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Abstract: We investigate the energy-efficiency of streaming task collections with par-
allelizable or malleable tasks on a manycore processor with frequency scaling. Stream-
ing task collections differ from classical task sets in that all tasks are running concur-
rently, so that cores typically run several tasks that are scheduled round-robin on user
level. A stream of data flows through the tasks and intermediate results are forwarded
to other tasks like in a pipelined task graph. We first show the equivalence of task
mapping for streaming task collections and normal task collections in the case of con-
tinuous frequency scaling, under reasonable assumptions for the user-level scheduler,
if a makespan, i.e. a throughput requirement of the streaming application, is given and
the energy consumed is to be minimized. We then show that in the case of discrete
frequency scaling, it might be necessary for processors to switch frequencies, and that
idle times still can occur, in contrast to continuous frequency scaling. We formulate
the mapping of (streaming) task collections on a manycore processor with discrete
frequency levels as an integer linear program. Finally, we propose two heuristics to
reduce energy consumption compared to the previous results by improved load bal-
ancing through the parallel execution of a parallelizable task. We evaluate the effects
of the heuristics analytically and experimentally on the Intel SCC.

1 Introduction

In a streaming task application, all tasks are active simultaneously. Each task repeatedly
consumes some amount of input, does some computation, and produces output that is
forwarded to another task (or to memory if it is a final result). As an example one might
consider an application where a digitized image is input, preprocessed by the first task to
enhance contrast, forwarded to two further tasks that extract horizontal and vertical edges,
respectively, and forward their results to a fourth task, that computes the final result, e.g.
the decision whether a certain pattern is present in the image or not. The fact such an
application works on a sequence of (blocks of) images that “stream” through the tasks,



gives the name to this type of application. Streaming task applications are wide-spread in
embedded systems, e.g. as applications for multiprocessor systems on a chip (MPSoC).

A streaming task application can be modeled by a static streaming task graph, where the
nodes represent the tasks, which are not annotated with runtimes but with computational
rates. An edge between tasks u and v does not indicate a precedence constraint but denotes
a communication of outputs from u to become inputs of v, and is annotated with a band-
width. As the communication typically is done with fixed-size packets, one can assume
that the communication rate indicates how often a packet is transferred, and the computa-
tion rate indicates how much computation is done to turn an input packet into an output
packet. As the workloads of different tasks may vary, and as there are normally more tasks
than cores on the underlying machine, several tasks might run simultaneously on the same
core. In this case, a scheduling point is assumed to occur after the production of a packet,
and a round-robin non-preemptive user-level scheduler normally is sufficient to ensure that
each task gets its share of processor time, provided the core has enough processing power,
i.e. is run at a frequency high enough to handle the total load from all tasks mapped to
this core , so that the required throughput can be achieved. In the following we will only
consider computational loads and neglect the influence of communication, hence we talk
of streaming task collections.

We assume that our underlying machine consists of p identical processors, which can
be frequency-scaled independently. We consider both continuous and discrete frequency
levels. We do not consider voltage scaling explicitly, but as most processors scale the
voltage to the minimum possible for a given frequency, this is covered as well.

We are interested in mapping the tasks to processors in such a way that a required through-
put is achieved and that, after a suitable frequency scaling of each core, power consumption
is minimized. As the load for each core does not change over time, the initial frequency
scaling will not have to be altered, so that this power consumption also results in a mini-
mized energy consumption over the runtime of the streaming application.

In this respect, we make three contributions: First, we show that under continuous fre-
quency scaling, the problem of energy-optimal mapping of streaming task collections is
identical to the energy-optimal mapping of task collections without precedence constraints,
so that existing approximations for the latter problem [PvSU08] can be applied.

Second, we show that under discrete frequency scaling, the problem of energy-optimal
mapping of streaming task collections can be expressed as a variant of bin packing with
fixed costs. We give a formulation as an integer linear program (ILP). For larger prob-
lem instances, existing heuristics for the bin packing problem [CPRT10, HS09] can be
used. We also show that in contrast to continuous frequency scaling, an energy-optimal
solution with discrete frequency scaling might require processors to switch their operating
frequency, and might even comprise processor idle times.

