
A Combined Virtual and Remotely Accessible Microprocessor Laboratory∗

Helmut B̈ahring J̈org Keller Wolfram Schiffmann
FernUniversiẗat Hagen

FB Informatik
58084 Hagen, Germany

{helmut.baehring |joerg.keller |wolfram.schiffmann }@fernuni-hagen.de

Abstract

We present a microprocessor lab that is accessible re-
motely, i.e. students can control the hardware in the lab
from their computer at home. At the same time the lab
also provides the features of a virtual lab, i.e. students
conduct experiments on simulators. Both modes of the
lab are run under a common user interface. This lab
is suited especially for distance education, as students
can develop and test their code offline, while still con-
ducting their experiments on real hardware. This lab is
thought to replace a traditional lab course where stu-
dents had to be present on campus for one week full-
time, which is quite difficult to realize in distance edu-
cation.

1 Introduction

FernUniversiẗat is Germany’s Distance Teaching Uni-
versity, serving also Austria and Switzerland and Ger-
man speaking students in other parts of the world.
The Computer Science Department offers study pro-
grammes leading to Bachelor, Master, and PhD de-
grees, respectively. Course texts are made available to
the students in electronic form, preferably pdf, via a
portal where students can access the courses they are
enroled in. The course pages also provide study mate-
rials in addition to course texts, such as applets, link
lists, multimedia enhancements, and the like. Addi-
tionally, paper copies of the course texts are sent via
regular mail to the students. Assignments are submit-
ted either in paper by mail or electronically, prefer-
ably via a system called WebAssign [9] that provides
a web interface to the students and achieves automatic
distribution of assignments to correctors and notifica-
tion of submitting students about results and solutions
when the assignments are corrected. WebAssign also
allows to add modules for automatic grading of sub-
missions, for simple cases such as multiple choice, but
even for the submission of circuit schematics [5]. Stu-
dents can ask questions or seek help over a number

∗This Research was partly funded by FernUniversität’s Innova-
tion Fund 2003.

of communication channels: telephone, telefax, email,
newsgroups, and (partly) video conferences over the
Internet. Our method of teaching allows students to
follow their study programme at any place and at any
time. As more than 85% of our students work, this
is a necessity in order to give these students a chance
of success, as regular attendance of meetings at fixed
times (even via Internet), is difficult or impossible for a
majority of them.

Yet, the German computer science curriculum requires
laboratory courses as part of the undergraduate study
programme. For the reasons mentioned above, labora-
tory sessions on-campus are difficult to realize, even if
they are compressed to a single one-week session close
to the end of the semester, where that session is pre-
ceded by studies and preparations at home. This calls
for virtual laboratories. While a virtual programming
lab can be achieved with usage of the internet and tools
for student collaboration, a virtual microprocessor lab
proves more difficult.

First, while a number of simulator tools are available
to create a virtual lab, they necessitate the installation
of software on the student’s computer. Yet, FernUni-
versiẗat’s students access the Internet frequently from
their workplace, where they often do not have rights to
install software. This would call for a lab with browser
access, where all software is available as applets. How-
ever, students at home suffer from the amount of online
time necessary in this case, and all students would suf-
fer from the applet download times. Second, simulators
never give a complete picture. Especially in applica-
tions where signals are to be checked or produced in
a manner that includes a certain real-time behavior, a
simulator is clearly not sufficient. While this can be
cured by a remote lab, where a physical device is in
the lab at FernUniversität and can be programmed, run
and observed remotely, this again incurs long online
times. Additionally, in order to serve a large number
of students, the necessary amount of hardware instal-
lation would be enormous. We overcome these contra-
dicting requirements and constraints by establishing a
microprocessor lab that is both remotely accessible and
virtual.

