The assignment is based on keywords in the type field
of the corresponding entries in the platform-specific configuration file. The
INT MEM keyword designates the instruction as a memory integer instruct-
ion, while the INT CTRL keyword designates the instruction as an integer
control instruction. The INT ARITH and INT LOGIC keywords are used
for integer arithmetic and logical instructions, respectively. Byte and word
instructions are designated by the INT BYTE keyword, while multimedia
instructions are designated by the INT MEDIA keyword. The FP MEM,
FP CTRL, and FP ARITH keywords are used to designate floating-point

124 3. Implementation

memory, control and arithmetic instructions, respectively. Last but not least,
the INT MISC keyword is used for miscellaneous instructions.

3.6 Register Partitioning

Partitioning the register set and confining the individual threads to their
corresponding partitions allows emulated multithreading to omit all save
and restore operations to and from the thread descriptor upon a context
switch. Partitioning impacts the performance of emulated multithreading in
two ways: On one hand, the omitted save and restore operations will reduce
the context switch overhead. On the other hand, each thread has only a lim-
ited number of registers available, probably increasing the number of register
spills. In addition, the small number of threads that can be used with register
partitioning may impact the ability to hide the latency of remote memory
accesses in massively parallel processors.

Support for partitioning requires changes to the high-level language con-
verter, the assembler converter, as well as the emulation library. This section
covers only the modifications that have to be made to the assembler con-
verter, since the modifications for the high-level language converter and the
emulation library have already been described in Sections 3.3 and 3.4, re-
spectively.

In the case of the assembler converter, only a few modifications are neces-
sary: First of all, the individual registers in the register set have to be assigned
to different partitions. Note that each partition requires its own version of
the emulation registers and the global pointer, i.e. four registers in total. The
emuvar optimization is useful in conjunction with register partitioning as it
reduces the number of emulation registers to one, i.e. the FramePtr register
that contains the address of the current thread descriptor.

The assembler converter maintains an internal database that contains all
registers, hence it is sufficient to update this database with the corresponding
partition assignments. Access to the register database is provided by a set of
routines that take the partition number into account for every access to the
database.

The parser inserts a partition-specific prolog instruction in front of each
procedure and therefore has to determine the partition for the current proce-
dure. This is accomplished by examining the name of the procedure, i.e. the
global label, as the high-level language converter adds a general prefix as well
as a partition-specific postfix string to the name of all duplicated procedures.

The assembler converter determines the partition for the current proce-
dure in the same way before the code conversion process is started. The
number of the partition is stored in the procedure data structure, hence all
routines in the assembler converter have access to the partition number.

Enabling partition support actually simplifies the conversion process, as
the individual live ranges must no longer be splitted across super block bound-

3.7 Platform 125

aries. Hence the call to the split graph() routine can be omitted if partitioning
is enabled. Recall that the save and restore instructions before and after a
context switch are no longer required, hence the live ranges can be extended
across super block boundaries.

Calls to external procedures present a problem in combination with par-
titioning: The call prologue and epilogue have to use the registers as specified
by the calling convention and can therefore not be confined to a partition.
If one of the threads calls an external procedure, the call prologue, epilogue
and the callee itself will destroy the contents of registers in other partitions.
The partition of the thread that calls the external procedure will not be af-
fected, as this situation is already handled by the processing of external calls
as described in Section 3.5.5.

In order to protect the other partitions, all registers have to be saved,
e.g. these partitions have to be saved directly before the call prologue and
restored right after the end of the call epilogue. Note that the registers can
not be saved to the individual thread descriptors as the position of the other
threads at the point of the external call cannot be determined at compile-
time. Hence it is unknown which registers are actually used and how the
registers were allocated. For these reasons, storage for the whole register set
has to be provided, e.g. by using a global thread descriptor. Note that only
one external call is executed at any time, hence one copy of the register set
is sufficient. The save and restore to this storage area is accomplished by
inserting corresponding save and restore instructions before and after the
call.

A drawback of this approach is the impact on performance due to the
large number of save and restore operations before and after the call. Calls
to external procedures should therefore be avoided if register partitioning is
used.

3.7 Platform

The implementation of emulated multithreading, i.e. the architecture of the
high-level language converter, the assembler converter, and the emulation li-
brary is described in the previous sections. So far, this description did not
cover platform-specific issues. While most parts of the implementation applies
to all platforms, there are some platform-specific issues. The following para-
graphs describe these issues for the high-level language converter, assembler
converter, and emulation library, respectively.

The high-level language converter operates on the high-level language
source code and is therefore largely platform independent. However, the
project-specific configuration files that are created by the converter are
platform-specific: Recall from Section 3.5.1 that each entry in the config-
uration file specifies the required, optional, arguments, and return registers
for a specific internal or external procedure. These registers are gathered by

126 3. Implementation

translating the declaration of the corresponding procedure according to the
calling conventions. As these calling conventions depend on the processor
architecture and the operating system, i.e. are platform-specific, the trans-
lation process has to be adapted to the different calling conventions. This is
accomplished by isolating the translation routine in a platform-specific source
file and defining the names of the individual registers in a platform-specific
header file.

There are several platform-specific issues in the assembler converter: The
lexer and parser used to process the assembler source are platform-specific
as the syntax of the assembler source depends on the processor architecture
and the operating system, i.e. the assembler. The lexer must be able to recog-
nize the individual tokens, especially identifiers, instruction, directives, and
registers. As the namespace of these tokens overlaps partially, the lexer has
to maintain a list of all instructions, directives, and register names in order
to distinguish identifiers from the other tokens. The lexer definition and a
corresponding header file are therefore platform-specific.

Recall that the assembler converter maintains an internal register database
that contains the names and characteristics of all registers. As the informa-
tion in this database depends on the calling convention, i.e. the processor
architecture and the operating system, this database is platform-specific as
well. The use of this database allows the lexer and parsers for the platform-
and project-specific configuration files to be general, as all register names are
translated via the register database.

Recall that the assembler converter uses two different passes over the
assembler source. As the structure of the assembler source depends on the
processor architecture and the operating system, the individual lexer and
parser definitions are platform-specific. Apart from these platform-specific
issues, the second pass is identical on all platforms, i.e. performs the same
set of actions. However, the first pass performs platform-specific actions: The
assembler converter for the Alpha processor architecture under the Tru64
operating system uses the first pass to detect internal procedures, i.e. the
corresponding global labels. If such a global label is encountered, the first
local label after the end of the procedure prolog is stored in the list of internal
procedure names. This information is used to handle an optimization of the
compiler used in the Tru64 operating system: If a procedure does not use
the stack, i.e. a procedure prolog is not necessary, the compiler uses the first
local label after the end of the procedure prolog instead of the procedure
name in all calls to this procedure. Note that the procedure prolog is created
in all cases. As the local label is usually designated by a four-digit string, the
assembler converter has to associate these local labels with the corresponding
global label, i.e. the name of the procedure, in order to determine the proper
entry point to the procedure. Note that the code conversion process must
always begin at the procedure entry point, otherwise the save and restore

3.7 Platform 127

instructions may be placed incorrectly, especially if super block optimization
is used.

Apart from detecting internal procedures, all procedure calls are detected
and the called label is marked accordingly. After parsing the whole source
file, all pairs of local and global labels are instructed and those labels that
were called at least once are used during the second pass to detect internal
procedures. Note that either one of the two labels in a pair will be used, but
not both.

Another platform-specific issue is the use of relocation operands: The
compiler used in the Tru64 operating system specifies the relocation type
explicitly, these relocations are translated into the corresponding offsets by
the assembler. For example, the following code sequence is used to initialize
the global pointer, i.e. the pointer to the global segment that contains all
global variables.

ldah $gp, ($27)!gpdisp!1
lda $gp, ($gp)!gpdisp!1

Note that the type of the relocation, i.e. global displacement (gpdisp), and
a unique number is appended to the instruction, separated by exclamation
marks. The unique number is used to link those instructions that belong to
the same relocation operation, and is ordered by the increasing line num-
bers of the assembler source. The relocation assumes that the base register
contains the address of the instruction itself, otherwise the offset will be mis-
calculated. Similar instruction sequences are used to load global variables and
constants.

There are several issues with relocation operands: First of all, the instruct-
ion sequences that replace branch instructions at the end of super blocks use
relocation sequences to load the address of the target instruction into a regis-
ter. The insertion of additional relocation sequences destroys the ordering of
the original relocation sequences, i.e. the corresponding relocation numbers
must be updated. This is accomplished by updating the relocation numbers
during instruction update: Recall that instructions are updated in the same
order as they appear in the original source file, i.e. it is sufficient to maintain
the number of additional relocation sequences inserted so far and update all
other relocation sequences accordingly. All instructions that belong to the
same relocation sequence are linked and can therefore be updated at the
same time.

There is an additional restriction regarding relocation sequences: The cor-
responding offsets calculated by the assembler are only correct if the base
register used in the relocation sequence is identical to the destination regis-
ter of the indirect branch that produces the return address. Otherwise the
calculated offset is off by 4 bytes times the number of instructions between
the indirect branch and the start of the relocation sequence. Unfortunately,
the conversion process reallocates all registers and introduces new instruc-
tions, e.g. save and restore instructions, hence it is likely that the assembler

128 3. Implementation

will not be able to calculate the offsets correctly. Therefore the offsets used in
the relocation sequences are updated by counting the number of instructions
between the indirect branch and the start of the relocation sequence and
multiplying the result by four. This process is performed after all instruction
sequences have been updated, i.e. after all save and restore instructions have
been inserted into the assembler source.

Another issue with relocation sequences is the use of these sequences to
restore the global pointer after every procedure call, as the global pointer
resides in a register that is not callee-save. Normally the reload operation is
performed by a single lda/ldah instruction pair right after the call instruct-
ion. However, instruction scheduling may rearrange the instructions such that
there are one or more instructions between the call itself and the start of the
relocation sequence as well as between the two instructions in the sequence.
Note that these instructions can even be moved across basic block boundaries.
As all threads share the global pointer, all updates to the corresponding reg-
ister must be atomic, i.e. there must not be a super block boundary between
the two instructions of the relocation sequence. This problem is handled by
moving the second instruction right after the first instruction in these cases.

Another problem is the base register of the first instruction in the relo-
cation sequence: As mentioned above, this register must be identical with
the destination register of the call instruction, otherwise the corresponding
offsets will be miscalculated by the assembler. This problem is handled by
using a call epilogue that extends from the actual call instruction to the first
instruction of the relocation sequence and adding the corresponding register
to the call mask. Recall that all registers in the callmask are allocated to
themself inside the call prologue and epilogue. For similar reasons, the regis-
ter that contains the address of the callee is added to the call mask as well,
as the calling convention of the Tru64 operating system requires that register
r25 is used for this purpose.

The emulation library is completely platform-specific, otherwise most of
the routines perform similar actions: The thread attribute routines are iden-
tical across all platforms, while the thread argument and thread creation
routines depend on the calling conventions of the corresponding operating
system. The thread execution routine is written in assembler, hence de-
pends on the syntax of the corresponding assembler, otherwise the thread
execution routine is identical across all platforms. The same applies to the
EMUthread cswap(), EMUthread self(), and EMUthread barrier() routines,
although the barrier routine for the Cray T3E calls the system-wide barrier
once all threads on the corresponding processor have entered the barrier.

The E-register routines are implemented in very different ways: On the
Cray T3E, these routines access the E-register hardware directly in order
to implement the split transaction communication routines. The individual
routines are covered in large detail in Appendix B. On the Compaq XP1000,
these routines are replaced by macros that load and store values into a static

3.8 Compiler Integration 129

array that represents the E-registers. For example, the EMUereg int get()
instruction loads the content of the specified address and stores it in the entry
of the array, while the routine returns the entry of the array. Note that this
approach only works on single-processor systems or multi-processors systems
using symmetric multiprocessing, i.e. shared memory.

3.8 Compiler Integration

The high-level language and assembler converters described above use various
techniques that are similar to the ones used in compilers, e.g. control and
data-flow analysis, register allocation. The integration of these converters into
a compiler is therefore plausible. Integrating the converters into a compiler
would have several benefits:

The compiler provides access to information that has to be recovered
from the high-level language or assembler source at present. Most tasks of
the high-level language converter are already performed by the compiler fron-
tend, like constructing the control-flow graph and identifying the type and
location of procedure calls. The high-level language converter is therefore re-
duced to a single pass over the call graph that creates the module-specific
configuration file. The assembler converter can use additional information,
e.g. profiling, for new optimizations, e.g. during creation of super blocks. In
addition, the limitations of the assembler converter with respect to variable
argument procedures and procedure values could be resolved.

The code conversion process could be improved, as the interaction between
different compiler phases usually has a positive impact on the quality of
the generated code, e.g. for register allocation and instruction scheduling
[BEH91]. In a similar way, the other phases of the compiler could be steered
to produce code that is beneficial to emulated multithreading. In addition,
new or improved optimizations are possible as well, e.g. optimizations that
require a re-layout of the code.

Integration also provides access to the existing compiler infrastructure, es-
pecially optimization phases. Some of these optimizations could be repeated
on the converted code, e.g. instruction scheduling and code layout. In the cur-
rent stand-alone implementations, these tasks are left to the assembler. The
existing infrastructure would also ease the implementation of the converter,
since common components have no longer to be built from scratch.

The converters can be more easily ported to new languages and platforms:
Once the converters are integrated into the compiler, all high-level languages
already supported by the compiler are supported by emulated multithreading
as well. In order to support a new high-level language, adding a new com-
piler frontend, which is independent of the converters, is sufficient. Similar,
emulated multithreading should be ported easily to all platforms that the
compiler supports, since the converters operate on internal representations
instead of platform-specific assembler code.

130 3. Implementation

Based on the benefits described above, compiler integration would be an
important step in the evolution of emulated multithreading. To make such
an integration feasible, a compiler system must be found that is modular
by design and available in source code. The SUIF2 compiler system [Lam99]
satisfies these conditions and is therefore a good candidate for integration
with emulated multithreading. The following paragraphs describe the SUIF2
compiler system in detail.

The SUIF2 system is a compiler infrastructure that was developed to
support research and development of compilation techniques as part of the
National Compiler Infrastructure (NCI) project. The SUIF acronym stands
for Stanford University Intermediate Format, the name of the internal rep-
resentation that is used by the compiler infrastructure. The current imple-
mentation of the SUIF system is called SUIF2 [Lam99], a complete redesign
from the earlier SUIF1 [WFW+94] implementation.

The SUIF2 compiler architecture contains the following components: in-
termediate format, kernel, modules, and the compiler driver. The intermedi-
ate format is an extensible program representation that is used throughout
the compiler to transfer information between different phases of the com-
piler. The kernel defines and implements the compiler environment, i.e. the
program representation, and all modules.

Modules constitute the core of the SUIF system. A module can either be
a set of nodes in the intermediate representation or a program analysis pass
that operates on the intermediate representation of a program. The compiler
is steered by the compiler driver that creates the compiler environment, im-
ports all required modules, loads the internal representation of a program,
applies a series of transformations, and creates a new representation. The
initial representation is created by one of the compiler frontends, the last
representation is used by one of the backends to create actual code. The
SUIF2 compiler system currently supports frontends for the C and Fortran
languages as well as backends for the Alpha and IA32 architectures. The
backends are provided by the machineSUIF project described in the next
paragraph.

Similar to SUIF, machineSUIF was developed to support research and
development of compiler backends. The machineSUIF system is based on
SUIF and contains the following components: virtual machine, program-
ming interface, as well as several libraries. The SUIFvm virtual machine
is the internal machine-independent representation used by the backends
to transfer information between phases. In addition, each backend defines
a machine-dependent representation. The optimization programming inter-
face is a machine-independent interface to certain optimization passes that
operate either on the SUIFvm representation or on a machine-dependent rep-
resentation. Machine-independent libraries support manipulation of control-
flow graphs, control-flow and data-flow analysis, while machine-dependent

3.8 Compiler Integration 131

libraries add support for specific targets and implement the optimization
programming interface.

The typical backend flow consists of several steps: First of all, the interme-
diate representation in the SUIF format is lowered to the SUIFvm representa-
tion by generating code for this virtual machine. Several transformations and
optimizations are performed on the intermediate representation at this level.
The representation is subsequently realized, i.e. transformed into code for the
actual target platform. Again, several optimization phases are performed on
this level. Note that the two different intermediate representations are only
dialects of the same intermediate representation, i.e. the same optimization
passes can be used in both cases. After all optimizations have been performed
at this level, the code is generated and either printed as an assembler source
file for use by an external assembler or directly assembled into an object file.

The high-level language and assembler converters can be integrated into
the SUIF system by reimplementing the high-level language converter as a
SUIF optimization pass and the assembler converter as a machineSUIF opti-
mization pass. Although integration into the SUIF compiler structure seems
feasible, it was not an option for the current implementation of the convert-
ers: The SUIF system was not mature enough at the time the fundamental
design of the converters was chosen. For example, the optimization program-
ming interface was totally undocumented, hence integration into the SUIF
system seemed too great a risk. However, the next implementation of emu-
lated multithreading should be integrated into the SUIF system in order to
realize the benefits mentioned at the beginning of this section.

132 3. Implementation

4. Benchmarks

In order to investigate the characteristics of emulated multithreading, bench-
marks are used in the evaluation of emulated multithreading . To make this
evaluation as useful as possible, these benchmarks should satisfy the following
conditions:

• The benchmarks should cover a wide range of computational problems and
program characteristics in order to provide a solid base for the evaluation.
• The benchmarks should be widely used and should have well-known charac-

teristics. This facilitates comparisons with other approaches and identifying
the impact of emulated multithreading on performance.
• Since emulated multithreading was designed to hide latency in massively

parallel processors, the benchmarks should be parallel.
• The source code of the benchmarks should be available and be easily

portable to all platforms used in the evaluation.
• The benchmarks should have sufficiently small time and space requirements

in order to make a thorough evaluation feasible, since the computing time
is provided by grants and is therefore limited.

The following sections describe several parallel benchmark suites and de-
termine whether these benchmark suites are suitable with respect to the
evaluation of emulated multithreading according to the conditions outlined
above. After choosing one of the benchmark suites, the individual bench-
marks used during the evaluation of emulated multithreading are described
in detail.

4.1 Benchmark Suites

This section describes several popular benchmark suites: The LINPACK
benchmark is described in Section 4.1.1, while Section 4.1.2 covers the LFK
benchmark suite. Sections 4.1.3 and 4.1.4 cover the ParkBench and NPB
benchmark suites, respectively. Section 4.1.5 covers the Perfect Club bench-
mark suite, while Section 4.1.6 covers the SPLASH2 benchmark suite. Apart
from a description of the individual benchmark suites, the suitability of each
benchmark suite with respect to the evaluation of emulated multithreading
is determined.

134 4. Benchmarks

4.1.1 LINPACK

The LINPACK [Don90] package is used for solving dense systems of linear
equations and consists of a collection of subroutines written in Fortran. The
equation systems are solved by decomposition of the corresponding matrix
into a product of well-structured matrices. These well-structured matrices
are easily solved and the results are combined to solve the original equation
system. A popular example of such a decomposition is the LU decomposition,
which decomposes the original matrix A into a unit lower-triangular matrix
L as well as an upper-triangular matrix U. The equation systems represented
by the L and U matrices are easily solved using forward and backward sub-
stitution, respectively.

The LINPACK benchmark uses the BLAS (Basic Linear Algebra Subrou-
tines) package. This package contains three different sets of routines named
BLAS levels one to three: BLAS level one routines support simple vector-
vector operations, while BLAS level two routines support matrix-vector op-
erations and BLAS level three routines support matrix-matrix operations.

The LINPACK benchmark suite consists of three different problems:

• The first problem is to solve a dense system of linear equations represented
by a 100 × 100 matrix. The algorithm uses LU decomposition as well as
forward and backward substitution and is based on level one subroutines
from the BLAS package.

• The second problem is to solve a dense system of linear equations rep-
resented by a 300 × 300 matrix. Again, LU decomposition and forward
and backward substitution is used, but the algorithm is based on level two
subroutines from the BLAS package.
• The third problem is to solve a dense system of linear equations represented

by a 1000 × 1000 matrix. The algorithm is based on the level three sub-
routines from the BLAS package, i.e. the specific algorithm used to solve
the equation system depends entirely on the BLAS implementation.

The LINPACK benchmark is quite popular, hence benchmark results for
almost every computer system are available. Therefore the LINPACK bench-
mark is often used to track the evolution of computer performance. However,
the LINPACK benchmark is restricted to solving dense systems of linear
equations, which makes predictions about performance in other areas diffi-
cult at best.

4.1.2 LFK

The Livermore Fortran Kernels (LFK) [McM88] consist of 24 different compu-
tation kernels that were taken from scientific applications. Kernels are small
but important pieces of code. Note that the kernels are sometimes called the
Lawrence Livermore Loops (LLL). All kernels are written in Fortran [MR96]
and distributed in the form of a single source file that contains the 24 kernels

4.1 Benchmark Suites 135

as well as benchmark execution and timing support. The individual kernels
range from a few lines of code to a few dozen lines of code in size and perform
the following operations:

Loop 1 is a fragment from a hydrodynamic code.
Loop 2 is a fragment from a Cholesky-Conjugate gradient code.
Loop 3 computes the inner product of two vectors.
Loop 4 computes banded linear equations.
Loop 5 is a fragment from a tridiagonal elimination routine.
Loop 6 is a general linear recurrence equation.
Loop 7 computes a state equation.
Loop 8 is a fragment from an implicit integration code.
Loop 9 is a fragment from an integrate predictor code.
Loop 10 is a fragment from a difference predictor code.
Loop 11 computes the first sum of a vector.
Loop 12 computes the first difference of a vector.
Loop 13 is a fragment from a two-dimensional particle code.
Loop 14 is a fragment from a one-dimensional particle code.
Loop 15 performs various matrix computations.
Loop 16 is a fragment from a Monte Carlo code.
Loop 17 performs various vector computations.
Loop 18 is a fragment from a two-dimensional explicit hydrodynamic code.
Loop 19 computes a general linear recurrence equation.
Loop 20 is a fragment from a discrete ordinates transport program.
Loop 21 computes a complex vector equation.
Loop 22 is a fragment from a Planckian distribution code.
Loop 23 is a fragment from a two-dimensional implicit hydrodynamics code.
Loop 24 computes the minimum element in a vector.

The parallel complexity of the individual kernels was analyzed by Feo
[Feo88]. The Livermore Fortran Kernels themselves do not use explicit paral-
lelization directives, i.e. parallelization and vectorization is the responsibility
of the compiler. Due to the small data sizes, the individual kernels do not
scale well for larger numbers of processors, i.e. when executed on a massively
parallel processor. Another problem with the Livermore Fortran Kernels is
the regular structure, e.g. loops of the kernels, which favors techniques like
prefetching.

4.1.3 ParkBench

The ParkBench [HB94][DH95] (Parallel Kernels and Benchmarks) benchmark
suite was developed for distributed memory machines using message-passing.
The benchmark suite consists of several different groups of benchmarks: low-
level benchmarks, kernel benchmarks, compact applications, and compiler
benchmarks. Since there are no benchmarks in the compact applications

136 4. Benchmarks

group and the compiler benchmarks are not targeted towards performance
evaluation, the following paragraphs describe only the benchmarks in the
first two groups. All benchmarks are written in the Fortran 77 language and
use the Parallel Virtual Machine (PVM) library [GBD+94] for communica-
tion between processors. Note that PVM has been replaced by the Message
Passing Interface (MPI) [SOHL+98][GHLL+98], at least for commercial ap-
plications.

Low-Level Benchmarks. The group of low-level benchmarks contains
single- and multi-processor benchmarks. The set of single-processor bench-
marks contains the following benchmarks:

TICK1 measures the resolution of the clock that is used for timing mea-
surements.

TICK2 determines whether the clock that is used for timing measure-
ments measures wall-clock time.

RINF1 measures the execution time of several loops across different vector
lengths and computes the corresponding performance in MFLOPS
for the largest vector length, as well as the vector length required
to achieve 50% of the maximum performance.

POLY1 measures the memory bottleneck between the processor registers
and the cache by repeating 1 000 polynomial evaluations across
various vector lengths.

POLY2 measures the memory bottleneck between the processor registers
and main memory by performing one polynomial evaluation across
several vector lengths. As the caches are flushed before each eval-
uation, the benchmark will operate out of main memory.

The set of multi-processor benchmarks covers communication perfor-
mance and contains the following benchmarks:

COMMS1 measures the time to send a message of size n between processors.
COMMS2 is similar to the COMMS1 benchmark, but this time both proces-

sors send ping-pong messages to each other simultaneously.
COMMS3 is a generalized version of the COMMS2 benchmark, where all

available processor participate in sending and receiving messages:
Each processor sends messages to all other processors and subse-
quently receives messages from all other processors.

POLY3 is similar to the POLY1 benchmark, but stores the data that is
used during the polynomial evaluations on another processor. The
POLY3 benchmark therefore measures the memory bottleneck be-
tween the processor registers and remote memory.

SYNCH1 consists of a single barrier synchronization across all available pro-
cessors and measures the efficiency of these barriers.

The TICK1, TICK2, RINF1, COMMS1, COMMS2, SYNCH1 bench-
marks were taken from the Genesis benchmarks suite [Hey91], while the

4.1 Benchmark Suites 137

POLY1 and POLY2 benchmarks were taken from the EuroBench [vdSdR93]
and Hockney [Hoc93] benchmarks suites, respectively. The COMMS3 and
POLY3 benchmarks were written for the ParkBench benchmark suite.

Kernel Benchmarks. The group of kernel benchmarks consists of four dif-
ferent sets of benchmarks: matrix kernels, Fourier transformations, partial
differential equation solvers and miscellaneous.

The set of matrix kernels consists of the following benchmarks:

MM multiplies dense block-partitioned matrices.
MT transposes a dense block-partitioned matrix.
LU decomposes a dense matrix into a unit lower-triangular as well as an

upper-triangular matrix using LU decomposition.
QR decomposes a matrix into unitary and upper-triangular matrices.
BT computes a tridiagonalization of a block-partitioned matrix.

The set of Fourier kernels contains the following benchmarks:

FFT1D performs a one-dimensional Fast Fourier Transformation (FFT) by
computing the forward FFT on two vectors, multiplying the result
and computing an inverse FFT on the result.

FFT3D performs a three-dimensional Fast Fourier Transformation by com-
puting the forward FFT of a three-dimensional matrix, multiplying
the result several times by exponential factors and computing an
inverse FFT on the result.

The set of partial differential equation kernels contains the following
benchmarks:

SOR uses successive over-relaxation (SOR) to solve the Poisson equation
on a three-dimensional grid by parallel red-black relaxation with
Chebyshev acceleration.

MG uses a multigrid algorithm to determine an approximation to the
discrete Poisson problem on a three-dimensional grid with boundary
conditions.

The set of miscellaneous kernels contains the following benchmarks:

EP generates pseudo-random floating-point values and counts the num-
ber of Gaussian deviates inside various squares around the origin.

CG uses the inverse power method to estimate the largest Eigenvalue of
a symmetric, positive-definite sparse matrix.

IS sorts a large array of integers. The particular algorithm is not speci-
fied, as the use of vendor-supplied sort routines is allowed. However,
the initial distribution of the integer array across the processors is
specified.

IO measures I/O related parameters like startup time, bandwidth, and
latency. The benchmark is provided in a paper-and-pencil fashion,
hence the implementation is left to the benchmarker.

138 4. Benchmarks

The FFT3D, MG, EP, CG, IS benchmarks are taken from the NAS paral-
lel benchmark suite [BBLS91][BHS+95] described in Section 4.1.4, while the
SOR benchmark is taken from the Genesis benchmarks suite [Hey91]. The
matrix kernels, FFT1D and I/O benchmarks were written for the ParkBench
benchmark suite.

The ParkBench benchmark suite covers a wide range of scientific applica-
tions. However, the low-level benchmarks are probably too simple to provide
useful insights. The kernel benchmarks are better suited in this regard, but
most of these benchmarks are taken from the NAS parallel benchmark suite,
hence these benchmark suite could be used instead. Another problem with the
ParkBench benchmark suite is the use of message-passing primitives for com-
munication as the emulation library currently supports only shared memory
primitives. Therefore porting the benchmarks to the Cray T3E will require
a significant amount of work.

4.1.4 NPB

The NAS Parallel Benchmark Suite (NPB) consists of five kernels and three
compact applications from the field of computational fluid dynamics. The
benchmarks were initially released in paper-and-pencil fashion, i.e. by provid-
ing a detailed description of the problems that omitted any implementation-
specific details [BBLS91]. A later release of the NPB included implementa-
tions for five out of the original eight benchmarks [BHS+95]. These bench-
marks are written in the Fortran 77 language and use the MPI standard for
communications between processors. Therefore the NPB benchmark suite is
highly portable. The suite consists of the following benchmarks:

EP generates pseudo-random floating-point values and counts the number of
Gaussian deviates inside various squares around the origin.

CG uses the inverse power method to estimate the largest Eigenvalue of a
symmetric, positive-definite sparse matrix.

IS sorts a large array of integers. The particular algorithm is not specified,
as the use of vendor-supplied sort routines is allowed. However, the initial
distribution of the integer array across the processors is specified.

FT computes a three-dimensional Fast Fourier transformation using a dis-
tribution of data around the z-dimension. The benchmark performs a
forward three-dimensional FFT as multiple one-dimensional FFTs in the
x- and y-dimensions, transposes the corresponding matrix and performs
multiple one-dimensional FFTs in the z-dimension.

MG uses a multigrid algorithm to determine an approximation to the discrete
Poisson problem on a three-dimensional grid with boundary conditions.

LU decomposes a dense matrix into a unit lower-triangular as well as an
upper-triangular matrix using partial pivoting.

SP solves three sets of scalar pentadiagonal systems of equations.
BT solves three sets of block tridiagonal systems of equations.

4.1 Benchmark Suites 139

The NAS parallel benchmark suite uses three different (A, B, C) input
sizes for each individual benchmark. However, the last two input sizes are
too large to make a thorough evaluation feasible with the limited amount
of available computing time. Another problem is the use of message-passing
primitives for communication between processors as the emulation library
currently supports only shared-memory primitives.

4.1.5 Perfect Club

The Perfect Club benchmark suite is a collection of 13 applications written
in the Fortran language. The individual applications originate from various
areas of scientific applications:

ADM simulates pollutant concentration and deposition patterns in lake-
shore environments by solving systems of hydrodynamic equa-
tions.

ARC3D analyzes three-dimensional fluid flow problems by solving Euler
and Navier-Stokes equations.

BDNA simulates the molecular dynamics of biomolecules in water using
the Biomol package.

DYFESM analyzes symmetric anisotropic structures using a dynamic two-
dimensional finite-element method.

FLO52Q analyzes the transonic inviscid flow past an airfoil by solving the
unsteady Euler equations.

MDG simulates the molecular dynamics of 343 water molecules in the
liquid state at room temperature.

MG3D is used to investigate the geological structure of the earth using a
seismic migration code.

OCEAN simulates large-scale ocean movements based on eddy and bound-
ary currents by solving the dynamical equations of a two-dimen-
sional Boussinesq fluid layer.

QCD simulates long-range effects in Quantum Chromodynamics theory.
SPEC77 simulates atmospheric flow using a global spectral model based on

solving partial differential equations.
SPICE simulates the behavior of integrated circuits using non-linear

direct-current, non-linear transient and linear alternating-current
analysis.

TRACK computes the position, velocity, and acceleration of a set of targets
by observing the targets at regular intervals.

TRFD simulates two-electron integral transformation based on a series of
matrix multiplications.

The individual benchmarks in the Perfect Club benchmark suite cover a
wide range of scientific applications. However, the size of the applications,
i.e. 50 000 lines of code, makes the porting of the applications infeasible.

140 4. Benchmarks

4.1.6 SPLASH2

The SPLASH (Stanford ParalleL Applications for SHared memory) paral-
lel benchmark suite [SGL92] was designed to provide a suite of benchmarks
for cache-coherent shared-memory multiprocessors that increases the consis-
tency and comparability between different studies. Several limitations of this
benchmark suite, namely the limited coverage of algorithms, the limited scal-
ing for larger processor counts, as well as the limited support for caches, led
to the release of the SPLASH-2 benchmarks [WOT+95]. The second release
addresses these problems and has gained wide-spread acceptance in computer
architecture research due to the reasonably small problem sizes that facilitate
software simulation for new architectural concepts.

The SPLASH-2 benchmark suite was written for cache-coherent shared-
memory systems and uses the PARMACS macro package [BBD+87] for par-
allelization. The suite consists of four kernels and eight complete applications
written in the C [DM91] language:

radix sorts a large set of integers using an iterative algorithm.
fft performs a Fast Fourier transformation using a six-step algorithm.
lu performs a LU decomposition on a dense matrix.
cholesky performs a Cholesky factorization of a sparse matrix.
barnes simulates a n-particle system using the Barnes-Hut method.
fmm simulates a n-particle system using the fast-multipole method.
ocean simulates large-scale ocean movements based on eddy and boundary

currents.
radiosity calculates illumination in a three-dimensional scene using an itera-

tive hierarchical algorithm.
volrend renders the volumes of a three-dimensional scene.
water1 calculates molecule dynamics within a system of water molecules

using an O(n2) algorithm.
water2 calculates molecule dynamics within a system of water molecules

using an O(n) algorithm.

The algorithms used in the radix, fft, and lu benchmarks are described in
[BLM+91], [Bai90], and [WSH94], respectively. The algorithms used in the
cholesky, barnes, and fmm benchmarks are described in [RG94], [SHT+95],
and [SHHG93], respectively. The ocean, radiosity, and volrend benchmarks
are described in [SH92], [SHT+95], and [NL92], respectively. Finally, the al-
gorithms used in the water benchmarks are described in [WOT+95]

4.1.7 Summary

Recall that the benchmark suite used during the evaluation of emulated mul-
tithreading should satisfy the five conditions mentioned above. The first con-
dition, i.e. wide coverage of application areas, is satisfied by all benchmark
suites except LINPACK and LFK. The LINPACK benchmark covers only

4.2 SPLASH2 Benchmark Suite 141

one application area, i.e. solving dense systems of linear equations. The LFK
benchmark suite consists of small kernels from many areas of scientific com-
puting, but is limited to regular structures, i.e. loop-level parallelism. Note
that all benchmark suites are restricted to scientific applications.

The second condition, i.e. widespread use, is more or less satisfied by all
benchmark suites: The LINPACK benchmark is widely used and benchmark
results for almost every machine are available. The NPB benchmarks are quite
popular for the evaluation of large-scale massively parallel processors. The
SPLASH2 benchmarks are widely used in computer architecture research.
The third condition, i.e. efficient parallelization, is satisfied by all benchmark
suites except LFK and Perfect Club, which are written in Fortran and contain
no parallelization directives at all.

The fourth condition, i.e. availability and ease of portability, is only satis-
fied by the LINPACK, LFK and SPLASH2 benchmark suites. The Park-
Bench and NPB suites use message-passing communication libraries, e.g.
MPI, PVM. This complicates the porting of theses benchmarks, as the emu-
lation library currently supports only shared memory primitives. The Perfect
Club suite is too large, i.e. 50 000 lines of code, to make porting of the ap-
plications feasible. The fifth condition, i.e. time and space requirements, is
satisfied by all benchmark suites except the NPB and Perfect Club suites.
These suites define input sizes that are too large to make a thorough evalu-
ation with the limited amount of computing time feasible.

Taken together, the only benchmark suite that more or less satisfies all of
these conditions is the SPLASH2 suite. This suite contains kernels and appli-
cations from a wide range of scientific applications. Although the benchmarks
use the obsolete PARMACS macros for parallelization, the individual bench-
marks employ a shared memory model, which makes porting to the shmem
and emulation libraries feasible. In addition, most of the benchmarks contain
hints for useful distribution of data on distributed memory machines like the
Cray T3E. The wide-spread use of these benchmarks in the literature makes
comparisons with other approaches feasible. For these reasons, a subset of the
SPLASH2 benchmarks is used in the evaluation of emulated multithreading:
three kernels and three applications have been ported to the Cray T3E.

4.2 SPLASH2 Benchmark Suite

The evaluation of emulated multithreading is based on three kernels as well
as three compact applications taken from the SPLASH2 benchmark suite:
The fft, lu, and radix kernels described in Sections 4.2.1, 4.2.2, and 4.2.3,
respectively, were selected due to their small code size, ease of portability
and the existence of data distribution hints. The ocean application described
in Section 4.2.4 was selected due to the regular structure, ease of portability
and the existence of data distribution hints. The barnes and fmm application
described in Sections 4.2.5 and 4.2.6, respectively, were selected as examples

142 4. Benchmarks

for irregular applications, although considerable effort is required to port
these two applications.

All kernels and applications use the PARMACS macros [BBD+87] for
parallelization. Unfortunately, this macro package is obsolete and parallel
implementations are not available on the Cray T3E. A sequential implemen-
tation of the PARMACS macros is available that allows the execution of such
programs on single-processor systems or a single node of a multiprocessor sys-
tem. However, the benchmarks had to be rewritten in order to replace the
PARMACS macros by corresponding routines from the shmem and emula-
tion libraries. In addition, all implicit accesses to remote memory had to be
identified and replaced by explicit accesses using the communication routines
from the shmem and emulation libraries.

Another difference between the PARMACS macros and the shmem and
emulation libraries is the programming model: Using the PARMACS macros,
only one processor is running at startup time, the other processors have to
be activated explicitly. Using the shmem or emulation libraries, all processors
are running at startup time, hence some program sections, e.g. I/O, have to
be protected to ensure that only one of the processors executes these sections.

The PARMACS macros used for timing measurements were replaced with
calls to the Performance Counter Library (PCL) [BM98] that provides access
to the hardware performance counters. These calls use the PCL CYCLES
event, i.e. the cycle counter, to measure wall-clock time. Note that this event
is not available on the Cray T3E, hence a per-process cycle counter is used.
This represents no problem, as all benchmark experiments were executed in
batch mode, i.e. had exclusive access to the processors they were running on.

In order to use emulated multithreading, some modifications have to be
made to the original sources. These modifications concern initialization and
inter-thread data distribution and are protected by conditional compilation
statements, i.e. benchmarks using the shmem and emulation libraries are
derived from the same source code.

4.2.1 The FFT Kernel

The FFT (Fast Fourier Transform) is an efficient algorithm for computing
the DFT (Discrete Fourier Transform) that is widely used in numerous ap-
plications. The next section describes discrete Fourier transformations and
largely follows the presentation by Rockmore [Roc00]. The following sections
describe the six-step algorithm used by the fft kernel, the specific implemen-
tation, as well as the porting details, respectively.
Discrete Fourier Transform. Given an n-element vector X of complex
numbers X = (x0, . . . , xn−1), the discrete Fourier transform computes an-
other n-element vector Y = (y0, . . . , yn−1), where

yk =
n−1∑
j=0

xjw
jk
n

4.2 SPLASH2 Benchmark Suite 143

The wn = e2πi/n are called roots of unity, since e2πi = 1.
The basic idea behind FFT is a transformation of the one-dimensional

problem above into a two-dimensional problem. This is accomplished by view-
ing the n-element vector X as a n1×n2 matrix, where n = n1n2. Substituting
the indices j = an1 + b, k = cn2 + d, where 0 ≤ a, d < n2 and 0 ≤ b, c < n1,
in the equation above yields

Y (c, d) =
n1−1∑
b=0

wb(cn2+d)
n

n2−1∑
a=0

X(a, b)wadn2

Now the FFT can be computed using at most (n1n2)(n1 +n2) operations
by calculating the second term for all values of b, d in at most n1n

2
2 operations,

the remaining transformations in another n2n
2
1 operations. This approach can

be extended to yield the desired O(n log n) result.

Algorithm. The fft kernel organizes the two n-element vectors mentioned
above as two

√
n ×
√
n matrices, such that every processor is allocated a

contiguous set of rows. The kernel uses the following six-step algorithm as
described in [Bai90]:

1. Transpose the data matrix.
2. Perform

√
n one-dimensional FFTs on the rows of the matrix.

3. Apply the roots of unity to the data matrix.
4. Transpose the data matrix.
5. Perform

√
n one-dimensional FFTs on the rows of the matrix.

6. Transpose the data matrix.

Communication occurs only during matrix transposition in steps 1, 4
and 6. During matrix transposition, the matrix is divided in patches of size√
n/p×

√
n/p such that every processor transposes a local patch as well as one

patch from every other processor. The matrix transposition steps therefore
require all-to-all communication. A barrier synchronization is performed after
steps 3, 5, and 6.

Implementation. After parsing the command line, the fft kernel sets vari-
ous global parameters, e.g. the number of processors, the size of the matrix, as
well as the number and size of the cache-lines in the first-level cache. Based on
these values, the fft kernel calculates the required matrix size. Row padding
is used to ensure that the contiguous array of rows that is allocated to one
processor starts on page size boundaries and individual rows start on cache-
line boundaries. Afterwards four shared arrays are allocated: x, trans, umain,
and umain2. The x and trans arrays hold the data matrix and are used as
source and target matrices for transpose operations. The umain2 array holds
the roots of unity, while the umain array contains the heavily accessed first
row of the umain2 array. After initializing the local and shared arrays, the
remaining processors are activated and the Fourier transformation begins.
Once the simulation has been completed, these processors are deactivated,

144 4. Benchmarks

while the first processor gathers timing statistics and checks the validity of
the results.

The Fourier Transformation uses the algorithm described above and is
implemented in the following way: First of all, the shared umain array is
replicated among all processors, a subsequent barrier synchronization is per-
formed to ensure that all processors have finished initialization. Note that
each processor is assigned a contiguous set of rows and all processors work
only on the assigned rows.

All processor transpose the matrix from the x array to the trans array.
Afterwards, each processor performs a one-dimensional FFT and applies the
roots of unity to all columns of the trans matrix. A subsequent barrier syn-
chronization ensures that all processors have finished this step before they
transpose the matrix from the trans to the x array. Afterwards, each proces-
sor performs a one-dimensional FFT on all columns of the trans matrix that
belong to it. A subsequent barrier synchronization ensures that all processors
have finished this step before they transpose the matrix from the x to the
trans array.

The routines that perform the one-dimensional FFT and apply the roots
of unity are straight-forward. The transpose routine is more interesting: The
source matrix is divided into patches of size

√
n/p ×

√
n/p. Therefore each

processor is assigned p patches, since
√
n/p rows were allocated to each pro-

cessor. Every processor transposes one patch locally and gets one patch from
every other processor. The transpose of a single patch is performed block-wise
to take advantage of spatial locality. The size of the blocks depends on the
number of matrix elements per cache-line. Note that the transpose routine is
the only part in the fft kernel that requires inter-processor communication.

Porting. Porting the fft kernel described above was straight-forward: First
of all, the PARMACS macros were either removed or substituted with calls
to the corresponding routines from the shmem, emulation, and performance
counter libraries. Some data structures, e.g. barrier structures were removed.
All implicit accesses to remote memory were identified and replaced by ex-
plicit accesses using communication routines from the shmem and emulation
libraries.

The shared arrays were distributed as suggested in the original source, i.e.
each processor allocates only those parts of the arrays that belong to it. The
umain array was replicated on all processors, hence the replication at the start
of the transformation could be removed. The initialization of the distributed
arrays was parallelized as well, each processor initializes only those parts
of the arrays that belong to it. Apart from the transpose routine, the other
functions are basically unchanged. Inside the transpose routine, the transpose
of individual matrix elements is now performed with communication routines
from the shmem or emulation libraries.

In the case of emulated multithreading, the data distribution remains
unchanged, but the work is distributed among the p · t threads on the p pro-

4.2 SPLASH2 Benchmark Suite 145

cessors in the same way as if p · t processors were present. Apart from thread
initialization, this is the only major change required to support emulated
multithreading. Since all processors are active at startup, some changes were
made to the initialization routines to ensure that some code sections, e.g.
I/O, are only executed by a single processor.

4.2.2 The LU Kernel

The lu kernel decomposes a symmetric, positive-definite matrix A into a
unit lower-triangular matrix L and an upper-triangular matrix U such that
A = L · U holds. A matrix is symmetric if the matrix is identical to its
transposition, i.e. A = AT. A matrix is positive-definite, if xTAx > 0 holds
for all x 6= 0. It can be shown that any symmetric positive-definite matrix is
invertible.

The decomposition of a matrix A into matrices L, U is useful for solving
systems of linear equations. Given a set of linear equations

ai,0x0 + ai,1x1 . . . ai,n−1xn−1 = bi i = 0, . . . n− 1

these equation system can be rewritten as Ax = b, where A = (aij) and
b = (bi). Given a decomposition of the matrix A into the matrices L, U as
described above, this equation can be rewritten as LUx = b. Due to the
regular structure of the L and U matrices, this equation can be easily solved
in two steps: In the first step, the equation Ly = b is solved by forward
substitution. In the second step, the equation Ux = y is solved by backward
substitution. The following sections describe the decomposition algorithm
used by the lu kernel, the implementation of the lu kernel, as well as the
porting process, respectively.

Algorithm. The lu kernel uses Gaussian elimination to compute the LU de-
composition of a symmetric, positive-definite matrix A. Gaussian elimination
is a recursive process that uses up to n steps to compute the decomposition,
where n is the size of the matrix. In the ith step, multiples of the ith row
are subtracted from all rows below such that the ith variable (xi) is removed
from the corresponding equations. This process is continued until the remain-
ing matrix A has upper-triangular form. The matrix L is created from the
individual factors used during the elimination process.

Formally, let A = (aij). Then A can be written as

A =
(
a11 wT

v A′

)
where A′ = (a′ij) is a (n − 1) × (n − 1) matrix, v = (ai1), w = (a1i) are
(n− 1)-element vectors. The above equation can be rewritten as

A =
(

1 0
v/a11 In−1

)(
a11 wT

0 A′ − vwT/a11

)

146 4. Benchmarks

Note that the term vwT/a11 is the outer product of v and wT divided by
the scalar a11, i.e. a matrix of size (n − 1) × (n − 1). The matrix A′ can
be recursively decomposed into matrices L′, U ′, which yields the desired
decomposition of the matrix A:

A =
(

1 0
v/a11 L′

)(
a11 wT

0 U ′

)
The lu kernel uses a blocked version of Gaussian elimination that is described
below.

Implementation. After parsing the command-line, the lu kernel sets the
number of processors p, the size of the matrix n, as well as the block size
b. Afterwards the number of rows and columns per processor as well as the
number of blocks per row and column is calculated. The individual blocks of
the matrix are distributed across the processors in cookie-cutter fashion, i.e.
block (i, j) of the matrix belongs to processor

j · (number of rows) + i mod (number of columns)

Instead of using a two-dimensional array, the matrix A is stored in a four-
dimensional array: The first two dimensions specify the blocks of the matrix,
while the last two dimensions specify the elements inside the block. The four-
dimensional matrix is realized as two levels of two-dimensional arrays, where
each element in the first level array contains the address of the corresponding
block, i.e. the second-level array of matrix elements.

All blocks that belong to a processor are allocated from a contiguous block
of memory and are aligned on page and cache-line boundaries. After initial-
izing the first two-dimensional array with the address of the corresponding
blocks, the individual blocks are initialized to form a symmetric, positive-
definite matrix. Afterwards the other processors are activated, such that the
decomposition algorithm described in the next paragraph is executed by all
p processors. Once the decomposition is finished, these processors are de-
activated, while the first processor gathers timing statistics and checks the
validity of the result.

The decomposition algorithm used by the lu kernel operates on whole
subblocks of the matrix instead of single rows. The algorithm consists of a
single loop, the number of iterations is equal to the number of blocks per row
and column. During each iteration, the following three steps are performed:

• In the first step, the current diagonal block is factorized by the correspond-
ing processor. The diagonal block is factorized column-wise using Gaussian
elimination: For each column k of the block, the entries below the diagonal
are divided by the diagonal element, the elements of the row k right of the
diagonal are subtracted from all rows j below k scaled by the corresponding
element of column k:

4.2 SPLASH2 Benchmark Suite 147

for (k=0; k<n; k++) {
for (j=k+1; j<n; j++) {
a[k+j*stride] /= a[k+k*stride];

daxpy(&a[k+1+j*stride], &a[k+1+k*stride],
n-k-1, -a[k+j*stride]);

}
}

The resulting factorization is stored in the diagonal block itself. Note that
the L, U matrices contain no overlapping entries if the unit diagonal of
matrix L is stored implicitly. A subsequent barrier synchronization ensures
that none of the other processors proceeds with factorization until the
diagonal block has been factorized.
• In the second step, the blocks in the current row and column are updated

by the corresponding processors. The blocks in the current column are
updated accordingly: For each column k of the block, the elements from
row k are subtracted from all rows j below k scaled by the corresponding
element of column k:

for (k=0; k<dimk; k++) {
for (j=k+1; j<dimk; j++) {
daxpy(&a[j*stride_a], &a[k*stride_a],

dimi, -diag[k+j*stride_diag]);
}

}

The blocks in the current row are factorized column-wise using Gaussian
elimination: For each column k, the entries of the column are divided by
the corresponding diagonal element of the diagonal block. The elements
of the row k right of the diagonal are subtracted from all rows j below k
scaled by the corresponding element of the diagonal block:

for (k=0; k<dimi; k++) {
for (j=0; j<dimj; j++) {
c[k+j*stride_c] /= a[k+k*stride_a];

daxpy(&c[k+1+j*stride_c], &a[k+1+k*stride_a],
dimi-k-1, -c[k+j*stride_c]);

}
}

The updated row and column blocks are used during factorization of the
interior blocks in the third step. A subsequent barrier synchronization en-
sures that none of the other processors proceeds with factorization of the
interior blocks before the row and column blocks have been factorized.