Third, we show that if the tasks are parallelizable (so-called malleable tasks), then this can
be exploited to improve the balancing of loads between the processors, and thus reduce
power consumption, although the parallelization typically reduces efficiency, i.e. increases
the total load. We give two heuristics to select which tasks should be parallelized.

We test our findings with several example applications, and use power measurements from



the Intel Single Chip Cloud (SCC) manycore processor [How11] for validation.

Streaming task applications have been investigated previously mainly by the MPSoC com-
munity (cf. e.g. [ACP06]), but mostly in an adhoc or application-specific manner. Hulten
et al. [KKH12] have considered mapping of streaming task applications onto processors
with fixed frequency with the goal of maximizing the throughput. First investigations of
energy-efficient frequency scaling in such applications have been done by Cichowski et
al. [CKK12a]. Energy-efficient frequency scaling of task collections without precedence
constraints has been considered by Pruhs et al. [PvSU08], although only as a side issue,
and for the case of continuous frequency scaling.

Static scheduling of task collections with parallelizable tasks for makespan optimization
has been investigated by Eriksson et al. and Kessler and Löwe [EKC06, KL08]. Dynamic
scheduling of task sets with parallelizable tasks for flow time optimization has been inves-
tigated by Pruhs et al. [GIK+10]. In both settings, frequency scaling was not considered.

Energy-efficiency for static scheduling of task collections with parallelizable tasks onto
multiprocessors with frequency scaling has been considered by Li [Li12]. However, the
number of processors allocated to each task (called task size by Li) is fixed and given
as part of the problem scenario in that work, and continuous frequency scaling is used.
Sanders and Speck [SS12] present an optimal solution for concave energy functions and
non-integer processor allocation, yet still with continuous frequency scaling.

The remainder of this article is organized as follows. In Section 2, we treat energy-efficient
mapping of streaming task collections with sequential tasks under continuous and discrete
frequency scaling. In Section 3, we treat energy-efficient mapping of streaming task col-
lections with parallelizable tasks, and give preliminary experimental results for example
applications. In Section 4, we give an outlook onto future work.

2 Energy-efficient Mapping of Sequential Tasks

We first consider the equivalence between task collections and streaming task collections,
which leads to an algorithm for the case of continuous frequency scaling, and afterwards
investigate the case of discrete frequency scaling.

Continuous Frequency Scaling Pruhs et al. [PvSU08] consider the static scheduling
of a set of tasks with given load, i.e. number of instructions to be executed, onto a set of
processors. The tasks assigned to a processor are executed one by one. The power model is
quite simple: the computational power, i.e. number of instructions executed per time unit
by a processor is proportional to the operating frequency f , which can be continuously
scaled, and the power consumption is given by fα, where α typically is between 2 and 3.

They note that for an energy-optimal schedule, a processor should always run at the same
frequency, that the frequencies should be adapted such that the processors all finish with
their respective workload at the same time, and that there are no idle time gaps between
execution of tasks. The frequencies are thus determined by the distribution of the work-



loads onto the processors. If a processor i has total workload wi and the makespan is
M , then the processor must run at frequency fi = wi/M . The power consumption is
P =

∑
i f

α
i =

∑
i(wi/M)α, and the energy consumption is

E = P ·M =M1−α ·
∑
i

wαi . (1)

Thus, the minimization of the energy for a given makespan M is equivalent to minimizing
the lα-norm of the processor workloads by distributing the tasks over the processors in a
suitable manner. They refer to an existing polynomial-time approximation scheme (PTAS)
for this problem. Note that Pruhs et al. use a variant of (1) to minimize the makespan for
a given energy budget, but that both problems are equivalent in their setting.

