
RAID Architecture with Correction of Corrupted Data in Faulty Disk

Blocks

Henning Klein, Fujitsu Siemens Computers, Augsburg, Germany, henning.klein@fujitsu-siemens.com

Jörg Keller, Fernuniversität in Hagen, Hagen, Germany, joerg.keller@FernUni-Hagen.de

Abstract

Disk capacities and processor performances have increased dramatically ever since. With rising storage space the

probability of failures gets higher. Reliability of storage systems is achieved by adding extra disks for redundancy, like

RAID-Systems or separate backup space in general. These systems cover the case when disks fail but do not recognize

corrupted data in faulty blocks. Especially new storage systems like Solid State Drives are more vulnerable to corrupted

data as cells are “aging” over time. We propose to add error detection and correction of data to a RAID-system without

increasing the amount of space needed to store redundancy information compared to the common implementation RAID

6. To overcome higher computation complexity the implementation uses parallel execution paths available in modern

Multicore and Multiprocessor systems.

1 Introduction

A hard disk drive cannot be seen as a reliable and durable

medium when it comes to storing valuable data. Hard disks

can fail suddenly by defects in the controller or more often

in the mechanics of the disk. Therefore several techniques

have been developed in the past years to overcome

problems with hard disk failures. The most common

technique is RAID, where one or more extra disks are used

for adding redundant information in order to tolerate the

loss of one or more disks. However data on hard disks can

get corrupted without a disk failure. This issue has

dramatically increased since the introduction of solid state

drives, where it is only a matter of time and usage

frequency when cells are unable to store data correctly.

Data on storage drives is checksum protected. Therefore

the host controller usually gets notified if corrupted errors

are detected. These “noisy” errors can then be corrected by

recovering the data from redundant data stored on different

disks of the storage array. However, a lot of components

handle the data until it is finally stored in RAM and each

one can fail without recognition. These failures are also

called “silent” errors and have already been investigated in

an experiment. For further information see [3]. Several

techniques, from hardware to software levels, have been

investigated to detect and recover corrupted data. The

disadvantage of these schemes is that additional storage is

needed for detecting errors and in most cases a new

storage independent layer is implemented. We propose a

technique for extending a RAID 6 system to detect and

correct corrupted data in faulty disk blocks, while using

the same amount of storage space as the common RAID 6

system. Our approach provides the same level of data

reconstruction in case of hard disk losses and allows the

correction of more combinations of noisy data block

errors. In addition our system also has the ability to detect

up to three defect data blocks (silent errors) in a certain

range and correct it, so the probability of undetected

corrupted data can be dramatically decreased. RAID 6 uses

two parity values and can therefore only correct one faulty

block and only if all disks are working. The system used in

our proposal offers the capability of correcting single

blocks in a certain range even after one disk stopped

working. The proposed technique involves more complex

computations, based on Reed Solomon codes, than those

without error detection. Therefore a parallel

implementation is introduced which is optimized for latest

multicore and multiprocessor systems. Validation of this

implementation demonstrates that the error correction

ability works and that the performance on standard desktop

computers is sufficient for storage systems using the latest

disk drives.

The remainder of this paper is structured as follows.

Section 2 described related work. In Section 3 the

proposed technique and algorithm are introduced. Section

4 validates the performance and error correction capability

of an implementation. Section 5 gives a conclusion and an

outlook on future work.

2 Related Work

RAID (Redundant Array of Inexpensive Disks) is a

common technique used to increase performance,

reliability or both. It has been introduced in [6]. Among

the variety of RAID systems a disk array tolerating the

failure of two disk losses, called RAID 6 as described in

[7] has been investigated, which is able to tolerate two disk

losses with two additional disks using Reed Solomon

codes. Other techniques followed in order to overcome the

computation complexity when Reed Solomon codes are

used: EVENODD [2] and DATUM [1] are only two of

numerous examples. If too many errors are encountered, a

Reed Solomon decoder may miscorrect to another code

word with a certain probability [9], which also constitutes

a kind of error. To solve the problem of undetected errors,

systems have been proposed storing separate values for

checksums like [8] or ZFS of [10] amongst others. The

proposed technique combines the advantages of both

approaches, i.e. it is able to detect and correct corrupted

data and tolerates the loss of two disks without the need of

extra storage compared to RAID 6. RAID systems [4] and

Reed Solomon codes [5] have also been accelerated by

using configurable hardware. While this seems a viable

option in systems-on-chip and in high performance

computers like the Cray XD1, our approach targets

standard personal computers where we cannot expect

reconfigurable hardware, for which reason we have

focussed on a software solution.