148 4. Benchmarks

• In the third step, the remaining interior blocks are updated by the corre-
sponding processors. The interior blocks are updated column-wise accord-
ing to the factorization of the current diagonal block: For each column k
of the interior block, the elements of row k in the corresponding row block
are subtracted from all rows in the current block, scaled by the negative
of the corresponding entry in row k of the corresponding column block:

for (k=0; k<dimk; k++) {
for (j=0; j<dimj; j++) {
daxpy(&c[j*stridec], &a[k*stridea],

dimi, -b[k+j*strideb];);
}

}

Porting. Porting the implementation of the lu kernel described in Section
4.2.2 was straight-forward: All PARMACS macros were either removed or
substituted with calls to the corresponding calls from the shmem, emulation,
and performance counter libraries. All implicit accesses to remote memory
were identified and replaced by explicit accesses using communication rou-
tines from the shmem and emulation libraries. Since all processors are active
at startup, some changes had to be made to the initialization routines to en-
sure that some code sections, e.g. I/O are only executed by a single processor.

The matrix A is distributed across the processors such that each processor
holds only the blocks of the matrix that belong to him. In this way, the target
of a remote memory access is identical to the owner of the corresponding
block. In the case of emulated multithreading, the individual blocks of the
matrix are distributed among the p · t threads on the p processors in the same
way, as if p · t processors were present. Apart from initialization, this is the
only major change required to support emulated multithreading.

4.2.3 The Radix Kernel

The radix kernel sorts integer keys using a parallel version of counting-based
radix sort. The radix kernel expects three arguments: the number of keys,
the size of the radix, and the size of the maximum key. The default values
for these arguments are 256 K, 1024, and 512 K, respectively. The following
sections describe the algorithm used by the radix kernel, the implementation,
as well as the porting process, respectively.

Algorithm. The radix sort algorithm relies on the interpretation of the keys
as m-bit integers, where m is the base-two logarithm of the size of the max-
imum key. Each key is divided into blocks of r bits, where r is the base-two
logarithm of the radix size. The algorithm sorts the keys by iterating dm/re
times through a loop, each time sorting the keys according to the current
block of r bits. These intermediate sorts must be stable, i.e. the input or-
dering must be preserved for all keys with equal value in the current block.

4.2 SPLASH2 Benchmark Suite 149

Otherwise the intermediate sort destroys the work of previous intermediate
sorts. The intermediate sort determines the rank of all keys according to the
current block and permutes the keys correspondingly afterwards.

The keys are distributed to the processors such that each processor holds
n/p local keys, where n, p is the number of keys and processors, respectively.
Each processor maintains a vector index with 2r elements to store the index
and rank of the keys with the corresponding block values. The rank of the
individual keys is determined in several steps:

• The 2r elements of the index vector are cleared. Afterwards the histogram
of the local keys is computed and stored in the index vector, i.e. the ith
element of the vector contains the number of local keys for which i is the
value of the current block.
• For all possible block values k, 0 ≤ k ≤ 2r − 1, the global rank of the first

local key with block value k is determined and stored in the k-th element
of the index vector. The global rank is the sum of the number of keys on all
processors with block values less than k plus the number of keys with block
value k on all processors with a smaller processor id. The first summand
is determined by maintaining an offset and adding the global sum of the
kth elements of the index vector in each iteration. The second summand
is determined by a parallel prefix computation on the kth elements of the
index vector on all processors.
• After the global rank of the first local key has been determined for all

possible block values, the global rank of the remaining keys is determined:
The global rank of a local key with block value k is the sum of the global
rank of the first key with block value k and the number of local keys with
block value k encountered so far. The local keys are processed in sequential
order to ensure the stability of the intermediate sorting step.

The radix sort algorithm has several advantages: The algorithm is easy to
code and maintain, has a good running time in practice, and performs well on
short keys. The main disadvantage of the algorithm is the space requirement,
i.e. radix sort does not sort in place. However, radix sort requires less memory
than other sorting algorithms, e.g. sample sort [BLM+91].

Implementation. After parsing the command-line, the radix kernel initial-
izes the following parameters: the number of processors p, the number of keys
n, the size of the radix r, as well as the size of the maximum key M . After-
wards local and shared memory is allocated and initialized: The key partition
array is a shared array with p + 1 elements that is initialized such that the
ith element of the array contains the number of the first key allocated to
processor i. Note that the pth entry contains the total number of keys. The
rank array is a shared array with p·(r+1) elements that contains the rank ar-
rays for all p processors. The first p elements of the rank array are initialized
such that the ith entry contains the address of the rank array at processor
i . The rank ff array is a local array with r elements that is used as a local

150 4. Benchmarks

rank array. The key0, key1 arrays are shared arrays with n elements that
contain the actual key values and are used as source and destination during
the intermediate sorts, as radix sort does not sort in place.

After the local and shared arrays have been initialized, the remaining p−1
processors are activated, such that all p processors execute the parallel sorting
algorithm. After all processors have finished sorting the keys, these processors
are deactivated again, while the first processor gathers timing statistics and
checks the correctness of the result.

Upon startup of the parallel sort, each processor uses a pseudo-random
number generator to fill the corresponding part of the key0 array. A barrier
synchronization ensures that all processors have finished key generation be-
fore the actual sorting begins. As already mentioned above, the parallel sort
algorithm consists of a single loop that is traversed dm/re times, each time
sorting the keys according to a block of r bits. During each iteration, the
following steps are performed:

• First of all, each processor creates a histogram of all keys that belong to it.
This histogram is created in the following way: The part of the global rank
array that belongs to the corresponding processor is cleared. Afterwards
all local keys are processed by extracting the value of the current block of
r bits and incrementing the corresponding entry in the global rank array.
In addition, each processor stores the distribution of its keys in the local
key distribution array, i.e. the ith element of the array contains the sum
of all elements below i and the ith element of the rank array.

• The local histograms are now merged into a global histogram. This is done
in two steps: In the first step, a parallel prefix computation is used to
accumulate the local histograms. In the second step, the global histogram
is broadcasted to all processors in a reverse parallel prefix operation. These
parallel prefix computations use a global array of 2p prefix nodes where
each node contains two arrays with r elements for distribution and rank,
respectively.
The parallel prefix computation is implemented by building a binary tree
on the p processors. Note that the total number of nodes in this tree is
given by

log(p)∑
i=0

p

2i
= p ·

log(p)∑
i=0

(
1
2

)i ≤ 2p

hence the 2p elements in the prefix array. Each prefix node contains a lock
variable that is used to ensure proper updates of the individual nodes. As
only a small subset of processors is used in the upper levels of the tree,
computation of the global histogram does not scale well.
• The parallel prefix computation is completed as each processor determines

the global rank of the local keys by adding the ranks from all nodes to his
left.

4.2 SPLASH2 Benchmark Suite 151

• Each processor permutes the local keys from the source to the destina-
tion arrays according to the global ranks computed in the previous step.
Afterwards the source and target arrays are exchanged unless the current
iteration is the last one.

Porting. Porting the implementation of the radix kernel described above
was straight-forward: All PARMACS macros were either removed or substi-
tuted with calls to the corresponding calls from the shmem, emulation, and
performance counter libraries. The shared arrays were distributed as sug-
gested in the original source: The key and rank arrays were distributed such
that each processor stores only the local keys. The prefix-tree array used dur-
ing parallel prefix computation is replicated on all processors and augmented
by an additional structure that maps the individual nodes in the prefix tree
to processor numbers. Note that the contents of a given prefix node are only
valid on the corresponding processor.

All implicit accesses to remote memory were identified and replaced by
explicit accesses using the communication routines from shmem or emulation
libraries. In the case of emulated multithreading, the individual blocks of the
matrix are distributed among the p · t threads on the p processors in the same
way, as if p · t processors were present. Apart from initialization, this is the
only major change required to support emulated multithreading.

4.2.4 The Ocean Application

The ocean application studies the role of mesoscale eddies and boundary cur-
rents in large-scale ocean movements. The ocean is modeled as two different
layers, i.e. the lower and the upper layer. The upper layer is driven by wind
stress from the overlying atmosphere. In addition, the influences of bottom
friction, i.e. between the ocean floor and the bottom layer, as well as lateral
friction, i.e. between both layers, are considered. Both layers are modeled as
a cuboidal grid. For each grid point, data is recorded at the middle of both
layers as well as at the interface between both layers. The distance between
grid-points determines the accuracy of the simulation.

Simulation of this wind-driven ocean basin proceeds in several timesteps
until a steady state between the eddy currents and the mean ocean flow is
reached. In each timestep, the following system of partial differential equa-
tions has to be solved [Hol78]:

δ

δt
∇2Ψ1 = J(f +∇2Ψ1, Ψ1)− (f0/H1)w2 + F1 +H−1

1 curlzτ

δ

δt
∇2Ψ3 = J(f +∇2Ψ3, Ψ3)− (f0/H3)w2 + F3

δ

δt
(Ψ1 − Ψ3) = J(Ψ1 − Ψ3, Ψ2)− (g′/f0)w2

152 4. Benchmarks

where ∇ and J are the Laplacian and Arakawa Jacobian operators, respec-
tively. H1, H3 are the height of the upper and bottom layers, while F1, F3 are
the lateral friction terms for the upper and bottom layers, respectively. τ is
the wind stress influencing the upper layer, curlzτ is the vertical component
of the wind-stress curl, and w2 is the vertical velocity at the interface of the
two layers. f and g′ represent the Coriolis parameter and the gravity, respec-
tively. The Ψ1, Ψ2, Ψ3 are the stream functions at the middle of the upper
layer, the interface between the two layers, and the middle of the bottom
layer, respectively.
Algorithm. The algorithm used in the ocean application uses the first dif-
ference form of the equations presented above to yield a numerical solution.
In each time step, the ocean applications solves the following equation system
[Hol78]:

(
∇− Hf2

0

H1H3g′

)(
δ

δt
(Ψ1 − Ψ3)

)
= γa

∇
(
δ

δt

(H1Ψ1 +H3Ψ3)
H

)
= γb

under the condition that∫ ∫
Ψδxδy = 0 and

δ

δt

(H1Ψ1 +H3Ψ3)
H

= 0

holds. Note that the latter condition applies only to the boundaries.
The right-hand sides of the above equations, i.e. γa, γb, are given by:

γa = J(f +∇(Ψ1), Ψ1)− J(f +∇(Ψ3), Ψ3)−(
Hf2

0

H1H3g′

)2

J(Ψ1 − Ψ3, Ψ2) +H−1
1 curlzτ + F1 − F3

γb =
H1

H
J(f +∇(Ψ1), Ψ1) +

H3

H
J(f +∇(Ψ3), Ψ3) +

H−1
1 curlzτ +

H1

H
F1 +

H3

H
F3

Let Ψa, Ψb be stream functions that satisfy certain boundary conditions,
then

Ψ = Ψa +
∫∫

ψaδxδy∫∫
ψbδxδy

Ψb

is used to aid the solution of the equations above. The algorithm used in the
ocean application arranges the above computations such that the computa-
tions can be efficiently performed in parallel. Therefore an iterative equation
solver was used instead of the direct solver in the original sequential program.

4.2 SPLASH2 Benchmark Suite 153

Implementation. After parsing the command line, the ocean application
sets various global parameters, e.g. the number of processors, the size of the
ocean grid, the distance between individual grid points, as well as the error
tolerance. Based on these values, the shared arrays are initialized: The psi1,
psi3, psim1, and psim3 arrays represent the mean stream function at the
current and previous timesteps, respectively. The psium and psilm arrays
represent the stream functions at the interface between both layers, in the
middle of the upper layer, and the middle of the lower layer, respectively.
The ga, oldga, and gb, oldgb arrays represent the γa, γb functions from the
current and previous timesteps, respectively. The tauz array represents the
vertical component of the wind-stress curl, while the f array represents the
Coriolis parameter. The work1 through work7 and temp arrays are used as
temporary arrays during setup of the differential equations. The q multi and
rhs multi arrays are used as inputs to the multigrid solver.

After these and several local arrays have been initialized, the remaining
processors are activated and the ocean is simulated for the specified num-
ber of timesteps. Once the simulation has been completed, these processors
are deactivated, while the first processor gathers timing statistics. Before the
first timestep begins, the psi, psim, psib, psium, psilm, tauz and f arrays
are initialized and the integral of the psibi arrays is determined. A subse-
quent barrier synchronization ensures that all processors have finished this
initialization before the actual simulation starts.

The simulation proceeds for the specified number of timesteps, each
timestep consists of 10 steps to solve the equation system described in Sec-
tion 4.2.4. Barrier synchronizations between the individual steps ensure that
all processors have finished the current step before moving to the next step.

• The first step consists of six different computations: First, the ga and gb
arrays are initialized. Second, the Laplacian of the psi1 array, i.e. Ψ1, is
computed and stored in the work1 array. Third, the Laplacian of the psi3
array, i.e. Ψ3, is computed and stored in the work3 array. Fourth, the differ-
ence between the psi1 and psi3 arrays, i.e. Ψ1−Ψ3 is computed and stored
in the work2 array. Fifth, the Ψ2 stream function is computed and stored
in the work3 array. Last, the psi1 and psi3 arrays are saved to the temp1
and temp3 arrays.
• The second step consists of three different computations: First, the psim1

and psim3 arrays are copied to the psi1 and psi3 arrays, respectively. Sec-
ond, the Laplacian of the psim1, psim3 array is computed and stored in
the work7 arrays. Last, the work1 and work3 arrays are updated with
the corresponding values from the f array. Afterwards these arrays contain
f +∇(Ψ1) and f +∇(Ψ3), respectively.
• The third step consists of three different computations: First, the Jacobians

of the work1, temp1 and work3, temp3 arrays is computed and stored in the
work5 arrays. Afterwards these arrays contain J(f+∇(Ψ1), Ψ1) and J(f+
∇(Ψ3), Ψ3), respectively. Second, the original values of the psim1, psim3

154 4. Benchmarks

arrays are restored from the temp1, temp3 arrays. Last, the Laplacian of
the work7 arrays is computed and stored in the work4 arrays.
• The fourth step consists of two different computations: First, the Jacobian

of the work2, work3 arrays is computed and stored in the work6 array.
Afterwards the work6 array contains J(f +∇(Ψ1 − Ψ3), Ψ2). Second, the
Laplacian of the work4 arrays is computed and stored in the work7 arrays.
Afterwards these arrays contain the three-fold Laplacian of the original
psim arrays and represents the lateral friction terms.
• The fifth step uses the work5, work6, work7 arrays to compute the ga and

gb arrays, i.e. γa, γb, according to the equations described above.
• The sixth step initializes the q multi and rhs multi arrays based on the ga

array and solves the corresponding partial differential equation using an
iterative Red-black, Gauss-Seidel multigrid solver. The solutions is stored
in the ga array, which is saved to the oldga arrays afterwards. Recall that
the oldga array is used to provide an initial guess during the next iteration.
• In the seventh step, each processor computes the integral of the local part

of the ga array and updates the global psibi variable accordingly.
• The eighth step consists of two different computations: First, the ga ar-

ray is updated according to the above equations. Second, the q multi and
rhs multi arrays are initialized based on the gb array and the correspond-
ing partial differential equation is solved using the same multigrid solver as
above. The solution is stored in the gb array, which is saved to the oldgb
arrays afterwards.
• In the ninth step, the solutions of the partial differential equations stored

in the ga, gb arrays are used to update the work2 and work3 arrays.
• In the tenth step, the psi1 and psi3 arrays are updated from the work2 and

work3 arrays to prepare for the next iteration.

Porting. Porting the ocean application described above was complicated
by the size of the application and the large number of arrays. First of all,
the PARMACS macros were either removed or substituted with calls to the
corresponding routines from the shmem, emulation and performance counter
libraries. Some data structures, e.g. barrier and lock structures, were removed
or integrated into the other data structures.

All implicit accesses to remote memory were identified and replaced by
explicit accesses using communication routines from the shmem and emula-
tion libraries. The shared arrays were distributed as suggested for distributed
shared-memory systems in the original sources, i.e. each processor allocates
its local subgrid of the individual arrays. Since all processors are active at
startup, some changes were made to the initialization routines to ensure that
some code sections, e.g. I/O, are only executed by a single processor.

In the case of emulated multithreading, the data distribution is un-
changed, but the work is distributed among the p·t threads on the p processors
as if p · t processors were present. Apart from thread initialization, this is the
only major change required to support emulated multithreading.

4.2 SPLASH2 Benchmark Suite 155

4.2.5 The Barnes application

The barnes application solves the classical N -body problem: Given a set of
N particles, where each particle is defined by its mass, position, and veloc-
ity, the evolution of the particle system under the influence of gravitational
forces is computed. This requires discretizing the time period into small time
steps, calculating the gravitational forces between all particles and updat-
ing the particle positions, velocities, and accelerations accordingly in each
time step. Since the range of the gravitational force is infinite, each particle
is influenced by all other particles. As the number of particle pairs is

(
N
2

)
,

a straight-forward algorithm requires O(N2) time for each time step. The
barnes application uses the barnes-hut algorithm to achieve an O(N logN)
time bound.

Algorithm. The barnes-hut algorithm [BH86] uses a hierarchical method
based on constructing a tree of particles. All nodes in the tree represent
a regular space cell of the particle system and the leaves contain at most
one particle. The root node represents a space cell that is large enough to
contain the whole particle system. Starting with the root node, the tree is
constructed by subdividing the corresponding cell into up to eight subcells
until the subcells contain no more than one particle. Note that the length of
the subcells is one half of the length of the parent cell in all three dimensions.

The size of the root cell is determined in O(N) time by examining the
current positions of all particles. The tree is constructed by starting with
the empty root cell and subsequently inserting all particles into the tree in
arbitrary order. The insertion of a particle leads to subdivisions of tree nodes
if there is more than one particle in the corresponding space cell. Empty
subcells are not stored, i.e. the tree is adaptive. The expected runtime for
the tree construction is O(N logN), since the insertion of a particle requires
time proportional to the height of the tree, which is expected to be O(logN).
Therefore the overall runtime for tree construction is O(N logN) as well.

For each internal node, the center of masses for all particles in any of
the corresponding subcells is calculated. These values are used during the
third step to approximate the interaction with the particles contained in
these subcells. A traversal of the tree in reverse direction, i.e. starting with
the leaves, is used to calculate the center of masses for all leaves and to
propagate the corresponding information to all nodes in the tree. Since the
expected height of the tree is O(logN), the number of nodes in the tree is
O(N) on average, hence the second step has an average runtime of O(N).

The gravitational forces on all particles are computed in the third step.
For each particle, the tree is traversed to compute the gravitational forces
from all other particles that affect the current particle. The traversal starts
at the root node and is governed by the following rules: If the center of masses
in one of the subcells of the current node is well-separated from the current
particle, the gravitational force caused by the particles in that subcell is
approximated by the corresponding center of masses. Otherwise the traversal

156 4. Benchmarks

continues recursively into the subcell. The dimensions of the current cell,
the distance between the current particle and the center of masses of the
subcell as well as a threshold is used to determine whether a given particle
and subcell are well-separated. The threshold is usually user-defined and
determines the accuracy of the approximation along with the duration of the
individual timesteps and the accuracy of the mathematical operations. Since
the tree is traversed for each particle during this step, the force calculation for
each step requires O(logN) time, hence the third step has an overall runtime
of O(N logN).
Implementation. After parsing the command-line, the barnes application
sets various global parameters, e.g. the number of particles, the duration of a
timestep, the number of timesteps, and the number of processors. Based on
these values, the shared arrays are initialized as follows: The btab array is a
shared array that holds the N particles. The mass, position, and velocity of
the individual particles are initialized based on a Plummer model.

The ctab and ltab arrays are allocated for each processor and hold internal
nodes and leaves of the particle tree, respectively. The size s1, s2 of these
arrays is the number of particles times the fraction of leaves per particle
and the fraction of nodes per particle, respectively, divided by the number of
processors p:

s1 = n · fleaves/p
s2 = n · fnodes/p

The two fractions can be specified via the command-line, default values are
0.5 and 2.0, respectively.

The three local mybody, myleaf, and mycell arrays are used to hold point-
ers to elements in the shared btab, ltab, and ctab arrays, respectively. These
arrays are required since the distribution of particles, leaves, and nodes to
processors is changed in every timestep. The mybody array is initialized such
that processor i holds pointers to n/p particles starting from the i · (n/p)th
particle. After initializing the local and shared arrays, the remaining pro-
cessors are activated and the evolution of the particle system is determined
for the specified number of timesteps. Once the simulation has been com-
pleted, these processors are deactivated, while the first processor gathers
timing statistics.

In each timestep, the three phases of the barnes-hut algorithm described
above as well as an additional load-balancing step are executed:

• The first processor creates a tree with an empty root node, a subsequent
synchronization barrier ensures that all processors start building the par-
ticle tree at the same time. Each processor loads the particles from its
mybodytab array into the tree as described above. Note that synchroniza-
tion is required to ensure atomic updates of the tree. Nodes and leaves that
are created during insertion of a particle are stored in the ctab and ltab
arrays of the processor that inserted the particle.

4.2 SPLASH2 Benchmark Suite 157

• The particles are redistributed across the processors using a work-partition
scheme, as the amount of work required to calculate the gravitational forces
acting upon a particle is non-uniform. The number of interactions with
other particles is used as a simple cost measure to reflect the amount of
work associated with that particle. Note that the number of interactions
is not known before the forces are calculated and changes dynamically
across timesteps. However, provided that the time steps are small enough,
the particle system evolves slowly between timesteps. Hence the number
of interactions in the previous timestep is an useful approximation to the
number of interactions in the current timestep.
Based on this cost measure, the particles are distributed as follows: First
of all the average cost per processor is calculated as the total cost of all
particles divided by the number of processors p:

Cavg = Ctot/p

Note that the total cost of all particles is equal to the cost of the root cell.
The total cost is distributed across the processors such that a partition of
size Cavg is assigned to each processor. The minimum and maximum cost
for processor i, i.e. the start and end points of the corresponding partition,
is calculated as follows:

Cmin = Cavg · i
Cmax = Cavg · (i+ 1)

Based on the minimum and maximum costs per processor, all processors
traverse the particle tree, summing the cost of all particles encountered.
Once the sum is larger than the minimum cost, the encountered particles
are allocated to the processor, until the sum exceeds the maximum cost
for this processor. Note that the particles themselves are not distributed,
only the mybodytab array that stores the pointer to the local particles
is updated. No synchronization is required during the work distribution
phase, , as the minimum and maximum cost values as well as the identical
traversal of the particle tree ensure that the particle distribution is disjoint.
• During the third step, each processor computes the gravitational forces

for its local particles. For each particle, the particle tree is traversed as
described above, calculating the number of particle-particle and particle-
cell interactions along the way. In addition, the cost of the particle, i.e. the
number of interactions, is calculated.
• After calculating the gravitational forces, each processor updates the posi-

tion, velocity, and acceleration of all its local particles as described above.
In addition, the minimum and maximum positions in each dimension is
determined. If any of the three local minimum or maximum dimensions
exceeds the corresponding global dimensions, the global dimensions are up-
dated accordingly. Note that synchronization is required to ensure proper

158 4. Benchmarks

updates of the global dimensions. These dimensions are used during the
next timestep to create the root node of the particle tree.

Porting. Porting the barnes application described above was complicated
by the size of the application and the dynamic assignment of particles to
processors. First of all, the PARMACS macros were either removed or sub-
stituted with calls to the corresponding routines from the shmem, emulation,
and performance counter libraries. Some data structures were removed or
integrated into the other data structures.

All implicit accesses to remote memory were identified and replaced by
explicit accesses using communication routines from the shmem and emula-
tion libraries. However, as the assignment of particles, nodes, and leaves to
processors is dynamic, the target processing element of the remote access has
to be stored explicitly for all pointers that are potentially involved in remote
memory accesses. Due to the size of the barnes application, the identification
of remote accesses and corresponding pointers was quite complex.

The six shared arrays were distributed across the processors as suggested
in the original source code: The body array is distributed such that every
processor i holds a subarray that contains n/p particles starting with the
i · (n/p)th particle. Note that the body array is still shared, i.e. the arrays
on all processors start at the same address. The ctab and btab arrays were
distributed as shared arrays to the corresponding processors. The mybodytab,
mycelltab, and myleaftab arrays were distributed in the same way.

In the case of emulated multithreading, the data distribution is un-
changed, but the work is distributed among the p·t threads on the p processors
as if p · t processors were present. Apart from thread initialization, this is the
only major change required to support emulated multithreading. Since all
processors are active at startup, some changes were made to the initializa-
tion routines to ensure that some code sections, e.g. I/O, are only executed
by a single processor.

4.2.6 The FMM application

Like the barnes application described in Section 4.2.5, the fmm application
solves the classical N -body problem. In contrast to the previous approach, the
fmm application is restricted to the two-dimensional case and uses the fast
multipole algorithm. Note that the algorithm itself is not restricted to two
dimensions, but the three-dimensional formulation of the algorithm is con-
siderably more complex. The primary difference between the two algorithms
is the calculation of cell-cell interactions in the fast multipole algorithm,
while the barnes-hut algorithm calculates only particle-particle and particle-
cell interactions. Another major difference between the two algorithms is the
definition of well-separatedness and the use of multipole expansions in the
fast multipole algorithm compared to centers of masses in the barnes-hut
algorithm. The next section describes the fast multipole algorithm in detail.

4.2 SPLASH2 Benchmark Suite 159

Algorithm. Similar to the barnes-hut algorithm, the fast multipole algo-
rithm uses a hierarchical method based on constructing a tree of particles.
All nodes in the particle tree represent a regular space cell of the particle
system, the root node represents a space cell that is large enough to con-
tain all particles in the system. Note that each leaf in the particle tree can
contain several particles instead of the single particle used in the barnes-hut
algorithm.

Starting with the root node, the tree is constructed by subdividing each
cell into four quarter-sized subcells until the corresponding leaf cell contains
no more than the maximum number of particles per leaf:

• The size of the root cell is determined in O(N) time by inspecting the cur-
rent positions of all particles. The tree is constructed in the same way as
in the barnes-hut algorithm. The only difference is the maximum number
of particles per leaf: In the fast multipole algorithm, a leaf is only subdi-
vided if the number of particles in the leaf exceeds the maximum number.
Setting the maximum number of particles to one yields the barnes-hut
tree-construction algorithm.
• Each cell is approximated by a linear-order series expansion of particle

properties around the center of the cell, the so-called multipole expansion.
The number of terms used in the expansion determines the accuracy of the
interpretation, an infinite number of terms would yield the exact result.
Note that the accuracy of the computation in the fast multipole algorithm
is controlled by the number of terms in the expansions compared to the
choice of well-separatedness as in the barnes-hut algorithm. In addition, the
accuracy of both algorithms is determined by the length of the individual
timesteps as well as the accuracy of the floating-point operations. The
multipole expansions are determined in an upward pass of the particle
tree, propagating the multipole expansions from the particles in the leaves
to the root node.
• Before calculating the gravitational forces, each node divides all nodes

whose corresponding cells are not well-separated from the parent cell into
several lists. Two nodes a, b are said to be well-separated if the distance
between the corresponding cells is larger or equal than the length of b.
Each of the four lists contains cells that bear a special relationship to the
current cell:
– The U list of a leaf l contains all leafs that are adjacent to the leaf l.
– The V list of a node c contains all well-separated siblings.
– The W list of a leaf l contains all descendants of l’s colleagues whose

parents are adjacent to l, but which are not themselves adjacent to l.
– The X list of a node c contains all nodes that have c in their W list.
After constructing these lists for all nodes and leaves in the particle tree,
the interaction of each node with all nodes in the corresponding lists is
computed. The list construction ensures that no interactions are computed

160 4. Benchmarks

with cells that are well-separated from the parent cell. Note that the inter-
actions with nodes from different lists are different, details can be found in
[SHHG93].
Internal nodes compute only interactions with nodes in their V and X
lists and store the results as a local expansion series. The local expansion
represents the interactions with all well-separated nodes. In addition, leaf
nodes compute interactions with the nodes in their U and W lists and
update the particles in the leaf accordingly. Note that the interactions
between the particles in the leaf node and all nodes in the U list are not
approximated in any way, while interactions with nodes in the W list are
approximated by the corresponding multipole expansion
After the interaction lists have been computed for all nodes, the interac-
tions of well-separated nodes on the particles in a leaf cell are represented
by the local expansions in the ancestor nodes. These local expansions are
propagated to the leaves by a downward pass of the particle tree. The
particles in the leaf cells are subsequently updated according to the local
expansion. The complexity of the force calculation phase is O(nh2m) where
m is the number of terms used in the multipole expansion, n is the number
of particles in the tree, and h is the number of levels in the tree [Sin93].

Implementation. The fmm application uses command-line arguments to
pass several important parameters such as the number of particles, the type
of the particle distribution, the number of processors, the number of terms
in the multipole expansion, as well as the number and duration of timesteps.
After parsing the command-line, these parameters are used to create the par-
ticle distribution. The particles themselves are stored in a shared array, an
additional array of the same size stores pointers to the individual particles.
The latter array is initialized such that the ith entry contains a pointer to
the ith particle. In addition, several static arrays that are used during mul-
tipole expansion are initialized. After initialization is completed, the remain-
ing processors are activated, such that the evolution of the particle system is
simulated by all p processors. Once the simulation has been completed, these
processors are deactivated, while the first processors gathers timing statistics.

At startup, each processor allocates and initializes the local particle array,
which contains pointers to particles. The size of the array is the product
of the total number of particles and a constant particle distribution factor,
divided by the number of processors. The particle distribution factor is used
to account for imbalances in the particle distribution. The local particle arrays
are initialized such that every processor holds an equal number of particles. In
addition, each processor allocates an array of internal nodes used to construct
the tree. The number a of these nodes is given by

a = 4/3 · tol · bdf · n · p
occupancy · max particles per node

Note that the box distribution factor bdf and the tolerance tol are used
to account for imbalances in the distribution of cells to processors, while

4.2 SPLASH2 Benchmark Suite 161

the maximum number of particles per node times the occupancy gives the
average number of particles per node.

A subsequent barrier synchronization ensures that all processors have
completed initialization before the evolution of the particle system is simu-
lated. The simulation consists of a single loop that is iterated for the specified
number of timesteps. For each timestep, the simulation is performed in six
different steps:

• In the first step, the particle tree is constructed. This step uses a differ-
ent algorithm to construct the particle tree that significantly reduces the
amount of synchronization required. First of all the size of the root cell
is determined: Each processor calculates the minimum and maximum par-
ticle positions in both dimensions by inspecting all particles that belong
to it. Afterwards the global minimum and maximum particle positions in
both dimensions are determined by merging the local minimum and maxi-
mum positions. A barrier synchronization ensures that all processors have
calculated their local minimum and maximum particle positions prior to
the merge.
After the size of the root cell has been determined, each processor initializes
the internal cell and particle lists, i.e. destroys the previous particle tree.
The particle tree is constructed by building local particle trees on each
processor and merging these local trees into a global particle tree after-
wards. Each processor constructs its local particle tree as described above
by starting with an empty root node and subsequently inserting its local
particles into the tree. Note that the root node has identical dimensions in
all local particle trees, therefore two nodes in different local trees represent
the same subspaces. This property simplifies the merging algorithm, which
is described in the next paragraph.
The algorithm used to merge a local particle tree into the global tree starts
at the root nodes of both trees. Based on the type of these nodes, there
are six different cases:
– If the global node is empty while the local node is internal, the global

node is substituted by the local node.
– If the global node is empty while the local node is a leaf, the global node

is substituted by the local node.
– If both nodes are internal, all children of the local node are merged with

their counterparts in the global tree by calling the merging algorithm
recursively for each child.

– If the global node is internal while the local node is a leaf, the local node
is subdivided such that the local node becomes internal and the previous
case applies.

– If both nodes are leaves, the global node is removed from the tree and
the particles in the global node are inserted in the local subtree starting
with the local node. Afterwards the local node is inserted into the global
tree.

162 4. Benchmarks

– If the global node is a leaf while the local node is internal, the global
node is removed from the tree and the particles in the global node are
inserted in the local subtree starting with the local node. Afterwards the
local node is inserted into the global tree afterwards.

Note that the local node is never empty, hence there are only six instead
of nine different cases. This algorithm significantly reduces the amount of
synchronization, as whole subtrees instead of particles are inserted in a
single locking operation. In the barnes application, synchronization is a
bottleneck, especially in the upper levels of the tree.
During the construction of the particle tree, each processor also constructs
the partition lists. There is one partition list for the leaves in the particle
tree and another one for each level of the particle tree. After the particle
tree has been constructed, these particle lists contain pointers to all leaves
or internal cells that belong to the processor. The partition lists are used
during the construction of the U, V, W, and X lists described below as well
as during the force calculation phase.
• The U, V, W, and X lists are constructed in two steps: First the lists of

siblings and colleagues are constructed for each cell, afterwards the U, V,
and W lists are constructed. Note that the X list is not computed explicitly,
as it is the dual of the W list. The two steps are separated by a barrier
synchronization to ensure that the siblings and colleagues of each cell have
been determined before the U, V, and W lists are constructed.
Given a node c, recall that all siblings of the node are all other nodes that
have the same parent. Given a node c, recall that all colleagues of the
node are its siblings as well as its cousins, i.e. children of siblings of the
parent. The lists of siblings and colleagues for each node is constructed in
a downward pass of the particle tree: Each processor uses its partition lists
to update all nodes in all internal nodes of the tree as well as the leaves.
The U, V, and W lists are updated in a similar way, although an upward
pass of the particle tree is used to construct the lists. The individual lists
are constructed for all cells according to the definitions given above.
• Similar to the barnes application, the nodes and leaves are redistributed

to processors prior to force calculation. However, the cost of an internal
node is represented by the number of nodes in the V list, while the cost
of a leaf is represented by the sum of all cycle counts for interactions with
all nodes in the U, V, W, and X lists. The cycle count for a given list
is approximated by a simple function. This function is parameterized by
the number of terms in the multipole expansion as well as the number of
particles in the corresponding cell. Note that the partition lists are recon-
structed during the repartitioning of the nodes and leaves. A subsequent
barrier synchronization ensures that the partitioning is completed before
the force calculation phase.
• The force calculation phase consists of four steps: First of all, the multipole

expansions of all leaves are calculated and propagated to their ancestors

4.2 SPLASH2 Benchmark Suite 163

by an upward pass of the particle tree. Afterwards the U, V, W, and X
interactions are computed in another upward pass of the particle tree. A
subsequent barrier synchronization ensures that these interactions have
been computed for all nodes before the local multipole expansions and
updated particle positions are calculated.
The local multipole expansion is propagated from the root cell to the de-
scendants in a downward pass of the particle tree and evaluated at the
leaves. The particle positions are updated according to the interactions
with other particles/cells. The different partitions of the particle tree are
based on the partition lists that are maintained by each processor.
In the last step, each processor updates the list of its local particles by
examining all leaves in the corresponding partition list and adding all par-
ticles in these leaves to its particle list. Note that the particle tree is re-
constructed in every timestep, hence the need to update the particle lists.

Porting. Porting the fmm application was complicated by the size of the
application and the dynamic partitioning of the particles. First of all, the
PARMACS macros were either removed or substituted with routines from the
shmem, emulation, and performance counter libraries. Some data structures
could be removed, since the shmem and emulation libraries allow synchro-
nizations on arbitrary longwords and barriers require no data structure. All
implicit accesses to remote memory were identified and replaced by explicit
accesses using routines from the shmem and emulation libraries. .

Due to the dynamic partitioning of the particle system, the target pro-
cessing elements for remote memory accesses have to be stored explicitly for
all pointers that are potentially involved in such accesses. As the fmm ap-
plication is even larger and more complex than the barnes application, the
identification of implicit remote accesses was quite complex. Unfortunately,
the decision to store the address and the corresponding processing element in
different locations created the potential for race conditions: The tree merging
algorithm in the fmm benchmark allows simultaneous accesses to the indi-
vidual nodes in the tree as long as only one processor updates the node.
Therefore some of the read accesses will return the updated contents of the
node, while other read accesses will return the original contents of the node.
This is no problem, as the original contents are still valid, i.e. the correspond-
ing nodes are still part of the tree, although in a different position. However,
if the address and the number of the processor is stored in different locations,
some read accesses will return the original address along with the updated
processor number and vice versa.

This problem was detected during the evaluation of emulated multithread-
ing on the Cray T3E as the problem manifests itself only with a large number
of particles and multiple processors. Due to resource constraints, the fmm
benchmark was tested with smaller problem sizes only during the porting
phase. The problem can be solved in two different ways: All read and write
accesses to the nodes in the tree are separated by locks. Due to the large

164 4. Benchmarks

number of these accesses, this solution will probably have a significant im-
pact on the tree merging performance. The second solution is to store the
address and the processor number in the same memory location. This can
be accomplished by storing the processor number in the unused upper part
of the address and insert or extract both values before or after each access.
Due to the large number of accesses to such locations, the second solutions
requires some work.

The shared particle and particle list arrays are distributed across the pro-
cessors such that every processor holds an equal number of array elements.
The local cell and particle list arrays are allocated at the corresponding
processor. In the case of emulated multithreading, the data distribution is
unchanged, but the work is distributed among the p · t threads on the p pro-
cessors in the same way, as if p · t processors were present. Apart from thread
initialization, this is the only major change required to support emulated
multithreading.

5. Evaluation : Compaq XP1000

As described in Chapter 2, emulated multithreading is designed to tolerate
long latency events by using fine-grained multithreading and asynchronous
communication. The implementation described in Chapter 3 is targeted at
tolerating remote memory references in massively parallel processors, since
such accesses cause long latencies and are identified easily. However, a basic
understanding about the behavior of programs using emulated multithread-
ing as well as the associated overhead can already be obtained from an eval-
uation on a single-processor workstation. The Compaq XP1000 workstation
used in the single-processor evaluation of emulated multithreading is based on
the 21264 implementation of the Alpha architecture. Compared to the 21164
processor used in the Cray T3E, the 21264 is better suited for emulated mul-
tithreading: The 21264 has significantly larger first-level caches and supports
out-of-order execution and sophisticated branch prediction. Hence the evalu-
ation on the Compaq XP1000 workstation and the Cray T3E should provide
useful insights into the overhead associated with emulated multithreading on
different implementations of the Alpha architecture. In addition, perform-
ing the evaluation on a local workstation is more flexible compared to an
external system like the Cray T3E, since the workstation can be configured
as needed. This chapter covers the evaluation of emulated multithreading on
single-processor systems, while the evaluation of multithreading on massively
parallel processors is described in Chapter 6.

Emulated multithreading is evaluated on the Compaq XP1000 worksta-
tion using the six benchmarks described in Chapter 4, i.e. fft, lu, radix, ocean,
barnes and fmm. For each benchmark, several experiments are performed to
determine the runtime of emulated multithreading across a wide range of
thread numbers, problem sizes and code conversion options. These runtimes
are subsequently compared with the runtimes obtained via single-threaded
execution (base) as well as multithreaded execution using POSIX threads
(posix).

Section 5.1 describes the architecture and software environment of the
Compaq XP1000 workstation. The experimental methodology is covered in
Section 5.2, while Section 5.3 describes the impact of the code conversion
process on the size and structure of the assembler sources. Sections 5.4 to

166 5. Evaluation : Compaq XP1000

5.9 describe the experimental results for the individual benchmarks, while
Section 5.10 summarizes the results for all benchmarks.

5.1 Compaq XP1000

The Compaq XP1000 is a single-processor workstation based on the Alpha
21264 microprocessor and the 21272 chip set. The internal architecture of the
system is illustrated in Figure 5.1. The information presented in this section
was gathered from several sources, i.e. [Cor99][AXP00a][AXP99].

The 21264 microprocessor operates at 500 MHz and is connected to the
21272 chip set by the 15 bit system address and 72 bit (64 bit data) system
data bus. These busses operate at 333 MHz, yielding a maximum bandwidth
of 2.6 GB/s for the system data bus. The 4 MB second-level cache is connected
by a dedicated 128 bit data bus, a 20 bit tag bus as well as a 24 bit address
bus. These busses operate at 166 MHz, yielding a bandwidth of 2.6 GB/s for
the cache data bus. The internal architecture of the 21264 microprocessor is
described in Section 5.1.1.

The 21272 chip set consists of three different chips, e.g. Cchip, Dchip and
Pchip, and can be used for one-, two-, or four-processor systems. The XP1000
workstation uses a combination of one Cchip, four Dchips and two Pchips.
The Cchip is connected to the system address bus of the 21264 microprocessor
by two uni-directional, clock-forwarded busses: One of the busses is used to
issue commands and addresses from the processor to the Cchip, while the
other is used to transfer results and addresses from the Cchip to the processor.
Both busses are 15 bit (13 bit data) wide and operate at 333 MHz. However, it
takes at least four cycles to transfer one complete command or address across
one of these busses. The Pchips are connected to the Cchip by a bidirectional
bus that is shared between the two Pchips. This 24 bit bus operates at 83 MHz
and is used to transfer commands and addresses from the Cchip to the Pchips
and vice versa. Note that it takes at least two cycles to transfer a command
or address across this bus. The four Dchips are connected to the Cchip by a
shared bidirectional 13 bit wide bus operating at 83 MHz. The Cchip provides
two identical copies of this bus, two Dchips share one of the copies. Finally,
the Cchip controls the two memory arrays via an unidirectional 13 bit bus
operating at 83ṀHz. The architecture of the Cchip is covered in Section 5.1.2.

The four Dchips are connected to the system data bus of the 21264 micro-
processor by a 72 bit (64 bit data) bidirectional, clock-forwarded bus operat-
ing at 333 MHz, yielding a bandwidth of 2.6 GB/s. Each Dchip is connected
to a 18 bit (16 bit data) segment of the system data bus. The two memory
arrays are connected to the Dchips by a 288 bit (256 bit data) bus operating
at 83 MHz, yielding a bandwidth of 2.6 GB/s. Note that the bandwidth of
the memory data bus is identical to the bandwidth of the system data bus.
Each Dchip is connected to a 72 bit (64 bit data) segment of the memory

5.1 Compaq XP1000 167

Fig. 5.1. Architecture of the Compaq XP1000 workstation

D1
D2
D3

D0

P0

P1

21264

Cchip

M0
M1

20128

36

18
18
18
18

288

Cache

PCI0

PCI1
24

13
13

24

36
15

13

1315

data bus. In addition, the Dchips are connected to the Pchip and the Cchip
as described above. The architecture of the Dchip is covered in Section 5.1.3.

The Pchips are connected to the Dchips by two bidirectional 36 bit (32 bit
data) busses operating at 83 MHz, yielding a bandwidth of 333 MB/s per bus.
Each Dchip is connected to the two Pchips by a 9 bit (8 bit data) segment
of both busses. The Pchips provide two PCI busses and are described in
Section 5.1.4. Section 5.1.5 describes the memory system, while Section 5.1.6
describes the peripherals used in the XP1000 workstation.

5.1.1 Processor

The 21264 microprocessor is an implementation of the Alpha architecture, a
64 bit architecture developed by Digital Equipment Corporation. A detailed
description of this architecture as well as all implementations can be found
in Appendix A. The 21264 microprocessor is a super-scalar processor that
can issue up to six instructions (four integer and two floating-point) in each
cycle, although the sustained issue rate is limited to four instructions due to
the fetch bandwidth. The instructions are issued out-of-order. i.e. as soon as
their arguments are available. However, all instructions are retired in program
order to ensure sequential program semantics. Register renaming is used to
resolve name dependencies, i.e. the 21264 processor contains 80 integer and
72 floating-point registers that are mapped to the 32 integer and 32 floating-
point registers defined by the Alpha architecture.

168 5. Evaluation : Compaq XP1000

The four integer execution pipelines are organized in two clusters. One
execution pipeline in each cluster supports simple integer instructions as well
as integer and floating-point load and store instructions. In addition, one of
the execution pipelines supports integer multiply instructions, while the other
supports motional video instructions. All integer execution pipelines support
64 bit and 32 bit operands. The two floating-point execution pipelines sup-
port all arithmetic instructions on single- and double-precision floating-point
operands as well as floating-point control instructions. Note that floating-
point division is handled by a non-pipelined divider that is associated with
one of the execution pipelines.

The 21264 microprocessor contains two first-level data and instruction
caches and supports an external second-level cache. The data cache is a 64 KB
two-way set associative cache with 64 byte cache-lines that uses a write-back,
write-allocate protocol. The data cache is dual-ported and supports two in-
dependent accesses in each cycle. The instruction cache is a 64 KB two-way
set-associative cache with 64 byte cache-lines. The external second-level cache
is a direct-mapped cache ranging from 1 to 16 MB in size connected by a ded-
icated 128 bit data bus. The Compaq XP1000 uses a 4 MB second-level cache
that operates at 166 MHz, yielding a bandwidth of 2.6 GB/s between the
cache and the 21264 microprocessor. Note that each integer load that hits
in the first-level cache incurs a latency of three cycles, while each floating-
point load that hits in the first-level cache incurs a latency of four cycles.
Loads that miss the first-level caches, but hit in the second-level cache, incur
a latency of 12 cycles or more. In order to increase performance of load and
store instructions, the 21264 microprocessor contains a miss address file that
buffers and merges outstanding loads as well as a write buffer that buffers
and merges stores.

The external data bus is 72 bit (64 bit data) wide and operates at 333 MHz,
yielding a bandwidth of 2.6 GB/s. Note that the 21264 uses two unidirec-
tional address and command busses instead of a single bidirectional bus, one
for each direction. The Alpha architecture defines a 64 bit virtual address
space, implementations are required to support at least 43 bit virtual address
space as long as the unused bits are checked to be zero. The 21264 micropro-
cessor implements a 48 bit virtual address space as well as a 44 bit physical
address space. Detailed information about the internal architecture of the
21264 microprocessor can be found in Section A.3.9.

5.1.2 Cchip

The Cchip controls the memory and I/O subsystems by receiving requests
from the processor and the Pchips and issuing commands to the Dchips and
Pchips. The actual data transfers are performed by the Dchips and Pchips,
i.e. the Cchip does not perform any data transfers. The Cchip provides two or
four independent system address ports that connect to the individual proces-
sors. Each system address port consists of two unidirectional, clock-forwarded

5.1 Compaq XP1000 169

busses: One to transfer command and addresses from the Cchip to the pro-
cessor, the other to transfer commands and addresses from the processor to
the Cchip. Note that it takes up to four cycles to transfer a single command
across one of these busses. Each bus is 15 bit wide and operates at 333 MHz.

The Cchip provides four memory command and address ports, i.e. can
control up to four independent banks of synchronous DRAM. Each of these
ports consists of 15 address and 8 control signals and operates at 83 MHz. The
memory command and address ports are only used to issue memory requests,
the actual data transfers are handled by the Dchips. The Cchip provides a
command and address port that is used to control up to two Pchips. The port
is shared between the Pchips and consists of 24 address and 11 control signals
and operates at 83 MHz. However, it takes at least two cycles to transfer a
single command across these busses.

The Cchip provides an unidirectional bus to control up to eight Dchips.
There are two identical copies of this bus, each one supports up to four
Dchips. Each control bus is 13 bit wide and operates at 83 MHz. Finally, the
Cchip provides an 8ḃit bus to handle external interrupts, flash memory and
other auxiliary devices.

The internal architecture of the Cchip is based on a central arbiter as well
as four request queues, one for each memory array. Requests arriving from
the processors and Pchips are placed in a central dispatch register before they
are forwarded to the appropriate request queue. Even requests that do not
access the memory arrays are placed in the request queues for the memory
arrays. If a request cannot be placed in the dispatch register, it is temporarily
held in so-called skid buffers. The arbitration logic selects requests from the
memory request queues and issues up to three commands per request to
the processor, memory, Dchips, or Pchips. In addition, the arbitration logic
ensures that ordering requirements for the individual requests are maintained.

5.1.3 Dchip

The Dchips are responsible for the actual data transfers initiated by the
Cchip. The Dchip provides two memory data ports that connect the Dchip
to the memory arrays. Each port is 36 bit (32 bit data) wide and operates at
83ṀHz. In addition, the ports can be configured as a single 72 bit (64 bit data)
port as well as two 18 bit (16 bit data) ports. The Compaq XP1000 uses four
Dchips to interface the 288 bit (256 bit data) wide memory arrays, i.e. has
to use the single port configuration. The Dchip provides four bidirectional,
clock-forwarded processor data ports, one for each processor. Each port is
9 bit (8 bit data) wide and operates at 333 MHz, yielding a bandwidth of
333 MB/s. The ports can be configured as a single 36 bit (32 bit data) or two
18 bit (16 bit data) wide ports. The Compaq XP1000 is a single processor
system and contains four Dchips that interface to the 64 bit system data bus,
hence the processor data ports on the Dchips are configured as two 18 bit
ports, although only one port is used.

170 5. Evaluation : Compaq XP1000

The Dchip provides two bidirectional data ports for the Pchips, each port
is 9 bit (8 bit data) wide and operates at 83 MHz. Depending on the number
of Dchips and Pchips in a system, these ports can be configured as a single
18 bit (16 bit data) port or two multiplexed half-byte ports. The Compaq
XP1000 uses four Dchips and two Pchips, hence the ports are configured a
two single-byte ports. As described above, the Dchip is controlled from the
Cchip by a bidirectional control bus.

The internal architecture of the Dchip is based on a crossbar switch that
connects the individual data ports. The Dchip supports transfers between the
processors, Pchips and memory arrays as well as between the four processor
ports and the two Pchip ports themselves. Note that transfers between the
two memory arrays are not supported. In addition, the Dchip provides several
queues that enable buffering on the processor, memory, and Pchip ports. The
data is not interpreted in any way, i.e. there is no kind of error checking and
reporting.

5.1.4 Pchip

The Pchip provides a 64 bit PCI interface operating at 33 MHz. The Pchip
is controlled by the Cchip via the Cchip command and address port, a bidi-
rectional 24 bit port operating at 83 MHz. The data from and to the PCI
interface is transferred to and from the Dchips via a 36 bit (32 bit data) bidi-
rectional bus operating at 83 MHz. This bus can be configured as a 36 bit bus
that transfers four bytes per cycle or a 40 bit bus that transfers eight nibbles
per cycle. The latter configuration is used in systems with eight Dchips.

The internal architecture of the Pchip is based on a central PCI bus arbiter
and several queues that decouple the PCI bus from the Dchip data bus and
the Cchip address bus. There are two separate queues for each direction, one
for data and one for addresses, i.e. a total of four queues.