Now consider our streaming task collection. If we consider the tasks’ computational rates
to represent the workload to consume one input packet and produce an output packet, then
one round of execution of all tasks assigned to each processor (according to the round-
robin scheduling) exactly looks like the problem considered by Pruhs et al. Also here, the
processors will run at fixed speeds, have no idle times, and finish their rounds at the same
time. The makespan M here represents the throughput requirement T of the application
in the form of the time for one round of the round-robin scheduler: if the application
repeatedly produces one output packet of size c after time M , then the throughput is c/M .
To fulfill the throughput requirement, M may be at most c/T .

It follows, that minimizing the power consumption of a streaming task collection (and thus
the energy consumption if a certain operating timespan of the application is considered)
under continuous frequency scaling is achieved by distributing the tasks over the proces-
sors in such a way that the lα-norm of the processor workloads (defined as the sum of the
computational rates of the tasks assigned to each processor) is minimized.

Discrete Frequency Scaling Despite the insight derived from the above analytical solu-
tion, the reality looks slightly different: processors can only assume a small number s of
discrete frequency levels, and the dependency of the power consumption on the frequency
level is more complex than a simple polynomial [CKK12b].

For this case, one can model the task assignment as a bin packing problem: The p proces-
sors are represented by s sets of p bins, the bins in each set Sj having a capacity equivalent
to the frequency fj at level j = 1, . . . , s. The cost Pwj of a bin in set Sj is equivalent to
the power consumption of a processor at frequency fj , where there is no need to derive an
analytical power model, but it is sufficient to choose the cost according to power measure-
ments of the target machine [CKK12b]. The only restriction is that the cost is increasing
with size. When the tasks have been distributed over the bins, let S′j denote the subset of
non-empty bins from Sj . The problem to be solved is to distribute the tasks in such a way
that the workload of any bin i in set S′j never surpasses the capacity fj , that never more
than p of the p · s bins are in use (because ultimately there are only p processors), and that



the power consumption

s∑
j=1

|S′j | · Pwj

is minimized.

Note however that in the case of discrete frequency scaling, some properties of energy-
optimal schedules from continuous frequency scaling do not hold anymore. These are that
each processor always runs at the same frequency and that all processors finish at the same
time given by the makespan, so that there are no idle times. This can be shown by the
following counter-example. Assume that we have 2p + 1 unit-time single-threaded tasks
to be scheduled onto p processors. The most balanced schedule has makespan M = 3;
w.l.o.g. assume that processor P1 gets 3 tasks and P2 to Pp get 2 tasks each and one unit
of idle time on a machine running all cores at maximum frequency. Assume further that
the processors each have discrete frequency downscaling factors 1.0, 1.33, 1.67, 2.0 and a
cubic power function.

If we use downscaling factor 1.33 on processors P2 to Pp, then they finish their tasks after
time 2.66 and thus exhibit an idle time of 0.34. The energy consumption in this case is
3 · 13 + (p− 1) · 2.66 · 1.33−3 ≈ 1.13p+ 1.87, and even higher if we consider the power
consumption during the idle times. Using downscaling factor 1.67 on any of P2 to Pp is
not possible as it would result in a runtime of 3.34 and violate the makespan M = 3.

An alternative here is to have each of the processors P2 to Pp run its first task with down-
scaling factor 1.33, and the second task with downscaling factor 1.67. Then all processors
finish after M = 3, i.e. there are no idle times anymore, and the energy consumption is
3 · 13 + (p− 1) · (1.33 · 1.33−3 +1.67 · 1.67−3) ≈ 3+ (p− 1) · 0.924 = 0.924p+2.076.
This is lower than the above energy, even if an energy penalty for frequency switching
would be taken into account. Note that we do not consider time or energy overhead from
frequency scaling during runs.

Note that while using scaling factors of 1.0 and 2.0 for the tasks on processors P2 to Pp
would also be possible to achieve makespan 3, the energy is higher due to the greater dis-
parity of the frequencies. Note also that there are scenarios where idle times on processors
remain even if task-wise frequency scaling is applied, e.g. if the last task on P1 in the
above scenario would have runtime 0.98 instead of 1.