Laboratory experiments are indispensable parts of most
universities’ engineering education programs. Dur-
ing the last decade different kinds of remote labs
were developed. They can be divided into three cate-
gories: 1. electronic devices, 2. control engineering and
robotics laboratories, and 3. digital logic and micropro-
cessor systems. In the first category, the main focus is
to measure the electrical characteristics of semiconduc-
tor devices. A good overview of current remote labora-
tories of this kind can be found in [4, 8]. In [1] remote
laboratories for electrical and mechanical engineering
are described. In [10] a control engineering laboratory
is proposed where the students have to design, imple-
ment and test a discrete controller on a real plant that
can be remotely accessed. Examples of remote labora-
tories for digital logic and microprocessor systems can
be found in [6, 7]. In this paper we propose a new mi-
croprocessor lab that provides not only remote access
but also an integrated simulation facility to prepare ex-
periments while not being connected to the internet. To
conduct the experiments remotely, the students can use
thesamegraphical interface as used for the simulation.
We are not aware of any other lab that tries to combine
both modes under a single user interface. Also, our ap-
proach is in contrast to known online labs as it tries to
reduce online time. Hence, we believe our approach to
be novel.

The remainder of the paper is organized as follows. In
Section 2, we detail the requirements and constraints
of a microprocessor lab in distance education. In Sec-
tion 3, we describe the implementation of our lab.
In Section 4, we present some case studies of how
our installed infrastructure will actually be used in lab
courses. In Section 5, we give a conclusion and an out-
look on further applications and activities.

2 Requirements and constraints for a vir-
tual and remote microprocessor lab

If students want to get familiar with microprocessor
programming and deployment, they must have access
to a software development environment and a target
system. Our computer engineering lab course1 is di-
vided into three phases. First of all, the students work
through a course text that describes the basics for the
experiments. For instance, the processors to be pro-
grammed are described, and the pitfalls and fallacies of
assembler programming are explained. In the second
phase they use development tools to practice machine
language programming. The development system con-
sists mainly of an editor and an assembler for compil-
ing machine programs into the microprocessor’s object
code. These tools — cross-assemblers in particular —

1In the German curriculum, a basic computer engineering educa-
tion is part of the computer science programme.

are widely and freely available, and are either installed
locally at the students’ computer or accessed remotely.
In the third phase the students test their programs on a
target system. For this purpose, we had to develop an
appropriate target system that operates and looks like
the real microprocessor system which is used in our
laboratory on campus.

The target system should provide not only a simula-
tor but also serve as a remote control for a real mi-
croprocessor system in Hagen, so that the execution of
students’ programs can be observed in real-time. In
the simulator mode the students can use the target sys-
tem as avirtual laboratory for testing the object code
at home. Although they can test the functionality of
their programs in this phase by simulation, they are not
able to either check the real-time behavior, nor can they
control external hardware that is connected to a real mi-
croprocessor system. In order to provide these facilities
the students should be able to connect via the Internet
to a real target microprocessor system located at the lab
on the Hagen campus, i.e. they use aremotelaboratory.
By switching into the remote control mode the students
will be able to remotely control an experimental setup
in the lab, consisting of the processor itself and some
additional hardware. By means of additional measure-
ment devices that can also be controlled remotely the
students can conduct experiments with external hard-
ware (e.g. a traffic light panel). In addition to the soft-
ware tools, web cams provide live pictures of how the
setup in the lab behaves, e.g. which lights are on or off.

Students thus develop their programs locally and test
them on a simulator. If they do not have the rights to
install software on the computer they are using, they
can also use a development system on a computer in
Hagen via the Internet. When a student is confident that
his program works, then he accesses the remote lab,
uploads his program to the target system, and conducts
his experiment on real hardware. If an error occurs or
the real-time behavior differs from what is expected or
required, he corrects the program until he is satisfied.
In the end, he submits his results and his program via
the WebAssign system to the correctors for grading. In
this manner, the virtual lab mode saves valuable online
time for many students, as they can develop at home in
an offline mode. This also distinguishes our approach
from online labs.

Despite the two modes of operation, students should
not be required to learn two sets of user interfaces,
as this would incur a lot of additional learning time.
Hence, the virtual lab and the remote lab should share a
common user interface. For example, a student should
be aware whether he is running code on a simulator or
on real hardware, but the controls for starting the pro-
gram run should be the same.

Figure 1: Structure of the microprocessor lab.