5.1.5 Memory

The Compaq XP1000 workstation supports two independent memory arrays,
each array is controlled by one of the memory control ports of the Cchip.
Each memory arrays consists of four 72 bit (64 bit data) memory modules
and provides a 288 bit (256 bit data) data bus. Each of the four Dchips is
connected to a 72 bit segment of the memory data bus as described above.
The individual memory modules are industry-standard PC100 synchronous
DRAM operating at 83 MHz.

Although all four modules in the array have to be populated, it is pos-
sible to populate only one of the two memory arrays. Interleaving increases
performance if both arrays are populated. The Compaq XP1000 supports
between 128 MB (four 32 MB modules) and 2 GB (eight 256 MB modules) of
memory. The system used during the evaluation of emulated multithreading

5.1 Compaq XP1000 171

was configured with 640 MB of memory, i.e. 512 in one array and 128 MB
the other array.

5.1.6 Peripherals

As described above, each of the two Pchips in the Compaq XP1000 provides
a 64 bit PCI bus operating at 33 MHz. One of the PCI busses is configured
as a 32 bit bus and provides two 32 bit PCI slots as well as a PCI-PCI bridge
that is used to connect a secondary PCI bus to the primary PCI bus. The
secondary PCI bus contains the embedded Ethernet and SCSI controllers.
The Intel 21143 Ethernet controller provides a full-duplex 10/100 Mb Ether-
net interface, while the Qlogic 1040 SCSI controller provides an ultra-wide
SCSI interface.

The other PCI bus is configured as a 64 bit bus and provides two 64 bit
PCI slots as well as one 32 bit PCI slot. Apart from the PCI slots, the PCI
bus contains the Cypress 82C693 multi-function controller that provides two
EIDE ports, two USB ports, as well as keyboard and mouse ports. In addition,
the controller contains a PCI-ISA bridge, a realtime clock, as well as an
interrupt controller. The PCI-ISA bridge provides a 16 bit ISA bus that is
connected to a 16 bit ISA slot as well as multi-I/O and sound chips. The multi-
I/O chip provides a floppy drive interface, a parallel and two serial ports,
while the ESS1887 sound chip provides support for simultaneous playback
and record of 16 bit audio data.

The Compaq XP1000 workstation used during the evaluation of multi-
threading is configured with a 4.3 GB Seagate Cheetah hard disk, a 32-speed
CD-ROM drive, as well as a standard floppy drive. The hard disk is connected
to the embedded SCSI controller, the CD-ROM drive is connected to one of
the two EIDE ports in the multi-function controller, and the floppy drive
is connected to the corresponding interface provided by the multi-I/O chip.
Graphics is provided via an Elsa Gloria Synergy card based on the 3Dlabs
Permedia2 chip and 8 MB of SGRAM. The PCI graphics controller uses one
of the 64 bit slots on the first PCI bus.

5.1.7 Software Environment

The Compaq XP1000 workstation runs under the Tru64 UNIX operating
system formerly called Digital Unix. The Tru64 operating system is a 64 bit
system based on the Mach kernel and is compliant with the UNIX98 and
System V Release 4 standards. A detailed description of the Tru64 operating
system is outside the scope of this chapter, corresponding information can be
found in [Tru01].

The development environment is provided by the Tru64 Developers
Toolkit. The toolkit contains a C compiler, debugger, profiling and analysis
tools as well as the Spike post-link optimizer. The C compiler is an ANSI-C

172 5. Evaluation : Compaq XP1000

compliant implementation of the C language that produces highly optimized
code. The ladebug debugger supports source-level debugging of Ada, C, C++,
and Fortran languages as well as debugging of multithreaded applications.
The profiling and analysis tools consist of the third degree memory profiling,
pixie basic block profiling, and hiprof execution profiling tools. These tools
are based on the ATOM framework [SE94] which can be used to implement
custom-specific analysis tools. The visual threads tool supports the analysis
of multithreaded applications. Finally, the Spike post-link optimizer supports
whole-program optimizations and is based on the OM framework [SW93].
The Digital Continuous Profiling Infrastructure (DCPI) [ABD+97] permits
continuous profiling of all processes including the kernel with low overhead.
The tool is based on statistical sampling of the performance counters in the
21264 microprocessor. Unfortunately, the Compaq XP1000 workstation used
during the evaluation of emulated multithreading still contains the original
21264 as opposed to the newer 21264A microprocessor. The latter implemen-
tation supports ProfileMe counters [DHW+97] that can be used to gather a
complete execution profile of selected instructions instead of the summary
statistics provided by traditional performance counters.

The Compaq XP1000 workstation used during the evaluation of emu-
lated multithreading runs under version 5.0A of the Tru64 operating system,
although the operating system was subsequently updated by installing the
second aggregate patch cluster. The workstation is configured as a stand-
alone system and stripped down to the essential system services: Apart from
the ssh daemon, all non-essential daemons and processes were deactivated.
The installed version of the development tools consists of Compaq C version
6.4 , Visual Threads version 2.0, Ladebug version 4.0, Graphical Program
Analysis Tools version 3.1, Program Analysis Tools version 2.0, and Spike
version 5.1. In addition, the DCPI version 3.9.2.2 toolkit was used to gather
profiling information via the performance counters.

5.2 Methodology

All three versions of the benchmarks, i.e. base, posix and emulated multi-
threading, are based on the original sources as distributed in the SPLASH2
benchmark suite. For each benchmark, the corresponding source and header
files are processed by the m4 macro processor [Sei00] in order to replace the
original PARMACS macros. The resulting source and header files are subse-
quently processed by the compiler. The compiler uses the same set of opti-
mization flags for all versions of the benchmarks: -fast and -arch=ev6. The
former flag enables a collection of optimizations by assuming ANSI-compliant
aliasing, enabling intrinsics, reordering of floating-point instructions, inter-file
optimization, and faster math routines. In addition, the implied optimization
level enables local optimizations, recognition of common subexpressions, in-
line expansion of static and global procedures, as well as global optimizations

5.2 Methodology 173

like code motion, strength reduction, test replacement, split lifetime analy-
sis, loop unrolling, code replication, and scheduling. The latter flag enables
the use of instructions that belong to one of the Alpha architecture exten-
sions supported by the 21264 microprocessor. In addition, the code scheduling
phase produces code that is tuned to the 21264.

The original sources were modified such that the cycle counter is used for
timing measurements. Since the cycle counter is incremented in each clock cy-
cle, using this cycle counter enables very accurate timing measurements with
high resolution. Access to the cycle counter is provided by the performance
counter library (PCL) [BM98], i.e. the PARMACS macros used for timing
measurements are substituted by calls to the corresponding routines of this
library. The results of the timing measurements are rather large integers and
have to be represented by 64 bit integers, hence the formatting used during
the output of the timing results had to be adapted as well.

In the case of emulated multithreading, the assembler source produced
by the compiler is processed by the assembler converter as described in Sec-
tion 3.5. The project-specific configuration files are created manually as the
high-level language converter has not been implemented yet. The converted
assembler sources are subsequently passed to the assembler. The assembler
sources are explicitly created for all versions of the benchmarks, even for the
base and posix versions. Some compilers perform additional optimizations,
e.g. substitution of static arrays by dynamic arrays created at runtime, if
they are allowed to create the executable directly.

For the base version, all invocations of the PARMACS macros are replaced
during m4 macro processing in the following way: All declarations, e.g of locks
and barriers, are replaced by integer variables, the other macros are replaced
by empty statements. The resulting code can only be used on single-processor
machines as all parallelization constructs have been effectively removed.

The posix version uses an implementation of the PARMACS macros based
on POSIX threads [ANMB97][AMBN98]. This implementation was provided
by Ernest Artiaga from the Universitat Polytecnica de Catalunya (UPC) in
Barcelona, Spain. All invocations of the PARMACS macros in the original
sources are replaced during m4 macro processing by calls to the corresponding
routines in the provided library. Note that the implementation used during
the evaluation of emulated multithreading is configured to use advanced locks
instead of the simpler spin locks.

For the versions using emulated multithreading, the invocations of the
PARMACS macros are replaced by calls to the corresponding routines of
the emulation library: The BARRIER() macro is substituted by a call to the
EMUthread barrier() routine, the LOCK() and ALOCK() macros are substi-
tuted by macros based on the EMUthread cswap() routine. All declarations
are replaced by integer types, the GMALLOC() array is replaced by a call to
the standard malloc() routine followed by memset() such that the allocated
memory blocks are initialized immediately. This is necessary as the SPLASH2

174 5. Evaluation : Compaq XP1000

benchmarks frequently assume that GMALLOC() returns an initialized block
of memory and therefore fail to initialize such arrays properly.

Several experiments are performed for each benchmark, using a wide range
of configurations. The runtimes of the base and posix versions are compared
to the runtime of several versions using emulated multithreading. The indi-
vidual versions are created by restricting the size of basic blocks to 4, 16, or
64 instructions (g004, g016, g064), using basic blocks (bblk), as well as en-
abling super block optimization (sblk). For each benchmark, the base version
as well as the six multithreaded versions are executed with identical param-
eters using three different problem sizes: the default problem size as defined
in the SPLASH2 benchmark report as well as two and four times that size.

For each problem size, the multithreaded versions are executed with
1,2,4,8, and 16 threads in order to determine the impact of the number of
threads. Altogether,

3× (6× (1 + 5× (5 + 1))) = 558

experiments were performed, 93 for each benchmark. All runtimes reported by
the benchmarks were automatically extracted from the corresponding output
and reassembled such that there is one file for each combination of benchmark,
version, and problem size, that contains the corresponding runtime for all
numbers of threads. The automatic extraction is based on a combination of
shell [Bli96] and awk [DR97] scripts that were extensively tested in order to
ensure the accuracy of the results. There are two different versions of each
file: one version contains the runtime measurements as a number of clock
cycles, the other contains the runtimes in seconds. Throughout this chapter,
only the latter version of the files is used since the corresponding values are
more intuitive.

All data files are formatted to allow a direct import into the xmgrace
application that was used to create the corresponding figures. The hotlink
feature of the xmgrace application was used to link the individual figures to
the corresponding data files, i.e. updates to the data files are automatically
reflected in the figures. The figures used to illustrate the results of the indi-
vidual benchmarks are all structured in the same way: The horizontal axis
reflects the number of threads, while the vertical axis represents the runtime
in seconds. In each figure, seven curves are used to illustrate the results: The
circles represent the runtime of the base version, while the squares, diamonds,
upward triangles, leftward triangles, upward triangles and rightward triangles
represent the runtime of the g004, g016, g064, bblk, sblk, and posix versions,
respectively. Note that a vertical baseline is provided in order to make the
base results better identifiable. Three of these figures are provided for each
of the six benchmarks, one for each problem size.

5.3 Code Conversion 175

5.3 Code Conversion

This section characterizes the impact of the code conversion process on the
size and structure of the assembler sources for all six benchmarks. The cor-
responding information is gathered from the statistics for the original and
modified code provided by the assembler converter. Figures 5.2, 5.3, 5.4, 5.5,
5.6, and 5.7 illustrate the corresponding statistics for the fft, lu, radix, ocean,
barnes, and fmm benchmarks, respectively. Note that these statistics only
cover the internal procedures of each benchmark as all other procedures are
not affected by the code conversion process.

All figures are structured in the same way and contain the statistics for
the original and modified sources for each of the five different versions of a
benchmark. For each version, the left bar represents the instruction mix for
the original assembler source. Note that this is the same for all versions of
a given benchmark, but is replicated to ease comparison between original
and modified instruction mixes. Each bar consists of a stack of segments, the
height of the individual segments represents the number of instructions from
the corresponding instruction group.

There are ten different instruction groups: The int memory group con-
tains all instructions that load and store integer data types to and from
memory as well as instructions used to initialize constants. The int control
group contains direct and indirect branches based on integer data types. The
int operate group contains all arithmetic instructions that operate on integer
data types, while the int logic group contains logical and shift instructions
and conditional moves. The int byte group contains all instructions defined in
the byte and word extension to the Alpha architecture as described in Section
A.2.3, with the exception of the corresponding load and store instructions.
The int media group contains all instructions defined in the motional video
extension to the Alpha architecture as defined in Section A.2.3. The int misc
group contains all integer instructions that do not belong to any of the other
instruction groups. The fp mem group contains all instructions that load and
store floating-point data types to and from memory, similar to the int mem
group for integer data types. The fp control group contains only conditional
branches that operate on floating-point data types, as there are no uncon-
ditional or indirect branches of this kind. The fp operate group contains all
arithmetic instructions that use floating-point data types. The individual in-
structions are assigned to one of these instruction groups according to the
information provided in the platform-specific configuration file.

Looking at the figures, it is evident that the total number of instructions
in the modified assembler sources decreases with growing instruction block
size in all cases: The g004, g016, and g064 versions restrict the instruction
blocks to 4, 16, and 64 instructions respectively, while the bblk and sblk
versions use basic and super blocks as instruction blocks. Compared to the
bblk version, restricting the instruction block size to 64 instructions causes
only a small increase in the number of instructions. This indicates that al-

176 5. Evaluation : Compaq XP1000

Fig. 5.2. Original and Modified Instruction Mix for the FFT Benchmark

fft-g004 fft-g016 fft-g064 fft-bblk fft-sblk
0 0

500 500

1000 1000

1500 1500

2000 2000

2500 2500

3000 3000

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

Fig. 5.3. Original and Modified Instruction Mix for the LU Benchmark

lu-g004 lu-g016 lu-g064 lu-bblk lu-sblk
0 0

500 500

1000 1000

1500 1500

2000 2000

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

most all basic blocks are smaller than 64 instructions anyway. In the case of
the lu benchmark, basic blocks seem to be no larger than 16 instructions,
since the g016, g064 and bblk versions use an almost identical number of
instructions. For all other benchmarks, using a restricted instruction block
size of 16 instructions causes a slight increase in the total number of instruc-
tions compared to the bblk version. Using a restricted instruction block size

5.3 Code Conversion 177

Fig. 5.4. Original and Modified Instruction Mix for the RADIX Benchmark

radix-g004 radix-g016 radix-g064 radix-bblk radix-sblk
0 0

500 500

1000 1000

1500 1500

2000 2000

2500 2500

3000 3000

3500 3500

4000 4000

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

Fig. 5.5. Original and Modified Instruction Mix for the OCEAN Benchmark

ocean-g004 ocean-g016 ocean-g064 ocean-bblk ocean-sblk
0 0

5000 5000

10000 10000

15000 15000

20000 20000

25000 25000

30000 30000

35000 35000

40000 40000

45000 45000

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

of 4 instructions causes a noticeable increase in the number of instructions
compared to the bblk version.

Restricting the size of the instruction blocks increases the number of in-
struction blocks as well as the total number of instructions, since context
switch code has to be generated for each instruction block. The statistics for
the converted assembler source support this argument: Compared to the bblk
version, the g004, g016, and g064 versions of all benchmarks use more instruc-

178 5. Evaluation : Compaq XP1000

Fig. 5.6. Original and Modified Instruction Mix for the BARNES Benchmark

barnes-g004 barnes-g016 barnes-g064 barnes-bblk barnes-sblk
0 0

500 500

1000 1000

1500 1500

2000 2000

2500 2500

3000 3000

3500 3500

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

Fig. 5.7. Original and Modified Instruction Mix for the FMM Benchmark

fmm-g004 fmm-g016 fmm-g064 fmm-bblk fmm-sblk
0 0

2000 2000

4000 4000

6000 6000

8000 8000

10000 10000

12000 12000

14000 14000

N
um

be
r

of
 I

ns
tr

uc
tio

ns

int_memory
int_control
int_operate
int_logical
int_byte
int_misc
int_media
fp_memory
fp_control
fp_operate

tions from the int mem, fp mem, and int control groups while the number of
instructions from the other groups is not affected by restricting the instruct-
ion block size. The increase in the number of instructions from the int mem
and fp mem groups, i.e. integer and floating-point load and store instructions,
is caused by the increased number of save and restore operations due to the
larger number of context switches. The increase in the number of instructions

5.4 FFT 179

from the int control group is caused by the subroutine return instruction that
is used at the end of each instruction block.

The super block optimization seems to be quite effective as it reduces the
number of instructions noticeably: Compared to the bblk version, the sblk
version uses less instructions from the int mem, fp mem, int ctrl and int logic
groups. The number of instructions from the other groups is not affected by
super block optimization. These changes are caused by merging multiple basic
blocks into one super block: Since live ranges are allowed to cover several basic
blocks as long as these blocks belong to the same super block, fewer save and
restore operations are necessary, the number of load and store instructions
is reduced: If the live range belongs to an integer register, the number of
instructions from the int mem group is reduced. If the live range belongs to
a floating-point register, the number of instructions from the fp mem group
is reduced. However, additional save and restore operations may be needed
to handle side entrances to the live range, if the live range covers more than
one basic block. As the total number of instructions from the int mem and
fp mem groups still decreases significantly, the latter effect is usually minor.

The reduced number of instructions from the int control group is caused
by the reduced number of instruction blocks, i.e. the return instruction at the
end of each instruction block is placed at the end of each super block instead
of each basic block. The instruction sequences used to calculate the target
of a branch contain conditional moves which were assigned to the int logic
group. As long as the branch targets are inside the same super block, these
instruction sequences can be replaced by a single branch instruction, hence
the reduced number of instructions from the int logic group.

Although the super block optimization is quite effective in reducing the
number of instructions, the sblk versions of all six benchmarks still use up
to twice as many instructions than the corresponding base versions, hence
super block optimization should be improved further, e.g. by using profiling
information. However, this applies only for the internal procedures, i.e. the
increase in the total number of instructions for the whole program depends on
the number and size of the internal procedures. The impact of the increased
code size on the performance of the individual benchmarks is discussed in
the following sections.

5.4 FFT

The project-specific configuration file for the fft benchmark contains three
internal and six external procedures, system and library routines are covered
in the platform-specific configuration file. The SlaveStart() procedure is the
entry point of the parallel algorithm and consists of a call to the FFT1D()
procedure as well as some initialization and bookkeeping tasks. The FFT1D()
procedure implements the six-step FFT algorithm described in Section 4.2.1,
while the Transpose() procedure implements a blocked matrix transpose. The

180 5. Evaluation : Compaq XP1000

first two procedures have to be internal since they contain calls to other inter-
nal procedures as well as barrier synchronizations, while the last procedure
does not need to be internal. However, all inter-processor communication oc-
curs in this procedure, hence the Transpose() procedure has to be internal
in the parallel version of the fft benchmark used on the Cray T3E. In order
to facilitate comparisons between the benchmarks on both platforms, this
procedure is chosen to be internal as well. The super block optimization is
quite effective, as the three internal procedures consist of 23, 42 and 43 basic
blocks and 6, 9, and 1 super blocks, respectively.

The results of the experiments using the fft benchmark are summarized in
Figures 5.8, 5.9, and 5.10. Figure 5.8 illustrates the results using a problem
size of 64 K complex data points, while Figures 5.9 and 5.10 illustrate the
results using problem sizes of 256 K and 1024 K, respectively. Note that a
vertical baseline is provided for the base results in order to make identification
of these results easier. The following paragraphs discuss the results illustrated
in Figures 5.8, 5.9, and 5.10, respectively.

Using a problem size of 64 K complex data points, the corresponding ar-
ray occupies 1 MB of memory, since double-precision floating-point values
are 8 bytes long. Note that the fft benchmark aligns each row of the two-
dimensional matrix on cache-line and pagesize boundaries, hence the matrix
is usually slightly larger than 1 MB. There are three different arrays of this
size: Two arrays are used as source and target during matrix transpose and
contain the actual data matrix, the third array holds the roots-of-unity ma-
trix. In addition, the first row of the roots-of-unity matrix is replicated by
each thread.

All code and data segments of the fft benchmark should fit in the 4 MB
second-level cache used in the Compaq XP1000 workstation, at least for the
given problem size. According to [WOT+95], the first-level working set of
the fft benchmark is one row of one of the matrices, i.e. the square of the
problem size. The second-level working set is one partition of the whole data
set, i.e. the size of the whole data set divided by the number of threads. In
the case of multithreading, the individual threads share the cache resources,
hence the working set as seen from the processor is probably identical to the
whole data set.

An analysis of the data presented in Figure 5.8 yields the following re-
sults: The measured runtimes increase with the number of threads. On the
one hand, each thread uses additional memory for the thread descriptor,
thereby potentially increasing the number of cache misses. In the case of em-
ulated multithreading, each thread descriptor requires 544 bytes of storage,
at least on the current platform. On the other hand, the number of iter-
ations for the main loop in the thread execution routine increases with the
number of threads, thereby increasing the overhead associated with emulated
multithreading.

5.4 FFT 181

Fig. 5.8. Results for the FFT Benchmark (64 K Complex Data Points)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.05

0.1

0.15

0.2

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-fft
emu-fft-g004
emu-fft-g016
emu-fft-g064
emu-fft-bblk
emu-fft-sblk
posix-fft

Fig. 5.9. Results for the FFT Benchmark (256 K Complex Data Points)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-fft
emu-fft-g004
emu-fft-g016
emu-fft-g064
emu-fft-bblk
emu-fft-sblk
posix-fft

The only exception to this rule are the sblk and posix versions, where
going from one to two threads decreases the runtime, afterwards the runtime
increases with the number of threads. This behavior can be explained in the
following way: If one thread is used, the transpose routine will transpose
the whole matrix as a single block, accessing the source matrix in column
order. As the individual rows are aligned on cache-line boundaries, 256 cache-
lines are required to ensure that elements of the next column are already in

182 5. Evaluation : Compaq XP1000

Fig. 5.10. Results for the FFT Benchmark (1024 K Complex Data Points)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-fft
emu-fft-g004
emu-fft-g016
emu-fft-g064
emu-fft-bblk
emu-fft-sblk
posix-fft

the cache. Recall that the 21264 microprocessor uses a 64 KB two-way set
associative first-level data cache with 64 byte cache-lines, i.e. 512 cache-lines
in each set. As the cache uses a write-allocation protocol some cache-lines will
be allocated by writes to the target matrix, although the writes occur row
order, i.e. along cache-lines. Therefore transposing the matrix with a single
thread is likely to cause cache misses in the first-level data cache. However,
using p threads will eliminate these cache misses as each thread transposes
the matrix in

√
n/p×

√
n/p blocks, thereby allocating fewer cache-lines.

Note that the above reasoning does not apply if several threads execute
the Transpose() procedure simultaneously. If all threads transpose the matrix
at the same time, the number of allocated cache-lines is comparable to the
single-threaded case. This is supported by the fact that only the sblk version
benefits from multiple threads: As the Transpose() procedure consists of a
single large super block, no context switches occur during execution of the
procedure, hence only one thread performs the transpose at any given time.
All other versions using emulated multithreading perform context switches
during matrix transpose. As the transpose is always preceded by a barrier
synchronization, it is likely that all threads execute the Transpose() proce-
dure simultaneously. However, if the procedure is external, all versions using
emulated multithreading show the same behavior as the sblk version.

The runtimes of the g004, g016, g064, and bblk versions reflect the to-
tal number of instructions in the corresponding versions: The bblk and g064
versions have almost identical runtimes, the g016 version is slightly slower
and the g004 version is significantly slower than the base version. Another
interesting fact is that the sblk version using one thread has a runtime com-
parable to the base version, hence the overhead associated with emulated

5.5 LU 183

multithreading is negligible in this case. Compared to the posix version, the
sblk version is always faster, although the Tru64 operating system includes
an efficient implementation of POSIX threads.

Using a problem size of 256 K complex data points, the three data matrices
occupy slightly more than 4 MB of memory, hence the whole dataset will no
longer fit in the second-level data cache. The size of the first- and second-
level working sets quadruples as well, i.e. the first-level working set occupies
16 KB. The corresponding runtimes are illustrated in Figure 5.9. Apart from
the overall increased runtime, the results are comparable to the ones using
the smaller problem size. The exception are the sblk and posix versions as the
reduction in runtime now occurs by using more than four as opposed to more
than one thread. This behavior can be explained by the reduced number of
misses in the first-level data cache, as the matrix is transposed in 64 K or less
blocks if at least eight threads are used. Recall that each thread transposes
one block locally and p−1 blocks to other threads, i.e. each thread transposes
blocks of size

√
n/p×

√
n/p, where n, p is the problem size and the number

of threads, respectively.
Using a problem size of 1024 K complex data points, each of the three ma-

trices occupies slightly more than 16 MB of memory. The size of the first- and
second-level working sets quadruples again, i.e. the size of the first-level work-
ing set is equal to the size of the first-level data cache for the given problem
size. The corresponding runtimes are illustrated in Figure 5.10. Apart from
the overall increased runtimes, the results are comparable to the earlier ones
using smaller problem sizes. Note that at least 16 threads are required for
the runtime reduction mentioned above as the transpose uses 64 KB blocks
in this case.

In summary, the results using the fft benchmark are quite encouraging:
although there are no references to remote memory to be tolerated, the over-
head associated with emulated multithreading is smaller than expected, espe-
cially if the sblk version is used. For all problem sizes and numbers of threads,
the runtimes for the sblk version are smaller than the runtimes for the base
version and are either smaller or comparable to the runtimes of the posix
version.

5.5 LU

The project-specific configuration file for the lu benchmark contains three
internal and six external procedures, system and library calls are covered
in the platform-specific configuration file. The SlaveStart() procedure is the
entry point of the parallel algorithm and contains only a call to the OneSolve()
procedure. The latter procedure contains a call to the lu() procedure as well
as some initialization and bookkeeping tasks. The lu() procedure implements
the decomposition algorithm described in Section 4.2.2 by calling several

184 5. Evaluation : Compaq XP1000

other procedures that perform the actual work on the individual blocks of
the matrix.

As the entry point to the parallel algorithm, the SlaveStart() procedure
has to be internal, it contains a call to an internal procedure as well. The
OneSolve() procedure has to be internal as it contains a call to an internal
procedure as well as some barrier synchronizations. Last but not least, the lu()
procedure has to be internal as it contains some barrier synchronizations. For
these three internal procedures, the super block optimization is quite effective
as the procedures consist of 3, 19, and 48 basic blocks and 2, 5, and 6 super
blocks, respectively.

The results of the experiments using the lu benchmark are summarized
in Figures 5.11, 5.12, and 5.13. Figure 5.11 illustrates the results using a
512× 512 matrix size, while Figures 5.12 and 5.13 illustrate the results using
1024× 1024 and 2048× 2048 matrix sizes, respectively. Note that a vertical
baseline is provided for the base results in order to make identification of
these results easier. The following paragraphs discuss the results illustrated
in Figures 5.11, 5.12, and 5.13, respectively.

Using a 512× 512 matrix size, the corresponding array occupies 2 MB of
memory. The matrix is partitioned into blocks of size 16 × 16, each block
occupies 2 KB of memory. According to [WOT+95], the first-level working
set for the lu benchmark is one such block, while the second-level working
set is one partition of the whole data set. In the case of multithreading, the
individual threads share the cache resources, hence the working set as seen
from the processor is probably identical to the whole data set. As the Compaq
XP1000 workstation is configured with a 4 MB second-level cache, the whole
data set will fit in this cache, at least for the given matrix size. In addition,
a single block of the matrix will easily fit in the 64 KB first-level data cache
provided by the 21264 microprocessor.

An analysis of the data illustrated in Figure 5.11 yields the following re-
sults: The runtimes increase with the number of threads for the multithreaded
versions of the lu benchmark. This behavior was already observed during the
analysis of the results for the fft benchmark and can be explained by the
increased number of iterations for the main loop of the thread execution rou-
tine as well as the memory requirements for the additional thread descriptors.
Note that all procedures that access the blocks of the matrix are external,
i.e. no context switches occur during the execution of these procedures.

From all versions using emulated multithreading, the sblk version is the
fastest, while the g004 version is the slowest. The g016, g064, and bblk ver-
sions show almost identical runtimes, indicating that most basic blocks con-
tain no more than 16 instructions. In addition, the lu() procedure contains
several external calls, hence the instruction blocks containing these calls are
probably larger than 16 instructions as the restriction does not hold for these
basic blocks.

5.5 LU 185

Fig. 5.11. Results for the LU Benchmark (512 × 512 Matrix)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-lu
emu-lu-g004
emu-lu-g016
emu-lu-g064
emu-lu-bblk
emu-lu-sblk
posix-lu

Fig. 5.12. Results for the LU Benchmark (1024 × 1024 Matrix)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-lu
emu-lu-g004
emu-lu-g016
emu-lu-g064
emu-lu-bblk
emu-lu-sblk
posix-lu

The runtimes of the sblk version are slightly faster than the runtimes
of the posix version and are almost identical to the base version in the
single-threaded case. Although the runtimes increase with growing number
of threads, the increase for the sblk version is slower than the increase for the
other versions due to the smaller number of iterations for the main loop of
the thread execution routine. Even with 16 threads, the sblk version is only
15 % slower than the base version.

186 5. Evaluation : Compaq XP1000

Fig. 5.13. Results for the LU Benchmark (2048 × 2048 Matrix)

0 2 4 6 8 10 12 14 16

Number of Threads

0

5

10

15

20

25

30

35

40

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-lu
emu-lu-g004
emu-lu-g016
emu-lu-g064
emu-lu-bblk
emu-lu-sblk
posix-lu

Using a 1024 × 1024 matrix, the corresponding array occupies 8 MB of
memory, hence will no longer fit in the second-level cache. However, the size
of a single block is unchanged, i.e. these 2 KB blocks will still fit in the first-
level data cache. Apart from the overall increased runtimes, an analysis of the
runtimes presented in Figure 5.12 yields the same results as for the smaller
matrix size.

Using a 2048 × 2048 matrix, the corresponding array occupies 32 MB of
memory, although the size of a single block is unchanged, i.e. these 2 KB
blocks will still fit in the first-level data cache. Apart from the overall in-
creased runtimes, an analysis of the runtimes presented in Figure 5.13 yields
the same results as for the smaller matrix sizes.

In summary, the results of the experiments using the lu benchmarks are
quite encouraging, although the versions using emulated multithreading are
slightly slower than the base version: Even as there are no remote memory
references to tolerate, the overhead associated with emulated multithreading
is smaller than expected, especially if super block optimization is used. For all
matrix sizes, the sblk version is slightly faster than the posix version, although
the Tru64 operating system contains an efficient implementation of POSIX
threads. In addition, the runtime of the sblk version in the single-threaded
case is almost identical to the runtime of the base version.

5.6 Radix

The project-specific configuration file for the radix benchmark contains one
internal and three external procedures, system and library calls are covered

5.6 Radix 187

in the platform-specific configuration file. The slavesort() procedure is the
entry point of the parallel algorithm and implements the radix-sort algorithm
as described in Section 4.2.3, the three external procedures are only used
during initialization of the sort array. Apart from being the entry point, the
slavesort() procedure has to be internal as it contains several synchronization
points, e.g. barriers and spin waits. The super block optimization is quite
effective for this procedure as the number of 160 basic blocks is reduced to
only 26 super blocks.

The results of the experiments using the radix benchmark are summarized
in Figures 5.14, 5.15, and 5.16. Figure 5.14 illustrates the results using a
problem size of 256 K integers, while Figures 5.15 and 5.16 illustrate the
results using problem sizes of 512 K and 1024 K integers, respectively. Note
that a vertical baseline is provided for the base results in order to make
identification of these results easier. The following paragraphs discuss the
results illustrated in Figures 5.14, 5.15, and 5.16, respectively.

Using a problem size of 256 K integers, the corresponding array occupies
1 MB of memory, since the size of an int is 4 bytes. As the radix-sort algorithm
does not sort in place, two of these arrays are needed, thereby occupying 2 MB
of memory. In addition, each thread maintains a histogram of the local keys,
the size of the corresponding array depends on the selected radix: Using
a radix of 1024, each array occupies 4 KB of memory. Since the Compaq
XP1000 workstation uses a 4 MB second-level cache, all code and data for the
radix benchmark should fit in this cache, at least for the given problem size.
According to [WOT+95], the first-level working set is one of the histograms,
while the second-level working set is the local sort array of size n/p, where
n, p are the total number of keys and threads, respectively.

An analysis of the data presented in Figure 5.14 yields the following re-
sults: The runtimes increase with the number of threads, although this effect
is more pronounced than for the fft and lu benchmarks, at least for the g004,
g016, g064, and bblk versions of the radix benchmark. For the sblk and posix
versions, the increase in runtime is barely noticeable. Like before, this be-
havior can be explained by the increased number of iterations for the main
loop in the thread execution routine for smaller instruction blocks, as well as
the memory requirements for the additional thread descriptors. The effect is
more pronounced for the radix benchmark in the absence of the super block
optimization, as the slavesort() procedure contains several loops with a large
number of iterations. For example, each thread sorts all the local keys once
in each iteration, i.e. the corresponding loop is traversed n/p times in each
intermediate sort. Other loops are used to copy or calculate the histogram,
i.e. those loops are traversed r times in each iteration, where r is the radix
size. Without super block optimization, at least one traversal of the main loop
in the thread execution routine is required for each loop iteration. However,
most of these loops do not contain any synchronization points, hence these

188 5. Evaluation : Compaq XP1000

Fig. 5.14. Results for the Radix Benchmark (256 K Integers)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.05

0.1

0.15

0.2

0.25

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-radix
emu-radix-g004
emu-radix-g016
emu-radix-g064
emu-radix-bblk
emu-radix-sblk
posix-radix

Fig. 5.15. Results for the Radix Benchmark (512 K Integers)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-radix
emu-radix-g004
emu-radix-g016
emu-radix-g064
emu-radix-bblk
emu-radix-sblk
posix-radix

lops can be integrated into a single super block, thereby reducing the number
of iterations of the main loop in the thread execution routine significantly.

The ratio between the runtimes of the g004, g016, g064, bblk, and sblk
versions shows a well-known pattern: The sblk version is significantly faster
than all other versions, the g064 and bblk versions have almost identical
runtimes. The g016 version is slightly slower than the bblk version, while the
g004 version is noticeably slower than the bblk version. This indicates that

5.6 Radix 189

Fig. 5.16. Results for the Radix Benchmark (1024 K Integers)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-radix
emu-radix-g004
emu-radix-g016
emu-radix-g064
emu-radix-bblk
emu-radix-sblk
posix-radix

most of the basic blocks contain no more than 64 instructions, a fact that is
supported by the statistics for the original assembler sources.

Using a problem size of 512 K integers, the two sort arrays occupy 4 M
of memory hence the code and data of the radix benchmark will no longer
fit in the second-level cache for the given problem size. However, the size of
the histograms, i.e. 2 KB, is unchanged since the same radix is used for all
problem sizes. Apart from the overall increased runtimes, an analysis of the
runtimes illustrated in Figure 5.15 yields the same results as for the smaller
problem size, although the posix version is now significantly slower than the
sblk version.

Using a problem size of 1024 K integers, the two sort arrays occupy 8 M
of memory, while the size of the histograms, i.e. 2 KB, is unchanged since
the same radix is used for all problem sizes. Apart from the overall increased
runtimes, an analysis of the runtimes illustrated in Figure 5.16 yields the same
results as for the smaller problem sizes, the posix version is again significantly
slower than the sblk version.

In summary, the results of the radix benchmark underline the impor-
tance of the super block optimization and the impact of the number of loop
iterations on performance. Hence the super block optimization should be im-
proved further, e.g. by using profiling information to guide the super block
creation. Once again, the results are quite encouraging, as the sblk version is
only slightly slower than the base version and is significantly faster than the
posix version for the two larger problem sizes.

190 5. Evaluation : Compaq XP1000

5.7 Ocean

The project-specific configuration file for the ocean benchmark contains three
internal and 11 external procedures, system and library routines are covered
in the platform-specific configuration file. The slave() procedure is the entry
point for the parallel algorithm and performs one-time initialization as well as
top-level flow control for the simulation. The slave2() procedure implements
a single timestep of the ocean simulation that is divided into ten different
phases, while the multig() procedure implements the multigrid solver used
once during initialization and twice in each timestep.

These procedures have to be internal for several reasons: Apart from being
the entry point, the slave() procedure contains five barrier synchronizations,
one lock as well as one call to another internal procedure. The slave2() proce-
dure contains ten barrier synchronizations, one lock as well as two calls to an
internal procedure. The multig() procedure has to be internal as it contains
five barrier synchronizations and one lock. Note that all those subroutines
of the multigrid solver, that handle the actual data, are external. For these
internal procedures, the super block optimization is very effective, as these
procedures consist of 525, 785, and 28 basic blocks and 17, 16, and 12 super
blocks, respectively.

The results of the experiments using the ocean benchmark are summarized
in Figures 5.17, 5.18, and 5.19. Figure 5.17 illustrates the results using an
ocean of 130 × 130 grid points, while Figures 5.18 and 5.19 illustrate the
results using oceans of 258 × 258 and 514 × 514 grid points, respectively.
Note that a vertical baseline is provided for the base results in order to make
identification of these results easier. The following paragraphs discuss the
results illustrated in Figures 5.17, 5.18, and 5.19, respectively.

Using an ocean of 130 × 130 grid points, a corresponding array occupies
approximately 132 KB of memory. The ocean benchmark uses a fairly large
number of these arrays, i.e. 25. Apart from these and several smaller arrays
the two arrays used as input for the multigrid solver consist of seven separate
arrays, one for each level. Note that the number of levels is equal to the binary
logarithm of the problem size, i.e. 128. Even for the smallest problem size, the
dataset of the ocean benchmark will therefore not fit into any of the caches
in the Compaq XP1000 workstation. According to [WOT+95], the first-level
working set of the ocean benchmark consists of a few subrows, i.e. a few KB,
while the second-level working set is one partition of the whole data set, i.e.
the size of the whole data set divided by the number of threads. In the case of
multithreading, the individual threads share the cache resources, hence the
working set as seen from the processor is probably identical to the whole data
set. Although the second-level working set will not fit in any of the caches,
the first-level working set will fit in the first-level data cache.

An analysis of the runtimes presented in Figure 5.17 yields the following
results: The runtimes increase with the number of threads, although using
four threads is slower than using eight threads for all versions using emulated

5.7 Ocean 191

Fig. 5.17. Results for the Ocean Benchmark (130× 130 Ocean)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-ocean
emu-ocean-g004
emu-ocean-g016
emu-ocean-g064
emu-ocean-bblk
emu-ocean-sblk
posix-ocean

Fig. 5.18. Results for the Ocean Benchmark (258× 258 Ocean)

0 2 4 6 8 10 12 14 16

Number of Threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-ocean
emu-ocean-g004
emu-ocean-g016
emu-ocean-g064
emu-ocean-bblk
emu-ocean-sblk
posix-ocean

multithreading. This sudden increase in runtime is caused in the multigrid
solver, as the time spent in the solver increases significantly if four threads are
used. Subtracting the times spent in the multigrid solver from the overall run-
times yields the slight increase in runtime observed for the other benchmarks.
However, the source of the sudden increase in the amount of time spent in the
multigrid solver is unclear: As the posix version is not affected, this behavior
seems to be caused by emulated multithreading. As only the top-level routine

192 5. Evaluation : Compaq XP1000

Fig. 5.19. Results for the Ocean Benchmark (514× 514 Ocean)

0 2 4 6 8 10 12 14 16

Number of Threads

0

1

2

3

4

5

6

7

8

9

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-ocean
emu-ocean-g004
emu-ocean-g016
emu-ocean-g064
emu-ocean-bblk
emu-ocean-sblk
posix-ocean

of the multigrid solver is internal and all subroutines are external, it is un-
likely that an increase in the number of cache misses is responsible. Another
candidate would be the lock in the multigrid solver that is used to sum up
the local errors. However, a detailed analysis of the cache misses will allow to
rule out the former and further investigate this phenomenon. Unfortunately,
the performance counters in the 21264 microprocessor do not support the
corresponding events, hence it is not possible to perform this analysis on the
current platform. .

Apart from the phenomenon described above, the runtimes of the g004,
g016, g064, bblk, and sblk versions follow a well-known pattern: For all num-
bers of threads, the sblk version is the fastest, while the bblk and g064 versions
have almost identical runtimes. The g004 version is noticeably slower than
the bblk version and the g016 version is slightly slower than the bblk version.
The sblk version is slower than the posix version as long as less than eight
threads are used, but is significantly faster for 8 and 16 threads.

Using an ocean of 258 × 258 grid points, each of the 25 arrays occupies
approximately 520 KB of memory, i.e. about 13 MB total. The two arrays used
as input for the multigrid solver have eight levels and occupy approximately
7 MB together. While the second-level working set will not fit in any of the
caches, the first-level working set occupies several KB and will fit in the first-
level data cache. Apart from the overall increased runtime, an analysis of the
runtimes presented in Figure 5.18 yields the same results as for the smaller
problem size, although the posix version is always faster than the sblk version.

Using an ocean of 514 × 514 grid points, each of the 25 arrays occupies
approximately 2 MB, i.e. 50 MB total. The two arrays used as input for the
multigrid solver have nine levels and occupy approximately 32 MB together.

5.8 Barnes 193

Again, the second-level working set will not fit in any of the caches, while the
first-level working set may still fit in the first-level data cache as each row
occupies about 4 KB. Apart from the overall increased runtime, an analysis
of the runtimes presented in Figure 5.19 yields the same results as for the
smaller problem sizes, although the advantage of the posix version increases
slightly.

In summary, the results of the ocean benchmark are a bit disappointing,
since the sblk version is slower than the posix version. The increase in runtime
by using four threads has yet to be explained, a detailed analysis of the cache
behavior will provide useful hints in this regard.

5.8 Barnes

The project-specific configuration file for the barnes benchmark contains five
internal and five external procedures, system and library routines are cov-
ered in the platform-specific configuration file. The SlaveStart() procedure
contains some assignments, a small loop that calls the internal StepSimula-
tion() procedure for the selected number of timesteps as well as a call to the
find my initial bodies() procedure. The latter procedure performs the initial
distribution of particles to threads and consists of a loop that updates the
particle pointers in the corresponding local array of the thread. The num-
ber of loop iterations for all threads is equal to the number of particles.
The StepSimulation() procedure implements a single timestep of the parti-
cle simulation and consists of a sequence of internal and external calls that
implement the different phases of the algorithm described in Section 4.2.5.
The final loop is used to update the local particles, hence the number of loop
iterations across all threads is equal to the number of particles. The make-
tree() procedure constructs the particle tree and consists of a single loop that
calls the loadtree() procedure for each of the local particles. The hackcofm()
procedure determines the center of mass for all leafs and cells in the particle
tree that belong to the current thread. The procedure consists of two loops
that are used to traverse the corresponding local arrays such that the number
of loop iterations across all threads is equal to the number of particles.

Apart from being the entry point, the SlaveStart() procedure has to be
internal as it contains two calls to other internal procedures. Due to a barrier
synchronization, the find my initial bodies() procedure has to be internal as
well. The StepSimulation() procedure has to be internal as it contains two
barriers, one lock, as well as calls to other internal procedures. In the same
way, the maketree() procedure has to be internal as it contains two barriers,
one lock, and a call to another internal procedure. Last but not least, the
hackcofm() procedure contains a spin wait and therefore has to be internal.
For these internal procedures, the super block optimization is quite effective
as the procedures consist of 6, 11, 65, 14, and 19 basic blocks and 5, 2, 9, 4,
and 9 super blocks, respectively.

194 5. Evaluation : Compaq XP1000

Fig. 5.20. Results for the Barnes Benchmark (16 K Particles)

0 2 4 6 8 10 12 14 16

Number of Threads

0

2

4

6

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-barnes
emu-barnes-g004
emu-barnes-g016
emu-barnes-g064
emu-barnes-bblk
emu-barnes-sblk
posix-barnes

The results of the experiments using the barnes benchmark are summa-
rized in Figures 5.20, 5.21, and 5.22. Figure 5.20 illustrates the results using
a problem size of 16 K particles, while Figures 5.21 and 5.22 illustrate the
results using problem sizes of 64 K and 256 K particles, respectively. Note
that a vertical baseline is provided for the base results in order to make iden-
tification of these results easier. The following paragraphs discuss the results
illustrated in Figures 5.20, 5.21, and 5.22, respectively.

Using a problem size of 16 K particles, the barnes benchmark allocates
approximately 2 MB of memory for the global particle array, another 2 MB
and 4 MB for the local cell and leaf arrays, as well as approximately 256 KB
for the local cell and leaf pointer arrays. According to [WOT+95], the first-
level working set of the barnes benchmark is the tree data for one particle,
i.e. the leaf that contains the particle as well as all cells on the path from the
root cell to that leaf. As the height of the tree is logarithmic and the size of a
leaf and cell is 148 and 168 bytes, the first-level working set is a few KB large
and will therefore fit in the first-level data cache. The second-level working
set is one partition of the whole data set, i.e. probably the whole data set in
the case of multithreaded execution. As the Compaq XP1000 workstation is
configured with a 4 MB second-level cache, the second-level working set will
not fit in any of the caches.

An analysis of the runtimes presented in Figure 5.20 yields the following
results: The runtimes increase with the number of threads, although the dif-
ference is almost negligible for the current problem size. The relation between
the different versions of the barnes benchmark shows the same well-known
pattern as for the other benchmarks: The sblk version is the fastest, the bblk
and g064 versions have almost identical runtimes, while the g004 version is the

5.8 Barnes 195

Fig. 5.21. Results for the Barnes Benchmark (64 K Particles)

0 2 4 6 8 10 12 14 16

Number of Threads

11

11.5

12

12.5

13

13.5

14

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-barnes
emu-barnes-g004
emu-barnes-g016
emu-barnes-g064
emu-barnes-bblk
emu-barnes-sblk
posix-barnes

Fig. 5.22. Results for the Barnes Benchmark (256 K Particles)

0 2 4 6 8 10 12 14 16

Number of Threads

56

58

60

62

64

66

68

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-barnes
emu-barnes-g004
emu-barnes-g016
emu-barnes-g064
emu-barnes-bblk
emu-barnes-sblk
posix-barnes

slowest. However, the g016 version is different as it is slightly faster than the
bblk version. The posix version is slower than all other versions if more than
one thread is used. This performance degradation is caused by a significant
increase of time spent in the force calculation phase. The sblk optimization
is quite effective, as the runtimes for the loop that updates the individual
particles is independent of the number of threads, while it increases signifi-
cantly in the absence of super block optimization due to the larger number of

196 5. Evaluation : Compaq XP1000

context switches. Compared to the overall runtime, the overhead associated
with emulated multithreading is almost negligible.

Using a problem size of 64 K particles, the barnes benchmark allocates
approximately 7 MB of memory for the global particle array, another 8 MB
and 16 MB for the local cell and leaf arrays as well as approximately 1 MB
for the local cell and leaf pointer arrays. The size of the first-level working set
increases only slightly as the size of the working set only increases with the
logarithmic height of the particle tree. While the first-level working set will
still fit in the first-level data cache, the second-level working set will not fit
in any of the caches. Apart from the overall increased runtimes, an analysis
of the runtimes presented in Figure 5.21 yields the same results as for the
smaller problem size, although the distance of the posix version increases.

Using a problem size of 256 K particles, the barnes benchmark allocates
approximately 28 MB of memory for the global particle array, another 16 MB
and 32 MB for the local cell and leaf arrays as well as approximately 4 MB
for the local cell and leaf pointer arrays. The size of the first-level working set
increases only slightly as the size of the working set only increases with the
logarithmic height of the particle tree. While the first-level working set will
still fit in the first-level data cache, the second-level working set will not fit
in any of the caches. Apart from the overall increased runtimes, an analysis
of the runtimes presented in Figure 5.22 yields the same results as for the
smaller problem sizes, although the distance of the posix version increases
even more.

In summary, the results for the barnes benchmark are quite encouraging,
as all versions using emulated multithreading are faster than the posix ver-
sion. Compared to the base version, the overhead introduced by emulated
multithreading is negligible.

5.9 FMM

The fmm benchmark is by far the most complex benchmark used during the
evaluation of emulated multithreading. The project-specific configuration file
for the fmm benchmark contains 32 internal and 25 external procedures,
system and library routines are covered in the platform-specific configura-
tion file. All of these procedures have to be internal as the either contain
a synchronization point, e.g. barriers or locks, or a call to another internal
procedure. Due to the large number of synchronization points and internal
calls, the super block optimization is not very effective for the internal pro-
cedures in the fmm benchmark: These procedures consist of 532 basic blocks
and 253 super blocks, respectively. The rather large number of super blocks
is probably the cause for the highest increase in the number of instructions
encountered so far.

The results of the experiments using the fmm benchmark are summarized
in Figures 5.23 and 5.24. Figure 5.23 illustrates the results using a problem

5.9 FMM 197

size of 16 K particles, while Figure 5.24 illustrates the results using a problem
size of 64 K particles. The results using a problem size of 256 K particles have
been omitted, as the allocated memory exceeds the installed physical memory
in the Compaq XP1000 workstation, i.e. the operating system starts to swap.
Note that a vertical baseline is provided for the base results in order to make
identification of these results easier. The following paragraphs discuss the
results illustrated in Figures 5.23 and 5.24, respectively.

Using a problem size of 16 K particles, the fmm benchmarks allocates
approximately 1.5 MB for the global particle array, 0.5 MB for the local par-
ticle pointer arrays as well as 18 MB for the local cell arrays. According to
[WOT+95], the first-level working set for the fmm benchmark are the ex-
pansion terms, which have a fixed size of less than 640 bytes. As the 21264
microprocessor used in the Compaq XP1000 workstation contains a 64 KB
first-level data cache, the first-level working set will easily fit in this cache.
The second-level working set is one partition of the whole data set, i.e. prob-
ably the whole data set in the case of multithreaded execution. Even for the
smallest problem size, the size of the working set exceeds the size of the 4 MB
second-level cache used in the Compaq XP1000 workstation.

An analysis of the runtimes presented in Figure 5.23 yields the following
results: Compared to the overall runtime, the increased runtime for using
multiple threads is almost negligible. The runtimes of the g004, g016, g064,
bblk, and sblk versions follow a well-known pattern: The sblk version is sig-
nificantly faster than all other versions, the g064 and bblk versions have
almost identical runtimes. The g004 version is significantly slower than the
bblk version, while the g016 version is slightly slower than the bblk version.
However, the difference between the individual versions is larger than for all
other benchmarks. In addition, the overhead associated with emulated multi-
threading is rather high. Even the sblk version is more than two times slower
than the base version. Nevertheless, the posix version is significantly slower
than the sblk version if more than one thread is used. Investigating the in-
dividual components of the runtime reveals that almost all time is spent in
computing the interactions between particles and cells. Unfortunately, the
large number of internal procedures makes the analysis rather difficult. A
detailed analysis of the cache behavior will probably reveal the reason for
the large overheads in the case of the fmm benchmark. As the increase in
runtime due to a larger number of threads is almost negligible, it is unlikely
that the large overhead is caused by context switches.