The task-wise frequency scaling scenario can still be formulated as a linear program: we
only have to remove the requirement that for each processor, only one bin (i.e. only one
frequency) is used. The target function also has to be adapted to minimize energy, by
taking into account the time that each processor spends in each frequency level.

The linear program uses p · s · n binary variables where xi,j,t = 1 denotes that task t has
been assigned to bin i of set Sj , i.e. to processor i on frequency level j. Then we minimize
the target energy function

p∑
i=1

s∑
j=1

Pwj ·
n∑
t=1

xi,j,t ·
wt
fj



wherewt is the work of, i.e. number of instructions executed by task t and fj represents the
frequency (number of instructions executed per time) at level j. Thus wt/fj (both values
are constants in the linear program and thus may be divided) is the time that task t needs if
it is mapped onto a processor running at frequency level j, and by multiplication with the
power consumption Pwj we achieve the energy consumed for task t. Note that the energy
for idle time is not modelled, as we assume that idle times are minimized by task-wise
frequency scaling compared to processor-wise scaling. Note also, that the energy penalty
for frequency switching is not modelled. At most s switches are needed for each round of
scaling, as all tasks running at a particular frequency level on a processor can be scheduled
successively. If some frequency levels are not used, the number of frequency switches is
reduced accordingly.

The following constraints apply on the binary variables xi,j,t.

Each task is mapped exactly to one bin:

∀t = 1, . . . , n :

p∑
i=1

s∑
j=1

xi,j,t = 1 .

No processor is overloaded:

∀i = 1, . . . , p :

s∑
j=1

n∑
t=1

xi,j,t ·
wt
fj
≤M .

One sees that p ·s ·n variables and p+n constraints are needed to map n tasks onto p cores
with s frequency levels. For problem sizes where it is not possible anymore to employ an
ILP solver such as gurobi or CPLEX, there exist heuristics for the bin packing problem
with fixed costs [CPRT10, HS09].

Note that while we have modelled the frequency levels to be identical for all processors,
this is not a restriction and can be adapted by replacing fj and Pwj by processor-specific
constants fi,j and Pwi,j .

3 Energy-Efficient Mapping of Parallelizable Tasks

We first devise two strategies to choose which tasks shall be parallelized to reduce energy
consumption, and then evaluate both with several benchmark task collections.

Strategies for Parallelization We have seen in the previous section that energy mini-
mization for streaming task collections requires balancing the workloads over the proces-
sors. However, if there are large tasks with a workload notably above the average workload
of a processor, or if the number of tasks is not a multiple of the processor count p, then a
balance cannot be achieved, if tasks cannot be divided into smaller parts. A possibility to
divide a task into smaller pieces is parallelizing it into a set of subtasks.



Assume for example that the task collection consists of n = 101 = p + 1 tasks with
workloads wt = 1, to be mapped onto p = 100 processors. The best solution is to assign 2
tasks to processor 1 and run it at frequency f1 = 2, and assign one task to each remaining
processor, running those at frequencies fi = 1, where i ≥ 2. For a cubic power function,
the power consumption would be P = 23 + 99 · 13 = 107. If one of the tasks (the second
assigned to processor 1) could be parallelized into p subtasks, each having a workload
w̃ ≥ 1/p, all processors would have an even workload of 1 + w̃ and could run at an
appropriate frequency. Even if the parallel efficiency is only 50%, i.e. w̃ = 0.02 instead of
the optimal 1/p = 0.01, then the power consumption would be P = p · (1 + w̃)3 ≈ 106,
and thus lower as before.

One of the strategies presented in [EKC06] to reduce makespan was called serialization,
where each task was parallelized for p processors. Obviously, in this case a perfect load
balance can be achieved, as each task t will put a load of (1/e(p)) · wt/p onto each pro-
cessor, where e(p) is the parallel efficiency. Compared to the power consumption in the
optimal case (perfect load balance without any overhead), the power consumption is higher
by a factor e(p)−α. Whether this strategy saves energy depends on the load imbalance in
the case where all tasks are sequential. Hence, knowing the task collection, the result of
the ILP computation, and the parallel efficiency that can be achieved, one can check in
advance whether this strategy is successful. Please note that the parallel efficiency in-
cludes overhead for barrier synchronization after execution of a parallelized task in the
case that the subtasks’ runtimes are not completely identical, which might occur due to
data dependencies.

