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Abstract. Current multicores present themselves as symmetric to pro-
grammers with a bus as communication medium, but are known to be
non-symmetric because their interconnect is more complex than a bus.
We report on our experiments to map a simple application with com-
munication in a ring to SPEs of a Cell BE processor such that perfor-
mance is optimized. We find that low-level tricks for static mapping do
not necessarily achieve optimal performance. Furthermore, we ran ex-
haustive mapping experiments, and we observed that (1) performance
variations can be significant between consecutive runs, and (2) perfor-
mance forecasts based on intuitive interconnect behavior models are far
from accurate even for a simple communication pattern.

1 Introduction

Current multicore processors such as the Cell BE or Intel/AMD quad cores
appear to the application programmer as symmetric multiprocessors, where the
cores are identical (we exclude the PPE core on Cell BE here), and where the
interconnect used by the cores to communicate with each other and with the
global (off-chip) memory is symmetric, i.e. it appears as if it were a bus with
huge bandwidth. Thus, the application programmer must still think about which
(micro)tasks of his parallel program are aggregated into one task and mapped
onto one core, but he does not have to take care onto which core they are mapped.

There have already been studies concluding that, as the interconnect in re-
ality is more complex than a bus, the concrete mapping does play a role. For
example, IBMs own experiments [5] indicate that if Cell SPEs communicate in
pairs, then there is an optimal and a worst case mapping, with communication
performance that differs by a factor of about 2.5. Ainsworth et al. [1] conclude
that among other factors that constrain the usage of Cell’s Element Intercon-
nect Bus (EIB), such as the control structure, also the concrete communication
pattern leads to performance differences of the same order. Sudheer et al. [12]
discuss the influence of thread-SPE mapping for large messages. Their conclu-
sions support our intuition that random thread assignments on SPEs can impact
both performance and predictability significantly. Still, the focus of their work is
on finding the right affinity for a given communication pattern among a small set



of possible mappings, while we are focusing more on the performance trade-offs
between all possible affinities. Furthermore, in addition to the analysis of the in-
terconnect behavior for large packets transfers done in [12], we also experiment
with small and medium packets, encountered in many real-life applications (e.g.,
image processing convolution filters or histogram computations), and we provide
interesting insights there as well.

Gross et al. [14] report that asymmetries also exist for Intel Xeon quad-
cores. When cores intensively communicate with main memory, the performance
depends on which core runs the thread with highest bandwidth demand. Yet, so
far the numerous literature on mapping applications to multiple cores (see e.g.
the mapping optimization in [9] or the extensive related work section in [8]) does
not take this asymmetry into account.

Furthermore, it is also not clear how real applications are affected by this.
Besides a worst case and a best case mapping, one would need an average case
behavior to decide whether the worst case is a theoretical one and in practice,
the mapping done by the runtime system provides close-to-optimal performance,
or whether the mapping to particular cores really must be taken into account.
Also, the application might exhibit multiple communication patterns so it may
be worthwhile to consider all possible mappings to finally pick one that gives
best performance over all patterns.

We therefore decided to run a set of experiments on a Cell BE processor
with a synthetic benchmark application where the tasks communicate in a bi-
directional ring. Our findings are that the mapping is of importance already for
small packet sizes, and that the application has little chance to find a mapping
with best performance, even when actively influencing the mapping.

The remainder of this article is organized as follows. In Sect. 2 we give the
necessary details about the Cell BE processor and our synthetic benchmark
application. In Sect. 3 we report the results of our experiments. In Sect. 4, we
give a conclusion and outlook on future work.

2 Cell BE and Benchmark Application

We first introduce the Cell BE processor in as much detail as necessary, and
then present the synthetic benchmark program used to evaluate the impact of
the mapping.

2.1 Cell Broadband Engine

If there is any processor to be credited with starting the “multi-core revolution”,
the Cell Broadband Engine (Cell/B.E.) must be the one. Originally designed by
the STI consortium — Sony, Toshiba and IBM — for the Playstation 3 (PS3)
game console, Cell/B.E. was launched in early 2001 and quickly became a target
platform for a multitude of HPC applications. Still, being a hybrid processor with
a very transparent programming model, in which a lot of architecture-related



optimizations require programmer intervention, Cell/B.E. is also the processor
that exposed the multi-core programmability gap.

A block diagram of the Cell processor is presented in Figure 1. The processor
has nine cores: one Power Processing Element (PPE), acting as a main proces-
sor, and eight Synergistic Processing Elements (SPEs), acting as computation-
oriented co-processors. In the PS3, only six SPEs are visible under Linux. An
additional SPE runs the hypervisor, and the last SPE is switched off, allowing
to use Cell chips with one defective SPE for PS3. It is unclear which of the SPEs
from Figure 1 are visible to the user.