Using a problem size of 64 K particles, the fmm benchmarks allocates
approximately 6 MB for the global particle array, 2 MB for the local particle
pointer arrays as well as 72 MB for the local cell arrays. As the first-level
working set is of fixed size and occupies less than 640 bytes, this working
set will still fit in the first-level data cache. Like before, the second-level
working set is too large to fit in any of the caches in the Compaq XP1000
workstation. Apart from the overall increased runtime, an analysis of the

198 5. Evaluation : Compaq XP1000

Fig. 5.23. Results for the FMM Benchmark (16 K Particles)

0 2 4 6 8 10 12 14 16

Number of Threads

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-fmm
emu-fmm-g004
emu-fmm-g016
emu-fmm-g064
emu-fmm-bblk
emu-fmm-sblk
posix-fmm

Fig. 5.24. Results for the FMM Benchmark (64 K Particles)

0 2 4 6 8 10 12 14 16

Number of Threads

0

10

20

30

40

50

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

base-fmm
emu-fmm-bblk
emu-fmm-sblk
posix-fmm

runtimes presented in Figure 5.24 yields the same results as for the smaller
problem size, although the overhead for the bblk and sblk versions is even
more pronounced and the sblk version is now slower than the posix version.
Note that the results for the g004, g016, g064 versions were omitted due to
instabilities of the corresponding executables.

In summary, the results for the fmm benchmark are even worse than
the results for the barnes benchmark: The overhead for the versions using

5.10 Summary 199

emulated multithreading is very large, even the sblk version is significantly
slower than the base version. For the larger problem size, the sblk version
is slower than the posix version for all numbers of threads. The reason for
the large overhead is unclear, as the size of the application code complicates
the analysis of the results. A detailed analysis of the cache behavior would
provide useful hints in this regard. Unfortunately it is not possible to perform
this analysis on the Compaq XP1000 workstation due to the restricted set of
events supported by the performance counters of the 21264 microprocessor.

5.10 Summary

The evaluation of emulated multithreading on the Compaq XP1000 work-
station revealed that the overhead associated with emulated multithreading
is smaller than expected, especially if the super block optimization is used.
In fact, the sblk version is faster than the posix version in most cases. As
the Tru64 operating system contains an efficient implementation of POSIX
threads, this result demonstrates that emulated multithreading is feasible and
that the efforts to reduce the overhead have paid off. In addition, the current
implementation of emulated multithreading provides several opportunities
for further improvements, e.g. by improving the code conversion process or
the emulation library.

Recall that the current implementation of emulated multithreading is tar-
geted at tolerating the latency of remote memory references in massively
parallel processors. As these events do not occur on a single-processor work-
station like the Compaq XP1000, there is nothing to be gained by latency
tolerance on this platform. Therefore the results of the evaluation reflect the
overhead associated with emulated multithreading and provide a good foun-
dation for the evaluation on massively parallel processors.

However, the evaluation of emulated multithreading on the Compaq
XP1000 workstation should be extended by performing a detailed analysis
of the cache behavior. Such an analysis would provide useful insights, espe-
cially in connection with an extension of emulated multithreading to cover
the latency of main memory accesses as well. For example, the sblk version
of the fft benchmark benefits from the reduced number of cache misses due
to the smaller working sets if multiple threads are used. As the latency asso-
ciated with references to main memory is on the order of hundreds of cycles,
emulated multithreading could be extended to tolerate these results if the
context switch locations are chosen carefully.

200 5. Evaluation : Compaq XP1000

6. Evaluation : Cray T3E

As described in Chapter 2, emulated multithreading is designed to tolerate
long latency events by using fine-grained multithreading and asynchronous
communication. The current implementation described in Chapter 3 is tar-
geted at tolerating remote memory accesses in massively parallel processors,
since such accesses incur a large latency and are easily identifiable. Emulated
multithreading was evaluated on a single-processor workstation in order to
determine the characteristics of emulated multithreading as well as the asso-
ciated overhead. The corresponding results are presented in Chapter 5. This
chapter evaluates emulated multithreading on a massively parallel proces-
sor, i.e. the Cray T3E. This evaluation was supported by grants for com-
puting time from the John-Neumann Institute of Computing (NIC) at the
Forschungszentrum Jülich and the Höchstleistungsrechenzentrum (HLRS)
Stuttgart.

The two computing centers mentioned above provided access to three
different models of the Cray T3E: A 512-processor T3E-1200 and a 512-
processor T3E-600 are installed at the NIC, while a 512-processor T3E-900
is installed at the HLRS. All experiments performed during the evaluation
were executed on the Cray T3E-1200 at the NIC, while the T3E-900 at the
HLRS was primarily used during development and test of the current imple-
mentation. The T3E-600 installed at the NIC is reserved for batch jobs with
a large number of processors and was therefore not used in the evaluation.

Emulated multithreading is evaluated on the Cray T3E massively paral-
lel processor using five of the six benchmarks described in Chapter 4, i.e. fft,
lu, radix, ocean and barnes. The fmm benchmark is not used in the evalu-
ation due to several race conditions in the ported application that lead to
frequent instabilities, especially for larger numbers of processors. A detailed
description of these race conditions as well as two workarounds are provided
in Section 4.2.6. For each benchmark, several experiments are performed in
order to assess the performance of emulated multithreading on a wide range
of problem sizes, processor numbers, and thread numbers. These results are
compared with the results obtained from single-threaded execution on the
same range of problem sizes and processor numbers.

Section 6.1 describes the architecture of the Cray T3E and emphasizes the
E-register mechanism that is used for remote memory accesses, while Section

202 6. Evaluation : Cray T3E

6.2 covers the experimental methodology used in the evaluation. Sections 6.3,
6.4, and 6.5 discuss the evaluation of emulated multithreading using the fft, lu,
and radix benchmarks, respectively. Sections 6.6 and 6.7 cover the evaluation
of multithreading using the ocean and barnes benchmarks. In contrast to the
previous chapter, the impact of the code conversion process on the assembler
sources of the benchmarks is omitted since the facts and reasoning from the
Compaq XP1000 platform also apply to the Cray T3E platform.

6.1 Cray T3E

The Cray T3E [Oed96] is based on the earlier Cray T3D [KFW94] and rep-
resents the second-generation of massively parallel processors from Cray Re-
search. The Cray T3E supports up to 2048 processing elements based on
the Alpha 21164 processor described in Section 6.1.1. The global addressable
memory is physically distributed among the processing elements and is cov-
ered in Section 6.1.2. The individual processing elements are connected by
a bidirectional three-dimensional torus network that is described in Section
6.1.3. The I/O architecture of the Cray T3E is based on SCI (Scalable Co-
herent Interconnect) and is described in Section 6.1.4. Finally, Section 6.1.5
describes the unicos/mk operating system as well as the programming en-
vironments that are available on the Cray T3E. The information was this
section are gathered from several sources, i.e. [Oed96][AXP96c][ST96][Sco96]

The Cray T3E is available in four different models. The major difference
between these models is the clock frequency of the microprocessors used in
each processing element: The -600, -900, -1200, and -1350 models use clock
frequencies of 300, 450, 600, and 675 MHz, respectively. The system clock
frequency is the same for all models, i.e. 75 MHz. Apart from the different
models, the Cray T3E is available in two different versions, i.e. liquid cooled
and air cooled.

The liquid cooled version supports up to eight chassis, where each chassis
contains up to 256 user processing elements, 16 support processing elements,
as well as one clock module for a total of 2048 user and 128 support processing
elements. Note that the number of processing elements can be increased in
steps of eight, i.e. it is not necessary to double the number of processing
elements in each step. In each case, two chassis share a heat exchange unit
that connects the primary fluorinert and the secondary water cooling circuits.

The air cooled version supports up to six chassis, where each chassis
contains up to 20 or 24 user or support processing elements and up to one
clock module for a total of 128 user and 8 support processing elements. Note
that the number of processing elements can be increased in steps of four
instead of eight.

6.1 Cray T3E 203

6.1.1 Processor

Each processing element in the Cray T3E is based on an Alpha 21164 pro-
cessor running at a clock frequency of 300, 450, 600, or 675 MHz, depending
on the Cray T3E model. Note that the processor clock frequency is always a
multiple of the 75 MHz clock frequency used by the system logic and network.
The 21164 microprocessor is an implementation of the Alpha architecture,
a 64 bit architecture designed by Digital Equipment Corporation. A detailed
description of this architecture as well as all implementations can be found
in Appendix A. The Alpha architecture uses a split register file, there are 32
integer and 32 floating-point registers, each 64 bit wide.

The 21164 microprocessor is a super-scalar processor that can issue up
to four instructions (two integer, two floating-point) in each cycle. The two
integer execution pipelines support all arithmetic instructions on 32 bit and
64 bit integer operands, integer control instructions as well as load and store
instructions for integer and floating-point operands. The two floating-point
execution pipelines support all arithmetic instructions on single- and double-
precision floating-point operands as well as floating-point control instructions.
Note that floating-point division is handled by a non-pipelined divider that
is associated with one of the floating-point execution pipelines.

The 21164 microprocessor contains first-level data and instruction caches
as well as an unified second-level cache. The first-level data cache is an 8 KB
direct mapped cache with 32 byte cache-lines and uses a write-through, read-
allocate protocol. The data cache is dual-ported to allow two independent
accesses in each cycle. The first-level instruction cache is an 8 KB direct-
mapped cache with 32 byte cache-lines. The second-level cache is a 96 KB
3-way set-associative cache using 32 or 64 byte cache-lines and a write-back,
write-allocate protocol. Each instruction that hits in the data cache incurs a
latency of two cycles, while instructions that hit in the unified cache incur a
latency of eight cycles or more.

The internal caches are backed by an optional external cache. This third-
level cache is a direct-mapped cache ranging from 1 to 64 MB in size and
using 32 or 64 byte cache-lines. However, the processing elements in the Cray
T3E do not use this option in order to decrease the latency of main mem-
ory accesses. Stream buffers are used instead to increase the performance of
non-unit-stride accesses. The memory system of the processing elements is
described in Section 6.1.2. In order to improve the performance of load and
store instructions, the 21164 contains a miss address file that buffers and
merges outstanding loads as well as a write buffer that buffers and merges
stores. Detailed information about the internal architecture of the 21164 can
be found in Section A.3.6.

The Alpha architecture defines a 64 bit virtual address space, implemen-
tations are required to support at least 43 bit virtual address space and check
the remaining bits to be zero. The 21164 microprocessor implements the
minimum 43 bit address space as well as a 40 bit physical address space. In

204 6. Evaluation : Cray T3E

contrast to the 21064 microprocessor used in the Cray T3D [ACK+95], the
size of the physical address space is large enough to cover the total amount
of memory supported by the Cray T3E, i.e. 4 TB. The physical address space
is divided into two parts by the most significant address bit: The lower part
is cached by the internal caches and contains the local memory of a process-
ing element, the upper part is uncached and contains the memory-mapped
registers used to access remote memory.

6.1.2 Memory

The Cray T3E provides a global address space with local consistency although
the memory is physically distributed among the processing elements. Each
processing element contains a local memory that resides in the cache address
space of the corresponding processor. The local memory system consists of
eight independent single-word (64 bit) banks of DRAM, each pair of banks is
controlled by a bank control chip. These are connected to the system control
logic via a 32 bit data bus, i.e. the bandwidth of the four memory busses is
equal to the bandwidth of the 128 bit processor bus. Note that the number
of memory banks allows a quasi-parallel access to 64 byte cache-lines.

Instead of an external third-level cache, the processing elements in the
Cray T3E use a stream buffer [Jou90] to prefetch cache-lines starting on
cache miss addresses: After two misses to consecutive cache-lines, a stream
buffer is allocated and starts to prefetch data or instructions by initiating
accesses starting at the cache miss address. The stride between the individual
accesses is calculated as the difference between the first two addresses that
missed in the cache and activated the stream buffer [BC91a]. Note that the
misses do not have to be contiguous, the stream detection logic maintains the
history of the eight last cache misses in order to identify streams. In contrast
to caches, stream buffers are useful for non-unit-stride accesses, e.g. accesses
to vectors or matrices. The system control logic in the Cray T3E supports
six independent stream buffers, where each stream buffer contains up to two
consecutive cache-lines, e.g. 128 byte.

The stream buffers are completely managed in hardware, but software
can provide hints to guide the allocation of stream buffers. Unfortunately, the
initial version of the system control logic had a serious flaw in connection with
the stream buffers and cache consistency [Cra96], hence most installations of
a Cray T3E-600 disable the stream buffers by default. A detailed description
of this flaw as well as possible workarounds are included in Section B.3. Cache
coherency between the internal caches, stream buffers, and main memory is
maintained in hardware, using the flush coherency protocol supported by the
21164 microprocessor. An external backmap, i.e. a copy of the second-level
cache tags, is used to invalidate cache-lines or stream buffer entries in the
advent of remote writes.

Although the memory is physically distributed among the processing el-
ements, each processor can access all memory locations on any of the other

6.1 Cray T3E 205

Fig. 6.1. Global Address Calculation - Part I

(1)

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

Mask

Index

PE

Base

VSEG OFFSET

(1) (3) (2)

(3)(2)

processing elements. Note that these remote accesses are performed without
any involvement of the remote processor. Although the memory is globally
addressable, there is no shared address space: Each memory location is iden-
tified by the address of the location in the address space of the corresponding
processing element as well as the number of this processing element. Access
to remote memory is performed by means of the so-called E-registers. All
remote transfers occur between these E-registers and the main memory of
the remote processing element. The E-registers reside in the uncached region
of the address space and can be read and written by the processor via un-
cached load and stores, limiting the bandwidth between these registers and
the processor to 600 MB/s. Note that cached load and store instructions can
be performed at up to 1200 MB/s.

There are 640 E-registers, 512 of these are available to applications and
128 are reserved for system use. The large number of E-registers facilitates
pipelining of remote memory accesses by increasing the number of outstand-
ing operations. These E-registers are used in two different ways: They can
either be used as a source-and-destination E-register (SADE) that provides
the source or destination operands for global get and put operations, re-
spectively. Besides, they can be used as part of a more-operands-block of
E-registers (MOBE) that provides additional operands during global address
generation. Given a 50 bit address index, the mask stored in the first E-
register of the block is used to extract those bits, that form the number
of the remote processing element. The indicated bits are compacted into a
zero-extended 12 bit number, i.e. the number is large enough to support the
maximum number of 2048 user and 128 support processing elements. The
remaining bits are compacted and added to the base address stored in the
second E-register of the block. The six most significant bits of the result
represent a virtual segment, while the remaining 32 bits represent an offset

206 6. Evaluation : Cray T3E

within that segment. These operations are performed by the hardware cen-
trifuge and are illustrated in Figure 6.1. Note that the hardware centrifuge
supports sophisticated data distribution models, e.g. distributing an array to
other processing elements on cache-line boundaries.

The access to global memory is initiated by a store to a specific address
in the uncached region of the address space: The address specifies the type
of access as well as the number of the source-and-destination E-register to
use during the actual data transfer. The written data specifies the number of
the more-operands-block of E-registers to use during address translation, as
well as an address index that is translated into a global virtual address via
the hardware centrifuge. Note that the more-operand block of E-registers is
initialized only once. All subsequent accesses to the corresponding distributed
array can be performed directly.

The second part of the global address translation is depicted in Figure
6.2. After the virtual segment, segment offset, and virtual processing element
have been determined by means of the hardware centrifuge, these values are
translated into a global virtual address. Such an address consists of a global
segment, segment offset, and routing informations. The virtual segment num-
ber is translated into a global segment number by the segment translation
table (STT). For each virtual segment, this table stores the number of the
corresponding global segment, the number of the base processing element in
the current partition, as well as protection information. The number of the
base processing element is added to the virtual processing element number
determined by the hardware centrifuge, yielding the logical number of the
target processing element. This number is checked for access violations us-
ing the protection information and the size of the current partition stored
in the segment translation table. Afterwards the logical processing element
number is translated into a physical processing element number, i.e. routing
information, by means of the routing lookup table (RLT).

The physical processing element numbers denote the position of the cor-
responding processing element in the three-dimensional torus network, while
the logical number is used to identify all processors that are visible to the
operating system and the virtual number represents the processing elements
inside the current partition. The virtual numbers range from 0 to p−1, where
p is the number of processing elements in the current partition, while the log-
ical numbers range from 0 to n − 1, where n is the number of processors
visible to the operating system. The physical number determines the x, y,
and z coordinates of the processing element in the three-dimensional torus
network. The number of physical processing elements may be larger than the
number of logical processing elements due to redundant processing elements
used to replace failed elements. The segment translation table at the source
processing element ensures that only authorized global segments on autho-
rized processing elements are accessed, while the routing lookup table allows

6.1 Cray T3E 207

Fig. 6.2. Global Address Calculation - Part II

(Network)

VSEG OFFSET

STT

RLT

GTB

6

32812

32

12

12

31

326

PE

Check

S
o
u
r
c
e

P
E

T
a
r
g
e
t

P
E

redundant processing elements to be mapped in place of failed processing
elements.

After generating and checking the global virtual address, this address is
transfered along with any data in the case of puts to the target processing
element. At the target element, the global virtual address is translated into
a physical address in the cached region of the address space by the global
translation buffer (GTB). This buffer supports several page sizes ranging
from 64 KB to 128 MB and is completely managed in hardware, hence does
not fault under normal conditions. Any access violations within the global
segment are detected during this translation as well. Note that the transla-
tion at the target processing element allows each element to manage its own
memory independently of other processing elements as long as the global
translation buffer is updated accordingly. For example, the system control
logic supports background copy operations to local memory without any im-
pact on remote references.

In contrast to the earlier Cray T3D, cache coherence is maintained in
hardware: If the remote memory access modifies the memory location, the
external backmap is used to invalidate any cache-lines in the internal caches of
the 21164 microprocessor as well as the stream buffers. If the remote memory
access references a location that contains invalid data, the request is serviced
from the valid data in the internal caches. Note that cache coherency is only

208 6. Evaluation : Cray T3E

maintained within a single processing element, i.e. there is no global cache
coherency protocol.

In the case of a read request, the requested data is transferred from the
target to the source and is stored in the selected source-and-destination E-
register, where the data can be retrieved by a simple load instruction. The
accesses to the E-registers are synchronized by full/empty bits. A load that
accesses an empty E-register, i.e. one that is used in an outstanding E-register
operation, will stall until the operation is completed and the E-register con-
tains the requested data.

The E-registers support a rich set of communication and synchronization
commands:

• The get command returns the contents of a location in local or remote
memory, i.e. performs a local or remote memory read.
• The put command updates the contents of a location in local or remote

memory, i.e. performs a local or remote memory write.
• The swap command updates the contents of a location in local or remote

memory similar to the put command, and returns the original contents of
the local or remote memory location.
• The conditional swap command updates the contents of a location in local

or remote memory, provided that the original contents meet the specified
condition: If the original contents meet the condition, the local or remote
memory location is updated and the original contents are returned. Oth-
erwise, the local or remote memory location is unchanged and the original
contents are returned.
• The fetch-and-increment command increments the contents of a location

in local or remote memory and returns the original contents.
• The fetch-and-add command adds the specified value to the contents of a

location in local or remote memory and returns the original contents.
• The send command stores a message to a local or remote memory location.

The specified memory location must contain a message queue control word
in order to ensure proper delivery of the message.
• The state command returns the contents of the specified state register.

These commands can be combined with several qualifiers, a detailed intro-
duction to E-register programming is provided in Appendix B.

6.1.3 Network

The individual processor elements are connected by a three-dimensional torus
network. Each processing element contains one network router that repre-
sents a node in the torus. In contrast to the earlier Cray T3D, there is only
one processor instead of two per network node. Each router contains a full-
duplex processor interface, two full-duplex network links for each dimension,
as well as one I/O link. The network links are 14 bit (1 phit) wide and op-
erate at 75 MHz using time-multiplexed transmission: In each clock cycle 5

6.1 Cray T3E 209

phits (1 flit) are transmitted yielding a peak bandwidth of 600 MB/s. Due
to protocol overhead, the maximum data bandwidth is reduced to approx-
imately 500 MB/s. Note that the size of one flit is large enough to store a
64 bit quadword as well as some control information.

The network supports the individual E-register commands described
above by providing single read- and write-requests, vector read- and write-
requests, 8 quadword messages, atomic memory operations and configuration
packets. The individual packets are between two and 10 flits long. The router
chip supports five virtual channels [Dal90] for normal packets as well as an
additional virtual channel for synchronization packets. Two virtual channels
are used to remove turn cycles and request-response cycles, respectively, torus
cycles are removed by routing packets in the first order of dimension. The fifth
virtual channel provides a non-deterministic adaptive routing network, which
does not remove any cycles. However, packets may reenter the deterministic
routing network to avoid deadlock situations.

The router is based on a crossbar with additional paths for packets that
do not turn, i.e. start routing in another dimension. Each network link pro-
vides buffers for all virtual channels, the buffers for the channels used in the
deterministic network hold up to 12 flits, while the buffers for channels used
in the non-deterministic network hold up to 22 flits. Upon entry into the first
router, the logical number of the target processing element is used to index
the routing lookup table. This table has 544 entries, each entry contains the
physical address of the target node as well as the deterministic path to that
node. For systems with more than 544 processing elements, i.e. 512 user and
32 support elements, the two least-significant bits are ignored, hence proces-
sors are mapped in groups of four, thus supporting up to 2176 processing
elements, i.e 2048 user and 128 support.

Routing in the deterministic network is done in first order of dimension:
Routing in positive direction of the x dimension (+x) comes first, followed
by routing in the +y, +z, -x, -y, and -z dimensions. Note that the ordering
of direction is fixed, but not the ordering of dimension, i.e. a packet with a
-x, +y, +z routing tag would be routed in positive direction of the y and
z dimensions first, afterwards in the negative direction of the x dimension.
This routing scheme adds flexibility by providing multiple routes between
two nodes, which is useful for fault tolerance.

The flexibility of the routing scheme is further enhanced by allowing initial
and final hops: The first hop of a packet can be in positive x, y, or z dimension
without changing the routing information in the packet itself. However, the
final hop of a packet can only be in negative direction of the z dimension.
Apart from adding flexibility to the routing scheme, initial and final hops
enable the use of partially filled planes, thus reducing the minimum number
of processor elements that have to be added in each step. Nodes in a partial
plane without a direct route can be routed by using an initial hop in the +z

210 6. Evaluation : Cray T3E

dimension as well as a final hop in the -z dimension, as all partial planes are
oriented along the z dimension.

Adaptive routing allows requests and responses to be routed around local
congestion in the network by allowing packets to turn in every node in a
direction that brings them closer to their destination. Note that adaptive
routing may cause reordering of packets and take broken links, hence adaptive
routing can be turned off for certain packets and/or destinations. In addition,
the adaptive virtual routing network is not guaranteed to be acyclic, hence
packets must enter the deterministic, acyclic network in case of deadlocks.
Note that the corresponding virtual channel has the lowest priority among
all virtual channels, while the virtual channel for synchronization messages
has the highest priority.

Instead of the dedicated synchronization network used in the earlier Cray
T3D, the Cray T3E embeds the synchronization network into the normal net-
work by using a high-priority virtual channel for synchronization packets. The
system control logic on each processing element contains 32 barrier/eureka
synchronization units. Each of these units provides a synchronization network
for a specified set of processing elements. There are two different synchroniza-
tion events: The barrier event forms a spanning tree across the processors
using logical and, i.e. the event is propagated to the parent synchronization
units as soon as all child units have signaled the event. The eureka event
forms a spanning tree across the processors using logical or, i.e. the event is
propagated to the parent synchronization units as soon as one of the child
units has signaled the event. In addition, each router maintains a register
for each of the 32 barrier/eureka synchronization units. The contents of the
register configure the router as a node in the corresponding spanning tree by
identifying the parent and child nodes. This information is used to propagate
the synchronization events along the spanning tree.

6.1.4 Input/Output

In contrast to the earlier Cray T3D which handled all I/O requests via the
Cray Y/MP foreground system, the Cray T3E provides its own set of I/O
interfaces. As described in Section 6.1.3, each router has a dedicated bidirec-
tional I/O link. The four processing elements on a printed circuit board share
a common I/O control unit, which interfaces the corresponding I/O links to
a GigaRing channel. Two GigaRing channels are shared by two I/O con-
trol units. The GigaRing channel is based on the SCI standard and provides
a bidirectional link connected in a ring topology. The GigaRing provides a
bandwidth of up to 500 MB/s in each direction, fault tolerance is provided by
folding or masking the ring to isolate broken links: In the case of ring folding,
the two neighbors of the broken node short circuit their internal paths to close
the ring. In the case of ring masking, one direction in the ring is disabled.
Note that the former does not affect the bandwidth of the ring, while the
latter decreases the available bandwidth by a factor of two. The GigaRing

6.1 Cray T3E 211

channels are used to connect the Cray T3E to other Cray computers and/or
mass storage units. Fiber-optic cables can be used to extend the length of
the GigaRing to 200 m.

6.1.5 Software

The Cray T3E is a self-hosted system that runs under the unicos/mk oper-
ating system, a distributed version of the unicos operating system used for
the parallel vector processors from Cray Research. Both operating systems
are derivates of the UNIX operating system. The unicos/mk operating sys-
tem consists of a microkernel as well as several servers and provides a single
system image. The microkernel is based on the CHORUS microkernel and is
executed on every processing element. Note that the microkernel uses swap-
ping instead of virtual memory and demand paging, i.e. the address space of
a process is swapped entirely. There are several types of servers, the individ-
ual servers communicate via remote procedure calls and can be replicated for
better performance.

The operating system distinguishes four different types of processing el-
ements: command, application, operating system and redundant processing
elements. Command processing elements are used to execute user commands
and single-processor applications, while application processing elements are
reserved for parallel applications. Operating system processing elements are
reserved for the corresponding servers, while redundant processing elements
are used to replace failed elements. The two former types are taken from the
pool of user processing elements, the two latter types are taken from the pool
of support processing elements.

Parallel applications can be executed in two different ways: interactive or
batch. In interactive mode, the application is started from the command-line
interface and executed as soon as a suitable partition of the machine is avail-
able. In batch mode, the application is started by submitting a corresponding
request to the NQS scheduling system. The scheduling can by influenced by
specifying several parameters, e.g. the maximum execution time.

The programming environment on the Cray T3E supports the follow-
ing languages: CRAFT (Cray Research Adaptive Fortran), HPF (High-
Performance Fortran), Fortran, C, and C++. CRAFT and HPF are exten-
sions of the Fortran language targeted at efficient execution on distributed
memory machines. Both Fortran 77 and 90 are supported as well as the stan-
dard C and C++ dialects. The individual compilers are augmented by the
cld linker and the cam assembler, the totalview debugger supports the C and
Fortran languages and allows source-level debugging of parallel applications.

The Message Passing Toolkit (MPT) contains the following communica-
tion libraries: PVM (Parallel Virtual Machine), MPI (Message Passing Inter-
face), and shmem (Shared Memory). PVM [GBD+94] is a message passing
library targeted at heterogeneous environments, MPI [Wal94] is the stan-
dard message-passing library used in commercial applications. The shmem

212 6. Evaluation : Cray T3E

[Cra98b] library is proprietary and provides a set of routines for global mem-
ory accesses, collective operations and synchronization.

6.2 Methodology

Apart from the single-threaded base version, two versions using emulated
multithreading were created for each benchmark: The bblk version uses basic
blocks as instruction blocks, while the sblk version uses super block optimiza-
tion to merge multiple basic blocks into one super block. All three versions of
the benchmarks are derived from the same sources, although the bblk and sblk
versions use the asynchronous communication routines from the emulation li-
brary instead of the synchronous communication routines from the shmem li-
brary. In addition, these two versions contain calls to the EMUthread switch()
routine in case of spin waits. Apart from these differences, all three versions
of the benchmarks are built from the same sources. These sources are based
on the original sources as distributed in the SPLASH2 benchmark suite, al-
though the sources had to be modified during the porting process to the
Cray T3E. The individual changes made to the sources during this process
are described in Chapter 4.

The original sources were modified such that the performance counters
are used for timing measurements instead of the operating system timers.
The performance counter library (PCL) [BM98] from the Research Center
Jülich is used to access the individual performance counters, especially the
cycle counter. Note that the cycle counters are updated in each clock cy-
cle, hence the resolution of the timing measurements is very high compared
to the measurements using the operating system. Since all timing measure-
ments are recorded as multiples of the processor cycle time, 64 bit integers
have to be used in order to avoid overflows. Therefore the format of the tim-
ing statistics had to be changed to reflect the larger size of the results. All
benchmarks were compiled with the -O2 optimization flag. This flag enables
moderate automatic inlining, automatic scalar optimization and automatic
vectorization.

All experiments were performed with three different problem sizes: the
default problem size for the given benchmark as well as two and four times
the default problem size. Experiments using different machine configurations
ranging from 1 to 64 processors were performed for each of the benchmarks.
In the case of emulated multithreading, the bblk and sblk versions of each
benchmark were executed using different numbers of threads ranging from
1 to 16. In addition to the parallel experiments, the sequential experiments
described in Chapter 5 were repeated on the Cray T3E in order to compare
the sequential results on the two different platforms. The executables used
during the sequential experiments are derived from the same sources that
were used during the evaluation on the Compaq XP1000 workstation.

6.3 FFT 213

Recall from Section 5.10 that the sblk version is faster than all other
versions using emulated multithreading for all benchmarks and problem sizes.
This statement does not apply only to the Compaq XP1000 platform, but to
the Cray T3E platform as well: For all sequential and parallel experiments
and all problem sizes, the sblk version is always faster than the bblk version.
Hence only the sblk results of the individual benchmarks will be presented
in Sections 6.3 to 6.7. The sequential results were omitted as well, since they
provide no additional insights compared to the experiments on the Compaq
XP1000 platform.

The figures used to illustrate the results of the individual benchmarks are
all structured in the same way: The horizontal axis reflects the number of
processors, while the vertical axis represents the speedup relative to the run-
time of the base version on a single processing element. In each figure, seven
curves are used to illustrate the results: The circles represent the speedups
for the base version, while the squares, diamonds, upward triangles, leftward
triangles, upward triangles, and rightward triangles represent the speedups of
the sblk version using 1,2,4,8, and 16 threads, respectively. Last but not least,
the dots represent linear speedup and are provided to ease interpretation of
the results. For each of the benchmarks three of these figures are provided,
one for each problem size.

All experiments were performed in batch mode using the NQS queuing
system in the Cray T3E, i.e. the corresponding executables had exclusive
access to the processing elements. However, the NQS system assigns non-
contiguous processing elements to one partition, i.e. the maximum number
of routing steps between processing elements in such a partition is larger
than the maximum number of routing steps required for a partition of the
given size. These discontinuities may influence the benchmark results, since
it is not possible to ensure that all experiments using a certain partition
size are executed on partitions of the same structure. Unfortunately, there
is no way to determine the structure of the partition for a given benchmark
run. However, the number of routing steps is usually only one or two steps
higher than the minimum number of routing steps, hence the variations in
runtime should be rather small, especially for larger partitions. Discontinuous
partitions can only be avoided by running the machine in dedicated mode
which is not possible as the Cray T3Es in Jülich are used by researcher all
over Germany.

6.3 FFT

The project-specific configuration file for the parallel version of the fft bench-
mark contains three internal and three external procedures, system and li-
brary routines are covered in the platform-specific configuration file. The
SlaveStart() procedure is the entry point of the parallel algorithm and con-
tains a call to the internal FFT1D() procedure apart from some initialization

214 6. Evaluation : Cray T3E

and bookkeeping tasks. The FFT1D() procedure implements the six step al-
gorithm described in Section 4.2.1 and contains several external calls as well
as an internal call to the Transpose() procedure. The Transpose() procedure
transposes the source matrix into the target matrix and is the only proce-
dure that contains references to remote memory. The three procedures have
to be internal for the following reasons: Apart from being the entry point,
the SlaveStart() procedure contains two barrier synchronization as well as an
internal call and therefore has to be internal. Due to the five barriers and
three internal calls, the FFT1D() procedure has to be internal as well. Last
but not least, the Transpose() procedure has to be internal as it contains
several references to remote memory.

The three procedures consist of 21, 65, and 71 basic blocks, the assembler
converter creates 7, 9, and 46 super blocks from these basic blocks. Note that
the Transpose() procedure consists of more than one super block in contrast
to the results on the Compaq XP1000 platform, which is explained as follows:
In the parallel version of the fft benchmark, the Transpose() procedure con-
tains references to remote memory, i.e. calls to the communication routines
of the emulation library. These calls force the end of a super block such that
a context switch is performed right after the remote memory access has been
initiated.

The results of the experiments using the fft benchmark are summarized in
Figures 6.3, 6.4, and 6.5. Figure 6.3 illustrates the results for a problem size of
64 K points, while Figures 6.4 and 6.5 illustrate the results using problem sizes
of 256 K and 1024 K points, respectively. All three figures have an identical
structure as described in Section 6.2.

Using a problem size of 64 K points, the source and target matrices occupy
approximately 1 MB of memory each. Recall that the fft benchmark aligns
each row of these matrices on cache-line and pagesize boundaries, hence the
matrices are slightly larger than the 1 MB that is required to store the actual
data. There are three different matrices of this size: two matrices are used as
source and target during transpose operations, the third matrix contains the
roots-of-unity. In addition, the first row of the latter matrix is replicated by
each thread on all processors.

According to [WOT+95] the first- and second-level working sets for the
fft benchmarks are one row of the matrix and one partition of the matrix,
respectively. The size of the first-level working set is independent of the num-
ber of processors and is 4 KB. As the 21164 microprocessor used in the Cray
T3E contains an 8 KB first-level data cache and a 96 KB second-level unified
cache, it is likely that the first-level working set will reside in one of the inter-
nal caches. The size of the second-level working set is approximately 3 MB/p
for all processors, where p is the number of processors. Although the working
sets for the individual threads on a processor are even smaller, the working
set of all threads on a processor will overlap due to multithreaded execution.

6.3 FFT 215

Fig. 6.3. Results for the FFT Benchmark (64 K Complex Data Points)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-fft
emu-fft-sblk (1 thread)
emu-fft-sblk (2 threads)
emu-fft-sblk (4 threads)
emu-fft-sblk (8 threads)
emu-fft-sblk (16 threads)

An analysis of the data presented in Figure 6.3 yields the following results:
The sblk version of the fft benchmark is faster than the base version as long
as no more than four threads are used. However, the advantage of the sblk
version decreases with growing number of processors, especially for the sblk
version using four threads. This behavior is probably caused by the small
working set for each thread and processor: Using 64 processors and 4 threads,
each processor has a working set of less than 48 KB, i.e. 12 KB for each
thread. This reasoning is supported by the fact that the speedups deteriorate
significantly slower if one of the larger problem sizes is used. The sblk version
is slower than the base version if more than four threads are used. This can
be explained by a combination of small working sets per threads and the
increase in runtime due to the larger number of threads. Compared to the
Compaq XP1000 platform, this effect is more pronounced on the Cray T3E
as a context switch is executed in the inner loop of the three loop nests in the
Transpose() procedure. In addition, the larger number of thread descriptors
increases the number of cache misses as the first-level cache used in the 21164
processor is only 8 KB compared to the 64 KB of the 21264. Note that the
results using eight or 16 threads are not complete as the problem size is too
small for 1024 threads.

Using a problem size of 256 K points, each of the three matrices occupies
approximately 4 MB of memory for a total of 12 MB. The sizes of the first-
and second-level working sets increase to 8 KB and 12 MB/p, respectively.
Note that the first-level working set is now the same size as the first-level
data cache. An analysis of the data presented in Figure 6.4 yields the same
results as for the smaller problem size, although all versions using emulated
multithreading perform significantly better than for the smaller problem size.

216 6. Evaluation : Cray T3E

Fig. 6.4. Results for the FFT Benchmark (256 K Complex Data Points)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-fft
emu-fft-sblk (1 thread)
emu-fft-sblk (2 threads)
emu-fft-sblk (4 threads)
emu-fft-sblk (8 threads)
emu-fft-sblk (16 threads)

Fig. 6.5. Results for the FFT Benchmark (1024 K Complex Data Points)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-fft
emu-fft-sblk (1 thread)
emu-fft-sblk (2 threads)
emu-fft-sblk (4 threads)
emu-fft-sblk (8 threads)
emu-fft-sblk (16 threads)

Although some of the results seem to indicate super-linear speedup, this is
not the case: If the sblk version on a single processor is faster than the base
version on a single processor, this phenomenon is caused by the fact that all
speedups are relative to the base version on a single processor. The result for
the sblk version using 16 threads on 64 processors is missing as the problem
size is too small for 2048 threads.

6.4 LU 217

Using a problem size of 1024 K points, each of the three matrices occupies
approximately 16 MB of memory for a total of 48 MB. The sizes of the first-
and second-level working sets increase to 16 KB and 48 MB/p, respectively.
Note that the first-level working set is now larger than the first-level data
cache. An analysis of the data presented in Figure 6.5 yields the same results
as for the smaller problem size, although the sblk version using up to two or
four threads deteriorate slightly compared to the 256 K problem size. As the
sblk version using one thread is not affected, this is probably caused by an
increased number of cache misses.

In summary, the results using the sblk version of the fft benchmark are
quite encouraging: As long as no more than four threads are used, the sblk
version is significantly faster than the base version, especially for the two
larger problem sizes. However, the sblk version using eight or more threads is
always slower than the base version, probably due to the increased overhead
and the smaller working set per processor/thread.

6.4 LU

The project-specific configuration file for the parallel version of the lu bench-
mark contains six internal and four external procedures, system and library
routines are covered in the platform-specific configuration file. Note that the
number of internal procedures is larger than for the sequential version used on
the Compaq XP1000 platform: The SlaveStart(), OneSolve() and lu() proce-
dures common in both versions have to be internal since they contain barrier
synchronizations or calls to other internal procedures. The remaining three
procedures contain references to remote memory, i.e. calls to the communi-
cation routines of the emulation library. In order to hide the latency of these
references, a context switch is performed right after the reference has been
initiated, i.e. these calls force the end of a super block.

The six internal procedures consist of 177 basic blocks, the assembler
converter constructs 67 super blocks by merging multiple basic blocks into
one super block. Note that the parallel version of the lu benchmark on the
Cray T3E uses a larger number of basic blocks than the sequential version
of the lu benchmark on the Compaq XP1000 platform. This difference is
caused by the additional internal procedures and the different number and
structure of basic blocks due to different compiler technology, as none of the
three common internal procedures contains references to remote memory that
could limit the size of the super blocks.

The results of the experiments using the lu benchmark are summarized
in Figures 6.6, 6.7, and 6.8. Figure 6.6 illustrates the results using a matrix
size of 512× 512, while Figures 6.7 and 6.8 illustrate the results using matrix
sizes of 1024× 1024 and 2048× 2048, respectively. All three figures have an
identical structure as described in Section 6.2.

218 6. Evaluation : Cray T3E

Fig. 6.6. Results for the LU Benchmark (512× 512 Matrix)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-lu
emu-lu-sblk (1 thread)
emu-lu-sblk (2 threads)
emu-lu-sblk (4 threads)
emu-lu-sblk (8 threads)
emu-lu-sblk (16 threads)

Using a matrix size of 512×512, the corresponding matrix occupies 2 MB
of memory. The matrix is partitioned into blocks of size 16 × 16, hence
each block occupies 2 KB of memory. According to [WOT+95], the first- and
second-level working sets for the lu benchmark are one block of the matrix
and one partition of the whole data set, respectively. The first-level working
set fits in the 8 KB first-level data cache of the 21164 processor, while the
second-level working set might fit into the 96 KB second-level cache for larger
numbers of processors.

An analysis of the data presented in Figure 6.6 yields the following results:
The base version does not scale well, probably due to the small problem size.
The sblk version of the lu benchmark is always faster than the base version
as long as no more than four threads are used. The sblk version using eight or
more threads is significantly slower, reflecting the increased overhead with a
growing number of threads. However, the sblk version using four threads is the
fastest, striking a good balance between the overhead by additional threads
and the ability to tolerate the latency of remote memory references. Similar
to the base version, the speedups of the sblk version deteriorate somewhat if
more than 16 processors are used, probably due to the small problem size.

Using a matrix size of 1024 × 1024, the corresponding matrix occupies
8 MB of memory, while the individual blocks are still 2 KB large. Hence the
first-level working set will still fit in the 8 KB first-level data cache, while
the second-level working set will no longer fit in the second-level cache even
for the largest number of processors. An analysis of the data presented in
Figure 6.7 yields the same results as for the smaller problem size, although
the performance of the sblk version is even better: The speedups of the sblk
version deteriorate only if 64 processors are used. This evidence supports the

6.4 LU 219

Fig. 6.7. Results for the LU Benchmark (1024× 1024 Matrix)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-lu
emu-lu-sblk (1 thread)
emu-lu-sblk (2 threads)
emu-lu-sblk (4 threads)
emu-lu-sblk (8 threads)
emu-lu-sblk (16 threads)

Fig. 6.8. Results for the LU Benchmark (2048× 2048 Matrix)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-lu
emu-lu-sblk (1 thread)
emu-lu-sblk (2 threads)
emu-lu-sblk (4 threads)
emu-lu-sblk (8 threads)
emu-lu-sblk (16 threads)

fact that the deterioration for the smaller problem size was indeed caused by
the problem size.

Using a matrix size of 2048 × 2048, the corresponding matrix occupies
32 MB of memory, while the individual blocks are still 2 KB large. Like before,
the first-level working set will still fit in the 8 KB first-level data cache, while
the second-level working set will not fit in any of the internal caches. An
analysis of the data presented in Figure 6.8 yields the same results as for

220 6. Evaluation : Cray T3E

the smaller problem sizes, although the performance of the sblk and base
versions is even better, i.e. the runtimes of both versions scale well up to 64
processors.

In summary, the results for the lu benchmark are quite encouraging: As
long as no more than four threads are used, the sblk version is always signifi-
cantly faster than the base version. The sblk version using four threads seems
to strike a good balance between the overhead due to additional threads and
the ability to hide the latency of remote memory references.

6.5 Radix

The project-specific configuration file for the parallel version of the radix
benchmark contains one internal and three external procedures, system and
library routines are covered in the platform-specific configuration file. The
internal slavesort() procedure is the entry point of the parallel algorithm
and implements the radix sort algorithm described in Section 4.2.3, the three
external procedures are only used during initialization of the sort array. Apart
from being the entry point, the slavesort() procedure has to be internal as it
contains barrier synchronizations, spin waits, as well as references to remote
memory.

The slavesort() procedure consists of 139 basic blocks and 44 super blocks.
Note that the number of super blocks on the Cray T3E platform is higher
than the number of super blocks in the sequential version of the radix bench-
mark used on the Compaq XP1000 platform. Apart from different compiler
technology, i.e. a different number and structure of basic blocks, this is caused
by references to remote memory, i.e. calls to the communication routines of
the emulation library. These calls force the end of a super block such that a
context switch is performed right after the remote memory access has been
initiated.

The results of the experiments using the radix benchmark are summarized
in Figures 6.9, 6.10, and 6.11. Figure 6.9 illustrates the results using a problem
size of 256 K integers, while Figures 6.10 and 6.11 illustrate the results using
problem sizes of 512 K and 1024 K integers, respectively. All three figures
have an identical structure as described in Section 6.2.

Using a problem size of 256 K integers, the sort array occupies 2 MB of
memory, since the Cray T3E uses 64 bit integers by default. As radix sort does
not sort in place, two of these arrays are needed, thereby occupying 4 MB of
memory. In addition, each thread maintains a histogram of the local keys,
the size of the corresponding arrays depends on the selected radix. Using a
radix of 1024, each of these arrays occupies 8 KB in memory. Note that the
radix is independent of the problem size, i.e. the same radix was used for all
experiments.

According to [WOT+95], the first- and second-level working sets for the
radix benchmark are a histogram and one partition of the whole data set,

6.5 Radix 221

Fig. 6.9. Results for the Radix Benchmark (256 K Integers)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-radix
emu-radix-sblk (1 thread)
emu-radix-sblk (2 threads)
emu-radix-sblk (4 threads)
emu-radix-sblk (8 threads)
emu-radix-sblk (16 threads)

respectively. The size of the first-level working set is independent of the num-
ber of processors and threads and is 8 KB large. As the 21164 microprocessor
used in the Cray T3E contains an 8 KB first-level and a 96 KB second-level
cache, the first-level working set might not fit completely into the first-level
data cache. The size of the second-level working set is 4 MB/p for each pro-
cessor as the working sets of all threads on a given processor are likely to
overlap due to multithreaded execution.

An analysis of the data presented in Figure 6.9 yields the following re-
sults: The base version does not scale well with the number of processors,
at least for the given problem size. This is probably caused by the parallel
prefix operations used to collect and distribute the global rank arrays, which
are not completely parallelizable: The radix benchmark uses an array of 2p
prefix nodes to build a binary tree across all processors. Each of the prefix
nodes represents a node at a certain level in the tree and is mapped to a pro-
cessor based on the processor number. Although more than one prefix node is
mapped to the same processor, all prefix nodes mapped to the same processor
are from different levels in the tree. Note that only one processor is active in
all levels of the tree. During the gather operation, each processor copies its
local rank array to the corresponding prefix node in the lowest level. After-
wards all processors, that are active at a given level, wait until both children
of the corresponding prefix nodes have been updated and combine these rank
arrays. The result of the combination is stored in the current prefix node.
The scatter operation is similar to the gather operation, but works in reverse
order. These operations do not scale well as most of the processors are idle,
especially in the upper levels of the tree. However, the Cray T3E supports
gather and scatter operations in hardware via the embedded synchronization

222 6. Evaluation : Cray T3E

Fig. 6.10. Results for the Radix Benchmark (512 K Integers)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-radix
emu-radix-sblk (1 thread)
emu-radix-sblk (2 threads)
emu-radix-sblk (4 threads)
emu-radix-sblk (8 threads)
emu-radix-sblk (16 threads)

Fig. 6.11. Results for the Radix Benchmark (1024 K Integers)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-radix
emu-radix-sblk (1 thread)
emu-radix-sblk (2 threads)
emu-radix-sblk (4 threads)
emu-radix-sblk (8 threads)
emu-radix-sblk (16 threads)

network. Using the corresponding gather and scatter operations provided by
the shmem library should improve the performance of the distribution and
broadcast of the local ranks significantly.

The sblk version of the radix benchmark is slightly faster than the base
version across all numbers of processors, as long as no more than two threads
are used. The sblk version using four threads is slightly slower than the base
version, at least on more than eight processors. This behavior is probably due

6.6 Ocean 223

to the small working sets for each thread/processor as well as an increased
overhead using more threads. Recall that the overhead on the Cray T3E is
larger than the overhead on the Compaq XP1000 due to the smaller size
of the instruction blocks. The effect is even more pronounced for the sblk
version using eight or 16 threads, which do not seem to benefit from additional
processors at all. The above reasoning is supported by the fact that all sblk
versions scale better in the case of the two larger problem sizes.

Using an input size of 512 K integers, each of the two sort arrays occupies
8 MB of memory for a total of 16 MB. The size of the local histogram main-
tained by each thread is independent of the problem size, the corresponding
arrays still occupy 8 KB of memory. Compared to the smaller problem size,
the size of the first-level working set, i.e. a histogram, is the same, while the
size of the second-level working set, i.e. a partition of the whole data set,
doubles to 16 MB/p. An analysis of the data presented in Figure 6.10 yields
the same results as for the smaller problem size, although all versions of the
radix benchmark scale slightly better. This is probably due to the increased
size of the working sets for each thread/processor.

Using an input size of 1024 K integers, each of the two sort arrays oc-
cupies 16 MB of memory for a total of 32 MB. Again, the size of the local
histogram maintained by each thread is independent of the problem size, the
corresponding arrays still occupy 8 KB of memory each. Compared to the
smallest problem size, the size of the first-level working set, i.e. a histogram,
is the same, while the size of the second-level working set, i.e. a partition of
the whole data set, quadruples to 32 MB/p. An analysis of the data presented
in Figure 6.11 yields the same results as for the two smaller problem sizes,
although all versions of the radix benchmark scale even better than before.
This fact provides further evidence that the increased working sets for each
thread/processor is responsible for this behavior.

In summary, the results for the radix benchmark are quite encouraging,
since the sblk version is always faster than the base version as long as no more
than four threads are used. Neither the base nor the sblk versions scale well
with an increased number of processors. However, the focus of these experi-
ments is the evaluation of emulated multithreading, the performance of the
base versions is not the primary concern. As outlined above, the performance
of the radix benchmark could probably be improved by using the scatter and
gather operations provided by the shmem library instead of the hand-coded
version found in the original sources.

6.6 Ocean

The project-specific configuration file for the parallel version of the ocean
benchmark contains eleven internal and three external procedures, system
and library routines are covered in the platform-specific configuration file.
Note that the number of internal procedures increases from three for the

224 6. Evaluation : Cray T3E

sequential version of the ocean benchmark to 11 for the parallel version.
The three slave(), slave2(), multig() procedures continue to be internal, since
they contain synchronization points or calls to the remaining procedures. The
remaining eight procedures contain references to remote memory, i.e. calls to
the communication routines of the emulation library. Hiding the latency of
these references is only possible if a context switch is performed right after the
remote memory access has been initiated, hence the corresponding procedures
should be internal. The 11 internal procedures consist of 1892 basic blocks
and 523 super blocks.

The results of the experiments using the ocean benchmark are summarized
in Figures 6.12, 6.13, and 6.14. Figure 6.12 illustrates the results using an
ocean with 130 × 130 grid points, while Figures 6.13 and 6.14 illustrate the
results using oceans with 258 × 258 and 514 × 514 grid points, respectively.
All three figures have an identical structure as described in Section 6.2.

