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Abstract  

Disk capacities and processor performances have increased dramatically ever since. With rising storage space the 

probability of failures gets higher. Reliability of storage systems is achieved by adding extra disks for redundancy, like 

RAID-Systems or separate backup space in general. These systems cover the case when disks fail but do not recognize 

corrupted data in faulty blocks. Especially new storage systems like Solid State Drives are more vulnerable to corrupted 

data as cells are “aging” over time. We propose to add error detection and correction of data to a RAID-system without 

increasing the amount of space needed to store redundancy information compared to the common implementation RAID 

6. To overcome higher computation complexity the implementation uses parallel execution paths available in modern 

Multicore and Multiprocessor systems. 

 

1 Introduction 

A hard disk drive cannot be seen as a reliable and durable 

medium when it comes to storing valuable data. Hard disks 

can fail suddenly by defects in the controller or more often 

in the mechanics of the disk. Therefore several techniques 

have been developed in the past years to overcome 

problems with hard disk failures. The most common 

technique is RAID, where one or more extra disks are used 

for adding redundant information in order to tolerate the 

loss of one or more disks. However data on hard disks can 

get corrupted without a disk failure. This issue has 

dramatically increased since the introduction of solid state 

drives, where it is only a matter of time and usage 

frequency when cells are unable to store data correctly. 

Data on storage drives is checksum protected. Therefore 

the host controller usually gets notified if corrupted errors 

are detected. These “noisy” errors can then be corrected by 

recovering the data from redundant data stored on different 

disks of the storage array. However, a lot of components 

handle the data until it is finally stored in RAM and each 

one can fail without recognition. These failures are also 

called “silent” errors and have already been investigated in 

an experiment. For further information see [3]. Several 

techniques, from hardware to software levels, have been 

investigated to detect and recover corrupted data. The 

disadvantage of these schemes is that additional storage is 

needed for detecting errors and in most cases a new 

storage independent layer is implemented. We propose a 

technique for extending a RAID 6 system to detect and 

correct corrupted data in faulty disk blocks, while using 

the same amount of storage space as the common RAID 6 

system. Our approach provides the same level of data 

reconstruction in case of hard disk losses and allows the 

correction of more combinations of noisy data block 

errors. In addition our system also has the ability to detect 

up to three defect data blocks (silent errors) in a certain 

range and correct it, so the probability of undetected 

corrupted data can be dramatically decreased. RAID 6 uses 

two parity values and can therefore only correct one faulty 

block and only if all disks are working. The system used in 

our proposal offers the capability of correcting single 

blocks in a certain range even after one disk stopped 

working. The proposed technique involves more complex 

computations, based on Reed Solomon codes, than those 

without error detection. Therefore a parallel 

implementation is introduced which is optimized for latest 

multicore and multiprocessor systems. Validation of this 

implementation demonstrates that the error correction 

ability works and that the performance on standard desktop 

computers is sufficient for storage systems using the latest 

disk drives. 

 

The remainder of this paper is structured as follows. 

Section 2 described related work. In Section 3 the 

proposed technique and algorithm are introduced. Section 

4 validates the performance and error correction capability 

of an implementation. Section 5 gives a conclusion and an 

outlook on future work. 

2 Related Work 

RAID (Redundant Array of Inexpensive Disks) is a 

common technique used to increase performance, 

reliability or both. It has been introduced in [6]. Among 

the variety of RAID systems a disk array tolerating the 

failure of two disk losses, called RAID 6 as described in 

[7] has been investigated, which is able to tolerate two disk 

losses with two additional disks using Reed Solomon 

codes. Other techniques followed in order to overcome the 

computation complexity when Reed Solomon codes are 

used: EVENODD [2] and DATUM [1] are only two of 

numerous examples. If too many errors are encountered, a 

Reed Solomon decoder may miscorrect to another code 

word with a certain probability [9], which also constitutes 

a kind of error. To solve the problem of undetected errors, 

systems have been proposed storing separate values for 

checksums like [8] or ZFS of [10] amongst others. The 

proposed technique combines the advantages of both 

approaches, i.e. it is able to detect and correct corrupted 

data and tolerates the loss of two disks without the need of 



extra storage compared to RAID 6. RAID systems [4] and 

Reed Solomon codes [5] have also been accelerated by 

using configurable hardware. While this seems a viable 

option in systems-on-chip and in high performance 

computers like the Cray XD1, our approach targets 

standard personal computers where we cannot expect 

reconfigurable hardware, for which reason we have 

focussed on a software solution. 

3 Concept 

The proposed technique is based on Reed-Solomon 

correction codes like in the RAID 6 system. Like the well 

known RAID it uses two hard disk drives for storing 

redundant data (parity) and is able to recover data in the 

case of the loss of up to two hard disks. Just like in RAID 

6 systems the content of each disk drive is divided into 

equally sized blocks. One row of blocks across all disks in 

an array having the same offset is called a stripe. Two 

blocks of one stripe contain parity information instead of 

data. The parity information is not stored on two specific 

disks. It is spread across all disks, changing the position 

every two stripes, see blue and red blocks in Figure 1. 

Instead of calculating two parity values like in RAID-6 the 

proposed system uses four values P, R, Q and S. The parity 

values are computed using the data across two stripes. 

Figure 1 shows an example of the algorithm for an array of 

five disks. 