We propose a second, greedy strategy that we call bigblock. Here, one parallelizes the
largest task onto p processors, and then maps the other tasks with the ILP from the pre-
vious section. This reduces overhead from parallelization and synchronization, because
the majority of tasks remain sequential, and still improves balance by balancing a large
part of the load. The parallelized task is run at the average of the frequencies chosen by
the ILP from the previous section, where all tasks are sequential. Then the makespan for
the ILP mapping of the remaining tasks can be shortened according to the runtime of the
parallel task. The energy consumption is the sum of the energy for running the parallelized
task and the energy from the ILP mapping of the remaining tasks. If the bigblock strat-
egy leads to a lower energy consumption than the ILP from the previous section, then it
can be extended to an iterative strategy: parallelize also the next largest task as long as
energy consumption is improved. Note that the split between parallel and sequential tasks
requires a single frequency switch during execution of the task collection.

Evaluation We evaluate both strategies with two synthetic examples, summarized in
Tab. 1. As target platform, we use the Intel single chip cloud (SCC) processor [How11],
an 48-core multiprocessor where core frequencies can be set by an application program,
however only for groups of 8 cores (power domains), and where the application program
repeatedly records the chip’s power consumption via a library call. If the time interval be-
tween successive measurementsmi is δ, then the energy consumed in a run is computed as∑
i δ ·mi. The available discrete frequency levels are 1600/jMHz, where j = 2, . . . , 16.

The operating voltage is set to the lowest possible value when frequency changes.



benchmark 1 benchmark 2
profile 56 tasks 48 tasks + 8 heavy tasks
sequential tasks 26.6 J 27.88 J
serialization 25.9 J if e(p) ≥ 0.94 27.64 J if e(p) ≥ 0.9
bigblock 25.9 J if e(p) ≥ 0.7 27.64 J if e(p) ≥ 0.7

Table 1: Benchmark details and energy consumption on Intel SCC. A task executes in 0.925s (bench.
1) and 0.75s (bench. 2) on one core at 200 MHz, a heavy task needs 2.67 times as long.

As our first benchmark, we use a variant of the n = p+ 1 tasks problem presented above.
We have n = 56 tasks with equal runtime wt = 1.85 · 108, so that a core with one task can
run at 200 MHz, and a core with 2 tasks runs at 400 MHz operating frequency to achieve a
makespan of M = 1 s. We choose n = p+8 tasks because frequency scaling only occurs
for groups of 8 processors. The ILP model delivers the obvious solution: 8 cores receive
two tasks each, 40 cores receive one task each. The power consumption in this case is
26.6 Watt over the complete runtime, for synthetic tasks that do nothing than adding up
numbers. It follows that the energy consumption is 26.6 Joule for a runtime of 1 s. We
used the gurobi ILP solver to compute optimal solutions of the ILP models. In all cases,
the gurobi runtime was less than 2 seconds on a notebook.

The serialization strategy, where each of the tasks is parallelized onto 48 cores, leads to
a workload of w̃t = 1.85/48 · 108/e(48) per subtask, with 56 subtasks per core. For an
optimal parallel efficiency of 1, this leads to a workload of about 2.15 ·108 per core, which
could be handled by an operating frequency of 228 MHz. Even a parallel efficiency of
94% can be tolerated. The power consumption of all cores running at 228 MHz is 25.9
Watt over the complete runtime, giving an energy consumption of 25.9 Joule. Hence, the
the energy consumption in this case is slightly lower.