Using a grid of 130×130 points, one of the corresponding arrays occupies
approximately 132 KB of memory. Recall that the ocean benchmark uses 25
of these arrays for a total size of approximately 3 MB. Apart from these
and several smaller arrays, the ocean benchmark uses two arrays as input
to the multigrid solver. Each of these arrays has several levels, the number
of levels is equal to the binary logarithm of the problem size. For the given
problem size, each of the arrays has seven levels, thereby both arrays occupy
approximately 2 MB of memory.

According to [WOT+95], the first- and second-level working set consists
of a few subrows of one of the matrices and a partition of the whole data set,
respectively. The first-level working set occupies a few KB, while the second-
level working set occupies approximately 5 MB/p due to the multithreaded
execution. While the first-level working set will probably fit in the 8 KB first-
level data cache, the second-level working set will not fit in any of the internal
caches unless 64 or more processors are used.

An analysis of the data presented in Figure 6.12 yields the following re-
sults: The base version of the radix benchmark does not scale well, most of
the time is spent in the multigrid solver. In particular, the time spent in the
multigrid solver increases significantly with a growing number of processors.
It is unlikely that this behavior is caused by the small working sets alone, as
good speedups have been reported for the ocean benchmark on other plat-
forms. However, the ocean benchmark scaled even worse on previous runs of
the experiments, this was traced back to a bug in the assembler: Although
the compiler creates correct code, the assembler miscalculated the offset of a
critical constant such that unpredictable values were used. This issue could
be resolved by renaming the constant, yielding a factor 32 (!) speedup on
64 processors. Due to computing time constraints, it was not possible to de-
termine whether the poor performance of the ocean benchmark is caused by
other bugs of the same kind.

6.6 Ocean 225

Fig. 6.12. Results for the Ocean Benchmark (130× 130 Ocean)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-ocean
emu-ocean-sblk (1 thread)
emu-ocean-sblk (2 threads)
emu-ocean-sblk (4 threads)
emu-ocean-sblk (8 threads)
emu-ocean-sblk (16 threads)

Unfortunately, the performance of the sblk version is always worse than
the performance of the base version, although the version using one thread is
close. This indicates that the performance degradation is due to the overhead
caused by context switches: The ocean benchmark contains a large number
of loops and most of these loops contain references to remote memory, i.e. a
context switch is performed for every iteration of these loops.

Using a grid size of 258 × 258, a corresponding array occupies approxi-
mately 520 KB of memory, i.e. a total of 13 MB for the 25 arrays in the ocean
benchmark. The two arrays used as input to the multigrid solver occupy ap-
proximately 7 MB, as they are now eight levels deep. The first-level working
set has doubled in size and is probably too large to fit in the 8 KB first-level
data cache of the 21164 microprocessor. However, the working set will still
fit in the 96 KB second-level cache. The second-level working set occupies
approximately 20 MB/p, where p is the number of processors. Even for the
largest configuration, i.e. 64 processors, the second-level working set will not
fit in any of the caches.

An analysis of the data presented in Figure 6.13 yields the same results
as for the smaller problem size, although all versions of the ocean benchmark
scale better than before. However, the sblk version is always slower than the
base version, independent of the number of threads. Note that the distance
between the base and sblk versions increases as well, probably due to the
increased number of loop traversals for the larger problem size.

Using a grid size of 514 × 514, a corresponding array occupies approxi-
mately 2 MB of memory, i.e. a total of 50 MB for the 25 arrays in the ocean
benchmark. The two arrays used as input to the multigrid solver occupy ap-
proximately 32 MB, as they are now nine levels deep. The first-level working

226 6. Evaluation : Cray T3E

Fig. 6.13. Results for the Ocean Benchmark (258× 258 Ocean)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-ocean
emu-ocean-sblk (1 thread)
emu-ocean-sblk (2 threads)
emu-ocean-sblk (4 threads)
emu-ocean-sblk (8 threads)
emu-ocean-sblk (16 threads)

Fig. 6.14. Results for the Ocean Benchmark (514× 514 Ocean)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-ocean
emu-ocean-sblk (1 thread)
emu-ocean-sblk (2 threads)
emu-ocean-sblk (4 threads)
emu-ocean-sblk (8 threads)
emu-ocean-sblk (16 threads)

set has doubled in size again, occupying some tens of KB and is too large to
fit in the 8 KB first-level data cache of the 21164 microprocessor. However,
the working set may still fit in the 96 KB second-level cache. The second-
level working set occupies approximately 82 MB/p, where p is the number
of processors. An analysis of the data presented in Figure 6.14 yields the
same results as for the smaller problem size, although all versions of the
ocean benchmark scale better than before. However, the sblk version is al-

6.7 Barnes 227

ways slower than the base version, independent of the number of threads.
The distance between the base and sblk versions increases as well, probably
due to the increased number of loop traversals for the larger problem size.

In summary, the results for the ocean benchmark are disappointing: For all
problem sizes, the sblk version is always slower than the base version. In ad-
dition, the distance between the two versions increases with growing problem
size. This is probably caused by the overhead due to context switches, since
the ocean benchmark contains a large number of loops that contain remote
memory references. This problem can be solved by improving the efficiency
of the main loop in the thread execution routine, the use of static prediction
to determine whether a given remote memory reference should force the end
of a super block. In addition, register partitioning could be used to decrease
the context switch overhead, especially if a small number of threads is used.

6.7 Barnes

The project-specific configuration file for the parallel version of the barnes
benchmark contains 13 internal and six external procedures, system and li-
brary routines are covered in the platform-specific configuration file. Note
that the number of internal procedures increases from five for the sequential
version to 13 for the parallel version. The five common internal procedures
still have to be internal since they contain synchronization points or calls to
other internal procedures. The remaining eight procedures contain references
to remote memory, i.e. calls to the communication routines of the emulation
library. Hiding the latency of these references requires that a context switch
is performed right after the remote memory access has been initiated, hence
the corresponding procedures should be internal. The 13 internal procedures
in the ocean benchmark consist of 425 basic and 261 super blocks.

The results of the experiments using the barnes benchmark are summa-
rized in Figures 6.15, 6.16, and 6.17. Figure 6.15 illustrates the results using
a problem size of 16 K particles, while Figures 6.16 and 6.17 illustrate the re-
sults using problem sizes of 64 K and 256 K particles, respectively. All three
figures have an identical structure as described in Section 6.2.

Using a problem size of 16 K particles, approximately 2 MB of memory is
used for the particle array. In addition, 34 MB and 20 MB of memory is used
for the local cell and leaf arrays as well as approximately 16 MB for the local
cell and leaf pointer arrays. According to [WOT+95] the first-level working
set is the tree data for one particle, i.e. the leaf that contains the particles
as well as all cells on the path from the root cell to that leaf. As the height
of the tree is logarithmic in the number of particles and the size of a leaf
and cell is 264 and 216 bytes, the first-level working set is a few KB large.
Note that the size of the leaf and cell structures on the Cray T3E is different
from the size of these structures on the Compaq XP1000 since the Cray T3E
uses 64 bit integers by default. The second-level working set is a partition of

228 6. Evaluation : Cray T3E

Fig. 6.15. Results for the Barnes Benchmark (16 K Particles)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-barnes
emu-barnes-sblk (1 thread)
emu-barnes-sblk (2 threads)
emu-barnes-sblk (4 threads)
emu-barnes-sblk (8 threads)
emu-barnes-sblk (16 threads)

the whole data set. While the first-level working set will probably fit in the
first-level data cache, the second-level working set occupies 72 MB/p and will
therefore not fit in any of the internal caches.

An analysis of the data presented in Figure 6.15 yields the following re-
sults: The base version does not scale well, even when the small problem size
is taken into account. A detailed analysis of the runtime components reveals
that most of the time is spent in the force computation phase. Due to time
and resource constraints, it was not possible to determine whether the barnes
benchmark is affected by similar bugs like the ocean benchmark. However, in
contrast to the ocean benchmark, all sblk versions are faster than the base
version.

Using a problem size of 64 K particles, 8.75 MB of memory is used for the
particle array. In addition, 135 MB and 80 MB of memory is used for the local
cell and leaf arrays as well as 66 MB for the local cell and leaf pointer arrays.
Compared to the smallest problem size, the size of the first-level working set
increases slightly, while the size of the second-level working set quadruples.
While the first-level working set will probably still fit in the first-level data
cache, the second-level working set occupies 290 MB/p and will therefore not
fit in any of the internal caches. An analysis of the data presented in Figure
6.16 yields the same results as for the smaller problem size, although all
versions of the barnes benchmark scale better than for the smaller problem
size. The sblk versions are still faster than the base version for all numbers
of threads and processors.

Using a problem size of 256 K particles, 35 MB of memory is used for
the particle array. In addition, 540 MB and 320 MB of memory is used for
the local call and leaf arrays as well as 264 MB for the local cell and leaf

6.7 Barnes 229

Fig. 6.16. Results for the Barnes Benchmark (64 K Particles)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-barnes
emu-barnes-sblk (1 thread)
emu-barnes-sblk (2 threads)
emu-barnes-sblk (4 threads)
emu-barnes-sblk (8 threads)
emu-barnes-sblk (16 threads)

Fig. 6.17. Results for the Barnes Benchmark (256 K Particles)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

0

10

20

30

40

50

60

Sp
ee

du
p

base-barnes
emu-barnes-sblk (1 thread)
emu-barnes-sblk (2 threads)
emu-barnes-sblk (4 threads)
emu-barnes-sblk (8 threads)
emu-barnes-sblk (16 threads)

pointer arrays. Compared to the smallest problem size, the size of the first-
level working set increases slightly, while the size of the second-level working
set increases by a factor of 16. While the first-level working set will prob-
ably fit in the first-level data cache, the second-level working set occupies
1159 MB/p and will therefore not fit in any of the internal caches. An anal-
ysis of the data presented in Figure 6.17 yields the same results as for the
smaller problem sizes, although all versions of the barnes benchmark seem to

230 6. Evaluation : Cray T3E

scale significantly worse than before. However, the results in Figure 6.17 use
the base version on four processors as the baseline, i.e. the results can not be
compared directly with the results from the smaller problem sets. Note that
the barnes benchmark cannot be executed on less than four processors due
to the large amount of memory required for the given problem size.

In summary, the results of the barnes benchmark are quite encouraging:
For all numbers of threads and processors, the sblk version is faster than
the base version, especially for a small number of threads. This result could
probably be improved by using register partition in order to decrease the
overhead associated with emulated multithreading.

6.8 Summary

Emulated multithreading is designed to tolerate the latency of remote mem-
ory references in massively parallel processors such as the Cray T3E. The
evaluation of emulated multithreading on this platform has demonstrated
that emulated multithreading is feasible: Apart from the ocean benchmark,
some configuration of the sblk version is always faster than the base ver-
sion, for all numbers of processors. This result is encouraging, especially as
the 21164 processor used in the Cray T3E is not particularly well suited for
emulated multithreading due to the small size of the first-level caches and
the in-order instruction issue. In addition, the overhead on the Cray T3E is
higher than the overhead on the Compaq XP1000, as the remote memory
accesses limit the size of the super blocks. This problem can be addressed by
using profiling information to decide whether the latency of a given remote
memory access should be tolerated, i.e. the algorithm that creates the super
blocks has to strike a balance between latency tolerance and overhead. Alter-
natively, register partitioning could be used to reduce the overhead associated
with context switches.

Apart from the performance of the executables using emulated multi-
threading, the stability of these executables is better than expected: Although
emulated multithreading changes the assembler code in a complex conversion
process, all executables are stable. Note that the fft, lu, and radix benchmark
use automatic self-checks to ensure the validity of the results, while the results
for the ocean benchmark were checked manually. No discrepancies between
the results of the base and the sblk version were found, indicating that the
current implementation of emulated multithreading is quite mature.

7. Conclusions

The current chapter summarizes this work by providing a brief overview over
the previous chapters. Afterwards the open questions and future develop-
ments regarding emulated multithreading are addressed.

The first chapter contains a detailed analysis of current trends in sequen-
tial and parallel computing based on the characteristics of past and present
microprocessors. The analysis identified the characteristics of the memory
system, i.e. bandwidth and latency, as one of the major bottlenecks that limit
the performance of current microprocessors. On the one hand, bandwidth is
less of a problem, since several techniques to increase the bandwidth are read-
ily available, although the corresponding costs may be prohibitive. On the
other hand, the latency of the memory system cannot be reduced below the
inherent latency of the memory devices. Unfortunately, the gap between the
clock frequency of microprocessors and the latency of the memory devices is
steadily increasing, i.e. the latency as seen by the microprocessor in terms
of clock cycles increases even faster. In the case of parallel computing, the
situation is even worse due to the latency of the network that connects the
individual processing elements. For references to remote memory, this latency
has to be added to the latency of the local memory system, yielding latencies
on the order of thousands of cycles.

After identifying the latency of the memory system as one of the ma-
jor performance limitations for sequential and parallel computers, several
techniques for tolerating instead of reducing latency were presented. Mul-
tithreading tolerates the latency by executing several threads of control on
the same processor, such that other threads are executed while some threads
wait for the completion of outstanding memory references. Multithreading
is the most general of the latency tolerance techniques in the sense that it
makes the least assumptions about the structure of the application. There-
fore a large number of hardware and software approaches to multithreading
were described in order to determine whether these approaches can be used
to solve the problem mentioned above. However, multithreading has yet to
find its way into mainstream microprocessors, i.e. multithreading has to be
implemented in software on these microprocessors. Although there is a wide
range of software multithreading systems, none was specifically designed to

232 7. Conclusions

tolerate the latency of local or remote memory references. Hence a new tech-
nique called emulated multithreading was designed for this purpose.

Based on the analysis in the first chapter, the second chapter motivated
the fundamental design choices behind emulated multithreading using a well-
known model of multithreaded execution. These choices enable emulated mul-
tithreading to support sufficiently small grain sizes that are needed to tolerate
the latency of local or remote memory references: Emulated multithreading
uses a static context switch strategy, i.e. context is switched after each initi-
ation of a remote memory request, thereby hiding the latency of this request
by executing other threads instead. The focus on remote memory references
was chosen since these events incur a long latency and are easily identified. In
order to reduce the context switch overhead, first-come, first-served schedul-
ing was chosen for emulated multithreading. In addition, the context switch
code is tailored to each context switch location and embedded into the ap-
plication, thereby reducing the number of save and restore operations. Based
on these design choices, the basic concept of the implementation of emulated
multithreading is described, e.g. the data structures, support routines, as well
as a the conversion process.

The individual elements of emulated multithreading were investigated
with respect to performance issues in connection with the characteristics
of current microprocessors, especially caches, branch prediction, scheduling,
and out-of-order execution. This investigation revealed that emulated mul-
tithreading benefits from large first-level data and instruction caches, the
ability to prefetch memory locations, branch prediction, and out-of-order ex-
ecution. Based on these results, several current RISC and CISC architectures
were examined in order to determine their suitability with respect to emu-
lated multithreading. The Alpha architecture was chosen as the platform for
the first implementation of emulated multithreading due to the clear archi-
tecture state, the support for prefetching, synchronization, branch hints, as
well as the existence of out-of-order implementations and massively parallel
processors based on this architecture.

The third chapter provided a detailed description of the implementation
of emulated multithreading that consists of two separate converters as well as
a small library. The high-level language converter is responsible for all code
modifications in the high-level language sources as well as the creation of con-
figuration files. However, the high-level language converter has not been im-
plemented since integration into the frontend of a compiler has been favored.
The assembler converter performs all code modifications on the assembler
language sources, i.e. creates the tailored context switch code and embeds it
into the application code. The assembler converter is quite complex and uses
several techniques known from compiler design: Basic block creation parti-
tions the sequence of assembler instructions into basic blocks, i.e. maximal
sequential sequences. The corresponding algorithm was described in detail
and a proof for the worst-case runtime was given. While basic block creation

7. Conclusions 233

is a standard technique used in every compiler, the assembler converter sup-
ports the creation of super blocks as well: A super block is a collection of basic
blocks with a single entry point and multiple exit points. A survey of similar
structures revealed that these structures were too limited for the purposes
of emulated multithreading. As the evaluation of emulated multithreading
has demonstrated, super blocks are an important optimization for emulated
multithreading. Hence the corresponding algorithm was described in detail
and proofs for the worst-case runtime and several important properties of
super blocks were proven.

Data-flow analysis is an integral part of the assembler converter and a
prerequisite for the register allocation phase. The assembler converter uses
several different data-flow analyses: Apart from the traditional live and reach-
ing analysis that were adapted to suit the needs of the assembler converter,
two new data-flow analyses used to detect the start and end of the individual
live ranges were invented. Using lattice theory, all four data-flow analyses
were proven to form distributive data-flow analysis frameworks. Based on
these results, the well-known iterative data-flow algorithm was used to com-
pute the desired meet-over-all-paths solution for the for data-flow analyses.

The register allocator is probably the most complex part of the assembler
converter and is used to reallocate all registers in the original source code.
The allocation uses a heuristic approach based on graph coloring and reuses
techniques from the two major approaches to register allocation via graph
coloring. However, the register allocator combines features from these two
approaches with new features into a unique algorithm that does not resemble
any of the other two allocators. In particular, a new algorithm to split live
ranges was invented that applies the priority-based approach to the tradi-
tional splitting algorithm. The code conversion itself is quite simple once the
results from the data-flow analysis and the register allocation are available.

The fourth chapter surveyed several parallel benchmark suites in order to
determine a benchmark suite that is well suited for the evaluation of emu-
lated multithreading. The survey used five different criteria to determine the
suitability of a given benchmarks suite: The individual benchmarks should
cover a wide range of computational problems, be widely used and possess
well-known characteristics, scale to at least 64 processors, be available in
source code, and have modest time and space requirements. Based on these
criteria, the SPLASH2 benchmark suite was chosen for the evaluation of
emulated multithreading on two different platforms: the Compaq XP1000
workstation and the Cray T3E massively parallel processor. From the four
kernels and eight applications in this suite, three kernels and three applica-
tions were selected and subsequently ported to the Cray T3E. The algorithm,
implementation, as well as the porting process for the six benchmarks was
described in detail.

The fifth chapter describes the evaluation of multithreading on a single-
processor system, i.e. the Compaq XP1000 workstation. After a detailed dis-

234 7. Conclusions

cussion of the hardware and software environments as well as the experimen-
tal methodology, the impact of the code conversion process on the size and
structure of the original sources was examined. This investigation was based
on the statistics for the original and converted assembler sources provided by
the assembler converter. For all six benchmarks, the converted sources using
super block optimization used the least number of instructions, although the
converted parts of the code are still up to twice as large than their orig-
inal counterparts. The changes in the instruction mix were described and
explained in detail, especially the impact of the super block optimization.

Seven different versions were compared for every benchmark: base, g004,
g016, g064, bblk, sblk, and posix. The latter six versions support multithread-
ing and were executed with 1,2,4,8,16 threads in order to determine the im-
pact of the number of threads on performance. In addition, each experiment
was performed on three different problem sizes, i.e. the default problem size
as well as twice and quadruple that size. Recall that there are no references
to remote memory on this platform, i.e. no benefit to emulated multithread-
ing. However, the results of the individual experiments are encouraging: The
sblk version of all benchmarks is faster than the posix version in most cases,
although the Tru64 operating system contains an efficient implementation of
POSIX threads. In addition, the sblk version is only slightly slower than the
base version with the exception of the fmm benchmark. These results indi-
cate that emulated multithreading could be used to replace POSIX threads on
single-processor or multi-processor machines with a shared-memory. For ex-
ample, the current version of the widely used Apache http server uses POSIX
threads and is an interesting candidate for the conversion to emulated mul-
tithreading.

The sixth chapter covers the evaluation of emulated multithreading on
massively parallel processors, i.e. the Cray T3E. The corresponding experi-
ments were performed on a Cray T3E-1200 installed at the Forschungszen-
trum Jülich. After a detailed description of the hardware and software en-
vironments as well as the experimental methodology, the results of the indi-
vidual experiments were presented. For all six benchmarks, the same set of
experiments that was used during the evaluation of emulated multithread-
ing on the Compaq XP1000 were repeated on a single processing element of
the Cray T3E. However, only the base, bblk, and sblk versions were taken
into account. In the parallel case, the base, bblk, sblk versions of five different
benchmarks were compared on a wide range of processor and thread numbers:
For each benchmarks, the three versions were executed on 1,2,4,8,16,32, and
64 processors, the bblk and sblk were executed with 1,2,4,8, and 16 threads
in each case. In addition, all experiments were performed on three different
problem sizes, i.e. the default problem size as well as double and quadruple
that size. The results for the fmm benchmark were omitted since all ver-
sions of the benchmarks were instable due to race conditions as described in
Section 4.2.6.

7. Conclusions 235

The results of the individual experiments are quite encouraging: With the
exception of the ocean benchmarks, the sblk version is always faster than the
base version as long as no more than four threads are used. In some cases,
the sblk version was significantly faster than the base version. The problems
with the ocean benchmark might be caused by errors in the porting process,
as even the base version scales poorly for larger number of processors and
previous performance problems could be traced to an obscure bug in the
assembler.

The results presented in the sixth chapter show that emulated multi-
threading is able to improve the performance of parallel applications by
tolerating the latency of remote memory references. However, the current
implementation does not even exploit the full potential of emulated multi-
threading. There are several ways to further increase the performance: For ex-
ample, the main loop in the thread execution routine that is traversed once for
each context switch, uses neither hand-coded optimizations nor prefetching.
The communication routines in the emulation library are written in straight-
forward C code and should be ported to assembler code and optimized for
the 21164 processor. The following paragraphs describe other techniques in-
tended to decrease the overhead associated with emulated multithreading,
thereby increasing performance.

Register partitioning divides the register set into multiple partitions and
confines each thread to its own partition, thereby reducing the number of save
and restore operations: As long as none of the threads executes an external
call, the individual threads will not destroy the contents of other partitions,
hence it is no longer necessary to save and restore registers from the thread
descriptor. However, the number of spill operations might increase due to the
smaller number of available registers in a partition, i.e. the increased register
pressure. Register partitioning requires changes to the high-level language and
assembler converters as well as the thread execution routine. These changes
have already been implemented in the case of the assembler converter.

The results of the evaluation on single-processor and massively parallel
processor machines reveal that super block optimization is important to the
performance of emulated multithreading. The current algorithm used to cre-
ate the super blocks is quite simple and can be improved by using profiling
information to guide the creation of super blocks: Frequently traversed edges
in the control-flow graph should not cross super block boundaries, otherwise
a context switch has to be performed each time. Techniques known from
trace scheduling could be used to implement the use of profiling information
in an improved version of the algorithm. Instead of profiling information,
static predication could also be used. Another way to increase the size of
super blocks is to balance the ability to tolerate latency against the overhead
caused by frequent context switches. This can be accomplished by checking
for each remote memory reference whether the corresponding latency should
be tolerated, i.e. whether the reference should force the end of a super block.

236 7. Conclusions

The current implementation of emulated multithreading would also bene-
fit from tighter integration with a compiler. For example, this approach pro-
vides access to the profiling information used to create super blocks as well
as the ability to steer the compiler to produce code that is well suited for em-
ulated multithreading. In the case of register allocation and code scheduling,
this kind of integration was shown to be useful [BEH91]. The advantages of
integrated support for emulated multithreading in a compiler were already
outlined in Section 3.8 using the SUIF compiler as an example. Apart from
better opportunities for optimizations, the assembler and high-level language
converter could reuse the existing compiler infrastructure. The next imple-
mentation of emulated multithreading should therefore be integrated into a
compiler, preferably the SUIF compiler system.

Before working on the next implementation of emulated multithreading,
the current implementation should be used in further evaluations in order
to get a more complete picture of the performance characteristics: The num-
ber of benchmarks used during the evaluation of emulated multithreading
should be increased in order to ensure that the results from Chapters 5 and 6
apply to a wide range of computational problems. The remaining six bench-
marks of the SPLASH2 benchmark suite would be suitable candidates for
such an evaluation, as these benchmarks could be ported quite easily based
on the current experience. In addition, the impact of compiler optimizations
on emulated multithreading should be investigated as some of the traditional
optimizations were shown to be counter-productive for multithreaded appli-
cations [LEL+99]

Finally, emulated multithreading should be ported to other platforms
since the Alpha architecture was discontinued recently. The most promis-
ing candidates would be the Power and Sparc architectures, since the MIPS
and HP-PA architectures have been discontinued some time ago and the IA32
and IA64 architectures are not suitable for emulated multithreading. As par-
allel machines based on the Sparc architecture currently do not support more
than 64 processors, the Power should be used as large-scale massively par-
allel processors based on this architecture are available. In the meantime,
emulated multithreading could be ported to the AlphaServerSC [Cor00], a
cluster of workstations or servers based on the Alpha architecture and the
Tru64 operating system. This system combines the advantages of the two
platforms used in the current evaluation of emulated multithreading: i.e. the
21264 processor with out-of-order execution and large first-level caches, and a
massively parallel processor with a fast network that supports asynchronous
communication. As the AlphaServer SC provides a software environment that
is very similar to the existing platforms, the port should be possible in a small
amount of time. Finally, emulated multithreading should be extended to cover
MPI one-sided messages instead of the shared memory primitives from the
shmem library as MPI is in much more widespread use than the proprietary
shmem library, which is only available on Cray/SGI systems.

A. Alpha Architecture & Implementations

Using the formulation from Amdahl, Blauuw, and Brooks [ABBJ64], the
Alpha Architecture Reference Manual [Com98] defines the terms architecture
and implementation as follows:

Architecture is defined as the attributes of a computer seen by the machine-
language programmer. This definition includes the instruction set, in-
struction formats, operation codes, addressing modes. and all register
and memory locations that may be directly manipulated by a machine-
language programmer.

Implementation is defined as the actual hardware structure, logic design, and
data-path organization of the computer.

This chapter gives an overview of the Alpha architecture as well as the
implementations of this architecture. Section A.1 describes the background
of the Alpha architecture, while the architecture itself is described in Section
A.2. The characteristics of past, present, and future implementations are
specified in Section A.3. Systems based on these implementations are outside
the scope of this chapter, information about theses systems can be found in
various issues of the Digital or Compaq Technical Journals.

A.1 Introduction

Some background information is required in order to understand the indi-
vidual characteristics of the Alpha architecture: The Alpha architecture was
developed by Digital in order to provide an upgrade path to the existing
VAX customer base. Section A.1.1 describes this successful CISC (Complex
Instruction Set Computer) architecture as well as the problems associated
with high-performance implementations. These problems motivated work on
several RISC (Reduced Instruction Set Computer) projects within Digital.
The various efforts were later merged into a single project (PRISM), which
is sketched in Section A.1.2. After this project was canceled, work started
on the Alpha architecture. The Section A.1.3 specifies the various design
goals for the Alpha architecture project, while the Section A.2 introduces the
architecture itself.

238 A. Alpha Architecture & Implementations

A.1.1 VAX Architecture

The VAX 11/780 was introduced in 1977 and was the first implementation
of the VAX (Virtual Address eXtension) architecture. A detailed descrip-
tion of the architecture as well as the first implementation was published
in [Str78]. The VAX architecture was designed to provide a 32 bit extension
to the successful PDP-11 architecture, hence the name. The PDP-11 was a
16 bit system with a 64 Kbyte virtual address space, which started to be a
limiting factor.

Compatibility with the older system was an important design goal for
the VAX architecture: Apart from equivalent and identical instructions, data
types, compilers, file systems and I/O busses, the VAX architecture provided
a PDP-11 compatibility mode. During execution in this mode, the PDP-
11 registers were mapped to native VAX registers and all addresses were
sign-extended to 32 bit. This mode supported the whole PDP-11 instruction
set with the exception of floating-point and privileged instructions. The most
important difference between the two systems was the 4 Gbyte virtual address
space provided by the VAX architecture.

The VAX architecture provides sixteen 32 bit general-purpose registers
used by all instructions, i.e. there is no dedicated floating-point register file.
Four registers have a special meaning: program counter, stack pointer, frame
pointer, and argument pointer. The architecture uses four different access
modes: kernel, executive, supervisor, and user. The user mode context con-
tains the general-purpose registers and the processor status word, other re-
sources are only accessible in one of the privileged modes. The processor
status word stores the condition codes and is used to enable and disable the
various traps.

The VAX architecture supports the usual integer and floating-point data
types as well as bit fields, character and decimal strings. There are no restric-
tions to alignment, i.e. all data types may start on arbitrary byte locations,
bit fields may start on arbitrary bit locations. The instruction set contains
304 instructions, later implementations support even more. The supported
instructions include the usual integer, floating-point, and control instructions
as well as queue, string, and context switch instructions. Almost every com-
bination of instruction, data type, and addressing mode is possible, making
the VAX instruction set highly orthogonal. This leads to a complex instruct-
ion format: one or two bytes of operation code followed by operand specifiers
(2 to 10 bytes) for up to three operands. Instruction length therefore varies
between 1 and 32 bytes, which complicates instruction decoding.

The VAX architecture provides a rich set of addressing modes: immediate,
register direct with offset, post-increment or post-decrement, register indirect
with offset or post-increment, as well as indexed addressing. Indexed address-
ing is only used in combination with one of the aforementioned addressing
modes, the final operand address is determined by adding the contents of

A.1 Introduction 239

the specified register (multiplied by operand size) to the base register of the
original mode.

Although the VAX architecture provides a rich functionality, studies show
that a lot of this functionality was infrequently used [Wie82][CL82].

A.1.2 Digital RISC Projects

The VAX architecture has a large number of intra- and inter-instruction
dependencies, making high-performance implementations difficult: intra-in-
struction dependencies complicate pipelining, whereas inter-instruction de-
pendencies make super-scalar and out-of-order implementations almost im-
possible. Similar restrictions exist in other CISC architectures. During the
early 80s, RISC (Reduced Instruction Set Computer) as proposed by Patter-
son [PD80] promised to overcome these restrictions by using a fundamentally
different approach.

The first Digital RISC project started in 1982 to explore the feasibility of
an ECL (Emitter Coupled Logic) RISC implementation. A comparison be-
tween this implementation and a VAX architecture implementation based on
similar technology proved favorable to the RISC approach [BC91b]. Several
RISC projects were subsequently started within Digital: SAFE (Streamlined
Architecture for Fast Execution), HR-32 (Hudson RISC) and CASCADE.
These efforts were later combined into the PRISM (Parallel RISC Machine)
project which is described in the next paragraph.

The PRISM project defined a 32 bit as well as a 64 bit architecture. Both
architectures provide 64 general-purpose registers for integer and floating-
point instructions, i.e. there are no split register files. All operations are per-
formed between these registers, memory is referenced by load and store in-
structions only. Instructions have a fixed length and use up to three operands.
There are no condition codes, branch instructions operate on registers in-
stead. Data types are limited to VAX longword (32 bit version), VAX quad-
word (64 bit version), VAX F and G floating-point formats, i.e. there is no
support for byte and word data types. An interesting feature is the support
for vector arithmetic with 16 vector registers, each 64 elements wide, and
corresponding vector instructions. In summary, the PRISM architecture is
a typical load/store RISC architecture with the exception of the combined
register file and support for vector arithmetic. A detailed description of the
PRISM architecture was published in [BOW+90].

The PRISM project developed an implementation of the 32 bit PRISM
architecture intended for Digital’s workstation line. Unfortunately, the MIPS
architecture was chosen instead, hence this implementation was never com-
mercialized. A brief description of the implementation was published in
[CDD+89], the important characteristics are summarized here: The imple-
mentation uses a 5-stage pipeline with fixed instruction latencies and in-order
instruction issue, but out-of-order completion. The chip was fabricated in a

240 A. Alpha Architecture & Implementations

1.5µm CMOS process, using approximately 300 000 transistors and a maxi-
mum clock frequency of 50 MHz.

A.1.3 Design Goals

One of the first publications regarding the Alpha architecture [Sit92] lists
four design goals for the architecture:

• High Performance
• Longevity
• Capability to run both VMS and UNIX operating systems
• Easy migration from VAX and MIPS architectures

Recent publications, e.g. the Alpha Architecture Reference Manual [Com98],
list slightly different goals:

• Longevity
• High Performance
• Adaptability
• Scalability

Considering the Alpha architecture’s background, the first version seems more
accurate, whereas the second versions seems to reflect the current goals for
the Alpha architecture.

High Performance and Longevity. The Alpha architects set a 15- to 25-
year design horizon for the new architecture. Based on their experience with
the PDP-11 and VAX architectures, especially the lack of address space,
the Alpha architecture was designed as a full 64 bit Architecture from the
start. Furthermore, the architects tried to avoid anything that might limit
future performance: The instruction set is subsettable, i.e. support for specific
instruction subsets can be added to or removed from future versions of the
architecture. For example, support for VAX floating-point data types is one
of these subsets that may be removed in the future.

Instruction encodings that are not occupied are implemented as traps or
null operations in current implementations, such that code written for future
implementations that support additional instructions can still be executed
on todays processors via software emulation. In addition, the internal fields
of the architecture were generously sized for later expansion.

Since computer performance had increased by a factor of 1000 in the past
25 years, the Alpha architecture was designed to allow a similar performance
improvement during its life-time. This improvement was to come from three
different sources:

Clock frequency was to provide a factor of ten improvement in perfor-
mance during the architecture’s life-time. At the time of writing, imple-
mentations of the Alpha architecture have already achieved a factor of 7

A.1 Introduction 241

improvement in clock frequency: from 150 MHz for the first implementa-
tion (21064) to 1 GHz for the latest implementation (21264B). According
to the current road-maps, the goal of ten-fold improvement in clock fre-
quency will be achieved in the 2001/2002 time-frame, i.e. significantly
before the projected life-time. These performance improvements are not
caused by a degenerate baseline, i.e. an initial implementation using a
slow clock. Rather, implementations of the Alpha architecture have been
using the fastest clock frequencies among all microprocessors until re-
cently.

Super-scalar execution was to provide another factor of ten improvement
by executing multiple instructions in a single clock cycle. In order to en-
able this level of super-scalar execution, the Alpha architecture avoids
special processor state like branch condition codes and special registers.
The only special resources in the Alpha architecture are the dedicated
state required by the IEEE 754 floating-point standard [IEE85] for dy-
namic rounding of floating-point values as well as the multiprocessing
primitives as described below. In particular, the Alpha architecture has
no branch delay slots like other RISC architectures, no byte and word
memory references, and no precise exceptions. However, byte and word
memory references as well as precise exceptions were later added to the
architecture.
Since the first implementation (21064A) issued up to two instructions
per cycle and current implementations issue up to six (four sustained)
instructions per cycle, there is only a factor of three improvement up to
now. It has proved difficult to extract the available amount of instruction
level parallelism, hence these small improvements. Future implementa-
tions of the Alpha architecture, e.g. the 21464, were planned to employ
simultaneous multithreading to increase the number of instructions that
can be issued in parallel.

Parallel processing was to provide the remaining factor of ten improve-
ment in performance. Therefore the Alpha architecture was designed with
multiprocessing capabilities from the outset. The architecture provides
load-locked and store-conditional primitives to support atomic reads and
writes to shared memory. The underlying memory model uses relaxed
consistency with explicit barrier instructions to enforce strict ordering
between memory references. Systems based on the Alpha architecture
use up to 32 processors in shared memory systems like the AlphaServer
GS320 [GSSD00], and up to 2048/4096 processors in distributed mem-
ory machines like the Cray T3E [Oed96] and Compaq AlphaServer SC
[Cor00]. The next implementation of the Alpha architecture, i.e. the
21364, will provide integrated support for 64-way shared memory mul-
tiprocessing. However, the performance improvement in practice is hard
to determine since parallel speedup is largely application-specific.

242 A. Alpha Architecture & Implementations

Operating systems and Migration. One of the major goals in devel-
oping the Alpha architecture was to provide the existing MIPS/OSF and
VAX/VMS customer base with an upgrade path to the new architecture.
The Alpha architecture uses PALcode to decouple the architecture from op-
erating system-specific issues. PALcode is a set of low-level functions, e.g.
page table refill and context switch, that are tailored to the operating sys-
tem. These routines are executed in a special environment with disabled
interrupts, no memory translation, and access to additional state that is pro-
vided by the implementation. The PALcode routines reside in main memory
and can therefore be updated at runtime.

Another feature for operating system migration is the support for VAX
integer and floating-point data formats. The corresponding instructions are
subsettable, i.e. these instructions may be removed in future versions of
the architecture. Binary translation was used to execute MIPS/OSF and
VAX/VMS binaries on the Alpha architecture under the OSF and VMS op-
erating systems, respectively. Detailed descriptions of the translation process
were published at the launch of the Alpha architecture [SKMR92].
Adaptability and Scalability. As mentioned above, instead of indepen-
dence from operating systems and ease of migration, later revisions of the
Alpha architecture manual state adaptability and scalability as goals for the
Alpha architecture. It is likely that the earlier goals are no longer mentioned
since the migration from the VAX and MIPS architectures has been largely
finished by now. Adaptability means that the Alpha architecture is largely
independent from operating system and implementation details. Therefore
PALcode remains an important feature of the architecture. Scalability means
that the Alpha architecture can be used in low-cost systems as well as high-
performance systems. Early implementations of the Alpha architecture were
used in such diverse areas as embedded computing and massively parallel
computers, but later implementations have focused on high-performance sys-
tems.

A.2 Alpha Architecture

This section describes the Alpha architecture in detail. Section A.2.1 covers
the architecture state as seen by the machine-language programmer, while
Section A.2.2 covers the supported address and data formats. The syntax
and semantics of the individual instructions are described in Section A.2.3.
Sections A.2.4 provides information about the PALcode environment.

A.2.1 Architecture State

The architecture state as seen by the machine-language programmer is de-
picted in Figure A.1. There are 32 integer registers (R0-R31) and 32 floating-
point registers (F0-F31), each 64 bits wide. Registers R31 and F31 are zero

A.2 Alpha Architecture 243

Fig. A.1. Alpha Architecture State

LOCK_FLAG

R1

R30
R31

R0
F1

F30
F31

F0

FPCRPC

LOCK_ADDR

source and sink registers, i.e. reads to these registers return zero and values
written to these registers are discarded. The program counter (PC) con-
tains the virtual address of the current instruction. The program counter is
incremented by every instruction, branch-type instructions can modify the
program counter in other ways.

The floating point control register (FPCR) is 64 bits wide, most of these
bits are reserved for future use. The remaining bits contain status and control
information for the different floating-point trapping modes as well as the
rounding mode for instructions using dynamic rounding mode. Apart from
the IEEE +∞ rounding mode, all rounding modes can be specified explicitly
in the instruction, therefore the floating-point control register is seldom used
during normal operation.

Additional state is available in the PALcode environment, the amount
of state depends on the implementation. Typical implementations provide
additional registers, processor status words, stack pointers, address and data
translation buffers, as well as other implementation-specific state.

A.2.2 Address, Data and Instruction Formats

Address Format. The Alpha architecture uses the byte, i.e. 8 bits, as the
basic addressable unit. Virtual addresses are 64 bits wide, forming a virtual
address space of 16 Exabytes. Implementations may restrict the effective size
of virtual addresses by using identical high-order bits, but at least 43 bits must
be distinguishable, yielding a maximum virtual address space of 8 Terabyte.
Note that all implementations have to check all 64 bits for virtual addresses,
independent of the size of the implemented virtual address space.

Early implementations support only the minimum virtual address space,
while current implementations distinguish up to 48 bits, yielding a maxi-
mum virtual address space of 256 Terabyte. The Alpha architecture supports
multiple disjoint address spacing by using additional address space numbers

244 A. Alpha Architecture & Implementations

Fig. A.2. Alpha Architecture Data Formats

0

Longword

Word

Byte

M2 EXPS M1

S M1EXP

231 8

7816 1

S EXP

11 521

Ffloat

Tfloat

Sfloat

Register RegisterS EXP

1

MANTISSA

MANTISSA

5211

Integer Floating−Point

31 0

063

63 0

031031

15 0

7 0

063

Quadword EXP M1M2M3M4 S

16 16 16 1 11 14

Gfloat

63 0 63

(ASN). The size of the physical address space depends on the implementa-
tion and is usually a lot smaller: Early implementations support 34 bits while
current implementations support up to 44 bits.

The default byte ordering is little endian, i.e. the individual bytes within a
quadword are numbered from right to left. Big endian support, i.e. numbering
the bytes from left to right, is optional in the Alpha architecture. However, all
implementations support this option so far. Note that the instruction stream
is always accessed in little endian order regardless of the chosen endianness.

Data Formats. The most important data types supported by the Alpha
architecture are the quadword, longword, word, and byte integers as well as
the VAX Ffloat, Gfloat, and the IEEE Sfloat, Tfloat floating-point data types.
The memory and register layout of these data types is depicted in Figure A.2.
Note that the register format is the same for all data types within the same
category. The following paragraphs describe the individual data types in more
detail.

A byte contains eight contiguous bits starting on an arbitrary byte bound-
ary. This data type is only supported by a few instructions, namely load and
store, sign extend, and byte manipulation instructions. A word contains two
contiguous bytes starting on an arbitrary byte boundary. The address of a
word equals the address of the byte containing the least significant bit. Like
the byte, the word is only supported by load and store, sign-extend, and byte
manipulation instructions. The byte and word data types were not supported
in early revisions of the Alpha architecture, this support was added later with
the byte and word extension (BWX).

A longword contains four contiguous bytes starting on an arbitrary byte
boundary. The address of a longword equals the address of the byte containing
the least significant bit. Longwords are always treated as two’s-complement

A.2 Alpha Architecture 245

integers, i.e. there are no unsigned longwords. The quadword contains eight
contiguous bytes starting on an arbitrary byte boundary. The address of a
quadword equals the address of the byte that contains the least significant
bit. The quadword represents the fundamental data type in the Alpha archi-
tecture and is therefore supported by all types of instructions.

The VAX Ffloat and Gfloat floating-point format contain four and eight
contiguous bytes starting on an arbitrary byte boundary, respectively. The
address of these data types equals the address of the byte containing the
least significant bit. The Ffloat floating-point data type consists of a sign bit
s, an eight bit exponent e represented in base-128 format as well as 24 bits
of normalized mantissa m. The Gfloat floating-point data type consists of a
sign bit s, an eleven bit exponent e represented in base-1024 format as well
as 53 bits of normalized mantissa m. In both cases, the most significant bit
is only implied, but not stored in memory. The values v1 represented by a
Ffloat and the value v2 represented by a Gfloat floating-point data type are
determined by the following formulas:

v1 = (−1)s · 2e−128 ·

(
1 +

23∑
i=0

m23−i · 2−i
)

v2 = (−1)s · 2e−1024 ·

(
1 +

52∑
i=0

m52−i · 2−i
)

Note that there are two special cases: A zero sign bit together with a zero
exponent represent the value 0, while a sign bit of one together with a zero
exponent is taken as a reserved operand, causing an arithmetic exception if
used by a floating-point instruction.

The IEEE Sfloat and Tffloat floating-point format contain four and eight
contiguous bytes starting on an arbitrary byte boundary, respectively. The
address of these data types equals the address of the byte containing the
least significant bit. The IEEE Sfloat data type consists of a sign-bit s, an
eight bit exponent e represented in base-127 format as well as 24 bits of
normalized mantissa m. The most significant bit is only implied, but not
stored in memory. The IEEE Tfloat data type consists of a sign-bit s, an
eleven bit exponent e represented in base-1023 format as well as 52 bits of
normalized mantissa m. The values v1 represented by a Sfloat and the value
v2 represented by a Tfloat floating-point data type are determined by the
following formulas:

v1 = (−1)s · 2e−127 ·

(
1 +

23∑
i=0

m23−i · 2−i
)

v2 = (−1)s · 2e−1023 ·
52∑
i=0

m52−i · 2−i

246 A. Alpha Architecture & Implementations

Note that there are several special cases: A zero exponent together with
a zero mantissa represent the values +0 or -0, depending on the sign bit. In
the case of an zero exponent and a non-zero mantissa, the represented values
are determined by the following formulas:

v1 = (−1)s · 2−126 ·
23∑
i=0

m23−i · 2−i

v2 = (−1)s · 2−1022 ·
52∑
i=0

m52−i · 2−i

An exponent of all ones together with a zero mantissa represents +∞ or
−∞, depending on the sign bit. An exponent of all ones together with a non-
zero mantissa represents a Not-A-Number (NaN). NaNs come in two different
forms: Quiet NaNs and Signaling NaNs. The former propagates through al-
most all operations without generating an arithmetic exception, while the
latter signals an invalid operation when used by an arithmetic instruction
and may cause an arithmetic exception.

Apart from the data types mentioned above, the Alpha architecture has
limited support for the VAX Dfloat floating-point data type, i.e. load, store,
and conversion to Gfloat. The three least significant bits of the mantissa are
lost during the conversion process. Support for this data type enables the
processing of data files produced by legacy applications under VAX/VMS.
The IEEE Xfloat floating-point data type is currently only supported in soft-
ware, but the Alpha architecture defines the necessary register and memory
formats. This ensures consistency with possible future implementations that
may support this data type.

Instruction Formats. The Alpha Architecture uses seven different in-
struction formats: two memory instruction formats, a branch instruction for-
mat, three operate instruction formats, and a PALcode instruction format.
All instruction formats are 32 bit wide with a common opcode field located
in the most significant six bits of the instruction. The individual instruct-
ion formats are depicted in Figure A.3 and are described in the following
paragraphs.

The first memory instruction format is used for load and store instruc-
tions and indirect branches. Apart from the common 6 bit opcode, the format
contains two 5 bit register addresses and a 16 bit displacement. The displace-
ment is used by load and store instructions to specify the effective address:
The displacement is sign-extended and added to the contents of the source
register Rb, ignoring any overflows. Indirect branches use the displacement
to provide hints to branch prediction logic, the meaning depends on the in-
dividual instruction and is explained in Section A.2.3.

The second memory instruction format is used for a set of miscellaneous
instructions. It differs from the first memory instruction format by substi-

A.2 Alpha Architecture 247

Fig. A.3. Alpha Architecture Instruction Formats

0

Opcode Ra

56

Rc

5

Function

7

1

1

Operate2Literal

8

Opcode

6

PALcode

26

PALcode

Opcode Ra

56

Displacement

21

Branch

Opcode Ra Rb Function

56 165

Memory2

Memory1 Opcode Ra Rb Displacement

56 165

Opcode Ra Rb

56 5

Rc

5

Function

7

0

1

0

3

Operate1

Operate3Opcode Fa Fb

56 5

Fc

5

Function

11

31

31 0

0

031

31 0 31 0

031

31

tuting the displacement with a function code of the same size. The common
opcode together with this function code specifies the individual instruction.
Some instructions may use less than two register addresses, the unused fields
must contain the address of register R31. This principle applies to all instruc-
tions defined by the Alpha architecture, floating-point instructions specify the
address of register F31 instead.

The branch instruction format is used for PC-relative branches and sub-
routine calls. Apart from the common 6 bit opcode, it contains one 5 bit
register address and a 21 bit displacement. The displacement is used to form
the virtual address of the target branch or call location by adding the sign-
extended displacement to the contents of the updated program counter. Note
that the updated program counter is equal to the address of the current in-
struction plus four, the size of a single instruction. The displacement is inter-
preted as an instruction offset since the target branch or call location must
start on an instruction boundary, hence the displacement is multiplied by
four prior to addition.

PALcode instructions use the PALcode instruction format. This format
contains only the common opcode and a 26 bit function code.

The first operate format is used for integer instructions that utilize three
register operands. Apart from the common 6 bit opcode, the format contains
two 5 bit register addresses Ra and Rb for the source operands, a 5 bit register
address Rc for the destination operand, and a 7 bit function code. Bit number
12 distinguishes between this format and the second operate format described
below. The three unused bits are zero for all instructions, at least in the
current revision of the Alpha architecture.

The second operate instruction format is similar to the first one and is
used for integer instructions that use two register operands and one literal.
This format substitutes the source register address Rb and the three unused
bits above with an eight bit literal that is zero-extended before use.

248 A. Alpha Architecture & Implementations

The third operate instruction format is used for instructions that operate
on the floating-point register set. Apart from the common 6 bit opcode, it
contains two 5 bit source register addresses, one 5 bit destination register
address, and an 11 bit function code. This function code together with the
common opcode selects the individual instruction.

A.2.3 Instruction Set

The instructions defined by the Alpha architecture can be grouped into sev-
eral disjoint sets: integer memory, control, arithmetic, logical and shift, as
well as floating-point memory, control, and arithmetic instructions. Later re-
visions of the Alpha architecture define additional instructions in the follow-
ing four extensions: byte and word extension (BWX), multimedia extension
(MVI), floating-point extension (FIX), and count extension (CIX). The fol-
lowing sections describe the individual instructions in the basic sets as well
as the current extensions.

Integer Memory Instructions. The integer memory instructions trans-
fer data between memory and integer registers, with the exception of the
LDA/LDAH instruction pair. The individual instructions in this set are listed
in Table A.1. All instructions in this set do not interpret the transferred data
in any way, hence no arithmetic exceptions are possible.

The LDA/LDAH instruction pair is used to form constant values: The
LDA instruction places the 16 bit displacement in the destination register,
while the LDAH instruction performs a 16 bit left shift first. Almost every
32 bit constant can be constructed using this instruction pair, three instruc-
tions are required for some constants. Larger constants should be loaded from
memory.

The load and store instructions support longwords (LDL/STL) and quad-
words (LDQ/STQ) and come in three different forms: The normal LDx/STx
instructions transfer data from and to memory at the virtual address given
by adding source register and displacement to and from the destination reg-
ister. The unaligned LDx U/STx U form ignores the three least-significant
bits of the virtual address, i.e. accesses the aligned longword and quadword
that contains the desired locations. These instructions are used to replace
accesses to unaligned memory locations by a short sequence of instructions.