 

Figure 1 - Position of parity and data blocks  

 

The algorithm for parity generation is based on the Galois 

Field GF(2
8
)  with generators g

n
 that are multiplied with 

data values of the disks. This enables the reconstruction of 

four data blocks within a set of two stripes, if the position 

of these disks is known. If disks are defect the missing 

blocks are known and can therefore be recovered. 

 

Corrupted data in data blocks can be determined by 

recalculating and comparing parity values. If the parity 

value on disk and the calculated one do not match, up to 

three blocks can be reconstructed. The probability of a 

successful recover depends on the number of blocks that 

have been corrupted and the number of disks. See Section 

4 for more details. There are three different scenarios 

when parity calculations have to be done: Generating 

parity before writing, checking parity after reading and 

recovering data after losing one or two disks. The system 

can be used in a similar way for disk arrays tolerating a 

different number of disk losses than two.  

4 Validation of performance and 

error correction capability 

The proposed algorithm was implemented to be able to 

perform experiments about error correction capability and 

performance. RAID arrays are used to increase storage 

performance and can reach transfer rates at a multiple 

speed of a single disk. Therefore the algorithm for parity 

computation is parallelized and optimized for modern 

multicore systems with high cache capacity. Finite field 

multiplications and divisions are complex operations 

which need large numbers of instructions on x86 

processor architectures. Therefore lookup tables are 

initially generated to speed up those operations on 

constants. In this case 3.3 Kilobytes of tables are required 

to perform a full recovery of four blocks in two stripes 

without the need of multiplications or divisions. The only 

operations left are XOR-computations. After parallel 

implementation the performance of two main operating 

modes has been measured with a quadcore processor 

system
1
. One typical mode is the computation of the 

parity. Figure 1 shows the performance when using one to 

four processors. The parity consists of four values that 

have to be generated when storing data. After data has 

been read these values can be computed again and 

compared to make sure the data has not changed. This 

process can be accelerated if less than four parity values 

are computed. However, the probability of undetected 

defect blocks will increase. 

 

If one or two disks fail data has to be recovered. If only 

one disk fails data integrity checks can still be done and 

one corrupted block in two stripes can still be corrected. 

Figures 2 and 3 show the performance scaling from one to 

four processors when data of one or two disks is 

recovered. In worst case, after two disks are lost, the 

system provides up to 150 MB/s utilizing one and almost 

600 MB/s using four processors. If one disk is lost the 

speed goes up to 300 MB/s on one and up to 800 MB/s on 

four processor systems. If integrity checking is used some 

overhead has to be added in order to calculate integrity 

checks with the remaining two parity blocks. 

 

                                                 
1
 Fujitsu Siemens Computers Amilo Pi3630, Intel Core 2 

Quad Prozessor Q9400 



 
 

Figure 2 - Parity computing performance 

 
 

Figure 3 - Data recovery performance 

 
RAID-6 is able to detect two and correct one silent error 

within one stripe. If one disk fails single errors can be 

detected but not corrected. Our solution is able to detect 

up to four and correct up to three silent errors within two 

stripes. If one disk fails two errors can be detected and 

one error can be corrected.  

 

When correcting silent errors the success of a correction 

depends mostly on the number of concurrent errors within 

two stripes and the number of disks in the array. If both 

parameters increase the number of combinations of 

possible corrupted data bytes grows as well. To show the 

capabilities of our system, pseudo random data has been 

generated and parity values computed. In 100.000 test 

cycles one, two and three errors have been simulated on 

pseudo random positions. After that an attempt to 

reconstruct the data has been made. If one or two errors 

were injected, the data has always been constructed 

correctly. Figure 3 shows the capability of corrections 

when three simultaneous errors occur. Triple errors are 

already more likely to be recovered wrongly than 

correctly when eight data drives are used. This is because 

the location of the error is unknown. However, the 

probability of triple errors within two stripes is low and is 

just in case only one byte at the same position within 

three blocks in two stripes of at least two disks got 

corrupted. If more than one byte in a block has been 

corrupted, for example a whole sector, the probability of a 

successful correction can be increased as the same 

combination of predicted erroneous positions can be 

checked when other bytes are recovered.  

 

 
 

Figure 4 - Frequency of wrong error correction 

Compared to RAID-6 our proposal allows the correction 

of more noisy error constellations, too. Within two stripes 

each system allows the correction of a total of up to four 

errors. In our solution four errors can be corrected even if 

all of them are within one stripe. RAID-6 only allows the 

correction of two errors per stripe. Figure 5 shows the 

number of correctable error combinations within two 

stripes for both systems if all disks are running and after 

losing one disk. 

 

 
 
Figure 5 - Correctable error constellations 



5 Conclusions and Future Work 

We introduced a technique which can be used to 

overcome data corruptions on disks, especially on newer 

disk systems like Solid State drives which are more likely 

to fail because of cells wearing out or not being accessed 

for a longer amount of time. Utilizing this RAID 

technology a fast and reliable array of SSDs consuming 

little power can be constructed. The proposed scheme can 

easily be changed tolerating any other number of disk 

failures while being able to detect and correct data 

corruptions. A system tolerating one disk failure has 

already been investigated. By integrating data encryption 

or applying a diffusion filter the ability to detect triple 

errors can be improved to almost 100%. 
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