3 Implementation of the microprocessor
lab

The remote laboratory is realized by a client-server ap-
proach. Students who want to use the remote lab have
to download a number of client programs that serve as
remote controls for the microprocessor system and the
measurement equipment, such as an oscilloscope or a
web cam. These clients connect to server processes that
run on a server computer (named telematics server) in
the laboratory at Hagen. Some of those clients also
have simulator functionality (e.g. the microprocessor
client), so students can seamlessly switch between the
virtual lab and the remote lab. The server computer
in turn is connected to the hardware devices in the lab:
microprocessor card, oscilloscope, web cam, and so on.
The microprocessor card itself is connected to some ad-
ditional hardware such as a traffic light kit. The server
also provides a central installation of the development
software and the simulator for students who are not al-
lowed to install software on their local computer. Those
students may access the server either via a remote shell
or session, or web-based via VNC [11]. Figure 1 out-
lines the scenario of our microprocessor lab.

To accomplish more complex experiments with at-
tached devices, such as a radio controlled clock (see
next section), the simulator establishes a TCP/IP-
connection via the internet to the server at our labo-
ratory, thus allowing students to switch seamlessly to
the remote lab. After authentication, the user gets ac-
cess to the remote control software of different com-
ponents of the experimental setup. These components
include one or more oscilloscopes, function generators
and mainly the microprocessor system hardware. At-
tached to this system will be different devices, e.g. the
above mentioned radio controlled clock or a model of
a traffic light.

The user is able to upload his programs to the remote
microprocessor system via the user interface and to

start them there. He can adjust the already mentioned
instruments remotely, perform different measurements,
and gets back the results. To give him the possibility of
observing the experiments, and thus the feeling of be-
ing in the laboratory room, all instruments and devices
— but also the whole laboratory — are accessible by
controllable web cams.

The client programs are preferably programmed in
Java. The software is programmed in two parts: one
part that is independent of the particular device for
which the client is the frontend, and one part which
realizes the particular device’s frontend. The former
part can be re-used for all devices, the latter part is pro-
grammed in a way that realization of an additional de-
vice can be done with the least possible effort. Using
Java also had the advantage of being more independent
from the type of computer the students have locally,
than with any other realization. Figure 2 depicts the
microprocessor user interface in a close-up.

Of course, the implementation of the lab is not re-
stricted to the particular microprocessor card. There
are also cards with a microcontroller and a digital sig-
nal processor, respectively, that can be accessed in the
same manner. Also several other experiments can be
realized, see Section 5.

4 Case studies

In this section we want to demonstrate how the virtual
and remote lab can be used by the students. When the
students have worked through the course text, which
describes the basics for the experiments, they can con-
duct the experiments. In all cases they use the micro-
computer simulator depicted in Figure 2. Note, that the
graphical interface of this simulator can also used as
a remote control during the remote laboratory exper-
iment. By means of a pull down menu the user can

Figure 2: Microcomputer simulator with integrated re-
mote control.

switch between the two modes. For the remote mode
the IP of the remote lab server must be entered.

4.1 Decimal counter

In this experiment the students have to write a assem-
bler program for a decimal counter that is incremented
every second. At first, the experiment should be con-
ducted by means of the microcomputer simulator. The
students enter, edit and assemble the program on their
home PC and load it into the simulator. Then the ob-
ject code is launched and a four digit starting value is
entered via the keyboard. The counter will be started by
pressing the character ‘+’ and the current counter value
will be displayed on the LED display. If the experiment
has been successfully conducted in the virtual labora-
tory, the students can switch to the remote laboratory
by using the corresponding pull down menu. They en-
ter the server IP and will get connected to a real micro-
computer system located in the computer engineering
laboratory at Hagen (see Figure 3). Now, the program
runs on the real microcomputer while the display can
be observed by means of a web cam.

4.2 Radio controlled clock signal

The objective in this experiment consists of writing a
program that should emulate the signal of a radio con-
trolled clock signal. While the development cycle is
identical to that for the decimal counter experiment, we
need an additional measurement device here to watch
the generated signal. For this purpose we implemented
a client-server program suite that allows to remotely
control an oscilloscope at Hagen and to display the
measured curves on the student’s PC (see Figure 4).

5 Conclusions and outlook

We have realized a microprocessor lab course that
serves the requirements of students in distance educa-
tion: minimization of online time, avoidance of down-
loads and local installations if possible, and access to
real hardware. At the same time, we fulfilled our cur-
ricular requirements: performing experiments complex
enough to teach the students low-level programming of
microprocessor hardware. This is accomplished by two
modes of operation: virtual lab and remote lab. The
switching between these modes is seamless, relieving
the students from having to learn several user interfaces
for the same device. Our own software development
has been reduced to a minimum by re-use wherever
possible. The achievements so far have resulted in a
shortening of the on-campus phase from one week to
two days for the next offering the lab course in spring
2005.