The LDx L/STx C instruction pairs enable atomic updates of longwords
and quadwords: If the LDx L instruction succeeds, it stores the translated
virtual address in the per-processors lock address register described in Section
A.2.1 and sets the per-processor lock flag. A subsequent STx C instruction
only performs the store operation if the lock flag is still set and the lock ad-
dress register points to the same address. The outcome of the store instruction
is recorded in the source register, the per-processor lock flag is cleared in all
cases. Using these instructions, an atomic read-modify-write access can be
implemented as follows:

A.2 Alpha Architecture 249

Table A.1. Integer Memory Instructions

Name Description
LDA Load Address
LDAH Load Address High
LDL Load Sign-Extended Longword
LDL L Load Sign-Extended Longword Locked
LDQ Load Quadword
LDQ L Load Quadword Locked
LDQ U Load Quadword Unaligned
STL Store Longword
STL C Store Longword Conditional
STQ Store Quadword
STQ C Store Quadword Conditional
STQ U Store Quadword Unaligned

L1:
LDQ_L R1, disp(R2)
(modify R1)
STQ_C R1, disp(R2)
BEQ R1, L1

To ensure that the above sequence eventually succeeds, several program-
ming considerations have to be met: The LDx L/STx C instruction pair must
access the same address region and the modify sequence must not generate
any exceptions. The size of address range depends on the implementation
and ranges from 16 bytes to the size of a physical page. Exception handlers
clear the per-processor lock flag, hence the modify sequence should not con-
tain any other memory operations. In addition, the modify sequence should
contain less than 40 instructions, otherwise the sequence may always fail due
to timer interrupts.

Integer Control Instructions. Three different forms of integer control
instructions are available: conditional branches, unconditional branches, and
jumps. The individual instructions in this set are listed in Table A.2 and are
described in the following paragraphs.

Conditional branches test the source register and add the displacement
to the contents of the updated program counter if the specified relationship
is true, otherwise the program counter remains unchanged. The following
relationships are supported: = (BEQ), ≥ (BGE), > (BGT), ≤ (BLE), <
(BLT), 6= (BNE), as well as even (BLBC) and odd (BLBS).

The unconditional branches store the contents of the current program
counter in the specified destination register and update the program counter
like their conditional counterparts. The BR and BSR instructions perform
identical operations, but differ in their hints to the branch prediction logic:
In contrast to BR, BSR pushes the contents of the updated PC to the return-
address stack.

250 A. Alpha Architecture & Implementations

Table A.2. Integer Control Instructions

Name Description
BEQ Branch Equal to Zero
BGE Branch Greater Than or Equal to Zero
BGT Branch Greater Than Zero
BLBC Branch Low Bit Clear
BLBS Branch Low Bit Set
BLE Branch Less Than or Equal to Zero
BLT Branch Less Than Zero
BNE Branch Not Equal to Zero
BR Branch
BSR Branch to Subroutine
JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine
JSR COROUTINE Jump to Subroutine Return

The indirect branch instructions store the contents of the updated pro-
gram counter in the specified destination register, while the program counter
is loaded from the specified source register. Similar to the unconditional
branches above, all indirect branch instructions perform identical operations,
they differ only in the hints to branch-prediction logic: The JMP and JSR
instructions use the 14 least-significant bits of the displacement to form
a PC-relative hint that can be used to prefetch the instruction stream at
the target location. In addition, the JSR instruction pushes the contents of
the updated program counter to the return-address stack. The RET and
JSR COROUTINE instructions pop the return-address stack and use this
value as the predicted target location. In addition, the JSR COROUTINE
instruction pushes the contents of the updated program counter to the return-
address stack.

Integer Arithmetic Instructions. Integer arithmetic instructions include
the following operations: add, subtract, multiply, as well as signed and un-
signed comparisons. The individual instructions are listed in Table A.3 and
are described in the following paragraphs.

The ADDx and SUBx instructions perform integer addition and subtrac-
tion and are available in three different forms: normal, scaled-by-4 and scaled-
b-8. The latter two operations multiply the second source operand by 4 or
8 without checking for overflows, respectively. The CMPxx compare instruc-
tions can be signed and unsigned and support the = (CMPEQ), ≤ (CMPLE,
CMPULE) and < (CMPLT, CMPULT) relations. Note that the CMPEQ
instruction can be used for signed and unsigned comparisons and that the
missing ≥, > relations are supported by reversing the order of the source
operands. The MULx instruction performs integer multiplication. Since the
product of two 64 bit integers can be up to 128 bit large, the MULx instruct-
ion may cause an arithmetic exception if an overflow occurs, i.e. the result

A.2 Alpha Architecture 251

Table A.3. Integer Arithmetic Instructions

Name Description
ADDL Add Longwords
ADDQ Add Quadwords
S4ADDL Add Longwords, Scaled by 4
S4ADDQ Add Quadwords, Scaled by 4
S8ADDL Add Longwords, Scaled by 8
S8ADDQ Add Quadwords, Scaled by 8
CMPEQ Integer Compare, Equal to Zero
CMPLE Integer Compare, Less Than or Equal to Zero
CMPLT Integer Compare, Less Than Zero
CMPULE Integer Compare, Unsigned Less Than or Equal to Zero
CMPULT Integer Compare, Unsigned Less Than Zero
MULL Multiply Longwords
MULQ Multiply Quadwords
UMULH Multiply Quadwords, Unsigned High
SUBL Subtract Longwords
SUBQ Subtract Quadwords
S4SUBL Subtract Longwords, Scaled by 4
S4SUBQ Subtract Quadwords, Scaled by 4
S8SUBL Subtract Longwords, Scaled by 8
S8SUBQ Subtract Quadwords, Scaled by 8

is larger than 263 − 1. In this case the UMULH instruction can be used to
generate the upper 64 bits of the product.

Integer Logical and Shift Instructions. The set of integer logical and
shift instructions contains boolean operations, conditional moves, and shift
instructions. The individual instructions are listed in Table A.4 and are de-
scribed in the following paragraphs.

The following boolean operations are supported: AND, OR, and XOR. In
addition, each of the three operations is supported with the complement of
the second operand, i.e. BIC, ORNOT, EQV. Note that the missing NOT
operation can be substituted by ORNOT with a zero source operand. The
conditional moves test the first source register for the specified relation: if
the relationship is true, the contents of the second source operand are moved
to the destination register. The conditional moves support the same set of
relations like the conditional branches: = (CMOVEQ), ≥ (CMOVGT), >
(CMOVGE), ≤ (CMOVLE), < (CMOVLT), 6= (CMOVNE), as well as even
(CMOVLBC)) and odd (CMOVLBS). The shift instructions are available
in two different forms: arithmetic and logical. The logical shifts use zero to
fill the vacated bit positions, while the arithmetic right shift uses the most
significant bit. There is no arithmetic left shift, since a logical left shift is
sufficient as long as no overflow occurs. In that case an integer multiply with
2s should be used instead, where s is the shift distance.

Floating-Point Memory Instructions. The floating-point memory in-
structions transfer data between memory and floating-point registers. The

252 A. Alpha Architecture & Implementations

Table A.4. Integer Logical & Shift Instructions

Name Description
AND Logical Product
BIC Logical Product with Complement
BIS Logical Sum
EQV Logical Equivalence
ORNOT Logical Sum with Complement
XOR Logical Difference
CMOVEQ Integer Conditional Move, Equal to Zero
CMOVGE Integer Conditional Move, Greater Than or Equal to Zero
CMOVGT Integer Conditional Move, Greater Than Zero
CMOVLBC Integer Conditional Move, Low Bit Clear
CMOVLBS Integer Conditional Move, Low Bit Set
CMOVLE Integer Conditional Move, Less Than or Equal to Zero
CMOVLT Integer Conditional Move, Less Than Zero
CMOVNE Integer Conditional Move, Not Equal to Zero
SLL Logical Left Shift
SRA Arithmetic Right Shift
SRL Logical Right Shift

individual instructions in this set are listed in Table A.5. Note that all in-
structions in this set do not interpret the transferred data in any way, hence
no arithmetic exceptions can occur. The load and store instructions support
Ffloats (LDF/STF), Gfloats (LDG/STG), Sfloats (LDS/STS) and Tfloats
(LDT/STT). All LDx/STx instructions behave similar to their integer coun-
terparts and transfer data from and to memory at the virtual address given
by adding source register and displacement to and from the destination regis-
ter. The LDG/STG instruction pair should be used to load and store Dfloat
values, since the required reordering of bits is identical for both data types.

Floating-Point Control Instructions. There are neither unconditional
nor indirect floating-point branch instructions, since unconditional branches
and jumps do not test any source operands. The individual instructions in
this set are listed in Table A.6 and operate as follows: The FBxx instructions
test the source operand for the specified relationship and perform a PC-
relative branch like their integer counterparts if this relationship is true. The
floating-point conditional branches support the same set of relations with the
exception of the odd and even relations, which make no sense for floating-
point operands. Note that the test is only based on the sign bit and whether
the rest of the operand is all zero, i.e. the data is not interpreted in any way.

Floating-Point Arithmetic Instructions. The floating-point arithmetic
instructions contain floating-point arithmetic, comparison, and conditional
move instructions, among others. The individual instructions are listed in
Table A.7 and are described in the following paragraphs.

The CPYSx instructions copy the sign and/or exponent between source
and destination operands. The MT FPCR and MF FPCR instructions pro-
vide access to the floating-point control register. Note that the latter two

A.2 Alpha Architecture 253

Table A.5. Floating-Point Memory Instructions

Name Description
LDF Load Ffloat
LDG Load Gfloat (Dfloat)
LDS Load Sfloat (Longword)
LDT Load Tfloat (Quadword)
STF Store Ffloat
STG Store Gfloat (Dfloat)
STS Store Sfloat (Longword)
STT Store Tfloat (Quadword)

Table A.6. Floating-Point Control Instructions

Name Description
FBEQ Floating-Point Branch, Equal to Zero
FBGE Floating-Point Branch, Greater Than or Equal to Zero
FBGT Floating-Point Branch, Greater Than Zero
FBLE Floating-Point Branch, Less Than or Equal to Zero
FBLT Floating-Point Branch, Less Than Zero
FBNE Floating-Point Branch, Not Equal to Zero

instructions must be enclosed in exception barriers to guarantee proper ac-
cess to the floating-point control register.

There are four different forms of the ADDx, DIVx, MULx, and SUBx
arithmetic instructions, one for each floating-point data type. These instruc-
tions perform floating-point addition, division, multiplication, and subtrac-
tion, respectively. The rounding and trapping modes can be explicitly speci-
fied for every instruction with the exception of the IEEE +∞ rounding mode,
which is only available via the floating-point control register by using dynamic
rounding mode.

The CMPGxx and CMPTxx instructions perform comparisons on Gfloat
and Tfloat data types, respectively. These instructions support the same set
of relations as the floating-point conditional branches. An exception is the
CMPTUN instructions which can be used to check for NaNs and is only
provided for the Tfloat data type, since the VAX floating-point data types
do not support NaNs. Note that separate comparison instructions for the
Ffloat and Sfloat data types are not necessary, since the register layout for
all floating-point data types is the same.

There is a rich set of conversion instructions: The CVTLQ/CVTQL in-
structions perform integer conversion between longwords and quadwords for
integers stored in floating-point registers, respectively. The CVTQx instruc-
tions convert quadwords into the Ffloat, Gfloat, Sfloat and Tfloat floating-
point data types, the reverse operation is performed by the CVTTQ instruct-
ion for all IEEE and VAX floating-point data types. The CVTTS and CVTST
instructions convert between the IEEE Sfloat and Tfloat data types, while
the CVTGF instruction converts between the VAX Gfloat and Ffloat data

254 A. Alpha Architecture & Implementations

Table A.7. Floating-Point Arithmetic Instructions

Name Description
CPYS Copy Sign
CPYSE Copy Sign & Exponent
CPYSN Copy Sign Negate
CVTLQ Convert Longword to Quadword
CVTQL Convert Quadword to Longword
FCMOVEQ FP Conditional Move, Equal to Zero
FCMOVGE FP Conditional Move, Greater Than or Equal to Zero
FCMOVGT FP Conditional Move, Greater Than Zero
FCMOVLE FP Conditional Move, Less Than or Equal to Zero
FCMOVLT FP Conditional Move, Less Than Zero
FCMOVNE FP Conditional Move, Not Equal to Zero
MF FPCR Move from Floating-Point Control Register
MT FPCR Move to Floating-Point Control Register
ADDF Add Ffloats
ADDG Add Gfloats
ADDS Add Sfloats
ADDT Add Tfloats
CMPGEQ Compare Gfloat, Equal to Zero
CMPGLE Compare Gfloat, Less Than or Equal to Zero
CMPGLT Compare Gfloat, Less Than Zero
CMPTEQ Compare Tfloat, Equal to Zero
CMPTLE Compare Tfloat, Less Than or Equal to Zero
CMPTLT Compare Tfloat, Less Than Zero
CMPTUN Compare Tfloat, Unordered
CVTDG Convert Dfloat to Gfloat
CVTGD Convert Gfloat to Dfloat
CVTGF Convert Gfloat to Ffloat
CVTGQ Convert Gfloat to Quadword
CVTQF Convert Quadword to Ffloat
CVTQG Convert Quadword to Gfloat
CVTQS Convert Quadword to Sfloat
CVTQT Convert Quadword to Tfloat
CVTST Convert Sfloat to Tfloat
CVTTQ Convert Tfloat to Quadword
CVTTS Convert Tfloat to Sfloat
DIVF Divide Ffloats
DIVG Divide Gfloats
DIVS Divide Sfloats
DIVT Divide Tfloats
MULF Multiply Ffloats
MULG Multiply Gfloats
MULS Multiply Sfloats
MULT Multiply Tfloats
SUBF Subtract Ffloats
SUBG Subtract Gfloats
SUBS Subtract Sfloats
SUBT Subtract Tfloats

A.2 Alpha Architecture 255

types. Note that a conversion between Ffloat and Gfloat data types is not
necessary, since both formats use an identical register layout and a Ffloat
always fit in a Gfloat. The CVTGD and CVTDG conversion instructions are
used to convert the partially supported VAX Dfloat data type to and from
the Gfloat data type. Together with the load and store instructions for this
data type, data files produced by legacy applications under VAX/VMS can
be processed.

The floating-point conditional moves FCMOVxx behave like their integer
counterparts. These instructions support the same set of relations like the
floating-point conditional branches. As already pointed out above, the test
is only based on the sign bit and whether the rest of the operand is all zero,
i.e. the data is not interpreted in any way.

Miscellaneous Instructions. The individual instructions that do not fall
into any of the other categories are listed in Table A.8. The AMASK instruct-
ion is used to check for the presence of extensions to the Alpha architecture
instruction set, namely the BWX, MVI, FIX and CIX extensions described in
later sections. The IMPLVER instruction performs a similar task as it is used
to determine the major implementation version of the executing processor.
The IMPLVER instruction should be used to make code-tuning decisions,
while the AMASK instruction should be used to make instruction set deci-
sions.

The EXCB exception barrier does not issue until all integer and floating-
point exceptions and updates to the floating-point control register have been
completed. The EXCB is a superset of the TRAPB instruction, which does
not issue until all prior instructions are guaranteed to complete without caus-
ing arithmetic traps.

The MB memory barrier is used to ensure the proper ordering of load and
store operation in multiprocessor systems. The barrier guarantees that all
prior load and store instructions have accessed memory, as observed by other
processors, before subsequent load and store instructions access memory. The
MB barrier is a superset of the WMB barrier, which restricts ordering to
stores only. Note that the coherence of the instruction stream is managed by
the IMB instruction memory barrier that is realized in PALcode.

The ECB, WH64, FETCH and FETCH M instructions provide hints to
the memory system about future access patterns: The ECB instruction hints
that the specified virtual address will not be accessed in the near future and
should therefore be moved to a lower part in the memory hierarchy to allow
the reuse of cache resources. The FETCH instructions hint that the aligned
512 byte block around the specified virtual address will be accessed in the
near future and should therefore be moved to a higher point in the memory
hierarchy in order to reduce memory latency. In addition, the FETCH M
instruction hints that all or part of the 512 byte block will be modified. The
WH64 instruction hints that the aligned 64 byte block surrounding the spec-

256 A. Alpha Architecture & Implementations

Table A.8. Miscellaneous Instructions

Name Description
AMASK Architecture Mask
CALL PAL Call PALcode Routine
ECB Evict Cache Block
EXCB Exception Barrier
FETCH Prefetch Data
FETCH M Prefetch Data, Modify Intent
IMPLVER Implementation Version
MB Memory Barrier
RPCC Read Processor Cycle Count
TRAPB Trap Barrier
WH64 Write Hint
WMB Write Memory Barrier

ified virtual address will never be read again, but will be overwritten in the
near future.

The RPCC instruction returns the current value of the processor cycle
counter that increments every clock cycle. Note that the counter is only 32 bits
wide, therefore care must be taken to detect any wrap-arounds between two
accesses to the cycle counter. The CALL PAL instruction is used to execute
PALcode functions as described in section A.2.4.

Byte and Word extension (BWX). The byte and word extension to the
Alpha architecture instruction set contains support for byte and word load,
store, and byte-manipulating instructions. The individual instructions are
listed in Table A.9 and are described in the following paragraphs.

The LDxU instructions load a byte or word from the specified address in
memory and store the zero-extended result in the destination register. Note
that the normal LDL instruction sign-extends the result instead. The STx
instructions store a byte or word to the specified address in memory.

There is a rich set of byte manipulation instructions: The CMPBGE in-
struction compares corresponding bytes of the two quadword source operands
in parallel and stores the outcome of all comparisons in the least significant
byte of the destination register. Starting at an arbitrary byte location within
the source quadword, the EXTxx instructions extract a byte, word, longword,
or quadword, respectively. The vacated bit positions are zero-filled. The dif-
ference between the EXTxL and EXTxH forms is the reference point for the
byte boundary: The EXTxL instructions count bytes starting with the least
significant byte, while the EXTxH instructions count bytes starting with the
most significant byte.

The INSxx instructions perform the reverse operation: a byte, word, long-
word, or quadword from the source operand is inserted at an arbitrary byte
position within the target quadword, filling the vacated bit positions with
zero. The MSKxx instructions insert a zero byte, word, longword, or quad-
word at an arbitrary byte position. The ZAP/ZAPNOT instruction pair per-

A.2 Alpha Architecture 257

Table A.9. Byte & Word Extension Instructions

Name Description
CMPBGE Byte Vector Compare
EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
LDBU Load Byte Unsigned
LDWU Load Word Unsigned
MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
SEXTB Sign-Extend Byte
SEXTW Sign-Extend Word
STB Store Byte
STW Store Word
ZAP Zero Bytes
ZAPNOT Zero Bytes Not

forms a similar operation, but allows arbitrary, e.g. non-contiguous, bytes in
a quadword to be filled with zeros. The SEXTx instructions provide sign-
extension for byte and word operands. These instructions are necessary since
the byte and word load instructions perform zero-extension instead of sign-
extension.

Multimedia extension (MVI). Instructions in the multimedia extension
are targeted at audio and video algorithms, e.g. MPEG compression and
decompression, hence the name (motional video instructions). The individual
instructions in this extension are listed in Table A.10 and are described in
the following paragraphs.

The MINxB8/MINxW4 instructions compare the corresponding byte or
words of the two source quadwords in parallel and store the minimum value
for each comparison in the destination register. The MINSxx instructions per-
form signed comparisons, while the MINUxx instructions perform unsigned
comparisons. The MAXxxx instructions are similar, but store the maximum

258 A. Alpha Architecture & Implementations

Table A.10. Multimedia Extension Instructions

Name Description
MINUB8 Byte Vector Unsigned Minimum
MINSB8 Byte Vector Signed Minimum
MINUW4 Word Vector Unsigned Minimum
MINSW4 Word Vector Signed Minimum
MAXUB8 Byte Vector Unsigned Maximum
MAXSB8 Byte Vector Signed Maximum
MAXUW4 Word Vector Unsigned Maximum
MAXSW4 Word Vector Signed Maximum
PERR Pixel Error
PKLB Pack Longwords to Bytes
PKWB Pack Words to Bytes
UNPKBL Unpack Bytes to Longwords
UNPKBW Unpack Bytes to Words

value for each comparison in the destination register. These instructions can
be used to perform clamping to maximum or minimum values.

The PKxB instructions truncate two longwords or four words of the source
operand to bytes and store these two or four bytes in the least significant
two/four byte locations of the target operand. The reverse operation is per-
formed by the UNPKxx instructions. The PERR instruction is useful for
motion estimation and performs a comparison of corresponding bytes in the
two source operands in parallel and returns the sum of the differences.

Floating-Point extension (FIX). The floating-point extension contains
instructions that transfer data between integer and floating-point registers
without accessing memory, as well as the square root arithmetic instruction.
The individual instructions are listed in Table A.11 and are described in the
following paragraph.

The SQRTx instructions provide the square-root operation for all sup-
ported floating-point data types. The FTOIx and ITOFx instructions trans-
fer data between integer and floating-point registers (ITOFx) and vice versa
(FTOIx). The instructions do not interpret the contents of the registers in
any way, hence no arithmetic exceptions can occur. The CVTxx instructions
should be used to convert between integer and floating-point data types.

Count extension (CIX). The count extension is the latest addition to the
Alpha architecture instruction set and contains the three instruction listed in
Table A.12. The CTLZ instruction returns the number of leading zeros, i.e.
the number of zeros starting from the most significant bit downwards until
the first one is encountered, to the destination register. The CTTZ instruction
performs the same operation starting from the least significant bit upwards.
The CTPOP instructions returns the number of ones in the source operand
to the destination register. All instructions operate on quadwords only and
generate no exceptions.

A.3 Implementations 259

Table A.11. Floating-Point Extension Instructions

Name Description
FTOIS Floating-Point to Integer Register Move, Sfloat
FTOIT Floating-Point to Integer Register Move, Tfloat
ITOFF Integer to Floating-Point Register Move, Ffloat
ITOFS Integer to Floating-Point Register Move, Sfloat
ITOFT Integer to Floating-Point Register Move, Tfloat
SQRTF Square Root, Ffloat
SQRTG Square Root, Gfloat
SQRTS Square Root, Sfloat
SQRTT Square Root, Tfloat

Table A.12. Count Extension Instructions

Name Description
CTLZ Count Leading Zero
CTPOP Count Population
CTTZ Count Trailing Zero

A.2.4 PALcode

PALcode is used to provide a consistent interface for operating systems across
different implementations. The individual routines depend on the operating
system, but typically include operations such as memory management, inter-
rupt and exception handling as well as context switching. PALcode resides in
memory and is written in standard machine code with some notable exten-
sions: PALcode is executed in an environment that provides full control over
the hardware, access to additional state, and runs in the absence of interrupts
or page faults. Since the PALcode is operating-system dependent, it can be
switched at boot-time to support different operating systems.

A.3 Implementations

The 21064 microprocessor introduced in 1992 was the first implementation
of the Alpha architecture. It was soon followed by several derivatives: the
21064A, 21066, 21066A, and 21068 microprocessors. These processors repre-
sent the first generation of Alpha architecture implementations. The 21164
microprocessor introduced in late 1994 was the first implementation of the
second-generation, again followed by several derivatives: the 21164A and
21164PC microprocessors. These processors represent the second generation
of Alpha architecture implementations. The first of the third-generation im-
plementations, the 21264 microprocessor, was introduced in 1998 and was
followed by the 21264A and 21264B microprocessors. These microprocessors
represent the third-generation of Alpha architecture implementations. Ac-
cording to the current road-maps, the first fourth-generation implementation

260 A. Alpha Architecture & Implementations

will enter the marketplace in late 2001. Unfortunately, this implementation
will probably be the last implementation of the Alpha architecture, as the
Alpha architecture has recently been discontinued.

The following sections discuss the first-, second-, and third-generations of
implementations in detail and give an outlook on the fourth- as well as the
recently abandoned fifth-generation implementations. For information about
the corresponding systems, which is outside the scope of this chapter, the
reader is referred to issues of the Digital/Compaq Technical Journal.

A.3.1 Alpha 21064

The 21064 microprocessor code-named EV4 was introduced in 1992 and rep-
resents the first full1 implementation of the Alpha architecture. The chip op-
erates at up to 200 MHz, executing up to 400 million instructions per second
since it can issue up to two instructions in parallel. The 21064 does support
the basic instruction set and the IEEE and VAX floating-point subsets as de-
fined by the Alpha architecture, i.e. does not support any of the instruction
set extensions. The memory system includes two 8 KB data and instruct-
ion caches as well as support for an external second-level cache. The 21064
supports a virtual and physical address size of 43 and 34 bits, respectively.

The chip contains 1.68 million transistors and was fabricated in a 0.7µ
3-layer metal CMOS process, yielding a die size of 12.4 × 15.0 mm. Using a
supply voltage of 3.3 V, the chip dissipates up to 30 W at 200 MHz. The 21064
is packaged in a ceramic pin grid array (CPGA) package with 431 pins. The
internal architecture of the 21064 is sketched in Figure A.4, the following
sections describe the individual elements in more detail. The information
presented in these sections was gathered from the corresponding hardware
reference manual [AXP96a] as well as several articles [DWA+92a][DWA+92b].

Instruction Cache. The instruction cache is an 8 KB direct-mapped cache
that uses 32 byte cache lines. Apart from the tag and data fields, each cache-
line contains an 8 bit branch history field that is used for branch prediction.
The cache is virtually indexed and tagged, since the size of the cache is
equal to the page size. There is no mechanism for maintaining coherence
with memory, i.e. the software is responsible to issue the IMB instruction
after the instruction stream has been modified.

An interesting feature is the stream buffer: On a cache miss, the cache
fetches the missing cache-line from memory, but loads the next cache-line
into the stream buffer as well. If this line is subsequently requested by the
instruction fetch and decode unit, the whole cache-line is transfered to the
instruction cache in a single cycle.

The translation between virtual and physical addresses for the instruct-
ion stream is performed by two instruction translation buffers: one fully-
associative buffer with eight entries for 8 KB pages and another fully-
1 There was an earlier integer-only implementation for internal use

A.3 Implementations 261

Fig. A.4. Alpha 21064 Internal Architecture

Instruction Cache

IBOX

Data Cache

Load/Store Unit

IRF

EBOX

FRF

FBOX

B
u
s

I
n
t
e
r
f
a
c
e

U
n
i
t

Control

Address

Data

associative buffer with four entries for 4 MB pages. These instruction trans-
lation buffers are maintained by PALcode.

Instruction Fetch and Decode Unit. The instruction fetch and decode
unit (IBOX) has three primary tasks, i.e. to fetch, decode, and issue instruc-
tions. Apart from these tasks, the instruction fetch and decode unit is re-
sponsible for controlling the execution pipelines, especially in the presence of
exceptions, traps, or interrupts. Instructions are fetched from the instruction
cache by the prefetcher. The prefetcher generates a quadword address for the
next access to the instruction cache in each cycle, i.e. fetches two instructions
simultaneously.

Branch prediction is used to avoid pipeline stalls due to discontinuities in
the instruction stream: The instruction cache stores a single bit of branch his-
tory for every branch instruction. This history bit is used to predict whether
the branch is taken or not-taken on the next execution. If the branch has never
been executed before, static branch prediction is used: backward branches are
predicted taken, while forward branches are predicted not-taken. In addition
to the branch history table, the instruction fetch and decode unit contains a
four-entry return address stack to be used by indirect branch instructions.

After an instruction pair has been fetched, both instructions are decoded
and the availability of the required resources is checked in parallel. Instruc-
tions are issued in-order, i.e. the second instruction does not issue until the
first instruction can be issued. If the resources for both instructions are avail-

262 A. Alpha Architecture & Implementations

able and certain conditions are met, both instructions can be issued in par-
allel: a load and store instruction with an integer of floating-point operate
instruction, an integer operate instruction together with a floating-point op-
erate instruction, or a branch instruction together with a load/store, integer
or floating-point operate instruction.

There are two exception to the dual-issue rules above: integer branches
and integer stores as well as floating-point branches and floating-point stores
can not be issued together as well as integer stores and branches together with
floating-point operate instructions and floating-point stores and branches to-
gether with integer operate instructions. These restrictions reflect the number
of read and write ports for the integer and floating-point register files.

Note that dual-issue is only possible if both instructions come from the
same instruction pair, i.e. if there is only one instruction from the current
instruction pair, the prefetcher does not try to dual-issue the remaining in-
struction with the first instruction from the next instruction pair. Apart from
the dual-issue rules mentioned above, there are several other issue rules. The
interested reader is referred to the corresponding Hardware Reference Manual
[AXP96a].

Integer Unit. The integer unit consists of the integer execution unit (IBOX)
and the integer register file (IRF). The integer register file contains 32 reg-
isters, each 64 bits wide, as defined by the Alpha architecture. The integer
register file has four read and two write ports: two read and one write port
dedicated to the integer execution unit as well as two read and one write port
shared between the instruction fetch and decode unit and the load/store unit.

The integer execution unit contains several fully pipelined units: a 64 bit
arithmetic-logic unit, a barrel shifter, and a multiplier. All integer arithmetic
instructions except multiply have a latency of one or two cycles. The mul-
tiplier retires four bits per cycle, yielding a latency of 21 and 23 cycles for
longword and quadword operands, respectively.

Floating-Point Unit. The Floating-Point Unit consists of the floating-
point execution unit (FBOX) and the floating-point register file (FRF). The
floating-point register file contains 32 floating-point registers, each 64 bits
wide, as defined by the Alpha architecture. The floating-point register file
has three read and two write ports: two read and one write port dedicated to
the floating-point execution unit as well as one read and one write port shared
between the instruction fetch and decode unit and the load/store unit. Note
that a second read port for the latter units is not necessary, since address
operands are always stored in an integer register.

The floating-point execution unit supports the IEEE as well as the VAX
subsets, with the exception of the IEEE +∞ and −∞ rounding modes and
the inexact flag for divide operations. These operations must be performed in
software. The floating-point execution unit contains an adder/multiplier that
has a latency of six cycles and is fully pipelined, i.e. can accept new operands
in every cycle. Division is handled by a separate non-pipelined divider that

A.3 Implementations 263

can retire a single bit in every clock cycle. The latency for divide operations
is therefore up to 34 and 63 cycles for single-precision and double-precision
operands, respectively.

Load/Store Unit. The load/store unit (ABOX) provides the execution core
with an interface to the data cache and the external bus interface unit. The
load/store unit consists of an address generator, a write buffer, and a load
silo. The address generator is responsible for calculating the effective virtual
address for load and store instructions by adding the sign-extended displace-
ment to the contents of the base register.

The write buffer decouples the execution units from the bus interface
unit. Since the core can generate store instructions at a higher rate than the
external cache or main memory can accept them, this decoupling is necessary
in order to avoid pipeline stalls. To this end, the write buffer contains a four-
entry queue, such that each entry contains a whole cache-line (32 bytes). New
stores are appended to the end of the queue, while stores at the head of the
queue are sent to the bus interface unit if certain conditions are met.

Instead of simply buffering the stores, the write buffer allows stores to
the same cache-line to merge with already existing entries. Note that the
merging of stores may change the number as well as the ordering of stores -
memory barriers must be inserted in the instruction stream if strict ordering
is required. Apart from this reordering by merging, stores are not reordered.

The load/store unit can accept new commands until a data cache fill
is required, i.e. until a load miss occurs, since the data cache does not use
a write-allocate protocol. In the case of a load miss, instructions using the
load/store unit are no longer issued until the load miss has been resolved.
Since load misses are detected rather late in the pipeline, there may be up
to two instructions destined for the load/store unit in the pipeline. These
load/store instructions are placed in silos until the first load miss is resolved
and are subsequently replayed in program order. An exception to this rule
are loads that hit in the data cache, these are allowed to complete even in
the case of an outstanding cache fill.

Data Cache. The data cache is an 8 KB direct-mapped cache that uses
32 byte cache-lines. The cache is virtually indexed and tagged since the size
of the cache is equal to the page size. Load instructions that hit in the cache
incur a latency of three cycles. A write-through protocol is used to update
external caches or main memory. The data cache is kept coherent with main
memory by an invalidate bus, i.e. external system logic is responsible for
cache coherence. An interesting feature is the pending fill latch: Incoming
data from previous fill requests is accumulated in this latch while the cache
processes other requests, i.e. the cache supports hit-under-miss. If a whole
cache-line has accumulated in the pending fill latch, the whole cache-line is
written to the cache in a single cycle.

The translation between virtual and physical addresses for the data
stream is performed by the data translation buffer, a fully-associative buffer

264 A. Alpha Architecture & Implementations

with 32 entries for up to 512 pages per entry, each 8 KB large. Like the
instruction translation buffer, the data translation buffer is maintained by
PALcode.

Bus Interface Unit. The bus interface unit connects the internal caches
as well as the load/store unit to the external bus interface. A fixed priority
scheme is used to schedule requests from these three sources: data cache
fills have the highest priority, instruction cache fills come next, while the
load/store unit has the lowest priority. In addition, the bus interface unit
supports an external direct-mapped cache that ranges from 128 KB to 16 MB
in size.

A.3.2 Alpha 21064A

The 21064A microprocessor, code-named EV45, was introduced in late 1993
and is very similar to the 21064 described above. However, several enhance-
ments were made to the original design: The size of the instruction and data
caches was doubled to 16 KB each. In addition, error-correcting codes (ECC)
were added to both caches. The branch prediction was improved as well, as the
instruction cache maintains a two-bit saturating counter for each instruction
location. The floating-point execution unit was updated with a new division
algorithm that is able to retire 2.4 bits (on average) per cycle instead of the
original single bit per cycle. This reduces the latency for division operations
to 15 to 31 (19 average) and 22 to 60 (31 average) cycles for single-precision
and double-precision operands, respectively. The divider also calculates the
inexact flag correctly, therefore traps to software are no longer necessary to
calculate this flag.

The 21064A contains 2.8 M transistors due to the larger caches. The chip
was fabricated in an improved 0.5µ 4-layer metal CMOS process, yielding a
die size of 10.5× 14.5 mm2 compared to the original 12.4× 15.0 mm2. These
process improvements allow the 21064A to operate at a clock frequency of
275 MHz. Using a supply voltage of 3.3 V, the chip dissipates up to 33 W.
The 21064A is packaged in the same 431 CPGA package like the 21064. In
addition, the 21064A uses the same pin assignment. More information on
this implementation can be found in the corresponding hardware reference
manual [AXP96a].

A.3.3 Alpha 21066

The 21066 microprocessor, code-named LCA4 (Low Cost Alpha), is a deriva-
tive of the earlier 21064. The 21066 integrates several new functions around
a 21064-based core: a Peripheral Component Interface (PCI) bus interface,
a cache controller, a memory controller, a simple graphics controller, and a
phased-locked loop. The core is almost identical to the 21064, but the external
data bus width was decreased from 128 to 64 bits.

A.3 Implementations 265

Due to the additional functions, the 21066 contains 1.75 M, i.e. slightly
more than the original 21064. The chip was fabricated in a 0.675µ 3-layer
metal CMOS process, yielding a die size of 12.3× 17.0 mm2. The maximum
operating frequency was reduced to 166 MHz in order to increase yields and
lower cost. Unfortunately, the lower clock frequency together with the re-
duced size of the data bus caused a significant performance loss compared to
the 21064, hence the chip was primarily used in embedded applications. More
information on this implementation can be found in the corresponding hard-
ware reference manual [AXP96b] or Digital Technical Journal [MBC+94].

A.3.4 Alpha 21068

The 21068 microprocessor, code-named LCA4S, is identical to the 21066 mi-
croprocessor, but the maximum clock frequency is specified as 66 MHz, some-
times 100 MHz. The chip was fabricated by Samsung, hence the capital S in
the internal designation.

A.3.5 Alpha 21066A

The 21066A microprocessor, code-named LCA45, is based on the earlier
21066 microprocessor, but contains some minor improvements: The 21066A
uses the advanced floating-point divide algorithm introduced in the 21064A
and was fabricated in an improved CMOS process. The 21066A contains
1.8 M transistors and was fabricated in a 0.5µ 3-layer metal CMOS process,
yielding a die size of 10.9× 14.8 mm2. The maximum clock frequency was in-
creased to 233 MHz. More information on this implementation can be found
in the corresponding hardware reference manual [AXP96b].

A.3.6 Alpha 21164

The 21164 Microprocessor, code-named EV5, was introduced in late 1994 and
represents the first second-generation implementation of the Alpha architec-
ture. The chip executes up to 1.2 billion instructions per second due to the
capability to issue up to 4 instructions in each clock cycle and the 300 MHz
clock frequency. The 21164 supports the byte and word extension of the Al-
pha architecture instruction set as well as the IEEE and VAX floating-point
subsets. The memory system includes two 8 KB data and instruction caches,
an internal 96 KB unified second-level cache, as well as support for an exter-
nal third-level cache. The 21164 supports a virtual and physical address size
of 43 and 40 bits, respectively.

The chip contains 9.3 M transistors and was fabricated in a 0.5µ 4-layer
metal CMOS process, yielding a die size of 16.5× 18.1 mm2. Using a supply
voltage of 3.3 V, the chip dissipates up to 50 W. Like the earlier implementa-
tions, the 21164 is housed in a CPGA package, but the number of pins was

266 A. Alpha Architecture & Implementations

Fig. A.5. Alpha 21164 Internal Architecture

Data

Address

IRF

IBOX

FRF

MBOX

EBOX FBOX

Data Cache
C
B
O
X

S
C
A
C
H
E

Instruction Cache

Control

increased to 499. The internal architecture of the 21164 is depicted in Fig.
A.5, the following sections describe the individual elements in detail. The
information presented in these sections was gathered from the corresponding
hardware reference manual [AXP96c] and several journal articles [ERPR95],
[ERB+95], [KN95].

Instruction Cache. The instruction cache is an 8 KB direct-mapped cache
with 32 byte cache-lines. The cache has a single read and a single write port.
Cache coherency must be maintained in software by issuing IMB instructions.
Apart from the data and tag arrays, each cache-line contains a branch history
table using two-bit saturating counters for each instruction location, similar
to the instruction cache in the earlier 21064A processor. To improve yields,
the instruction cache has redundant rows that can be used to replace defective
rows during wafer probe.

Instruction Fetch and Decode Unit. The instruction fetch and decode
unit (IBOX) has five primary tasks: to fetch, decode, slot, and issue instruc-
tions, and to predict branches. Apart from these tasks, the instruction fetch
and decode unit is responsible for controlling the execution pipelines, es-
pecially in the presence of exceptions, traps, or interrupts. The following
paragraphs describe the individual tasks in detail.

Instruction fetch is performed by the prefetcher that fetches an aligned
block of four instructions from the instruction cache in each cycle. The in-
structions in the instruction cache are already partially decoded to ease the

A.3 Implementations 267

task of the instruction fetch and decode unit. Afterwards the instructions are
decoded in parallel and stored in one of the two instruction buffers. Each
instruction buffer is capable to hold four decoded instructions. Branch pre-
diction is used to determine the next fetch address and the instruction trans-
lation buffer is accessed.

The instruction cache stores two bits of branch history for every branch
instruction. These history bits are used to predict whether the branch is taken
or not-taken on the next execution. If the branch has never been executed
before, the same static branch prediction as in the 21064 is used. In addition
to the branch history table, the instruction fetch and decode unit contains
a four-entry return address stack to be used by indirect branches. Note that
the branch prediction logic is capable to predict up to six branches in each
cycle.

Instruction slotting resolves all static conflicts and assigns the individual
instructions to appropriate execution pipelines, while dynamic conflicts are
handled in the issue stage. The slotting stage is able to slot all four instruct-
ion in parallel for instruction mixes that contain one instruction for each
execution pipeline. The instruction fetch and decode unit slots instructions
in program order, since the 21164 issues instructions in program order. The
slotting logic assigns each instruction to one of the four execution pipelines
until it encounters an instruction for which no execution pipeline is available.
Integer instructions that can be executed by both integer execution pipelines
are assigned to the first integer pipeline, unless this pipeline has already been
allocated or the next instruction can only be allocated to this pipeline. A sim-
ilar rule applies for floating-point instructions that can execute in either the
add or the multiply pipelines. These instructions are assigned to the add
pipeline unless the add pipeline has already been allocated. Apart from the
rules mentioned above, the slotting logic enforces other rules, which are de-
scribed in detail in the corresponding hardware reference manual [AXP96c].

The slotted instructions advance to the issue stage, while the remaining
instructions will be slotted in subsequent cycles. Only instructions within the
original group of four instructions are slotted together, i.e. the next group of
instructions enters the slotting stage only if all instructions from the previous
group have advanced to the issue stage. The issue stage checks instructions for
dynamic conflicts, e.g. operand and resource conflicts. The instructions are
issued in program order, i.e. instruction issue stops whenever an instruction
with remaining conflicts is encountered, and resumes after these conflicts have
been resolved. The issue logic is capable to issue up to four instructions in
each cycle in the absence of dynamic conflicts.

Integer Unit. The integer unit consists of an execution unit (EBOX) as
well as a register file (IRF). The integer execution unit contains two inde-
pendent pipelines: the first pipeline is able to handle all arithmetic and logic
instructions including multiplication, as well as load, store, branch, and jump
instructions. The second pipeline can handle all arithmetic and logic instruc-

268 A. Alpha Architecture & Implementations

tions with the exception of multiplication, but cannot handle stores, branch,
or jump instructions. Note that load instructions can be handled by both
pipelines. All integer arithmetic instructions except multiply and conditional
moves have a latency of one cycle. Conditional moves have a latency of two
cycles, while the multiplier has a latency of 8 and 16 cycles for longword and
quadword operands, respectively.

The integer register file contains 40 registers, each 64 bits wide: the 32
integer registers defined by the Alpha architecture as well as 8 additional
registers that are only accessible to PALcode. The register file has four read
and two write ports: two read and one write port for each of the execution
pipelines. Note that the write ports are shared between the execution units
and the memory subsystem, i.e. the memory address translation unit.

Floating-Point Unit. The floating-point unit consists of the floating-point
execution unit (FBOX) as well as the floating-point register file (FRF).
The execution unit contains two separate pipelines instead of the single
pipeline used in earlier implementations. One of the pipelines executes multi-
ply instructions, while the other pipeline executes all other instructions. The
floating-point unit is therefore able to process up to two instructions in each
clock cycle.

The floating-point register file supports the 32 registers required by the
Alpha architecture, each 64 bits wide. The register file has five read ports
as well as four write ports: two read and one write port for each execution
pipeline, one read port and two write ports for the memory address transla-
tion unit.

Compared to the 21064 the latency of floating-point operations was re-
duced to four cycles for all operations except for division. The non-pipelined
divider uses the same algorithm that was used in the 21064A processor, hence
the latency for divide operations is 15 to 31 (19 average) and 22 to 60 (31 av-
erage) cycles for single-precision and double-precision operands, respectively.
The divider is associated with the add pipeline, instructions can still be is-
sued to the add pipeline even if a division is in progress. The floating-point
unit supports all IEEE and VAX rounding modes in hardware, including the
+∞ mode that was left out in earlier implementations.

Memory Address Translation Unit. The memory address translation
unit (MBOX) provides the interface between the execution units and the
memory system. The unit contains data and instruction translation buffers,
a miss address file, as well as an write buffer. Note the absence of an address
generation unit present in earlier implementations, this task is now performed
by the integer execution unit, i.e. the memory address translation unit already
receives virtual addresses from the integer unit.

The data translation buffer is a 64-entry, fully associative memory that
stores the virtual to physical address mappings for different page sizes: Each
entry supports up to 512 pages, each 8 KB large. A not-last-used strategy is
used to replace older entries. Compared to the 21064, the data translation

A.3 Implementations 269

buffer is considerably larger and has two read/write ports, since up to two
virtual addresses must be translated in each cycle.

The instruction translation buffer is a 48-entry, fully associative memory
that stores the virtual to physical address mappings for different page sizes:
Each entry supports up to 512 pages, each 8 KB large. A not-last-used strat-
egy is used to replace older entries. Compared to the data translation buffer,
the instruction translation buffer has only one read/write port.

The miss address file has ten entries and stores the address and data in-
formation of loads that miss in the caches. Subsequent load misses check the
miss address file and are merged with existing entries under certain condi-
tions. This allows multiple load misses to be serviced with a single fill from
the cache control and bus interface unit. The miss address file has six entries
for loads as well as four entries for instruction fetches. Each entry stores the
address of a 32 byte cache-line.

The write buffer is similar to the one used in the 21064, but has increased
to six entries. Note that the peak rate for stores is still one per cycle, since
stores can only be executed by the first integer execution pipeline.

Data Cache. The data cache is an 8 KB direct-mapped cache with 32 byte
cache-lines. The cache has two read ports as well as one write port and uses a
write-through, read-allocate protocol. Load instructions that hit in the cache
incur a latency of two cycles. The data cache is duplicated for performance
reasons, both copies are written simultaneously. The cache coherency is main-
tained by the cache control and bus interface unit described below. In order
to improve yields, the data cache has redundant rows that can be used to
replace defective rows during wafer probe.

Secondary Cache. The internal second-level cache is a 96 KB, 3-way set-
associative cache with a selectable cache-line size of 32 or 64 bytes. The cache
is unified for data and instructions and uses a write-back, write-allocate pro-
tocol. Load instructions that hit in the cache incur a latency of eight or more
cycles. Up to two outstanding cache requests can be queued. The secondary
cache has redundant rows and columns that can be used to replace defective
rows or columns during wafer probe in order to improve yields.

Cache Control and Bus Interface Unit. The cache control and bus inter-
face unit connects the memory subsystem to the internal second-level cache,
the external third-level cache as well as the system bus interface. The unit
controls the second- and third-level caches and is responsible for maintaining
cache coherency by implementing a modify, exclusive, shared, invalid (MESI)
protocol for multiprocessor systems.

The external third-level cache is a direct-mapped cache ranging from 1
to 64 MB in size with a selectable cache-line size of 32 or 64 bytes. Like
the internal second-level cache, the third-level cache uses a write-back, write-
allocate protocol.

270 A. Alpha Architecture & Implementations

A.3.7 Alpha 21164A

The 21164A, code-named EV56, is very similar to the 21164 described above,
but is fabricated in an improved 0.35µ 4-layer metal CMOS process. The
21164A uses the same number of transistors like the 21164, i.e. 9.67 M, which
yields a die size of 299 mm2 in the improved process. The maximum operating
frequency was increased to 625 MHz, at which the chip dissipates a maximum
heat of 62 W. More information on this implementation can be found in the
corresponding hardware reference manual [AXP98a].

A.3.8 Alpha 21164PC

The 21164PC, code-named PCA56 (Personal Computer Alpha), was intro-
duced in 1997 and is based on the 21164. Several modifications were made in
order to lower the cost of the chip: The internal second-level cache was omit-
ted, the choice of cache coherency protocols was restricted to the flush-based
coherency protocol, and the physical address size was reduced to 33 bits.
Several improvements were made as well: The 21164PC supports the MVI
extension of the Alpha architecture and the size of the internal instruction
cache was increased to 16 KB.

The chip consists of 3.5 M transistors and was fabricated by Mitsubishi in
a 0.35µ 4-layer metal CMOS process, yielding a die size of 8.65×16.28 mm2.
The 21164PC has a maximum operating frequency of 533 MHz and dissipates
up to 32 W using a core supply voltage of 2.5 V. More information on this
implementation can be found in the corresponding hardware reference manual
[AXP97].

The 21164PC code-named PCA57 is similar to the PCA56 described
above, but the design was further improved: The size of the internal in-
struction cache was increased to 32 KB, and the organization is 2-way set-
associative instead of direct-mapped. The size of the internal data cache was
increased to 16 KB as well. The number of entries in the write buffer was
increased from six to eight. The floating-point execution unit was improved
in order to reduce the latency of floating-point multiplies and divisions: A
multiply instruction has a latency of three cycles instead of the original four
cycles. The division algorithm retires 6 bits in each cycle compared to the
original 2.4 bits.

The PCA57 consists of 7 M transistors and was fabricated in a 0.28µ
4-layer metal CMOS process, yielding a die size of 6.7 × 15 mm2. The chip
has a maximum operating frequency of 583 MHz. More information on this
implementation can be found in the corresponding hardware reference manual
[AXP98b].

A.3.9 Alpha 21264

The 21264 processor, code-named EV6, was introduced in 1998 and repre-
sents the first third-generation implementation of the Alpha architecture.

A.3 Implementations 271

Fig. A.6. Alpha 21264 Internal Architecture

FRF

FBOX

IRF1 IRF2

EBOX

E2 E3E1E0 FA FM

IBOX

ICache

DCache

Address

Data

BCache

C
B
O
X

Control

The processor uses advanced techniques like out-of-order issue and is able to
execute up to six instructions per clock cycle. The memory system is differ-
ent from earlier implementations as it uses two 64 KB instruction and data
caches as well as an external second-level cache. The 21264 supports the
BWX, MVI, and FIX extensions to the Alpha architecture instruction set
as well as the IEEE and VAX floating-point subsets. The 21264 supports a
virtual and physical address size of 48 and 44 bits, respectively.

The chip consists of 15 M transistors and is fabricated in a 0.35µ 6-layer
metal CMOS process, yielding a die size of 310 mm2. Using a core supply
voltage of 2.2 V, the chip dissipates up to 60 W at the maximum clock fre-
quency of 500 MHz. The 21264 is packaged in a pin grid array (PGA) with
587 pins.

The internal architecture of the 21264 is depicted in Fig. A.6, the following
sections describe the major elements in detail: instruction cache, instruction
fetch/decode unit, integer unit, floating-point unit, data cache, and cache
control unit. The information in these sections was gathered from various
sources, namely the corresponding hardware reference manual [AXP00a] and
several articles [Gwe96][LR97][MBB+98][KMW98][Kes99].

Instruction Cache. The instruction cache (ICache) is a 64 KB two-way set-
associative cache that uses a cache-line size of 64 bytes. The cache is virtually
indexed, physically tagged, and protected by error-correcting codes. In each
cycle, the instruction cache delivers up to four instruction to the instruction
fetch and decode unit. In order to reduce fetch bubbles, the instruction cache

272 A. Alpha Architecture & Implementations

uses two additional fields in each cache-line to predict the line and set of the
next instruction cache access. The line and way prediction fields are trained
by the instruction fetch and decode unit, i.e. the branch prediction logic. An
additional two-bit saturating counter ensures that the prediction fields are
only trained when multiple wrong predictions in a row occur.