For the original Cell (the variant from 2001), the theoretical peak perfor-
mance is 230 single precision GFLOPS [10] (25.6 GFLOPS per each SPE and
for the PPE) and 20.8 double precision GFLOPS (1.8 GFLOPS per SPE, 6.4
GFLOPS per PPE). In the latest Cell version, called PowerXCell 8i, the double
precision performance has been increased to 102.4 GFLOPS. All cores, the ex-
ternal main memory, and the external I/O are connected by a high-bandwidth
Element Interconnection Bus (EIB), which in reality is composed of four uni-
directional rings. The maximum data bandwidth of the EIB is 204.8 GB/s.

Fig. 1. The Cell Broadband Engine.

The PPE contains the Power Processing Unit (PPU), a 64-bit PowerPC
core with a VMX/AltiVec unit, separated L1 caches (32KB for data and 32KB
for instructions), and 512KB of L2 Cache. The PPE’s main role is to run the
operating system and to coordinate the SPEs.

Each SPE contains a RISC-core (the SPU), a 256KB Local Storage (LS), and
a Memory Flow Controller (MFC). The LS is used as local memory for both code
and data and is managed entirely by the application. The MFC contains separate
modules for DMA, memory management, bus interfacing, and synchronization
with other cores. All SPU instructions are SIMD instructions working on 128-
bit operands, to be interpreted e.g. as four 32-bit words. All 128 SPU registers
are 128-bit wide. Each SPE has a local address space. Besides that, there is a



global address space that spans the external main memory and the eight local
storages. Yet, an SPU can only directly access its own local storage, all other
accesses must use explicit DMA transfers to copy data to the local storage.

The Cell/B.E. has been used to speed-up a large spectrum of applications,
ranging from scientific kernels [16] to image processing applications [4] and
games [6]. The basic Cell/B.E. programming model uses simple multi-threading:
the PPE spawns threads that execute asynchronously on SPEs, until interaction
and/or synchronization is required. The SPEs can communicate with the PPE
using low-level mechanisms like signals and mailboxes for small amounts of data,
or using DMA transfers via the main memory for larger data. The SPEs can also
transfer data directly between local storages by DMA transfers. In this model, all
data distribution, task scheduling, communication, and processing optimizations
are performed “manually” by the user (i.e., they are not automated).

Multiple DMA transfers can occur concurrently on each EIB ring, but they
must use different parts of that ring. Thus, if SPEs 1 and 3, and 5 and 7 com-
municate in pairs, this is possible by using only one ring.

Despite its obvious programming complexity, this model allows users to con-
trol the access to most of the Cell hardware components explicitly. As we are
interested in the performance behavior of the EIB, and its potential influence on
a larger application, we are using this model to implement our test application.

2.2 Synthetic Benchmark Application

Our synthetic benchmark application uses k = 6 threads on a Playstation 3 with
Linux operating system, and k = 8 threads on a Cell blade. The main thread
on the PPE starts k threads that run on the k SPEs available. Each thread
runs a task. The six tasks communicate in a bi-directional ring, i.e. initially,
each task creates two packets, then it sends these packets to its neighbor tasks.
Then, whenever it receives a packet from a neighbor task, it sends this packet
to the other neighbor task on the ring. This is repeated several million times.
The packets have a size of 1 kbyte and contain random data. For comparison,
we also did runs with packets of size 2 kbyte and 0.5 kbyte.

The application uses a simple, low-overhead message-passing library for Cell
BE developed at University of Hagen as a student project [11]. Each transfer is
buffered on sender and receiver sides. Upon a send command, a sender transmits
a notification to the receiver, the receiver from time to time polls for notifica-
tions, and if it has one, initiates a SPE-to-SPE DMA transfer for the packet
(the buffer addresses are fixed and communicated beforehand). When the DMA
transfer is completed, the receiver sends an acknowledge to the sender. The
sender from time to time polls for acknowledges, and if it has one, marks the
send buffer as free. The notifications and acknowledgements are communicated
via a matrix data structure in global memory. This allows each task to check
for all notifications at once by performing one get on a matrix row. Thus, the
majority of traffic on the EIB is from SPE-to-SPE data transfer, but there is
traffic to and from external memory as well.