3 Concept

The proposed technique is based on Reed-Solomon

correction codes like in the RAID 6 system. Like the well

known RAID it uses two hard disk drives for storing

redundant data (parity) and is able to recover data in the

case of the loss of up to two hard disks. Just like in RAID

6 systems the content of each disk drive is divided into

equally sized blocks. One row of blocks across all disks in

an array having the same offset is called a stripe. Two

blocks of one stripe contain parity information instead of

data. The parity information is not stored on two specific

disks. It is spread across all disks, changing the position

every two stripes, see blue and red blocks in Figure 1.

Instead of calculating two parity values like in RAID-6 the

proposed system uses four values P, R, Q and S. The parity

values are computed using the data across two stripes.

Figure 1 shows an example of the algorithm for an array of

five disks.

Figure 1 - Position of parity and data blocks

The algorithm for parity generation is based on the Galois

Field GF(2
8
) with generators g

n
 that are multiplied with

data values of the disks. This enables the reconstruction of

four data blocks within a set of two stripes, if the position

of these disks is known. If disks are defect the missing

blocks are known and can therefore be recovered.

Corrupted data in data blocks can be determined by

recalculating and comparing parity values. If the parity

value on disk and the calculated one do not match, up to

three blocks can be reconstructed. The probability of a

successful recover depends on the number of blocks that

have been corrupted and the number of disks. See Section

4 for more details. There are three different scenarios

when parity calculations have to be done: Generating

parity before writing, checking parity after reading and

recovering data after losing one or two disks. The system

can be used in a similar way for disk arrays tolerating a

different number of disk losses than two.

4 Validation of performance and

error correction capability

The proposed algorithm was implemented to be able to

perform experiments about error correction capability and

performance. RAID arrays are used to increase storage

performance and can reach transfer rates at a multiple

speed of a single disk. Therefore the algorithm for parity

computation is parallelized and optimized for modern

multicore systems with high cache capacity. Finite field

multiplications and divisions are complex operations

which need large numbers of instructions on x86

processor architectures. Therefore lookup tables are

initially generated to speed up those operations on

constants. In this case 3.3 Kilobytes of tables are required

to perform a full recovery of four blocks in two stripes

without the need of multiplications or divisions. The only

operations left are XOR-computations. After parallel

implementation the performance of two main operating

modes has been measured with a quadcore processor

system
1
. One typical mode is the computation of the

parity. Figure 1 shows the performance when using one to

four processors. The parity consists of four values that

have to be generated when storing data. After data has

been read these values can be computed again and

compared to make sure the data has not changed. This

process can be accelerated if less than four parity values

are computed. However, the probability of undetected

defect blocks will increase.

If one or two disks fail data has to be recovered. If only

one disk fails data integrity checks can still be done and

one corrupted block in two stripes can still be corrected.

Figures 2 and 3 show the performance scaling from one to

four processors when data of one or two disks is

recovered. In worst case, after two disks are lost, the

system provides up to 150 MB/s utilizing one and almost

600 MB/s using four processors. If one disk is lost the

speed goes up to 300 MB/s on one and up to 800 MB/s on

four processor systems. If integrity checking is used some

overhead has to be added in order to calculate integrity

checks with the remaining two parity blocks.

1
 Fujitsu Siemens Computers Amilo Pi3630, Intel Core 2

Quad Prozessor Q9400

Figure 2 - Parity computing performance

Figure 3 - Data recovery performance

RAID-6 is able to detect two and correct one silent error

within one stripe. If one disk fails single errors can be

detected but not corrected. Our solution is able to detect

up to four and correct up to three silent errors within two

stripes. If one disk fails two errors can be detected and

one error can be corrected.