Instruction Fetch and Decode Unit. The instruction fetch and decode
unit (IBOX) has five primary tasks: fetching, decoding, issuing, and retir-
ing instructions as well as branch prediction. Apart from these tasks, the
instruction fetch and decode unit is responsible for controlling the execu-
tion pipelines, especially in the presence of exceptions, traps, or interrupts.
The unit consists of the program counter, the branch prediction, register re-
naming, as well as retiring logic. The program counter logic maintains the
addresses of all instructions that are in-flight, i.e. are currently executing.
The instruction fetch addresses are stored in a 20-entry queue, hence there
can be up to 80 in-flight instructions, as each instruction fetch consists of
four instructions.

The branch prediction logic was significantly enhanced from earlier im-
plementations of the Alpha architecture: The 21264 processor uses a combi-
nation of three different branch predictors, i.e. the local, global, and choice
predictors.

The local predictor uses a two-level table to store branch history infor-
mation. The first level consists of a branch history table with 1024 entries
that store the history of the ten most recent branches. This table is indexed
with the lower bits of the virtual address of the branch instruction. Note
that different branches may share the same entry if their virtual addresses
are identical in these low-order bits. The second level consists of a 1024-entry
branch prediction table that is indexed with the results from the first level.
Each entry in the second-level table contains a three-bit saturating counter
that is used to predict the outcome (taken/not-taken) of the branch.

The global predictor uses a 12-entry global history buffer to store the
outcome of the 12 most recent branches. The contents of this buffer are used
to index a 4096-entry branch prediction table. Each entry contains a two-bit
saturating counter that is used to predict the outcome (taken/not-taken) of
the branch.

The choice predictor selects between the local and global predictors. The
contents of the global history buffer described above are used to index a
4096-entry branch prediction table. Each entry contains a two-bit saturating
counter that is used to select between the predictions from the local or global
branch predictor.

The register renaming logic maps the architected registers specified by the
instructions to the physical registers of the 21264 processor. The integer and
floating-point register files each support 72 registers instead of the 32 registers
defined by the architecture. The register mapping is used to resolve write-
after-read and write-after-write dependencies as well as allowing speculative

A.3 Implementations 273

instruction execution. The mapping logic is able to map four instructions
in each cycle and stores the complete register mapping for each instruction
in an 80-entry buffer. Note that the number of entries corresponds to the
number of in-flight instructions. These register mappings are used in the case
of branch mispredictions and exceptions, such that the register mapping that
corresponds to the offending instruction can be restored. The renaming logic
is able to restore the map of an instruction in a single cycle.

After renaming, the instructions are forwarded to the integer and floating-
point issue queues. In order to maintain the sequential programming seman-
tics, instructions are retired in program order, although they are issued and
executed out-of-order. An instruction is retired if all previous instructions
have been executed without causing exceptions, e.g. branch mispredictions.
The retiring logic is able to retire up to 11 instruction in a single cycle and
can sustain a retire rate of eight instructions per cycle.

Integer Unit. The integer unit consists of the integer instruction queue, the
four integer execution pipelines (EBOX) organized in two clusters, as well as
one copy of the integer register file (IRF1, IRF2) for each cluster. Each copy
of the register file contains 80 registers, each 64 bits wide: These registers are
used for register renaming of the architected 32 registers as well as 8 registers
that are reserved for PALcode. The integer register file was duplicated due to
the large number of read and write ports. Each copy supports six write and
four read ports: two read and one write port for each of the two execution
pipelines in a cluster, two write ports shared between the floating-point unit
and the memory unit, as well as two write ports used to synchronize the two
copies of the integer register file. Note that it takes one cycle until results
from one cluster are available in the other cluster.

Each cluster consists of a lower and an upper execution pipeline. The
lower execution pipelines in both clusters are identical and can execute sim-
ple integer operate instructions as well as integer or floating-point load and
store instructions. The upper execution pipelines are different: Both pipelines
execute simple integer operate instructions as well as branch and shift instruc-
tions. However, only one pipeline can execute multiply instructions, while the
other pipeline can execute motional video instructions. All integer arithmetic
instructions, except multiply, motional video, and count instructions, have a
latency of one cycle. Motional video and count instructions have a latency of
three cycles. The multiply instruction has a latency of seven cycles, both for
longword and quadword operands.

The integer issue queue stores up to 20 instructions and is able to issue
up to four instructions in each cycle to the execution pipelines. The instruct-
ion fetch and decode unit stores new instructions in the integer issue queue,
provided that four or more entries are available. Upon entry, each instruct-
ion is statically assigned to one of the two arbiters: one arbiter handles the
lower execution pipelines in both clusters, while the other arbiter handles the
upper execution pipelines in both clusters. Each arbiter issues the two oldest

274 A. Alpha Architecture & Implementations

instructions in each cycle and slots the instructions to the left or right cluster
based upon the position of the instructions in the instruction fetch stream.
Note that critical path computations tend to execute on the same cluster due
to the additional cycle before results from the other cluster become available.

Floating-Point Unit. The Floating-point unit consists of the floating-point
execution unit (FBOX) as well as the floating-point register file (FRF).
The execution unit contains two separate execution pipelines similar to the
floating-point unit in the 21164 processor. One of the pipelines executes mul-
tiply instructions, while the add pipeline executes the remaining instructions.
The floating-point unit is therefore able to process up to two instructions in
each clock cycle.

The floating-point register file contains 72 registers, each 64 bits wide, that
are used for register renaming of the architected 32 registers. The register file
has five read ports as well as four write ports: two read and one write port for
each execution pipeline, one read port and two write ports for the memory
address translation unit.

Compared to the 21164, the latency of floating-point operations was kept
at four cycles for all operations except division and square-root. Division
operations have a latency of 12 and 15 cycles for single-precision and double-
precision operands, while square-root operations have a latency of 18 and
30 cycles for single-precision and double-precision operands, respectively.
The non-pipelined divider and square-root units are associated with the add
pipeline, but instructions can still be issued to the add pipeline even if a divi-
sion or square-root instruction is in progress. The floating-point unit supports
all IEEE and VAX rounding modes in hardware.

Memory Address Translation Unit. The memory address translation
unit (MBOX) controls the internal memory system and can execute any com-
bination of two loads and stores in each cycle. In addition, the unit handles
up to 32 outstanding loads, 32 outstanding stores, as well as eight cache inval-
idations. The memory address translation unit consists of the instruction and
data translation buffers, load and store queues, as well as the miss address
file.

The instruction translation buffer is a 128-entry fully associative memory
that stores the virtual to physical address mappings for different page sizes:
Each entry supports up to 512 pages, each 8 KB large. A not-last-used strat-
egy is used to replace older entries. In contrast to the data translation buffer,
the instruction translation buffer has only one read/write port.

The data translation buffer is a 128-entry fully associative memory that
stores the virtual to physical address mappings for different page sizes: Each
entry supports up to 512 pages, each 8 KB large. A not-last-used strategy is
used to replace older entries. Compared to the 21064, the data translation
buffer is considerably larger and has two read/write ports, since up to two
virtual addresses must be translated in each cycle.

A.3 Implementations 275

The load queue is a 32-entry reorder buffer for outstanding load instruc-
tions. The load queue stores load instructions in program order, although the
load instructions enter the queue out-of-order. The memory references them-
selves are stored out-of-order, but loads exit the queue in program order to
ensure correct memory behavior.

The store queue is a 32-entry reorder buffer for outstanding store instruc-
tions. The store queue buffers store instructions in program order, although
the store instructions enter the queue out-of-order. The memory references
themselves are stored out-of-order, but stores exit the queue in program order
to ensure correct memory behavior.

The load and store queues use dual-ported content-addressable memories
to resolve read-after-read, read-after-write, write-after-read, and write-after-
write hazards and support the propagation of store data from the store queue
to the load queue.

The miss address file has ten entries and stores the address and data in-
formation of loads that caused a cache miss. Subsequent load misses check
the miss address file and are merged with existing entries under certain con-
ditions. This allows multiple load misses to be serviced with a single fill from
the cache control and bus interface unit. The miss address file has six entries
for loads as well as four entries for instruction fetches. Each entry stores the
address of a 32 byte cache-line.

Data Cache. The data cache is a 64 KB two-way set-associative cache that
uses a cache-line size of 64 bytes. The cache is virtually indexed, physically
tagged, protected by error correcting codes and uses a write-back, write-
allocate protocol. Load instructions that hit in the cache incur a latency
of three or four cycles for integer and floating-point loads, respectively. The
cache is double-pumped, i.e. operates at two times the core frequency in order
to support two independent accesses in each cycle.

Backup Cache. The backup cache is an external, direct-mapped cache,
that ranges from 1 to 16 MB in size. The 21264 processor uses a dedicated
128 bit data bus to interface to the backup cache. The maximum bandwidth
of 6.4 GB/s across this bus is obtained by using synchronous double-data-rate
static random-access memory (DDR SSRAM). The size, speed, and type of
the cache memories is selectable to fit a wide range of price/performance
points.

Cache Control and Bus Interface Unit. The cache control and bus in-
terface unit provides the interface between the internal memory system and
the external cache and system busses. The external cache interface consists
of a 128 bit data bus as well as a 20 bit address bus. The bus speed for both
point-to-point connections is adjustable, providing a maximum bandwidth of
6.4 GB/s. The system bus is a point-to-point connection that consists of a
64 bit data bus as well as a 45 bit address bus. The speed of these busses is
adjustable as well, providing a maximum bandwidth of 3.2 GB/s.

276 A. Alpha Architecture & Implementations

The cache control and bus interface unit consists of the write buffer, the
I/O write buffer, the probe queue, as well as a copy of the tag array from the
internal data cache.

The write buffer is an eight-entry buffer, where each entry contains a
whole cache-line. New stores are appended to the end of the queue, while
stores at the head of the queue are sent to the bus interface unit if certain
conditions are met. Instead of simply buffering the stores, the write buffer
allows stores to the same cache-line to merge with already existing entries.

The I/O write buffer is a four-entry buffer that is used to store I/O write
requests from the store queue. The probe queue contains eight entries and is
used to store cache probe requests from the system bus.

The cache control and bus interface unit uses a copy of the tag array from
the internal data cache to speed up cache fills and probe requests. The 21264
processor supports a rich set of cache probe requests to support a wide range
of cache coherency protocols.

A.3.10 Alpha 21264A

The 21264A, code-named EV67, is very similar to the 21264 described above,
but is fabricated in an improved 0.25µ 6-layer metal CMOS process. The
21264A uses the same number of transistors like the 21264, yielding a die
size of 225 mm2 in the improved process. The maximum clock frequency was
increased to 750 MHz. Using a supply voltage of 2.1 V the chip dissipates a
maximum heat of 90 W. More information on this implementation can be
found in the corresponding hardware reference manual [AXP00b].

A.3.11 Alpha 21264B

The 21264B, code-named EV68, is very similar to the 21264 described in
Section A.3.9, but is fabricated in an improved 0.18µ 6-layer metal CMOS
process. The 21264B uses the same number of transistors like the 21264,
yielding a die size of 115 mm2 in the improved process. The maximum clock
frequency was increased to 1 GHz. Using a supply voltage of 2.1 V, the chip
dissipates a maximum heat of 75 W. More information on this implementation
can be found in the corresponding hardware reference manual [AXP00c].

A.3.12 Alpha 21364

The 21364 microprocessor, code-named EV7, is expected in 2001/2002 and
will represent the first of the forth-generation implementations of the Alpha
architecture. The 21364 supports all extensions of the Alpha architecture as
well as the IEEE and VAX floating-point subsets. The chip integrates an
improved core that is based on the 21264, a large (1.75 MB) unified second-
level cache, two multi-channel RDRAM controllers, network routers, and I/O

A.3 Implementations 277

routers. The network routers offer glue-less support for up to 64 processors
in a two-dimensional torus configuration. The information in this section was
gathered from several articles [Gwe98][Ban99][MJA+01].

The chip consists of 152 M transistors, the major part (138 M) is consumed
by various caches. The chip is fabricated in a 0.18µ 7-layer metal CMOS
process, yielding a die size of 21.1× 18.8 mm2. Note that the routing process
was changed from earlier implementations of the Alpha architecture: The
21364 uses routing channels for global busses, while the voltage reference
planes were replaced by individual current return lines. Using a core supply
voltage of 1.5 V, the chip dissipates up to 120 W at the maximum operating
frequency of 1.2 GHz. The 21364 is packaged in a land grid array (LGA) with
1443 pins.

The 21364 core is based on the 21264 core, major changes were only
made to the cache controller in order to support the integrated second-level
cache. The cache controller supports up to 71 outstanding operations: 16
misses from the first-level caches, 16 victims from the second-level cache, 18
probe requests from external devices, 17 requests from other processors, as
well as four I/O requests. The second-level cache is a 1.75 MB seven-way set-
associative cache using a write-back, write-allocate policy, as well as ECC
protection. The cache can deliver up to 16 bytes in each cycles, providing a
bandwidth of 19.2 GB/s.

The two memory controllers interface directly to external Rambus DRAM
modules. Each memory controller supports up to four Rambus DRAM chan-
nels for a total of eight channels, thus providing 12.8 GB of memory band-
width. The memory controllers support up to 28 outstanding requests. The
network router supports four network links as well as one I/O link, each link
provides a bandwidth of 6.4 GB/s. The network links are used to form a two-
dimensional torus network with up to 64 processors. The I/O link connects
to an external I/O chip set that provides access to various I/O interfaces.
The network and I/O router is implemented as an eight-by-seven crossbar,
i.e. eight read ports (four network, one I/0, two memory and one cache) and
seven write ports (four network, one I/O, two memory). The crossbar uses a
distributed arbitration scheme and provides buffering for up to 300 packets.

A.3.13 Alpha 21464

The 21464 processor, code-named EV8, represents the first of the fifth-
generation implementations of the Alpha architecture and was scheduled to
arrive in 2003/2004. As the Alpha architecture was discontinued recently,
the EV8 project was canceled. However, some information about this imple-
mentation is already available: The 21464 supports four-way simultaneous
multithreading that was discussed in Section 1.4.1, a radical step from earlier
implementations [Die99]. The support for simultaneous multithreading was
estimated to consume less than 10 % of the transistor budget, as the multi-
threading support was built on top of a traditional out-of-order core. Apart

278 A. Alpha Architecture & Implementations

from multithreading, the 21464 was planned to have eight function units, a
large internal second-level cache (approximately. 3 MB) as well as an inte-
grated multi-channel interface to Rambus DRAM. The 21464 was expected
to consist of 250 M transistors and would have been fabricated in a 0.125µm
CMOS process.

B. Cray T3E E-Register Programming

The Cray T3E E-registers are a powerful mechanism to tolerate the latency
of accesses to local and remote memory. This goal is achieved by significantly
increasing the number of outstanding memory operations and pipelining in-
dividual requests. Due to compatibility reasons, the shmem library supports
these features only inside function calls, i.e. the hardware is fully utilized
only for large block transfers. Only the benchlib supports the full capability
of the hardware, but this library was never officially supported and is no
longer available to the general public. Therefore direct programming of the
E-registers is required to use the full potential of the hardware.

Since the Cray publication [Cra97c] that contains the required program-
ming information is only available under the conditions of an non-disclosure-
agreement, the information presented in this chapter is gathered from vari-
ous public sources instead, most notably the Cray T3E optimization guides
[ABH97][Cra97b] and the standard header files hwdefs.h [Cra97a], mpphw.h
[Cra98a], and shmem.h [Cra98c].

Section B.1 provides basic information about the E-registers from a pro-
grammer’s point of view. Section B.2 covers the communication routines used
in the implementation of the emulation library for the Cray T3E in detail,
thereby covering almost all E-register commands. Section B.3 derives some
guidelines for programming the E-registers and describes a serious flaw in
early T3Es and the implications for programming the E-registers.

B.1 E-Register Programming

Each processing element has two sets of E-registers: a set of 512 user-
accessible E-registers and a set of 128 E-registers reserved for system use.
This section will cover only the first set, since access to the second set is pro-
hibited for application programmers. The set of 512 E-registers is mapped to
memory starting at offset MPC_EREG_BASE.

Each E-Register can be used either as a source and destination E-Register
(SADE) or as part of a more-operands block of four E-registers (MOBE).
The source-and-destination E-registers are used for the actual data transfers,
while the more-operands blocks provide additional information for E-Register
commands: The first two E-registers contain the mask and offset for the

280 B. Cray T3E E-Register Programming

hardware centrifuge and are required for every E-Register command. The
third E-register usually contains the stride for vector commands, while the
fourth E-register usually contains the addend for fetch-and-add commands.

The following conventions are valid for programming the user-accessible
set of E-registers:

• E-registers zero to three form a read-only more-operands block that con-
tains a default centrifuge mask, a zero offset, a quadword stride, and a
longword addend. This block can be used for most accesses to local or
remote memory, thereby eliminating the overhead of initializing a more-
operand block prior to each access. These E-registers are located at offset
_MPC_E_REG_STRIDE1 from MPC_EREG_BASE.
• E-registers four to seven form a partial read-only more-operands block that

contains a default centrifuge mask, a zero offset, and a longword stride.
The addend can be set to any value, which is useful for fetch-and-add
commands. These E-registers are located at offset _MPC_E_REG_STRIDE_LW
from MPC_EREG_BASE.
• E-registers eight to 15 form two callee-save more-operands blocks. A sub-

routine may use these E-registers as more-operands blocks only if the con-
tents are saved upon subroutine entry and restored before the subrou-
tine returns. These callee-save blocks are useful if memory arrays with
a non-standard distribution are frequently accessed, as the corresponding
more-operands blocks do not need to be initialized after each subroutine
call. These E-registers are located at offset _MPC_E_REG_SAV_MOBE from
MPC_EREG_BASE.
• E-registers 16 to 32 form four scratch more-operands blocks that may be

used without saving and restoring their contents first and afterwards, re-
spectively. In addition, these E-registers can also be used as source-and-
destination registers, as long as operations using these E-registers are guar-
anteed to complete, i.e. never go to full-fault state. These E-registers are
located at offset _MPC_E_REG_SCR_MOBE from MPC E REG BASE.
• E-registers 32 to 511 may be used as source-and-destination registers with-

out saving or restoring their contents first or afterwards, respectively. In
addition, these E-registers can also be used as more-operands blocks, pro-
vided that any full-fault state is cleared first. These E-registers are located
at offset _MPC_E_REG_SADE from _MPC_E_REG_BASE.

Apart from the E-registers themselves, there is a set of state registers for
each set of E-registers. Each state register is 64 bits wide and contains the
state for 32 E-registers, since the state for a single E-register occupies two bit.
As a consequence, there are 16 state registers for the set of user-accessible
E-registers, as well as 4 state registers for the set of E-registers reserved for
system use. The mapping between E-registers and the corresponding state
registers is straight-forward: The ith state register contains the state for the
E-registers numbered from 32i to 32(i + 1) − 1 in ascending order, i.e. the

B.1 E-Register Programming 281

state for E-register 32i is located in the least-significant bits and the state
for E-register 32(i+ 1)− 1 is located in the most-significant bits.

Since the state for each E-register is two bits wide, there are four possible
states:

• The empty state (_MPC_STC_EMPTY) signals that the last E-register com-
mand using the corresponding E-register as source-and-destination register
is still outstanding.
• The full-fault state (_MPC_STC_FULL_F) signals that the last E-register

command using the corresponding E-register as source-and-destination reg-
ister has completed with errors.
• The full state (_MPC_STC_FULL) signals that the last E-register command

using the corresponding E-register as source-and-destination register has
completed successfully.
• The full-send-reject state (_MPC_STC_FULL_SR) signals that the last send

command using the corresponding E-register as source-and-destination reg-
ister has been rejected.

The pending register located at _MPC_MR_EREG_PENDING provides a sum-
mary of the state for the individual E-registers in the two least-significant
bits: The least significant bit of this register is set if there is at least one
outstanding get command, cleared otherwise. The other bit of this register is
set if there is at least one outstanding put command, cleared otherwise.

The E-register mechanism supports the following set of commands:

• The get command (_MPC_EOP_ERS_GET) returns the contents of a location
in local or remote memory, i.e. performs a local or remote memory read.
• The put command (_MPC_EOP_ERS_PUT) updates the contents of a location

in local or remote memory, i.e. performs a local or remote memory write.
• The swap command (_MPC_EOP_MSWAP) updates the contents of a location

in local or remote memory and returns the original contents of the local or
remote memory location.
• The conditional swap command (_MPC_EOP_CSWAP) updates the contents of

a location in local or remote memory provided that the original contents
meet the specified condition: In this case, the local or remote memory
location is updated and the original contents are returned, similar to the
swap command. Otherwise, the local or remote memory location remains
unchanged and the original contents are returned.
• The fetch-and-increment command (_MPC_EOP_GET_INC) increments the

contents of a location in local or remote memory and returns the original
contents.
• The fetch-and-add command (_MPC_EOP_GET_ADD) adds the specified value

to the contents of a location in local or remote memory and returns the
original contents.
• The send command (_MPC_EOP_SEND) stores a message to a local or remote

memory location. The specified memory location must contain a message

282 B. Cray T3E E-Register Programming

queue control word in order to ensure proper delivery of the message. The
message queue control word defines a message queue of arbitrary size. This
command is used to implement message-passing communication libraries,
e.g. MPI [SOHL+98][GHLL+98], PVM [GBD+94].

• The state command (_MPC_EOP_ERS_READ) returns the contents of the spec-
ified state register.

The individual E-register commands described above can be combined
with several qualifiers:

• The local qualifier (_MPC_EOM_LOCAL) can be combined with all commands
except the state read if the corresponding command is guaranteed to access
a local memory location.
• The vector qualifier (_MPC_EOM_V8) is implied by the send command and

can be combined with the get and put commands to transfer blocks of eight
E-registers with a single command: A get and put command combined with
the vector qualifier uses eight consecutive source-and-destination registers
to perform reads and writes to local or remote memory locations. This
qualifier is useful for transferring large blocks of data, e.g. arrays.
• The longword qualifier(_MPC_EOM_32BIT) can be combined with all E-

register commands except the send and state read commands. This quali-
fier indicates that the corresponding command accesses longword locations
instead of the default quadword locations.
• The bypass qualifier (_MPC_EOM_BYSTT) can be combined with all E-register

commands to bypass the segment translation table that is used to generate
global addresses. As described in Section 6.1.2, the segment translation
table is an integral part of the address generation mechanism, hence this
qualifier is usually not used by the application programmer.
• The fixed qualifier (_MPC_EOM_FIXOR) can be combined with all E-register

commands and ensures ordering between different E-register commands.
All E-register commands using this qualifier are executed in the order in
which they were issued.

It is possible to combine several of the above qualifiers with an E-register
command, e.g. the get command in conjunction with the local and vector
qualifiers.

An E-register command is issued by a write to a specific address. Both
the address and the written data are used to specify the individual E-register
command: The address depends on the command type as well as the used
source-and-destination register. The data depends on the address of the local
or remote memory location, the number of the local or remote processing
element, as well as the used more-operands block.

The address is relative to the MPC_EREG_BASE base, the offset is deter-
mined as follows: Bits 13 to 21 are used to specify the command type and qual-
ifiers, bits 0 to 12 are used to store the number of the source-and-destination

B.2 E-Register Routines 283

register. Note that the three least-significant bits are always zero, except for
commands that use the vector qualifier.

The data uses the following format: Bits 56 to 63 specify the number of
the more-operands block, bits 38 to 49 are used to store the number of the
local or remote processing element, and the least-significant 38 bits are used
to store the virtual address. Note that the number of the local or remote
processing element is determined from a combination of the least-significant
50 bits, i.e. the number of the processing element and the virtual address, by
the hardware centrifuge described in Section 6.1.2. This centrifuge is useful
for distributing arrays across processors in a non-trivial way. The number of
the processing element is taken from bits 38 to 49, if the default centrifuge
mask is used.

B.2 E-Register Routines

The emulation library contains communication and synchronization routines
that support a split-transaction protocol, i.e. separate issue and completion
of local or remote memory requests. On the Cray T3E these routines are
implemented by directly accessing the E-registers. As the individual routines
use almost all E-register commands, they are well-suited to illustrate the
aspects of E-register programming.

This section contains line-by-line descriptions of the individual communi-
cation and synchronization routines in the emulation library, i.e. the routines
described in Section 2.2.3. Sections B.2.1, B.2.2, and B.2.3 cover the basic
get and put routines. The conditional and unconditional swap routines are
described in Sections B.2.4 and B.2.5, respectively. Sections B.2.6 and B.2.7
cover the fetch-and-add and fetch-and-increment routines. The routines de-
scribed in Sections B.2.8 and B.2.9 provide information about the state of E-
register operations. Note that these sections are intended to form a reference
for the individual E-register commands and often contain similar material.

B.2.1 EMUereg int get()

The EMUereg int get() routine issues a get E-register command to a location
in local/remote memory similar to the shmem int get() routine in the shmem
library. In contrast to shmem int get(), this routine returns immediately after
issuing the E-register command, i.e. without waiting for the local/remote
memory transaction to complete.

void EMUereg_int_get(int ereg, const int *addr, int pe)
{
volatile long *Ecmd;

The EMUereg int get() routine expects three arguments:

284 B. Cray T3E E-Register Programming

ereg: the number of the source-and-destination register to use.
addr: the address of the local or remote memory location.
pe: the number of the local or remote processing element.

The Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_GET(_MPC_E_REG_SADE + ereg));

The address of the E-register command is initialized. Note that the ad-
dress specifies the type of the E-register command as well as the E-register
to use. The _GET macro is defined as

_GET(x) = (_MPC_E_REG_BASE | _MPC_EOP_GET | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations. The
MPC_EOP_GET macro sets the corresponding address bits for a get command.
Since all E-register routines in the emulation library count the source-and-
destination registers relative to the first source-and-destination register in-
stead of the first more-operands block, the offset from the first source-and-
destination register has to be added.

_write_memory_barrier();

The write memory barrier is an intrinsic for the WMB instruction and
separates the initialization of the Ecmd variable above from the subsequent
issue of the E-register command. This barrier is required as issuing both
writes in reverse order results in a write to an unpredictable address.

*Ecmd = ((_MPC_E_REG_STRIDE1>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(addr));

After the Ecmd variable has been initialized to the correct address, the
get command is issued by a write to that address. Note that the address
of this write specifies the E-register command as well as the source-and-
destination register to use, while the written data specifies the corresponding
more-operands block, the address of the memory location, as well as the
processing element.

The EMUereg int get() routine uses the default more-operands block,
which is read-only and provides a zero offset, a quadword stride, and a long-
word addend for fetch-and-add operations. Since such a block consists of four
E-registers, the number of the first E-register in the block is right-shifted by
two bits to get the offset of the more-operands block. This offset is stored at
the eight bits starting from bit _MPC_BS_EDATA_MOBE. The second line stores
the number of the processing element in the twelve bits starting from bit
_MPC_BS_DFLTCENTPE, since the default centrifuge mask is used. The address
of the memory location is stored in the least-significant 38 bits before the
data is written to the address specified by the Ecmd variable.

B.2 E-Register Routines 285

_memory_barrier();
}

This memory barrier is an intrinsic for the mb instruction and separates the
issue of the E-register command above from the subsequent load of the source-
and-destination register. This barrier is required as issuing both operations in
reverse order causes the load of the E-register to return the wrong value. Since
the E-register command is issued by a write and the command is completed
by a read of the E-register, a write memory barrier is not sufficient.

B.2.2 EMUereg int load()

The EMUereg int load() routine returns the contents of the specified source-
and-destination E-register that contains the results of a previous E-register
command issued by one of the other E-register routines.

int EMUereg_int_load(int ereg)
{
volatile int *sade = ((volatile int*)_MPC_E_REG_BASE) +

_MPC_E_REG_SADE;

sade += ereg;

The EMUereg int load() routine expects a single argument: the number
of the source-and-destination E-register. The sade variable is initialized to
the address of the first of these registers and is subsequently updated to point
to the specified register. A simple addition is sufficient for this update, as the
number of the register is stored in the least-significant part of the address.

memory_barrier();

return(*sade);
}

The contents of the specified source-and-destination E-register are retrieved
by a load to the address stored in the sade variable and returned immediately.
A write memory barrier is used to separate the update of the sade variable
from the subsequent load of the E-register. Otherwise both operations could
be executed in reverse order, causing the load of the E-register to return the
contents of the first source-and-destination register instead of the specified
E-register.

B.2.3 EMUereg int put()

The EMUereg int put() routine performs a remote put operation similar
to the shmem int put() routine from the shmem library. In contrast to
shmem int put(), the source-and-destination register used for the data trans-
fer can be specified for the EMUereg int put() routine.

286 B. Cray T3E E-Register Programming

void EMUereg_int_put(int ereg, const int *addr,
const int value, int pe)

{
volatile int *sade = ((volatile int *)_MPC_E_REG_BASE) +

_MPC_E_REG_SADE;
volatile long *Ecmd;

The EMUereg int put() routine expects four arguments:

ereg: the number of the source-and-destination register to use.
value: the value to store in the local or remote memory location.
addr: the address of the local or remote memory location.
pe: the number of the destination processing element.

The sade variable is initialized to the address of the first source-and-
destination E-register and is subsequently updated to point to the specified
E-register, while the Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_PUT(_MPC_E_REG_SADE + ereg));
sade += ereg;

The address of the E-register command is initialized. The _PUT macro is
defined as

_PUT(x) = (_MPC_E_REG_BASE | _MPC_EOP_PUT | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations. The
MPC_EOP_PUT macro sets the corresponding address bits for a put command.
Since the EMUereg routines count the source-and-destination registers rel-
ative to the first source-and-destination register instead of the first more-
operands block, the offset from the first source-and-destination register has
to be added. The sade variable is initialized to the address of the first source-
and-destination E-register above and is subsequently updated to point to the
specified E-register.

*sade = value;

_write_memory_barrier();

The value to store in the local/remote memory location is stored in the
specified E-register by writing the value to the address given by the sade
variable.

The write memory barrier is required to separate the initialization of the
Ecmd and sade variables as well as the update of the E-register from the sub-
sequent issue of the E-register put command. Otherwise, memory operations
could be reordered, such that the issued E-register command references an
unpredictable address or stores the unpredictable contents of the E-register
to the destination.

B.2 E-Register Routines 287

*Ecmd = ((_MPC_E_REG_STRIDE1>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(addr));

After the Ecmd variable has been initialized to the correct address, the
put command is issued by a write to that address. The EMUereg int put()
routine uses the default more-operands block, which is read-only and provides
a zero offset, a quadword stride, as well as a longword addend for fetch-and-
add operations. Since such a block consists of four E-registers, the number of
the first E-register in the block is right-shifted by two bits to get the offset
of the more-operands block. This offset is stored at the eight bits starting
from bit _MPC_BS_EDATA_MOBE. The second line stores the number of the
processing element in the twelve bits starting from bit _MPC_BS_DFLTCENTPE,
since the default centrifuge mask is used. The address of the memory location
is stored in the least-significant 38 bits, before the data is written to the
address specified by the Ecmd variable.

_memory_barrier();
}

The memory barrier is required to separate the issue of the E-register
command from subsequent accesses to the specified E-register.

B.2.4 EMUereg int cswap()

The EMUereg int cswap() routine issues a conditional swap, i.e. the contents
of the local or remote memory location is only updated if the original con-
tents are equal to the condition. The original contents of the local or remote
memory location are returned in every case. The EMUereg int cswap() rou-
tine is similar to the shmem int cswap() routine from the shmem library. In
contrast to shmem int cswap(), this routine returns immediately after issuing
the E-register command, i.e. without waiting for the local or remote memory
transaction to complete.

void EMUereg_int_cswap(int ereg, const int *addr,
int cond, int value, int pe)

{
volatile int *mobe = ((volatile int *)_MPC_E_REG_BASE) +

_MPC_E_REG_SCR_MOBE;
volatile long *Ecmd;

The EMUereg int cswap() routine expects five arguments:

ereg: the number of the source-and-destination E-register to use.
addr: the address of the local or remote memory location.
cond: the value to compare with the content of the local or remote memory

location.

288 B. Cray T3E E-Register Programming

value: the value to store in the local or remote memory location.
pe: the number of the destination processing element.

As the EMUereg int cswap routine does not use the default more-operands
block, the mobe variable points to the first scratch more-operands block. The
Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_CSWAP(_MPC_E_REG_SADE + ereg));

The address of the E-register command is initialized. The _CSWAP macro
is defined as

_CSWAP(x) = (_MPC_E_REG_BASE | _MPC_EOP_CSWAP | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations.
The MPC_EOP_CSWAP macro sets the corresponding address bits for a con-
ditional swap command. Since the EMUereg routines count the source-and-
destination registers relative to the first source-and-destination register in-
stead of the first more-operands block, the offset from the first source-and-
destination register has to be added.

*(mobe + 0) = _MPC_E_DFLTCENT;
*(mobe + 1) = 0;
*(mobe + 2) = cond;
*(mobe + 3) = value;

The four E-registers in the scratch more-operands block are initialized for
the subsequent conditional swap operation. As with all E-register routines,
the default centrifuge mask is used together with a zero offset. The corre-
sponding values are stored in the first and second E-register of the scratch
block, respectively. The condition and value arguments are stored in the third
and fourth E-register. Note that the conditional swap operation uses a non-
standard allocation for the last two E-registers: The condition is placed in
the stride field, while the value is placed in the addend field.

_write_memory_barrier();

The write memory barrier is required to separate the initialization of the
Ecmd and mobe variables as well as the update of the more-operands block
of E-registers from the subsequent issue of the E-register conditional swap
command. Otherwise, memory operations could be reordered, such that the
issued E-register command references an unpredictable address, uses an un-
predictable condition, or stores an unpredictable value in the local or remote
memory location.

*Ecmd = ((_MPC_E_REG_SCR_MOBE>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(target));

B.2 E-Register Routines 289

After the Ecmd variable has been initialized to the correct address,
the conditional swap command is issued by a write to that address. The
EMUereg int cswap() routine uses the first scratch more-operands block of
E-registers, which was initialized above. Since such a block consists of four E-
registers, the number of the first E-register in the block is right-shifted by two
bits to get the offset of the block. This offset is stored at the eight bits start-
ing from bit _MPC_BS_EDATA_MOBE. The second line stores the number of the
processing element in the twelve bits starting from bit _MPC_BS_DFLTCENTPE,
since the default centrifuge mask is used. The address of the memory loca-
tion is stored in the least-significant 38 bits, before the data is written to the
address specified by the Ecmd variable.

_memory_barrier();
}

The memory barrier is required to separate the issue of the E-register
command from subsequent accesses to the specified E-register.

B.2.5 EMUereg int mswap()

The EMUereg int mswap() routine issues a memory swap, i.e. the contents of
the local or remote memory location are updated and the original contents of
the local or remote memory location are returned. The EMUereg int mswap()
routine is similar to the shmem int mswap() routine from the shmem library.
In contrast to shmem int mswap(), this routine returns immediately after
issuing the E-register command, i.e. without waiting for the local or remote
memory transaction to complete.

void EMUereg_int_mswap(int ereg, const int *addr,
int value, int pe)

{
volatile int *mobe = ((volatile int *)_MPC_E_REG_BASE) +

_MPC_E_REG_SCR_MOBE;
volatile long *Ecmd;

The EMUereg int mswap() routine expects four arguments:

ereg: the number of the source-and-destination E-register to use.
addr: the address of the local or remote memory location.
value: the value to store in the local or remote memory location.
pe: the number of the destination processing element.

As the EMUereg int mswap() routine does not use the default more-operands
block, the mobe variable points to the first scratch more-operands block. The
Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_MSWAP(_MPC_E_REG_SADE + ereg));

290 B. Cray T3E E-Register Programming

The address of the E-register command is initialized. The _MSWAP macro
is defined as

_MSWAP(x) = (_MPC_E_REG_BASE | _MPC_EOP_MSWAP | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations. The
MPC_EOP_CSWAP macro sets the corresponding address bits for a masked swap
command. Since the E-register routines in the emulation library count the
source-and-destination registers relative to the first source-and-destination
register instead of the first more-operands block, the offset from the first
source-and-destination register has to be added.

*(mobe + 0) = _MPC_E_DFLTCENT;
*(mobe + 1) = 0;
*(mobe + 2) = -1;
*(mobe + 3) = value;

The four E-registers in the scratch more-operands block are initialized for
the subsequent conditional swap operation. As with all E-register routines,
the default centrifuge mask is used together with a zero offset. The corre-
sponding values are stored in the first and second E-register of the scratch
block, respectively. The value is stored in the fourth E-register, while the
third E-register is initialized to all ones to ensure proper operation of the
unconditional swap command. Note that the unconditional swap operation
uses a non-standard allocation for the last two E-registers: The stride field is
used as a bit mask, while the value is placed in the addend field.

_write_memory_barrier();

The write memory barrier is required to separate the initialization of the
Ecmd and mobe variables as well as the update of the more-operands block
of E-registers from the subsequent issue of the E-register unconditional swap
command. Otherwise, memory operations could be reordered, such that the
issued E-register command references an unpredictable address or stores an
unpredictable value in the local or remote memory location.

*Ecmd = ((_MPC_E_REG_SCR_MOBE>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(target));

After the Ecmd variable has been initialized to the correct address,
the masked swap command is issued by a write to that address. The
EMUereg int mswap() routine uses the first scratch more-operands block of
E-registers, which was initialized above. Since such a block consists of four E-
registers, the number of the first E-register in the block is right-shifted by two
bits to get the offset of the block. This offset is stored at the eight bits start-
ing from bit _MPC_BS_EDATA_MOBE. The second line stores the number of the
processing element in the twelve bits starting from bit _MPC_BS_DFLTCENTPE,

B.2 E-Register Routines 291

since the default centrifuge mask is used. The address of the memory loca-
tion is stored in the least-significant 38 bits, before the data is written to the
address specified by the Ecmd variable.

_memory_barrier();
}

The memory barrier is required to separate the issue of the E-register
command from subsequent accesses to the specified E-register.

B.2.6 EMUereg int finc()

The EMUereg int finc() routine issues a fetch-and-increment command, i.e.
returns the original contents of the local or remote location as well as
incrementing the contents of the local or remote memory location. The
EMUereg int finc() routine is similar to the shmem int finc() routine from
the shmem library. In contrast to shmem int finc(), this routine returns im-
mediately after issuing the E-register command, i.e. without waiting for the
local or remote memory transaction to complete.

void EMUereg_int_finc(int ereg, const int *addr, int pe)
{
volatile long *Ecmd;

The EMUereg int finc() routine expects three arguments:

ereg: the number of the source-and-destination E-register to use.
addr: the address of the local or remote memory location.
pe: the number of the destination processing element.

The Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_GET_INC(_MPC_E_REG_SADE + ereg));

The address of the E-register command is initialized. Note that the ad-
dress specifies the type of the E-register command as well as the E-register
to use. The _GET_INC macro is defined as

_GET_INC(x) = (_MPC_E_REG_BASE |
_MPC_EOP_GET_INC | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations. The
MPC_EOP_GET_INC macro sets the corresponding address bits for a fetch and
increment command. Since the E-register routines in the emulation library
count the source-and-destination registers relative to the first source-and-
destination register instead of the first more-operands block, the offset from
the first source-and-destination register has to be added.

_write_memory_barrier();

292 B. Cray T3E E-Register Programming

The write memory barrier separates the initialization of the Ecmd variable
above from the subsequent issue of the E-register command. This barrier is
required as both writes may be issued in reverse order otherwise, causing a
write to an unpredictable address.

*Ecmd = ((_MPC_E_REG_STRIDE1>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(target));

After the Ecmd variable has been initialized to the correct address,
the fetch-and-increment command is issued by a write to that address.
The EMUereg int finc() routine uses the default more-operands block of E-
registers, which is read-only and provides a zero offset, a quadword stride, as
well as a longword addend for fetch-and-add operations. Since such a block
consists of four E-registers, the number of the first E-register in the block is
right-shifted by two bits to get the offset of the block. This offset is stored at
the eight bits starting from bit _MPC_BS_EDATA_MOBE. The second line stores
the number of the processing element in the twelve bits starting from bit
_MPC_BS_DFLTCENTPE, since the default centrifuge mask is used.The address
of the memory location is stored in the least-significant 38 bits, before the
data is written to the address specified by the Ecmd variable.

_memory_barrier();
}

This memory barrier separates the issue of the E-register command above
from the subsequent load of the E-register. This barrier is required as both
operations could be issued in reverse order otherwise, causing the load of the
E-register to return the wrong value. Since the E-register command is issued
by a write and the command is completed by a read of the E-register, a write
memory barrier is not sufficient.

B.2.7 EMUereg int fadd()

The EMUereg int fadd() routine issues a fetch-and-add operation, i.e. returns
the contents of the local or remote memory location while updating the con-
tents of the local or remote memory location by adding the specified value.
The EMUereg int fadd() routine is similar to the shmem int fadd() routine
from the shmem library. In contrast to shmem int fadd(), this routine returns
immediately after issuing the E-register command, i.e. without waiting for
the local or remote memory transaction to complete.

void EMUereg_int_fadd(int ereg, const int *addr,
int value, int pe)

{
volatile int *mobe = ((volatile int *)_MPC_E_REG_BASE) +

B.2 E-Register Routines 293

_MPC_E_REG_SCR_MOBE;
volatile long *Ecmd;

The EMUereg int fadd() routine expects four arguments:

ereg: the number of the source-and-destination register to use.
addr: the address of the local or remote memory location.
value: the value to add to the local or remote memory location.
pe: the number of the destination processing element.

The EMUereg int fadd() routine does not use the default more-operands
block, hence the mobe variable points to the first scratch more-operands block.
The Ecmd variable is used to issue the E-register command.

Ecmd = (volatile long *)(_GET_ADD(_MPC_E_REG_SADE + ereg));

The address of the E-register command is initialized. The _GET_ADD macro
is defined as

_GET_ADD(x) = (_MPC_E_REG_BASE |
_MPC_EOP_GET_ADD | (x) << 3)

where MPC_EREG_BASE is the base address for all E-register operations. The
MPC_EOP_GET_ADD macro sets the corresponding address bits for a fetch-and-
add command. Since the EMUereg routines count the source-and-destination
registers relative to the first source-and-destination register instead of the first
more-operands block, the offset from the first source-and-destination register
has to be added.

*(mobe + 0) = _MPC_E_DFLTCENT;
*(mobe + 1) = 0;
*(mobe + 2) = -1;
*(mobe + 3) = value;

The four E-registers in the scratch more-operands block are initialized for
the subsequent fetch-and-add operation. As with all E-register routines in the
emulation library, the default centrifuge mask is used together with a zero
offset. The corresponding values are stored in the first and second E-register
of the scratch block, respectively. The value is stored in the fourth E-register,
while the third E-register is initialized to all ones to ensure proper operation of
the fetch-and-add command. Note that the fetch-and-add operation uses the
same non-standard allocation for the last two E-registers as the unconditional
swap operation.

_write_memory_barrier();

The write memory barrier is required to separate the initialization of
the Ecmd and mobe variables as well as the update of the more-operands
block of E-registers from the subsequent issue of the E-register fetch-and-add

294 B. Cray T3E E-Register Programming

command. Otherwise memory operations could be reordered, such that the
issued E-register command references an unpredictable address or stores an
unpredictable value in the local/remote memory location.

*Ecmd = ((_MPC_E_REG_SCR_MOBE>>2) << _MPC_BS_EDATA_MOBE) |
((pe) << _MPC_BS_DFLTCENTPE) |
((long)(target));

After the Ecmd variable has been initialized to the correct address, the fetch-
and-add command is issued by a write to that address. The routine uses the
first scratch more-operands block of E-registers, which was initialized above.
Since such a block consists of four E-registers, the number of the first E-
register in the block is right-shifted by two bits to get the offset of the block.
This offset is stored at the eight bits starting at bit _MPC_BS_EDATA_MOBE.
The second line stores the number of the processing element in the twelve
bits starting at bit _MPC_BS_DFLTCENTPE, since the default centrifuge mask is
used. The address of the memory location is stored in the least-significant 38
bits, before the data is written to the address specified by the Ecmd variable.

_memory_barrier();
}

The memory barrier is required to separate the issue of the E-register
command from subsequent accesses to the specified E-register.

B.2.8 EMUereg pending()

The EMUereg pending() routine reads the _MPC_MR_EREG_PENDING register.
Most of the bits in this register are unused, the information is stored in
the two least-significant bits: The least-significant bit is set if there are any
outstanding get-type operations, the other is set if there are any outstanding
put-type operations. This register can therefore be used to check for the
completion of all outstanding E-register commands, without the need to check
the status of each individual E-register. The shmem library does not contain
a similar routine, since all outstanding operations must be completed before
any of the shmem routines return.

long EMUereg_pending(void)
{
return(*((volatile long *)_MPC_MR_EREG_PENDING));
}

The EMUereg pending() routine expects no arguments and immedi-
ately returns the contents of the _MPC_MR_EREG_PENDING register. Note
that this register is addressed relative to the _MPC_MR_BASE, instead of the
_MPC_E_REG_BASE used for all other E-register operations.

B.2 E-Register Routines 295

B.2.9 EMUereg state()

The EMUereg state() routine is similar to the EMUereg pending() routine
described above, but provides more detailed information: Instead of check-
ing if there are any outstanding get or put operations, the EMUereg state()
routine checks whether there is an outstanding E-register command for the
specified E-register. This is accomplished by reading the corresponding state
register and extracting the state for the specified E-register. The shmem li-
brary does not contain a comparable routine, since all outstanding operations
must be completed before any of the shmem routines return.

long EMUereg_state(int ereg)
{
volatile long *Ecmd;
long state;

The EMUereg state() routine expects a single argument, i.e. the number
of the E-register to be checked. The Ecmd variable is used to issue the E-
register command, while the state variable is used to store the state of the
specified E-register.

Ecmd = (volatile long *)(_ERS(ereg >> 5));

The Ecmd variable is initialized to the address of the state register that
contains the state of the specified E-register. The _ERS macro is defined as

_ERS(x) = (_MPC_EOP_ERS_READ |
_MPC_E_REG_BASE | (sade << 3))

which is based on experimentation, as this macro is not defined by the header
files mentioned above. Note that the macro expects the number of the state
register instead of the number of the E-register to be checked. However, the
mapping between state registers and E-registers is straight-forward: Every
state register contains the state for 32 E-registers, hence the number of the
E-register is right-shifted by 5 bits to obtain the number of the corresponding
state register.

_write_memory_barrier();

The write memory barrier is required to separate the initialization of the
Ecmd variable from the subsequent issue of the E-register state read command.
Otherwise memory operations could be reordered, such that the issued E-
register command references an unpredictable address.

state = ((*Ecmd) >> (ereg % 32)) & (~0x3);

return(state);
}

296 B. Cray T3E E-Register Programming

The E-register state read is issued by a read to the address stored in
the Ecmd variable, which returns the contents of the specified state register.
The state regarding the specified E-register is isolated by right-shifting the
state to the two least-significant bit positions and subsequently clearing all
other bit positions. The two bits of state for each E-register encode the four
different states that have been described in Section B.1.

B.3 Programming Guidelines

The E-registers are the only way to access remote memory on the Cray T3E.
Therefore all communication packages that are available on the T3E use the
E-registers. Apart from remote memory accesses, the E-registers can also
be used for single-processor optimizations: Since the get and put commands
operate in the uncached memory region, E-registers can be used to trans-
fer large amounts of memory without destroying the contents of the cache.
Several other useful optimizations using the E-registers are described in the
Cray T3E optimization guides [ABH97][Cra97b]. The compiler may generate
code that uses the E-registers, e.g. if the cache_bypass directive is used.
In conclusion, the E-registers are not only used by communication libraries,
but might also be used by other libraries or the compiler itself. Therefore
accesses to the E-register from several sources must be separated to ensure
proper operation.

In order to avoid conflicting accesses to the E-registers, the accesses from
different libraries have to be separated in time. However, most libraries re-
strict accesses to the E-registers within subroutine calls, i.e. all E-register
operations are completed prior to subroutine return. The only exception to
this rule is the benchlib as well as the emulation library. Since the benchlib
is not available to the general public, this library is not considered further.

In order to separate accesses to the E-registers in time, it is sufficient
to complete all accesses that were initiated by the emulation library, before
calling a subroutine from one of the other libraries. This resolves the conflicts
between the emulation library and other libraries, but the compiler itself may
still generate code that can cause conflicting accesses to the E-registers.

At present, the compiler only generates code that uses the E-registers if
explicitly told to do so, e.g. via the cache_bypass directive. Procedures that
use one of these directives should therefore be treated in the same way as
library functions that contain accesses to the E-registers. However, future
versions of the compiler might generate conflicting code automatically, i.e.
without being prompted by directives.

The source code of the routines in the emulation library contains directives
that forbid the compiler to use those E-registers, that are marked as used. The
mobe(n) and sade(n) directives mark the first n more-operand-blocks and
source-and-destination E-registers as used, respectively. Therefore following

B.3 Programming Guidelines 297

the rules outlined above will ensure that conflicting accesses to the E-registers
are avoided.

Apart from the conflicts mentioned above, there is a serious flaw in early
versions of the Cray T3E that may be triggered by using the E-registers
directly. As the consequences of this flaw can be fatal, i.e. it is possible to crash
the whole machine, extreme caution is required when using the emulation
library on these versions of the Cray T3E. The following paragraphs contains
a short summary about the flaw as well as possible workarounds. A white-
paper from Cray provides more detailed information [Cra96].

The flaw affects the Cray T3E-600, i.e. the initial version of the T3E us-
ing a processor clock frequency of 300 MHz. The problem has been solved in
the T3E-900, i.e. the version of the T3E using a processor clock frequency of
450 MHz, and later models. The problem manifests itself if an E-register com-
mand references a memory location that is simultaneously cached in one of
the stream buffers. Note that the offending E-register command may originate
from the local processor element or any of the remote processing elements.
If this situation occurs, the system logic on the affected processing element
looses track about cache coherence. This can cause the crash of the affected
processing node, the local manager node, and ultimately the whole system
via the global manager node.