There are further experiments, for which virtual and
remote versions have been developed, and which will
complete the virtualization of the microprocessor lab
in the future. These are: digital logic, where a GAL
can be programmed remotely, a digital signal proces-
sor, which is used to implement a filter for a signal
which is generated by a function generator, and a mi-
crocontroller which is programmed for a control task.
The function generator can be controlled remotely in
the same manner as the oscilloscope. The digital signal
processor and the microcontroller can, in principle, be
accessed in the same way as the microprocessor. How-
ever, the simulator for the digital signal processor was
not freely available in Java, but provided with the de-
velopment software for a particular operating system.
Also, the user interface for the card itself is separate
from the development software and not freely avail-
able. Hence, we did not find a way so far to provide
students with a seamless switch between virtual and
remote modes for this experiment. Furthermore, the
control of the hardware necessitates a remote session
or use of VNC.

The (partial) virtualization of the microprocessor lab
continues our transformation to a web-based computer
engineering education, as set out in [2], which started
by integrating a circuit design tool, submission of as-
signments via the Internet, and semi-automatic assess-
ment and grading of assignments with student circuits
in a beginners course [5]. The integration of the simple
scalar tool set [3] into a course on advanced computer
architecture is still underway.

We still have to accomplish a kind of reservation
scheme for the physical devices. Currently, the remote
lab is allocated on a first-come-first-serve basis, which
is not the optimal choice at times close to deadlines for
assignments. We also plan to extend this type of lab
access to other computer engineering lab courses.

Figure 3: Real microcomputer at Hagen university.

Figure 4: Remote control for the oscilloscope.

Acknowledgements

The research presented here was partially funded by
FernUniversiẗat’s Innovation Fund 2003. We thank
Bernhard Fechner for implementing part of the web in-
terfaces for the lab devices.

References

[1] B. Alhalabi, D. Marcovitz, K. Hamza, S. Hsu. Re-
mote Labs: An innovative leap in engineering dis-
tance education. IFAC, 2000.

[2] H. Bähring, J. Keller, W. Schiffmann. Deploy-
ment of New Media at FernUniversität Hagen. In
Informationstechnik und Technische Informatik,
vol. 43 no. 4, 2001, pp. 215-218.

[3] D. Burger, T. M. Austin. The simple scalar
tool set. Tech. Rep. TR-1342. Computer Science
Dept., Univ. of Wisconsin, Madison, 1997.

[4] T. A. Fjeldly, M. S. Shur. Lab on the Web: Run-
ning Real Electronics Experiments via the Inter-
net, Wiley-VCH, 2003.

[5] U. Hönig, J. Keller, W. Schiffmann. Web-Based
Exercises in Computer Engineering. In Proc. In-
ternational Conference on Networked e-learning
for European Universities, Granada, Nov. 2003.

[6] S.-J. Hsieh, P. Y. Hsieh, D. Zhang. Web-
based simulations and intelligent tutoring system
for programmable logic controller. ASSE/IEEE
Frontiers in Education Conference, Session T3E,
IEEE 2003.

[7] Y. Ko, T. M. Duman, A. Spanias. On-line labo-
ratory for communication systems using J-DSP.
ASSE/IEEE Frontiers in Education Conference,
Session T3E, IEEE 2003.

[8] Z. Nedic, J. Machotka, A. Nafalski. Remote
laboratories versus virtual and real laboratories.
ASSE/IEEE Frontiers in Education Conference,
Session T3E, IEEE 2003.

[9] H. W. Six, G. Str̈ohlein, J. Voss. Evaluation
of WebAssign. In 20th World Conference on
Open Learning and Distance Education (ICDE
Congress). D̈usseldorf, April 2001.

[10] J. Tuttas, B. Wagner. Distributed online labora-
tories. Intern. Conference on Engineering Educa-
tion, 2001.

[11] RealVNC.http://www.realvnc.com/ .

	Introduction
	Requirements and constraints for a virtual and remote microprocessor lab
	Implementation of the microprocessor lab
	Case studies
	Decimal counter
	Radio controlled clock signal

	Conclusions and outlook