When correcting silent errors the success of a correction

depends mostly on the number of concurrent errors within

two stripes and the number of disks in the array. If both

parameters increase the number of combinations of

possible corrupted data bytes grows as well. To show the

capabilities of our system, pseudo random data has been

generated and parity values computed. In 100.000 test

cycles one, two and three errors have been simulated on

pseudo random positions. After that an attempt to

reconstruct the data has been made. If one or two errors

were injected, the data has always been constructed

correctly. Figure 3 shows the capability of corrections

when three simultaneous errors occur. Triple errors are

already more likely to be recovered wrongly than

correctly when eight data drives are used. This is because

the location of the error is unknown. However, the

probability of triple errors within two stripes is low and is

just in case only one byte at the same position within

three blocks in two stripes of at least two disks got

corrupted. If more than one byte in a block has been

corrupted, for example a whole sector, the probability of a

successful correction can be increased as the same

combination of predicted erroneous positions can be

checked when other bytes are recovered.

Figure 4 - Frequency of wrong error correction

Compared to RAID-6 our proposal allows the correction

of more noisy error constellations, too. Within two stripes

each system allows the correction of a total of up to four

errors. In our solution four errors can be corrected even if

all of them are within one stripe. RAID-6 only allows the

correction of two errors per stripe. Figure 5 shows the

number of correctable error combinations within two

stripes for both systems if all disks are running and after

losing one disk.

Figure 5 - Correctable error constellations

5 Conclusions and Future Work

We introduced a technique which can be used to

overcome data corruptions on disks, especially on newer

disk systems like Solid State drives which are more likely

to fail because of cells wearing out or not being accessed

for a longer amount of time. Utilizing this RAID

technology a fast and reliable array of SSDs consuming

little power can be constructed. The proposed scheme can

easily be changed tolerating any other number of disk

failures while being able to detect and correct data

corruptions. A system tolerating one disk failure has

already been investigated. By integrating data encryption

or applying a diffusion filter the ability to detect triple

errors can be improved to almost 100%.

6 Literature

[1] Alvarez, G. A.; Burkhard, W.A. and Cristian, F.:

Tolerating Multiple Failures in RAID Architectures

with Optimal Storage and Uniform Declustering. In

Proc. 24
th

 International Symposium on Computer

Architecture, pp. 62-72, 1997.

[2] Blaum, M., et al.: EVENODD: An optimal scheme for

tolerating double disk failure in RAID architectures.

IEEE Transactions on Computers Vol. 44 No. 2, pp.

192-202, 1995

[3] Bonwick, Jeff; Moore, Bill: ZFS – The last word in

File Systems. [online] http://www.opensolaris.org/os

/community /zfsopensolaris.org/os/community/

zfs/docs/zfs_last.pdf

[4] Gilroy, M.; Irvine, J.: RAID 6 Hardware Acceleration.

In Proc. International Conference on Field

Programmable Logic and Objects, pp. 1-6, 2006

[5] Hampel, Volker; Sobe, Peter; Maehle, Erik:

Experiences with a FPGA-based Reed/Solomon-

encoding coprocessor. Microprocessors &

Microsystems Vol. 32 No. 5-6, pp. 313-320, 2008

[6] Patterson, David A.; Gibson, Garth and Katz, Randy

H.: A Case for Redundant Arrays of Inexpensive

Disks (RAID). In Proc. International Conference on

Management of Data (SIGMOD), pp. 109-116, 1988

[7] Plank, J.: A tutorial on Reed-Solomon coding for

fault-tolerance in RAID-like systems. Software

Practice and Experience Vol. 29 No. 9, pp. 995-1012,

1997

[8] Sivathanu, G.; Wright, C. P. and Zadok, E.: Ensuring

Data Integrity in Storage: Techniques and

Applications. Proc. 2005 ACM workshop on Storage

security and survivability (StorageSS'05), pp. 26-36,

2005

[9] Sofair, Isaac: Probability of Miscorrection for Reed-

Solomon Codes. Proc. International Conference on

Information Technology, Coding and Computing

(ITCC'00), pp. 398-401, 2000

[10] Sun Microsystems: Sun On-Disk Specification.

[Online] http://opensolaris.org/os/community

/zfs/docs/ondiskformat0822.pdf