The ring communication above is repeated for each mapping of threads to
SPEs. When the threads Ti, where i = 0, . . . , k− 1 have been started, thread Ti
executes task tπ0(i). Then the several million ring communications are done, the
time needed is recorded, then Ti executes task tπ1(i), the ring communications
are done, the time is recorded, and so on. On a PS3, we run 120 permutations
πj , where j = 1, . . . , 120 form the 5! = 120 possible mappings of threads to SPEs
with πj(0) = 0. We denote a permutation with π(i) = ai for i = 0, . . . , k − 1 by
[a0 . . . ak−1].

Thus, we test all mappings of 6 tasks onto 6 threads, relative to task t0
which always is executed by thread T0. This was done to reduce the number
of permutations from 720 to 120, so to be able to still manually inspect the
performance results with reasonable effort. By doing so, we implicitly test all
possible mappings from tasks to SPEs, as the application is symmetric in the
sense that all threads are executing identical tasks.

On a Cell blade, we use the 7! = 5, 040 mappings possible with 8 SPEs and
πj(0) = 0.

As the default mapping of the threads to the SPEs is somewhat random [12],
and not necessarilty identical on two runs of the application, we also created
a variant of the application where thread Ti is pinned to SPU i. In order not
to rely on particular implementations of the library software, we refrained from
using spe set affinity, but used the mapping of the SPEs’ local stores into
the global address space, and provided task IDs by having the PPE directly
write the IDs into a predetermined address at the local stores.

We compiled both variants of our application using IBM Cell SDK 3.1.0.1
with gcc compiler and -O3 option.

3 Experiments

The application used 107 transmissions per SPE to get a sufficiently long run-
time. We did three runs of the application, averaged the runtime for each per-
mutation, and ranked the permutations according to the average runtime. For
this ranking, Fig. 2 depicts the average runtime as well as the runtime curves of
the three runs for 1 kbyte packets on the PS3.

First, we notice that the ratio of best to worst average runtime is about 2.35,
while it is about 2.8 for the individual runs. This already indicates that there
are noticeable differences between the runs for each permutation. Second, the
best permutation with respect to average runtime is [014235]. While it is on
position 1 in run 3, it is on positions 42 and 45 in runs 1 and 2, respectively. The
permutation on rank 2 with respect to average runtime is [025143], which is on
positions 11, 9, 8 with respect to the runtime in runs 1, 2, and 3, respectively.
Thus, the permutation with rank 2 in any of the runs must perform very badly
in the other runs. This is also visible in the graph, where the curves for the
individual runs look rather wild, with many peaks downward (i.e. permutations
with small runtime) on high ranks in average runtime, corresponding to the
curves differing substantially. Third, the average curve is mostly a straight line
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Fig. 2. Runtime differences with default mapping of tasks on PS3

(average and median are very close together), so that one could expect to be a
factor of about 1.18 away from the optimal performance when using a random
permutation. Fourth, the identical permutation, which one would use by default,
is on rank 92 with respect to average runtime, which means that it is by a factor
of 1.8 away from the optimum. Finally, the two permutations on the top places
do not show any mapping that one would expect, such as [024531] or the like.

We conclude that in this way, no reliable forecast on the performance is
possible, and hence a random mapping of tasks to threads might be the best to
do.

With the assumption that the mapping of local store addresses into the global
address space represents the SPE numbering, we used the variant of the appli-
cation as described in the previous section. The results for PS3 are depicted in
Fig. 3, with the number of rounds increased to 5 · 107 per permutation.

The top 2 permutations [043512] and [013542] with respect to average run-
time are on ranks 3,2,4 and 5,7,3 in the individual runs. The individual curves
are now closer to the average, the best to worst ratio is about 2.45 for the indi-
vidual runs and 2.27 for the average. The average curve is still mostly a straight
line, but has a rather steep beginning. One of the mappings that would seem
to be best, [024531] is on rank 2, the other [013542] is on rank 7, but already
has a 25% performance loss. However, the identity permutation has gone down
to rank 101 with an average runtime that is longer than the average runtime
for the rank 1 permutation by a factor of 1.97. While those mappings (called
ring affinity) were considered inferior in [12], that study only used uni-directional



0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Rank

R
u

n
ti

m
e

Average

Run1

Run2

Run3

Fig. 3. Runtime differences with deterministic mapping of tasks on PS3

ring communication, while we consider bi-directional ring communication, which
seems more realistic.

We repeated the PS3 experiment with packet sizes of 2 kbyte and 0.5 kbyte,
but did not see significant changes compared to the previous runs.