But the problem is even worse: It is not sufficient to avoid simultaneous
cached and uncached accesses to the same memory locations via the stream
buffers and the E-registers, respectively: Since the stream buffers are used to
prefetch data, they may contain memory locations that are ahead of previ-
ous accessed memory locations. Therefore simultaneous cached and uncached
references to nearby memory locations are sufficient to trigger the flaw. More
specifically, uncached references should access memory locations that are be-
low or at least 192 bytes above locations that are simultaneously accessed
by cached references. This problem can be addressed in three different ways,
i.e. by disabling the stream buffers or by separating cached and uncached
references in space and time, respectively.

The first solution does not require any program changes, but may severely
impact the performance of the system, especially on vectorizable codes. How-
ever, most installations that still use one of the T3E-600 models use this
solution. A less radical approach is to enable stream buffers by default, but
ensure that all programs disable the stream buffers before entering a program
section, that may contain cached and uncached references to similar mem-
ory locations. This can be accomplished by using the set_d_stream() and
quiet_d_stream() routines.

The second solution is to separate conflicting accesses in space. This is
accomplished by identifying all arrays that may be in use while uncached
references to other arrays occur, and provide sufficient padding between these
arrays. The drawback of this solution is the amount of work required to
identify and separate such arrays.

298 B. Cray T3E E-Register Programming

The third solution is to separate conflicting accesses in time. This is ac-
complished by placing synchronization barriers between sections that may
contain cached and uncached references to similar memory locations. Al-
ternatively, conflicting data structures can be protected by synchronization
locks. The drawback of this solution is the impact on performance as well as
the work required to modify the program.

In conclusion, the use of the emulation library on Cray T3E-600 models
with stream buffers enabled by default is strongly discouraged and no liability
of any form is assumed if the emulation library is used under these conditions.

Literature

[ABB+86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A New Kernel Foundation
for UNIX Development. In Proceedings of the Summer 1986 USENIX Technical
Conference, pages 93–112, July 1986.

[ABBJ64] G. M. Amdahl, G. A. Blauuw, and F. P. Brooks Jr. Architecture of
the IBM System/360. IBM Journal of Research and Development, 8(2):87–101,
April 1964.

[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and
Donald Yeung. The MIT Alewife Machine: Architecture and Performance.
In Proceedings of the 22th International Symposium on Computer Architecture
(ISCA), pages 2–13, June 1995.

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandevo-
orde, Carl A. Waldspurger, and William E. Weihl. Continuous Profiling: Where
Have All the Cycles Gone. Technical Report SRC 1997-016a, Digital Systems
Research Center, September 1997.

[ABH97] Ed Anderson, Jeff Brooks, and Tom Hewitt. The Benchmarker’s Guide
to Single-Processor Optimization for Cray T3E Systems. Cray Research Inc.,
1997.

[ABLL92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler Activations: Effective Kernel Support for the User-
Level Management of Parallelism. ACM Transactions on Computer Systems,
10(1):53–79, February 1992.

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz,
Allan Porterfield, and Burton Smith. The Tera Computer System. In Proceed-
ings of Supercomputing, pages 1–6, November 1990.

[ACK+95] Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G.
Steinberg, and Katherine Yelick. Empirical Evaluation of the Cray-T3D: A
Compiler Perspective. In Proceedings of the 22nd International Symposium on
Computer Architecture (ISCA), pages 320–331, June 1995.

[ADK+92] F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and D. Scheerer.
On the Physical Design of PRAMs. Computer Journal, 36(8):756–762, Decem-
ber 1992.

[Aga92] Anant Agarwal. Performance Tradeoffs in Multithreaded Processors. IEEE
Transactions on Parallel and Distributed Systems, 3(5):525–539, September
1992.

[AKK+95] Robert Alverson, Simon Kahan, Richard Korry, Cathy McCann, and
Burton Smith. Scheduling on the Tera MTA. In Proceedings of the IPPS
Workshop on Job Scheduling Strategies for Parallel Processing, pages 19–44,
April 1995.

300 Literature

[Alf94] Robert A. Alfieri. An Efficient Kernel-Based Implementation of POSIX
Threads. In Proceedings of the Summer 1994 USENIX Technical Conference,
pages 59–72, June 1994.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz.
APRIL: A Processor Architecture for Multiprocessing. In Proceedings of the
17th International Symposium on Computer Architecture (ISCA), pages 104–
114, June 1990.

[ALL89] Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The Per-
formance Implications of Thread Management Alternatives for Shared Memory
Multiprocessors. IEEE Transactions on Computers, 38(12):1631–1644, Decem-
ber 1989.

[AMBN98] Ernest Artiaga, Xavier Martorell, Yolanda Becerra, and Nacho Navarro.
Experiences on the Implementing PARMACS Macros to Run the SPLASH-2
Suite on Multiprocessors. In Proceedings of the 6th Euromicro Workshop on
Parallel and Distributed Processing, pages –, January 1998.

[ANMB97] Ernest Artiaga, Nacho Navarro, Xavier Martorell, and Yolanda Be-
cerra. Implementing PARMACS Macros for Shared Memory Multiprocessor
Environments. Technical Report UPC-DAC-1997-07, Polytechnic University of
Catalunya, Department of Computer Architecture, January 1997.

[AXP96a] Digital Equipment Corp. Alpha 21064 and 21064A Microprocessors
Hardware Reference Manual, June 1996.

[AXP96b] Digital Equipment Corp. Alpha 21066 and 21066A Microprocessors
Hardware Reference Manual, January 1996.

[AXP96c] Digital Equipment Corp. Alpha 21164 Microprocessor Hardware Refer-
ence Manual, July 1996.

[AXP97] Digital Equipment Corp. Alpha 21164PC Microprocessor Hardware Ref-
erence Manual (PCA56), September 1997.

[AXP98a] Compaq Computer Corp. Alpha 21164A Microprocessor Hardware Ref-
erence Manual, December 1998.

[AXP98b] Compaq Computer Corp. Alpha 21164PC Microprocessor Hardware Ref-
erence Manual (PCA57), December 1998.

[AXP99] Compaq Computer Corp. Tsunami/Typhoon 21272 Chipset Hardware
Reference Manual, October 1999.

[AXP00a] Compaq Computer Corp. Alpha 21264/EV6 Microprocessor Hardware
Reference Manual, September 2000.

[AXP00b] Compaq Computer Corp. Alpha 21264/EV67 Microprocessor Hardware
Reference Manual, September 2000.

[AXP00c] Compaq Computer Corp. Alpha 21264/EV68 Microprocessor Hardware
Reference Manual, December 2000.

[Bai90] David H. Bailey. FFTs in External or Hierarchical Memory. The Journal
of Supercomputing, 4(1):23–35, March 1990.

[Ban99] Peter Bannon. Alpha 21364: A Scalable Single-chip SMP. In Proceedings
of Microprocessor Forum, pages –, October 1999.

[BBD+87] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing
Lusk, Ross Overbeck, James Patterson, and Rick Stevens. Portable Programs
for Parallel Processors. Holt, Rinehart and Winston, Inc., 1987.

[BBF+97] P. Bach, M. Braun, A. Formella, J. Friedrich, Th. Grn, and C. Licht-
enau. Building the 4 Processor SB-PRAM Prototype. In Proceedings of the
Hawaii 30th International Symposium on System Science (HICSS), pages 14–
23, January 1997.

[BBLS91] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel bench-
marks. Technical Report RNR-91-02, NASA Ames Research Center, January
1991.

Literature 301

[BC91a] Jean-Loup Baer and Tien-Fu Chen. An Effective On-Chip Preloading
Scheme To Reduce Data Access Penalty. In Proceedings of Supercomputing 91,
pages 176–186, November 1991.

[BC91b] Dileep P. Bhandarkar and Douglas W. Clark. Performance from Archi-
tecture: Comparing a RISC and a CISC with Similar Hardware Organization.
In Proceedings Fourth Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 310–319, April 1991.

[BCD+92] David S. Blickstein, Peter W. Craig, Caroline S. Davidson, R. Neil
Faiman, Kent D. Glossop, Richard B. Grove, Steven O. Hobbs, and William B.
Noyce. The GEM Optimizing Compiler System. Digital Technical Journal,
4(4):121–136, Fall 1992.

[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrated Reg-
ister Allocation and Instruction Scheduling for RISCs. In Proceedings of the 4th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 122–131, April 1991.

[BEKK00] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel.
A multithreaded PowerPC processor for commercial servers. IBM Journal of
Research and Development, 44(6):885–897, November 2000.

[BG95] Thomas J. Bergin and Richard G. Gibson, editors. The History of Pro-
gramming Languages-II. ACM Press, 1995.

[BH86] Josh Barnes and Piet Hut. A hierarchical o(n logn) force-calculation algo-
rithm. Nature, 324(4):446–449, December 1986.

[BHS+95] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020,
NASA Ames Research Center, December 1995.

[BJK+96] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Mul-
tithreaded Runtime System. Journal of Parallel and Distributed Computing,
37(1):55–69, August 1996.

[BL96] Ricardo Bianchini and Beng-Hong Lim. Evaluating the Performance of
Multithreading and Prefetching in Multiprocessors. Journal of Parallel and
Distributed Computing, 37(1):83–97, August 1996.

[Bli96] Bruce Blinn. Portable Shell Programming. Prentice-Hall, 1996.
[BLL88] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO:

A System for Object-oriented Parallel Programming. Software Practice & Ex-
perience, 18(8):713–732, August 1988.

[BLM+91] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plax-
ton, Stephen J. Smith, and Marco Zagha. A Comparison of Sorting Algorithms
for the Connection Machine CM-2. In Symposium on Parallel Algorithms and
Architectures, pages 3–16, July 1991.

[BM98] Rudolf Berrendorf and Bernd Mohr. PCL - The Performance Counter
Library. Technical Report IB-9816, Zentrum für Angewandte Mathematik,
Forschungszentrum Jülich, October 1998.

[BOW+90] Dileep P. Bhandarkar, D. Orbits, R. Witek, W. Cardoza, and D. Cutler.
High Performance Issue Oriented Architecture. In Proceedings of Compcon
Spring 1997, pages 153–160, February 1990.

[BR91] David Bernstein and Michael Rodeh. Global Instruction Scheduling for Su-
perscalar Machines. In Proceedings ACM Conference on Programming Language
Design and Implementations (PLDI), pages 241–255, June 1991.

[BR92] Bob Boothe and Abhiram Ranade. Improved Multithreading Techniques
for Hiding Communication Latency in Multiprocessors. In Proceedings of the
19th International Symposium on Computer Architecture (ISCA), pages 214–
223, May 1992.

302 Literature

[Bur01] Tom Burd. CPU Info Center: General Processor Information
. http://bwrc.eecs.berkeley.edu/CIC/summary/local/summary.pdf, 2001.

[But97] David R. Butenhof. Programming with POSIX Threads. Addison Wesley
Longman, 1997.

[CAC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register Allocation via Coloring.
Computer Languages, 6(1):47–57, January 1981.

[Cat91] Ben J. Catanzaro, editor. The SPARC Technical Papers. Springer Verlag,
1991.

[CB94] Tien-Fu Chen and Jean-Loup Baer. A Performance Study of Software
and Hardware Data Prefetching Schemes. In Proceedings of the 21st Annual
International Symposium on Computer Architecture (ISCA), pages 223–232,
April 1994.

[CD88] Eric C. Cooper and Richard P. Draves. C Threads. Technical Report
CMU-CS-88-154, Carnegie Mellon University, February 1988.

[CDD+89] Robert Conrad, Richard Devlin, Daniel Dobberpuhl, Bruce Gieseke,
Richard Heye, Gregory Hoeppner, John Kowaleski, Maureen Ladd, James Mon-
tanaro, Steve Morris, Rebecca Stamm, Henry Tumblin, and Richard Witek. A
50 MIPS (Peak) 32b/64b Microprocessor. In Digest International Solid-State
Circuits Conference (ISSCC), pages 76–77, February 1989.

[CH84] Frederick Chow and John Hennessy. Register Allocation by Priority-based
Coloring. In Proceedings of the ACM Symposium on Compiler Construction,
pages 222–232, June 1984.

[Cha82] G J. Chaitin. Register Allocation & Spilling via Graph Coloring. In
Proceedings of the ACM Symposium on Compiler Construction, pages 98–105,
June 1982.

[CL82] Douglas W. Clark and Henry M. Levy. Measurement and Analysis of In-
struction Use in the VAX-11/780. In Proceedings Ninth Symposium on Com-
puter Architecture, pages 9–17, April 1982.

[CL90] Fred C. Chow and Hennessy. John L. The Priority-Based Coloring Ap-
proach to Register Allocation. ACM Transactions on Programming Languages
and Systems, 12(4):501–536, October 1990.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990.

[Com98] Alpha Architecture Commitee. Alpha Architecture Reference Manual.
Digital Press, third edition, 1998.

[Cor99] Workstation Marketing Compaq Computer Corporation. Compaq Profes-
sional Workstation XP1000 Key Technologies White Paper. Compaq Computer
Corporation, January 1999.

[Cor00] High Performance Technical Computing Group Compaq Computer Corpo-
ration. AlphaServerSC: Scalable Supercomputing. Compaq Computer Corpora-
tion, July 2000.

[Cra96] Cray Research Inc. Cray T3E Programming with Coherent Memory
Streams, 1996.

[Cra97a] hwdefs t3e.h header file. Cray Research Inc., 1997.
[Cra97b] Cray Research Inc. Cray T3E C and C++ Optimization Guide, 1997.
[Cra97c] Cray Research Inc. System Architecture Kit (Cray T3E System), 1997.
[Cra98a] mpphw t3e.h header file. Cray Research Inc., 1998.
[Cra98b] intro shmem(3) man page. Cray Research Inc., 1998.
[Cra98c] shmem.h header file. Cray Research Inc., 1998.
[CS99] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture:

A Hardware/Software Approach. Morgan Kaufmann, 1999.

Literature 303

[CSS+91] David E. Culler, Anurag Sah, Erik Schauser, Thorsten von Eicken, and
John Wawrzynek. Fine-grain Parallelism with Minimal Hardware Support: A
Compiler-Controlled Threaded Abstract Machine. In Proceedings of the 4th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 164–175, April 1991.

[Dal90] William J. Dally. Virtual-Channel Flow Control. In Proceedings of the 17th
International Symposium on Computer Architecture (ISCA), pages 60–68, May
1990.

[DFK+92] William J. Dally, J. A. Stuart Fiske, John S. Keen, Richard A. Lethin,
Michael D. Noakes, Peter R. Nuth, Roy E. Davison, and Gergory A. Fyler. The
Message-Driven Processor. IEEE Micro, 12(2):23–38, April 1992.

[DH95] J. J. Dongarra and T. Hey. The ParkBench Benchmark Collection. Super-
computer, 11(2–3):94–114, June 1995.

[DHW+97] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl,
and George Chrysos. ProfileMe: Hardware Support for Instruction-Level Pro-
filing on Out-of-Order Processors. In Proceedings of the 30th International
Symposium on Microarchitecture (MICRO), pages 292–302, December 1997.

[Die99] Keith Diefendorff. Compaq Chooses SMT for Alpha. Microprocessor Re-
port, 13(16):1–11, December 1999.

[DM91] Peter A. Darnell and Philip E. Margolis. C: A Software Engineering Ap-
proach. Springer Verlag, 2nd. edition, 1991.

[DO95] Mikhail N. Dorojevets and Vojin G. Oklobdzija. Multithreaded Decoupled
Architecture. International Journal of High Speed Computing, 7(3):465–480,
September 1995.

[Don90] J. J. Dongarra. The LINPACK benchmark: an explanation. In Evaluating
Supercomputers: Strategies for Exploiting, Evaluating and Benchmarking Com-
puters with Advanced Architecture, Unicom Applied Information Technology
Reports, pages 1–21. Chapmann & Hall, 1990.

[DR97] Dale Dougherty and Arnold Robbins, editors. sed & awk. O’Reilly and
Associates, Inc., 2nd. edition, 1997.

[DS01] Jack J. Dongarra and Mathematical Sciences Section. Performance of Var-
ious Computers Using Standard Linear Equations software. Technical Report
CS-89-85, University of Tennessee, July 2001.

[DW92] Mikhail N. Dorozhevets and Peter Wolcott. The El’brus-3 and MARS-
M: Recent Advances in Russian High-Performance Computing. The Journal of
Supercomputing, 6(1):5–48, March 1992.

[DWA+92a] Daniel W. Dobberpuhl, Richard W. Witek, Randy Allmon, Robert An-
glin, David Bertucci, Sharon Britton, Linda Chao, Robert A. Conrad, Daniel E.
Dever, Bruce Gieseke, Soha M. N. Hassoun, Gregory W. Hoeppner, Kathryn
Kuchler, Maureen Ladd, Burton M. Leary, Liam Madden, Edward J. McLellan,
Derrick R. Meyer, James Montanaro, Donald A. Priore, Vidya Rajagopalam,
Sridhar Samudrale, and Sribalan Santhanam. A 200-MHz 64-b Dual-Issue
CMOS Microprocessor. IEEE Journal of Solid-State Circuits, 27(11):1555–1567,
November 1992.

[DWA+92b] Daniel W. Dobberpuhl, Richard W. Witek, Randy Allmon, Robert
Anglin, David Bertucci, Sharon Britton, Linda Chao, Robert A. Conrad,
Daniel E. Dever, Bruce Gieseke, Soha M. N. Hassoun, Gregory W. Hoeppner,
Kathryn Kuchler, Maureen Ladd, Burton M. Leary, Liam Madden, Edward J.
McLellan, Derrick R. Meyer, James Montanaro, Donald A. Priore, Vidya Ra-
jagopalam, Sridhar Samudrale, and Sribalan Santhanam. A 200-MHz 64-bit
Dual-Issue CMOS Microprocessor. Digital Technical Journal, 4(4):35–50, Fall
1992.

304 Literature

[DZU98a] Bernd Dreier, Markus Zahn, and Theo Ungerer. Parallel and Distributed
Programming with Pthreads and Rthreads. In Proceedings of the 3rd Interna-
tional Workshop on High-Level Parallel Programming Models and Supportive
Environments, pages 34–40, March 1998.

[DZU98b] Bernd Dreier, Markus Zahn, and Theo Ungerer. The Rthreads Dis-
tributed Shared Memory System. In Proceedings of the 3rd International Con-
ference on Massively Parallel Computing Systems, pages –, April 1998.

[EEL+97] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca
Stamm, and Dean M. Tullsen. Simultaneous Multithreading: A Platform for
Next-Generation Processors. IEEE Micro, 17(5):12–19, September 1997.

[EGK+94] Kemal Ebciogli, Randy Groves, Ki-Chang Kim, Gabriel Silberman, and
Isaac Ziv. VLIW Compilation Techniques in a Superscalar Environment. In
Proceedings of the 1994 Symposium on Programming Languages Design and
Implementation, pages 36–46, July 1994.

[ERB+95] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley J.
Benschneider, Debra Bernstein, Ruben W. Castelino, Elizabeth M. Cooper,
Daniel E. Dever, Dale R. Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar
Mehta, Jeanne E. Meyer, Ronald P. Preston, Vidya Rajagopalan, Chan-
drasekhara Somanathan, Scott A. Taylor, and Gilbert M. Wolrich. Internal
Organization of the Alpha 21164, a 300-MHz 64-bit Quad-Issue CMOS RISC
Microprocessor. Digital Technical Journal, 7(1):119–135, Winter 1995.

[ERPR95] John H. Edmondson, Paul Rubinfeld, Ronal Preston, and Vidya Ra-
jagopalan. Superscalar Instruction Execution in the 21164 Alpha Microproces-
sor. IEEE Micro, 15(2):33–43, April 1995.

[EV97] Roger Espasa and Mateo Valero. Exploiting Instruction- and Data-Level
Parallelism. IEEE Micro, 17(5):20–27, September 1997.

[EZ93] Derek L. Eager and John Zahorjan. Chores: Enhanced Run-Time Sup-
port for Shared Memory Parallel Computing. ACM Transactions on Computer
Systems, 11(1):1–32, February 1993.

[Feo88] John T. Feo. An analysis of the computational and parallel complexity of
the Livermore Loops. Parallel Computing, 7(2):163–185, June 1988.

[FF92] Joseph A. Fisher and Stefan M. Freudenberger. Predicting Conditional
Branch Directions From Previous Runs of a Program. In Proceedings of the 5th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 85–95, October 1992.

[Fis81] Joseph A. Fisher. Trace Scheduling: A Technique for Global Microcode
Compaction. IEEE Transactions on Computers, 30(7):478–490, July 1981.

[FKD95] Marco Fillo, Stephen W. Keckler, and William J. Dally. The M-Machine
Multicomputer. In Proceedings of the 28th International Symposium on Mi-
croarchitecture (MICRO), pages 146–156, November 1995.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Dis-
tributed Filaments: Efficient Fine-Grain Parallelism on a Cluster of Worksta-
tions. In Proceedings of the 1st Symposium on Operating Systems Design and
Implementations (OSDI), pages 201–213, November 1994.

[Fly95] Michael J. Flynn. Computer Architecture : Pipelined and Parallel Processor
Design. Jones and Bartlett Publishers, 1995.

[FM92] Edward W. Felten and Dylan McNamee. Improving the Performance of
Message-Passing Applications by Multithreading. In Proceedings of the Scalable
High Performance Computing Conference, pages 84–89, April 1992.

[Fre74] R. A. Freiburghouse. Register Allocation via Usage Counts. Communica-
tions of the ACM, 17(11):638–642, November 1974.

[GB96] Manu Gulati and Nader Bagherzadeh. Performance Study of a Multi-
threaded Superscalar Microprocessor. In Proceedings of the 2nd International

Literature 305

Symposium on High-Performance Computer Architecture (HPCA), pages 291–
301, February 1996.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob
Mancheck, and Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT Press,
1994.

[GHG+91] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry,
and Wolf-Dietrich Weber. Comparative Evaluation of Latency Reducing and
Tolerating Techniques. In Proceedings of the 18th International Symposium on
Computer Architecture (ISCA), pages 254–263, May 1991.

[GHLL+98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, Bill Nitzberg, William Spahir, and Marc Snir. MPI - The Complete
Reference, volume 2. MIT Press, 1998.

[GJ79] Michael R. Garey and David S. Johnson, editors. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H. Freemann and
Co., 1979.

[GN96] Dirk Grunwald and Richard Neves. Whole-Program Optimization for Time
and Space Efficient Threads. In Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 50–59, October 1996.

[Gru91] Dirk Grunwald. A Users Guide to AWESIME: An Object Oriented Par-
allel Programming and Simulation System. Technical Report CU-CS-552-91,
University of Colorado at Boulder, November 1991.

[GSSD00] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architecture
and Design of AlphaServer GS320. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages –, November 2000.

[GU96] Winfried Grünewald and Theo Ungerer. Towards Extremely Fast Con-
text Switching in a Block-Multithreaded Processor. In Proceedings of the 22nd
Euromicro Conference, pages 592–599, September 1996.

[GU97] Winfried Grünewald and Theo Ungerer. A Multithreaded Processor De-
signed for distributed Shared Memory Systems. In Proceedings of the Interna-
tional Conference on Advances in Parallel and Distributed Computing, pages
209–213, March 1997.

[Gwe96] Linley Gwennap. Digital 21264 Sets New Standard. Microprocessor Re-
port, 10(14):11–16, October 1996.

[Gwe98] Linley Gwennap. Alpha 21364 to Ease Memory Bottleneck. Microproces-
sor Report, 12(14):12–15, October 1998.

[Han93] Jim Handy. The Cache Memory Handbook. Academic Press, 1993.
[Han96] Craig Hansen. MicroUnity’s MediaProcessor Architecture. IEEE Micro,

16(4):34–41, August 1996.
[HB93] Matthew Haines and Wim Böhm. An Evaluation of Software Mulitthread-

ing in a Conventional Distributed Memory Multiprocessor. In Proceedings of
the Symposium on Parallel and Distributed Systems, pages 106–113, December
1993.

[HB94] Roger Hockney and Michael Berry. Public International Benchmarks for
Parallel Computers. Scientific Programming, 3(2):101–146, Summer 1994.

[HCC89] Wen-mei W. Hwu, Thomas M. Conte, and Pohua P. Chang. Comparing
Software and Hardware Schemes for Reducing the Cost of Branches. In Proceed-
ings of the 16th International Symposium on Computer Architecture (ISCA),
pages 224–233, May 1989.

[HCM94] Matthew Haines, David Cronk, and Piyush Mehrotra. On the Design
of Chant: A Talking Threads Package. In Proceedings Supercomputing, pages
350–359, November 1994.

306 Literature

[Hec77] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science
Publishers B.V. (North-Holland), 1977.

[Hey91] A. J. G. Hey. The Genesis Distributed-Memory Benchmarks. Parallel
Computing, 17(10–11):1275–1283, December 1991.

[HF88] Robert H. Halstead and Tetsuya Fujita. MASA: A Multithreaded Processor
Architecture for Parallel Symbolic computing. In Proceedings of the 15th In-
ternational Conference on Computer Architecture (ISCA), pages 443–451, May
1988.

[HJ91] John L. Hennessy and Norman P. Jouppi. Computer Technology and Ar-
chitecture: An Evolving Interaction. IEEE Computer, 24(9):18–29, September
1991.

[HKN+92] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki,
Akio Nishimura, Yoshimori Nakase, and Teiji Nishizawa. An Elementary Proces-
sor Architecture with Simultaneous Instruction Issuing from Multiple Threads.
In Proceedings of the 19th International symposium on Computer Architecture
(ISCA), pages 136–145, May 1992.

[HMB+93] Richard E. Hank, Scott A. Mahlke, Roger A. Bringmann, John C. Gyl-
lenhaal, and Wen-mei W. Hwu. Superblock Formation Using Static Program
Analysis. In Proceedings of the 26th International Symposium on Microarchi-
tecture, pages 247–255, December 1993.

[HMC+93] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Oulette, Richard E. Hank,
Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The
Superblock: An Effective Technique for VLIW and Superscalar Compilation.
Journal of Supercomputing, 7(1–2):229–248, May 1993.

[HmMS98] Mark Horowitz, Margaret martonosi, Todd C. Mowry, and Michael D.
Smith. Informing Memory Operations: Memory Performance Feedback Mech-
anisms and Their Applications. ACM Transactions on Computer Systems,
16(2):170–205, May 1998.

[Hoc93] Roger W. Hockney. Performance parameters and benchmarking of super-
computers. In Computer Benchmarks, Advances in Parallel Computing, pages
41–64. Elsevier Science Publishers, 1993.

[Hol78] W. R. Holland. The role of mesoscale eddies in the general circulation of
the ocean. Journal of Physical Oceanography, 8(3):363–392, May 1978.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 2nd. edition, 1996.

[HU75] Matthew S. Hecht and Jeffrey D. Ullman. A Simple Algorithm for Global
Data Flow Problems. SIAM Journal of Computing, 4(4):519–532, December
1975.

[IEE85] IEEE Standard for Binary Floating-Point Arithmetic, 1985.
[Ita01] Intel Corp. Intel Itanium Architecture Software Developers Manual, 2001.
[Jou90] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers. In Proceed-
ings of the 17th International Symposium on Computer Architecture (ISCA),
pages 364–373, May 1990.

[Kae00] Daniel Kaestner. PROPAN: A Retargetable System for Postpass Opti-
misations and Analyses. In Proceedings of the ACM Workshop on Languages,
Compilers and Tools for Embedded Systems, pages –, June 2000.

[Kan95] Gerry Kane. PA-RISC 2.0 Architecture. Prentice-Hall, 1995.
[KCA91] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Toler-

ance through Multithreading in Large-Scale Multiprocessors. In Proceedings of
International Symposium on Shared Memory Multiprocessing, pages 341–361,
April 1991.

Literature 307

[KCO+94] Ravi Konuru, Jeremy Casas, Steve Otto, Robert Prouty, and Jonathan
Walpole. A User-Level Process Package for PVM. In Proceedings of the Scalable
High Performance Computer Conference, pages 48–55, May 1994.

[KD92] Stephen W. Keckler and William J. Dally. Processor Coupling: Integrating
Compile Time and Runtime Scheduling for Parallelism. In Proceedings of the
19th International Conference on Computer Architecture (ISCA), pages 202–
213, May 1992.

[KDM+98] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P.
Carter, Andrew Chang, and Whay S. Lee. Exploiting Fine-Grain Thread Level
Parallelism on the MIT Multi-ALU Processor. In Proceedings of the 25th In-
ternational Conference on Computer Architecture (ISCA), pages 306–317, June
1998.

[KE91] D. R. Kaeli and P. G. Emma. Branch History Table Prediction of Mov-
ing Target Branches Due to Subroutine Returns. In Proceedings of the 18th
International Symposium on Computer Architecture (ISCA), pages 34–42, May
1991.

[Kes99] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36,
March 1999.

[KFW94] R. Kent Koeninger, Mark Furtney, and Martin Walker. A Shared Mem-
ory MPP from Cray Research. Digital Technical Journal, 6(2):8–21, Spring
1994.

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC architecture. Prentice-Hall,
1992.

[Kil73] Gary A. Kildall. A Unified Approach to Global Program Optmization. In
Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL), pages 194–206, October 1973.

[KMW98] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 Micro-
processor Architecture. In Proceedings International Conference on Computer
Design (ICCD), pages 90–95, October 1998.

[KN95] Michael Kantrowitz and Lisa M. Noack. Functional Verification of a
Multiple-issue, Pipelined, Superscalar Alpha Processor - the Alpha 21164 CPU
chip. Digital Technical Journal, 7(1):136–144, Winter 1995.

[KS88] James T. Kuehn and Burton J. Smith. The Horizon Supercomputing Sys-
tem: Architecture and Software. In Proceedings Supercomputing, pages 28–34,
November 1988.

[KU75] J. B. Kam and Jeffrey D. Ullmann. Monotone Data Flow Analysis Frame-
works. Technical Report No. 169, EE Department, Princeton University, 1975.

[Lam99] Monica S. Lam. An Overview of the SUIF2 System. In Proceedings of
the ACM Conference on Programming Language Design and Implementation
(PLDI), pages –, May 1999.

[LB96] Mat Loikkanen and Nader Bagherzadeh. A Fine-Grain Multithreading Su-
perscalar Architecture. In Proceedings of the Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 163–168, October 1996.

[LEL+99] Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh, and
Dean M. Tullsen. Tuning Compiler Optimizations for Simultaneous Mul-
tithreading. International Journal of Parallel Programming, 27(6):477–503,
November 1999.

[Lev83] Bruce W. Leverett. Register Allocation in Optimizing Compilers. UMI
Research Press, 1983.

[LFA96] David K. Lowenthal, Vincent W. Freeh, and Gregory R. Andrews. Using
Fine-Grain Threads and Run-Time Decision Making in Parallel Computing.
Journal of Parallel and Distributed Computing, 37(1):41–54, August 1996.

308 Literature

[LGH94] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A Multi-
threading Technique Targeting Multiprocessors and Workstations. In Proceed-
ings of the ACM Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 308–318, October 1994.

[LH86] Tomas Lang and Miquel Huguet. Reduced Register Saving/Restoring in
Single-Window Register Files. Computer Architecture News, 14(3):17–26, June
1986.

[LM96] Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetching for Re-
cursive Data Structures. In Proceedings of the 7th International Symposium
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 222–233, October 1996.

[LMB92] Hohn R. Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly
Associates, Inc., 2nd. edition, 1992.

[LO96] Mike Loukides and Andy Oram. Programming with GNU Software. O’Reilly
Associates, Inc., 1996.

[LR97] Daniel Leibholz and Rahul Razdan. The Alpha 21264: A 500 MHz Out-of-
Order Execution Microprocessor. In Proceedings Computer Conference (COM-
PCON), pages 28–36, February 1997.

[LS84] J. K. L. Lee and A. J. Smith. Branch Prediction Strategies and Branch
Target Buffer Design. IEEE Computer, 17(1):6–22, January 1984.

[LS95] James R. Larus and Eric Schnarr. EEL: Machine-Independent Executable
Editing. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), pages 291–300, June 1995.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Transactions on Programming Languages
and Systems, 1(1):121–141, July 1979.

[LW00] K. S. Loh and W. F. Wong. Multiple context multithreaded superscalar
processor architecture. Journal of Systems Architecture, 46(3):243–258, January
2000.

[MBB+98] M. Matson, D. Bailey, S. Bell, L. Biro, S. Butler, J. Clouser, J. Farrell,
M. Gowan, D. Priore, and K. Wilcox. Circuit Implementation of a 600 MHz
Superscalar RISC Microprocessor. In Proceedings International Conference on
Computer Design (ICCD), pages 90–95, October 1998.

[MBC+94] Dina L. McKinney, Masooma Bhaiwala, Kwong-Tak A. Chui, Christo-
pher L. Houghton, James R. Mullens, Daniel L. Leibholz, Sanjay J. Patel, Del-
van A. Ramey, and Rosenbluth Mark B. Digital’s DECchip 21066: The First
Cost-focused Alpha AXP Chip. Digital Technical Journal, 6(1):66–77, Winter
1994.

[McC95] John D. McCalpin. Sustainable Memory Bandwidth in Current High
Performance Computers.
http://home.austin.rr.com/mccalpin/papers/bandwidth/bandwidth.html,
1995.

[McF93] Scott McFarling. Combining Branch Predictors. Technical Report WRL
TN-36, Digital Western Research Laboratory (WRL), June 1993.

[MCL98] Todd C. Mowry, Charles Q. C. Chan, and Adley K. W. Lo. Compar-
ative Evaluation of Latency Tolerance Techniques for Software Distributed
Shared Memory. In Proceedings of the 4th International Symposium on High-
Performance Computer Architecture (HPCA), pages 300–311, January 1998.

[McM88] Frank H. McMahon. The Livermore Fortran Kernels Test of the Numer-
ical Performance Range. In Performance Evaluation of Supercomputers, pages
143–186. Elsevier Science Publishers B.V. (North-Holland), 1988.

[MD96] A. Mikschl and W. Damm. MSparc: A Multithreaded Sparc. In Proceedings
of the 2nd International Euro-Par Conference, pages 461–469, August 1996.

Literature 309

[ME97] Soo-Mook Moon and Kemal Ebcioǧlu. Parallelizing Nonnumerical Code
with Selective Scheduling and Software Pipelining. ACM Transactions on Pro-
gramming Languages and Systems, 19(6):853–898, November 1997.

[MH86] Scott McFarling and John Hennessy. Reducing the Cost of Branches.
In Proceedings of the 13th International Symposium on Computer Architecture
(ISCA), pages 396–403, May 1986.

[MHL91] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. An Efficient
Method for Exact Dependence Analysis. In Proceedings of the 1991 Symposium
on Programming Languages Design and Implementation, pages 1–14, July 1991.

[MJA+01] Robert O. Mueller, A. Jain, W. Anderson, T. Benninghoff, D. Bertucci,
J. Burnette, T. Chang, J. Eble, R. Faber, D. Gowda, J. Grodstein, G. Hess,
J. Kowaleski, A. Kumar, B. Miller, P. Paul, J. Pickholtz, S. Russell, M. Shen,
T. Truex, A. Varadharajan, D. Xanthopoulos, and T. Zou. A 1.2 GHz Alpha
Microprocessor. In Proceedings International Solid State Circuits Conference
(ISSCC), pages –, February 2001.

[MLC+92] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank,
and Roger A. Bringmann. Effective Compiler Support for Predicated Execution
Using the Hyperblock. In Proceedings of the 25th International Symposium on
Microarchitecture, pages 45–54, December 1992.

[MNL96] Gail C. Murphy, David Notkin, and Erica S.-C. Lan. An Empirical Study
of Static Call Graph Extractors. In Proceedings of the 18th International Con-
ference on Software Engineering (ICSE), pages 90–99, March 1996.

[MR96] Michael Metcalf and John Reid. Fortran 90/95 explained. Oxford Univer-
sity Press, 3rd. edition, 1996.

[MR99] Todd C. Mowry and Sherwyn R. Ramkissoon. Software-Controlled Multi-
threading Using Informing Memory Operations. In Proceedings of the 6th In-
ternational Symposium on High-Performance Computer Architecture (HPCA),
pages 121–132, January 1999.

[MSLM91] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.
Markatos. First-Class User-Level Threads. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 110–121, October 1991.

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and Hank Warren, editors. The
PowerPC architecture: A Specification for a new Family of RISC Processors.
Morgan Kaufmann Publishers, 2nd. edition, 1994.

[Muc97] Steven S. Muchnick. Advanced Compiler Design & Integration. Morgan
Kaufmann Publishers, 1997.

[Mue93] Frank Mueller. A Library Implementation of POSIX Threads under UNIX.
In Proceedings of the Winter 1993 USENIX Technical Conference, pages 29–41,
January 1993.

[NL92] Jason Nieh and Marc Levoy. Volume Rendering on Scalable Shared Mem-
ory MIMD Architectures. In Proceedings of the Boston Workshop on Volume
Visualization, pages 17–24, October 1992.

[NS97] Richard Neves and Robert B. Schnabel. Threaded Runtime Support for Ex-
ecution of Fine Grain Parallel Code on Coarse Grain Multiprocessors. Journal
of Parallel and Distributed Computing, 42(2):128–142, May 1997.

[Oed96] Wilfried Oed. Cray Research Massiv-paralleles Prozessorsystem Cray T3E.
Cray Research GmbH, November 1996.

[PD80] David A. Patterson and David R. Ditzel. The Case for the Reduced In-
struction Set Computer. Computer Architecture News, 9(6):25–38, September
1980.

[PE96] James Philbin and Jan Edler. Very Lightweight Threads. In Proceedings of
the 1st International Workshop on High-Level Programming Models and Sup-
portive Enviroments, pages 95–104, April 1996.

310 Literature

[PEA+96] James Philbin, Jan Edler, Otto J. Anshus, Doug C. Douglas, and Kai
Li. Thread Scheduling for Cache Locality. In Proceedings of the 7th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 60–71, October 1996.

[PG99] Joan-Manuel Parcerisa and Antonio Gonzalez. The Synergy of Multithread-
ing and Access/Execute Decoupling. In Proceedings of the 5th International
Symposium on High-Performance Computer Architecture (HPCA), pages 59–
63, January 1999.

[PH98] David A. Patterson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann Publishers, 1998.

[PSR92] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the Ac-
curacy of Dynamic Branch Prediction Using Branch Correlation. In Proceedings
of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 76–84, October 1992.

[PW91] R. Guru Prasadh and Chuan-lin Wu. A Benchmark Evaluation of a Multi-
Threaded RISC Processor Architecture. In Proceedings of the International
Conference on Parallel Processing, pages 84–91, August 1991.

[RG94] Edward Rothberg and Anoop Gupta. An Efficient Block-Oriented Ap-
proach to Parallel Sparse Cholesky Factorization. SIAM Journal of Scientific
Computing, 15(6):1413–1439, November 1994.

[RGSL96] John Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Soft-
ware Pipelining Showdown: Optimal vs. Heuristic Methods in a Production
Compiler. In Proceedings of the 1996 Symposium on Programming Languages
Design and Implementation, pages 1–11, July 1996.

[Roc00] Daniel N. Rockmore. The FFT: An Algorithm The Whole Family Can
Use. IEEE Computing in Science & Engineering, 2(1):60–64, January 2000.

[SAB+98] S. Storino, A. Aippersbach, J. Borkenhagen, R. Eickemeyer, S. Kunkel,
S. Levenstein, and G. Uhlmann. A Commercial Multi-threaded RISC Processor.
In Proceedings of the International Sold-State Circuits Conference (ISSCC),
pages 234–235, February 1998.

[SBCvE90] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von Eicken.
Analysis of Multithreaded Architectures for Parallel Computing. In Proceed-
ings 2nd Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 169–178, July 1990.

[Sco96] Steven L. Scott. Synchronization and Communication in the T3E Multipro-
cessor. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages
26–36, October 1996.

[SE94] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building
Customized Program Analysis Tools. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI), pages 196–205,
June 1994.

[Sei00] Rene Seindal. GNU m4 - A Powerful Macro Processor
. http://www.seindal.dk/rene/gnu/man/m4 toc.html, 2000.

[SG98] Avi Silberschatz and Peter Galvin. Operating System Concepts. Addison-
Wesley Longman, Inc., 5th edition, 1998.

[SGL92] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. SPLASH: Stan-
ford Parallel Applications for Shared Memory. Computer Architecture News,
20(1):5–44, March 1992.

[SH92] Jaswinder Pal Singh and John L. Hennessy. Finding and Exploiting Paral-
lelism in an Ocean Simulation Program: Experience, Results, and Implications.
Journal of Parallel and Distributed Computing, 15(1):27–48, May 1992.

Literature 311

[SHHG93] Jaswinder Pal Singh, Chris Holt, John L. Hennessy, and Anoop Gupta.
A Parallel Adaptive Fast Multipole Method. In Proceedings Supercomputing
93, pages 54–65, November 1993.

[SHT+95] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Annop Gupta, and
John L. Hennessy. Load Balancing and Data Locality in Adaptive Hierarchi-
cal n-Body Methods: Barnes-Hut, Fast Multipole, and Radiosity. Journal of
Parallel and Distributed Computing, 27(2):118–141, June 1995.

[Sim00] Dezsö Sima. The Design Space of Register Renaming Techniques. IEEE
Micro, 20(5):70–83, September 2000.

[Sin93] Jaswinder Pal Singh. Parallel Hierarchical N-Body Methods and their im-
plications for multiprocessors. PhD thesis, Stanford University, February 1993.

[Sit92] Richard L. Sites. Alpha AXP Architecture. Digital Technical Journal,
4(4):19–34, Fall 1992.

[SJH89] Michael D. Smith, Mike Johnson, and Mark A. Horowitz. Limits on Mul-
tiple Instruction Issue. In Proceedings of the 3rd International Conference on
Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), pages 290–302, April 1989.

[SKMR92] Anton Sites, Richard L.and Chernoff, Matthew B. Kirk, Maurice P.
Marks, and Scott G. Robinson. Binary translation. Digital Technical Journal,
4(4):137–152, Fall 1992.

[Smi78] Burton J. Smith. A Pipelined, Shared Resource MIMD Computer. In
Proceedings of the Conference on Parallel Processing, pages 6–8, August 1978.

[Smi81a] Burton J. Smith. Architecture and applications of the HEP multiproces-
sor computer system. In Proceedings SPIE Real Time Signal Processing IV,
pages 241–247, August 1981.

[Smi81b] J. E. Smith. A Study of Branch Prediction Strategies. In Proceedings
of the 8th International Symposium on Computer Architecture (ISCA), pages
135–148, May 1981.

[Smi82] James E. Smith. Decoupled Access/Execute Computer Architectures. In
Proceedings of 9th International Symposium on Computer Architecture (ISCA),
pages 112–119, April 1982.

[SOHL+98] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI - The Complete Reference, volume 1. MIT Press, 1998.

[ST96] Steven L. Scott and Gregory M. Thorson. The Cray T3E Network: Adaptive
Routing in a High Performance 3D Torus. In Proceedings HOT Interconnects
IV, pages –, August 1996.

[Sto93] Harold S. Stone. High-performance computer architecture. Addison-Wesley,
1993.

[Str78] W. D. Strecker. VAX-11/780 - A virtual address extension to the DEC
PDP-11 family. In Proceedings AFIPS National Computer Conference (NCC),
pages 967–980, July 1978.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
3rd. edition, 1997.

[SW93] Amitabh Srivastava and David W. Wall. A practical system for intermodule
code optimization at link-time. Journal of Programming Languages, 1(1):1–18,
March 1993.

[TC88] Robert H. Thomas and Will Crowther. The Uniform System: An approach
to runtime support for large scale shared memory parallel processors. In Pro-
ceedings of the International Conference on Parallel Processing, pages 245–254,
August 1988.

[TEE+95] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L.
Lo, and Rebecca L. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In Proceedings of

312 Literature

the 22nd International symposium on Computer Architecture (ISCA), pages
191–202, June 1995.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Mul-
tithreading: Maximizing On-Chip Parallelism. In Proceedings of the 22nd In-
ternational symposium on Computer Architecture (ISCA), pages 392–403, June
1995.

[Tho70] J. E. Thornton. Design of a Computer: The Control Data 6600. Scott,
Foresman and Co., 1970.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development, 11(1):25–33, January 1967.

[Tru96] Digital Equipment Corporation. Digital Unix Calling Standard for Alpha
Systems, 1996.

[Tru01] Compaq Computer Corporation. Tru64 UNIX Operating System Version
5.1A QuickSpecs, 2001.

[TS88] Mark R. Thistle and Burton J. Smith. A Processor Architecture for Horizon.
In Proceedings Supercomputing, pages 35–41, November 1988.

[VA00] Vladimir Vlassov and Rassul Ayani. Analytical modeling of multithreaded
architectures. Journal of Systems Architecture, 46(13):1205–1230, November
2000.

[vdSdR93] A. J. van der Steen and P. P. M. de Rijk. Guidelines for the use of the
EuroBen Benchmark. Technical Report TR3, The EuroBen Group, February
1993.

[vRU99] Jurij Šilc, Borut Robič, and Theo Ungerer. Processor Architecture.
Springer Verlag, 1999.

[Wal86] David W. Wall. Global Register Allocation at Link Time. In Proceedings
of the ACM Symposium on Compiler Construction, pages 264–275, June 1986.

[Wal92] David W. Wall. Limits of Instruction-Level Parallelism. In Proceedings 4th
International Symposium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 176–188, April 1992.

[Wal94] David W. Walker. The design of a standard message passing interface for
distributive memory concurrent computers. Parallel Computing, 20(4):657–673,
March 1994.

[WDH89] Mark Weiser, Alan Demers, and Carl Hauser. The Portable Common
Runtime Approach to Interoperability. In Proceedings of the 12th ACM Sym-
posium on Operating Systems Principles, pages 114–122, December 1989.

[Wei80] William E. Weihl. Interprocedural Data Flow Analysis in the Presence
of Pointers, Procedure Variables and Label Variables. In Proceedings of the
7th ACM Symposium on Principles of Programming Languages (POPL), pages
83–94, January 1980.

[WFW+94] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P.
Amarasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An
Infrastructure for Research on Parallelizing and Optimizing Compilers. ACM
SIGPLAN Notices, 29(12):31–37, December 1994.

[WG93] David L. Weaver and Tom Germond. The Sparc Architecture Manual
Version 9. Prentice-Hall, 1993.

[Wie82] Cheryl A. Wiecek. A Case Study of VAX-11 Instruction Set Usage For
Compiler Execution. In Proceedings Symposium on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 177–184,
March 1982.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization and

Literature 313

Methodological Consideration. In Proceedings of the 22nd International Sym-
posium on Computer Architecture, pages 24–36, May 1995.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The
Performance Advantage of Integrated Block Data Transfer in Cache-Coherent
Multiprocessors. In Proceedings of the 6th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
pages 219–229, October 1994.

[WW93] Carl A. Waldspurger and William E. Weihl. Register Relocation: Flexible
Contexts for Multithreading. In Proceedings of the 20th International sympo-
sium on Computer Architecture (ISCA), pages 120–130, June 1993.

[YP92] Tsu-Yu Yeh and Yale N. Patt. Alternative Implementations of Two-Level
Adaptive Branch Prediction. In Proceedings of the 19th International Sympo-
sium on Computer Architecture (ISCA), pages 124–134, May 1992.

[YP93] Tsu-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors
that use Two Levels of Branch History. In Proceedings of the 20th International
Symposium on Computer Architecture (ISCA), pages 257–266, May 1993.

	Introduction
	Trends in Sequential Computing
	Dependencies & Hazards
	Dependency Removal
	Caches & Main Memory

	Trends in Parallel Computing
	Latency Tolerance
	Multithreading
	Hardware Multithreading
	Software Multithreading
	Summary

	Outline

	Emulated Multithreading
	Design Preferences
	Multithreaded Processor Model
	Context Switch Strategies
	Context Switch Overhead

	Basic Concept
	Assumptions
	Data Structures
	Emulation Library
	Code Conversion

	Performance Issues
	Number of Threads
	Caches
	Branch Prediction
	Code Scheduling
	Out-of-order Execution

	Architecture Support

	Implementation
	Introduction
	Design Flow
	High-Level Language Converter
	Configuration File
	Conversion Tasks
	Implementation

	Emulation Library
	Thread Initialization Routines
	Thread Execution Routines
	Communication Routines

	Assembler converter
	Configuration
	Lexer & Parser
	Basic Blocks
	Super Blocks
	External Calls
	Data-Flow Analysis
	Register Allocation
	Code Conversion
	Statistics

	Register Partitioning
	Platform
	Compiler Integration

	Benchmarks
	Benchmark Suites
	LINPACK
	LFK
	ParkBench
	NPB
	Perfect Club
	SPLASH2
	Summary

	SPLASH2 Benchmark Suite
	The FFT Kernel
	The LU Kernel
	The Radix Kernel
	The Ocean Application
	The Barnes application
	The FMM application

	Evaluation : Compaq XP1000
	Compaq XP1000
	Processor
	Cchip
	Dchip
	Pchip
	Memory
	Peripherals
	Software Environment

	Methodology
	Code Conversion
	FFT
	LU
	Radix
	Ocean
	Barnes
	FMM
	Summary

	Evaluation : Cray T3E
	Cray T3E
	Processor
	Memory
	Network
	Input/Output
	Software

	Methodology
	FFT
	LU
	Radix
	Ocean
	Barnes
	Summary

	Conclusions
	Alpha Architecture & Implementations
	Introduction
	VAX Architecture
	Digital RISC Projects
	Design Goals

	Alpha Architecture
	Architecture State
	Address, Data and Instruction Formats
	Instruction Set
	PALcode

	Implementations
	Alpha 21064
	Alpha 21064A
	Alpha 21066
	Alpha 21068
	Alpha 21066A
	Alpha 21164
	Alpha 21164A
	Alpha 21164PC
	Alpha 21264
	Alpha 21264A
	Alpha 21264B
	Alpha 21364
	Alpha 21464

	Cray T3E E-Register Programming
	E-Register Programming
	E-Register Routines
	EMUereg_int_get()
	EMUereg_int_load()
	EMUereg_int_put()
	EMUereg_int_cswap()
	EMUereg_int_mswap()
	EMUereg_int_finc()
	EMUereg_int_fadd()
	EMUereg_pending()
	EMUereg_state()

	Programming Guidelines