The bigblock strategy, which we adapt to include 8 tasks because of the power domains,
leads to a similar result: each core carries 8 subtasks (one from each parallelized task), and
one sequential task. Here, in the case of optimal parallel efficiency, also a frequency of
228 MHz is sufficient, and in this case even a parallel efficiency of 70% can be tolerated,
because of the reduced number of parallelized subtasks per core. The power consumption
and thus the energy consumption is identical to the serialization strategy. Thus, for this
benchmark, both parallelization strategies lead to an advantage over strictly sequential
tasks. The bigblock strategy might be advantageous in that case because it maintains the
same frequency level and energy consumption for lower parallel efficiency.

The reason why the gain might seem smaller than expected is that the processor chip’s
total power consumption also comprises power for the on-chip network and the memory
controllers, which basically remains the same for different load distributions. Thus, the
difference in power consumption between different frequency levels is smaller than for
a simple cubic power function: if a core consumes 0.4 Watt at 100 MHz (48 cores then
would consume about 20 Watt) and a cubic power function is used, the sequential tasks
would consume 8·(4·0.4)3+40·(2·0.4)3 ≈ 53 J in one second, while both parallelization
strategies would lead to an energy consumption of 48 · (2.28 · 0.4)3 ≈ 36 J .



Our second benchmark also is a benchmark with 56 tasks, however 8 “heavy” tasks have
a load of 4 · 108 instructions, and the remaining 48 have a load of 1.5 · 108 instructions,
respectively. The makespan is M = 1 s. To simplify the ILP model, we only use the
operating frequencies of 100, 200, and 400 MHz, and model each task only once per power
domain. For sequential tasks, the 8 cores of the first power domain each receive one heavy
task, and the 8 cores of the second power domain each receive two normal tasks; the cores
in these power domains run at 400 MHz. The remaining cores each receive one normal
task and run at 200 MHz. The energy consumption is 27.88 Joule.

With the serialization strategy, each core would receive 8 subtasks with load 0.0833 · 108
each, and 48 subtasks with load 0.03125 · 108 each. Assuming an optimal parallel effi-
ciency for the first subtasks, each core would run at frequency 400 MHz for 1/6 seconds,
and run at 200 MHz for the rest of the time (0.83 seconds)1 , allowing for a parallel ef-
ficiency of 90% for the other subtasks. The power consumption in the two parts of the
computation are 33.8 Watt and 26.28 Watt, respectively, leading to an energy consumption
of 27.64 Joule, which is lower than with sequential tasks.

The bigblock strategy would parallelize the heavy tasks as in the serialization strategy, and
leave the normal tasks sequential. The frequencies and energy are as with the serialization
strategy, however a parallel efficiency of 70% is tolerable for the parallelized tasks.

4 Conclusions and Outlook

We have investigated the similarities and differences between static scheduling of task
collections and streaming task collections onto manycore processors with continuous and
discrete frequency scaling, respectively. We have presented a linear program to schedule
(streaming) task collections onto manycore processors with discrete frequency levels, that
includes the use of frequency switching to achieve energy-optimal schedules. Further-
more, we have investigated how using the possibility to execute tasks in parallel can be
used to improve the energy-efficiency of those schedules, and presented several heuristics
which tasks to execute in parallel. We have evaluated our proposals with a small number
of application scenarios analytically and experimentally.

Future work will comprise varying the degree of parallelism for malleable tasks, as par-
allel efficiency often is higher for a smaller processor count, and thus outweighs the in-
creased imbalance, and the use of task-wise instead of processor-wise frequency scaling
(cf. Sect. 2 and [KMEK13]). If frequency switches during tasks are allowed, even imita-
tion of continuous frequency scaling becomes possible. We also plan a larger experimental
evaluation, and to extend our scheduling algorithms to consider the influence of communi-
cation between tasks on energy consumption and the restrictions from SCC power domains
(frequencies can only bet set for groups of 8 processors).

1We here allow dynamic frequency changes of cores to realize an average frequency of 233 MHz. As all
cores switch frequency simultaneously, this does not introduce new load imbalances even within parallel tasks.
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