We performed the experiment with deterministic mapping also on a QS22
blade of the Cell buzz cluster of Georgia Tech. While each Cell blade contains
two Cell processors, we used only one of them. In Fig. 4, the runtimes of the
different mappings for different packet sizes are shown. The curves look similar
to the curve from Fig. 3. The ratios of worst to best average runtime are 3.4, 5.3,
9.3 for 2, 1, and 0.5 kbyte packets, respectively, indicating that with more traffic
(the ring now has 16 links), dependence on the mapping grows. Furthermore, the
permutations [02467531] and [01357642], which one would choose intuitively, are
not among the top 10. The former is on rank 95 of 5,040, albeit with a runtime
increase of 74% compared to rank 1. The latter is only on rank 3,212, with
a runtime about 2.6 times the best runtime. We have no explanation of this
asymmetry.

We also conclude from the Cell blade experiment that the traffic from the
hypervisor SPE in the PS3 setting had no notable influence on the application
performance.

For reference, we also restricted our application on the Cell blade to only
perform uni-directional ring traffic, see Fig. 5. Here we see that the mapping has
a much smaller influence, except for a small number of mappings. This also links
our study to the work from [12].
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4 Conclusions and Future Work

We have investigated the influence of the concrete mapping of tasks onto multi-
processor cores on the performance of a parallel application. Our test setting was
the Cell BE processor running a set of tasks that communicate in a bidirectional
ring. Our findings were that the mapping seems to vary from one run of the
application to the next, so that it is impossible to employ a mapping that op-
timizes performances by exploiting the knowledge about Cell’s communication
structure. This is even true when trying to pin tasks to cores by writing the task
numbers directly to local stores, using the embedding of local store addresses
into the global address space, which we assume to be fixed. The performance im-
pact of the mapping is even visible for small messages (1 kbyte), while previous
studies indicated an influence only for large messages.

While the Cell BE processor is only one example of a multicore processor
with a very particular structure (and with an unclear future), it still can serve
as a reference example of the future manycore and the Multiprocessor-System-
on-Chip (MPSoC) architectures.

The manycore processors of the future, of which the first are soon to debut,
will feature, besides tens of cores, complex on-chip interconnection networks,
and local memories for direct core-to-core communication; i.e. they will have a
Cell-like structure. A good example is the Intel single-chip cloud (SCC) with
24 tiles in a 6 × 4 2D-mesh, each tile comprising two IA cores and support for
message passing from tile to tile [15]. This support comprises a 16 KB message
buffer on each tile (similar to a Cell’s local store used for message buffering)
and routines for direct tile-to-tile communication. Thus, for these architectures
the programmer depends on a communication performance model or a clever
runtime system to explicitly or automatically map tasks onto cores such that
the resulting communication performance is optimal or close to optimal.

MPSoC architectures, increasingly used in high-end embedded systems, are
also moving towards increased complexity, featuring heterogeneous cores, dis-
tributed memory, and complex communication networks. This trend, already
predicted in 2004 by Wolf [17], is nowadays proven by architectures developed
both in the academia, like CoMPSoC [7], and in the industry, like ARM MP-
Core [2] or ARM Cortex-A9 [3]. Because of either soft or hard real-time require-
ments, typical for these systems, the interconnection behavior must be known in
order for the application to be mapped with communication pattern awareness.
Disregarding these issues will lead, much like on the Cell/B.E., on less efficient
use of the platform.

In [13], a model to find the optimal mapping of threads to SPEs was proposed
for the Cell BE processor, but for ring communication the mapping proposed by
the model was inferior to a manually selected mapping. Therefore, while we are
not dismissing their results, we argue that interconnect models for performance
prediction have to be carefully validated. Also, it seems that using a model to
enforce predictable interconnect performance might result in significant, non-
intuitive performance penalties.



A number of questions in our case study could not be answered yet. For exam-
ple, the variance in runtime between different runs in the deterministic mapping
case could come from constraints on the EIB control bus, see [1]. Also, our syn-
thetic benchmark is somewhat artificial. It would be interesting to see whether
the performance of a larger application, where SPEs communicate frequently in
a multitude of patterns that are more complex, will be even more dependent on
the concrete mapping. Finally, Cell is a relatively simple test platform as there
is almost no interference with the operating system, for the simple reason that
there is none on the SPEs. Of course, the operating system on the PPE also uses
the bus to communicate with the main memory. On other platforms, things like
thread migration may occur and must be taken into account if a predictable,
performance-aware mapping is to be achieved. While setting the thread affinity
can prevent migration, it creates a tension between application and operating
system that somehow should be resolved.

Overall, our study shows that although the memory and core performance
issues dominate the multi-core performance studies, their interconnects might
as well become a bottleneck for (predictable) performance. Although we are far
from an accurate, yet simple analytical model for multi-core interconnect perfor-
mance, studies such as ours might enable a statistical, platform-specific approach
to predictable mappings, which might in turn be used in any predictable and
productive parallel programming model for multi-cores.
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