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Abstract. Inthis paper we give an overview, how to apply region basethouss
for the synthesis of Petri nets from languages to procesmgiin

The research domain of process mining aims at constructipgeess model
from an event log, such that the process model can reprotheced, and does
not allow for much more behaviour than shown in the log. Wesh=monsider
Petri nets to represent process models. Event logs candsprieted as finite lan-
guages. Region based synthesis methods can be used taicbasRetri net from
a language generating the minimal net behaviour includieggiven language.
Therefore, it seems natural to apply such methods in theepsomining domain.
There are several different region based methods in litezatielding different
Petri nets. We adapt these methods to the process miningini@ma compare
them concerning efficiency and usefulness of the resultetg Ret.

1 Introduction

Often, business information systems log all performedvaiets together with the re-
spective cases the activities belong to in so called evest [Bhese event logs can be
used to identify the actual workflows of the system. In pattc, they can be used to
generate a workflow definition which matches the actual flowafk. The generation
of a workflow definition from event logs is known @gsocess miningApplication of
process mining and underlying algorithms gained incre@gaitention in the last years,
see e.g. [18]and [17]. There are a number of process minalg, tmostly implemented
in the ProM framework [13].

The formal problem of generating a system model from a deson of its be-
haviour is often referred to as synthesis problem. Workflaresoften defined in terms
of Petri nets [16]. Synthesis of Petri nets is studied siheel®80s [8, 9]. Algorithms for
Petri net synthesis have often been applied in hardwargm§sj. Obviously, process
mining and Petri net synthesis are closely related prohldfitsing aims at a system
model which has at least the behaviour given by the log and dotallow for much
more behaviour. In the optimal case the system has minindiiadal behaviour. The
goal is to find such a system which is not too complex, i.e. llsimé&rms of its num-
ber of components. This is necessary, because practisiaméndustry are interested
in controllable and interpretable reference models. Appty, sometimes a trade-off
between the size of the model and the additional behaviaitdhiae found.

One of the main differences in Petri net synthesis is thai®irgerested in a Petri
net representing exactly the specified behaviour. Petrsyrethesis was originally as-
suming a behavioural description in terms of transitioriesys. For a transition system,



sets of nodes calleggionscan be identified. Each region refers to a place of the syn-
thesized net. Analogous approaches in the context of psaon@sng are presented in
[19,15]. Since process mining usually does not start withaasdition system, i.e., a
state based description of behaviour, but rather with afssgquences, i.e., a language
based description of behaviour, the original synthesisréilyns are not immediately
applicable. In [19, 15] artificial states are introduceaitite log in order to generate a
transition system. Then synthesis algorithms transfogrttie state-based model into a
Petri net, that exactly mimics the behaviour of the traasiystem, are applied. The
problem is that these algorithms include reproduction efdtate structure of the tran-
sition system, although the artificial states of the tramsisystem are not specified in
the log. In many cases this leads to a bias of the process gniegult. However, there
also exist research results on algorithmic Petri net swighfieom languages [6, 1, 2,
10]. In these approaches, regions are defined on languagesnhs natural to directly
use these approaches for process mining, because logsreatiydbe interpreted as
languages. The aim of this paper is to adjust such languagsllsynthesis algorithms
to solve the process mining problem. This approach is vetlysuged for process min-
ing, because wether or not the synthesized net exactlyseptethe given language, it
always reproduces the language (given by an event log).

We present and compare methods for process mining adaptaddnguage based
synthesis and give a complete overview of the applicabdityegions of languages
to the process mining problem. Finally, we provide a bridgef the more theoreti-
cal considerations of this paper to practically useful athms. The process mining
algorithms discussed in this paper are completely base@mnal methods of Petri
net theory guaranteeing reliable results. By contrastmdsting process mining ap-
proaches are partly based on heuristic methods, althowytbibrrow techniques from
formally developed research areas such as machine leanthgrammatical inference
[18,12], neural networks and statistics [18, 4], or Pettialgorithms [7, 19, 15].

We omitted formal definitions, lemmas, theorems and praofthis short paper.
These are provided by the technical report [3]. In [3] theliested reader can also find
more detailed explanations and pseudo code of the develdgedthms.

2 Application of Regions of Languagesto Process Mining

First we introduce the process mining problem and show haactassical language
based theory of regions [6, 1] can be adapted to solve thislgmmo Process mining
aims at the construction of a process model froneaent logwhich is able to repro-
duce the behaviour (the process) of the log, and does net Bdlkanmuch more behaviour
than shown in the log. The following example legwill serve as a running example.
Since we focus on the control flow of activities (their ordepi, we abstract from some
additional log information such as originators of events ime stamps of events. The
control flow, i.e. the behaviour, of the event log is given bygrafix-closed finite lan-
guage over the alphabet of activities, the so cglietess languagé (o).

event log (activity,case):

(a,1) (b.1) (a,2) (b,1) (a,3) (d,3) (a,4) (c.,2) (d.2) (ed ] (b.4) (e,3) (e,2) (b.,4) (e
process language:

a ab abtabbeac acdacdead adcadce
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Figure 1 shows anarked place/transition-net (p/t-ngtV, mg) having exactly the
process languagk(o) as itslanguage of occurrence sequendgsV, mg). That means
this Petri net model is a process model describing the psagigen by the event log.

The process model in the ideal case serves
as areference modelinterpretable by practition-
ers. Therefore the model should be as small as
possible. As we will show, there is a trade-offe)
between the size of the constructed model and
the degree of the match of the behaviour gen-
erated by the model and the log. In this paper
we formalize process models as Petri nets akify. 1. Petri net model fulfilling
consider the followingrocess mining problem L(N,mg) = L(0).

Given: An eventlogo. Searched: A preferably small finite marked p/t-neV, my)
such tha(1) L(o) € L(N,mg) and(2) L(N,mo) \ L(c) is small.

In the following we will consider a fixed process langudge) given by an event
log o with set of activitiesT. An adequate method to solve the process mining prob-
lem w.r.t. L(o) is applying synthesis algorithms using regions of langsagée set
of transitions of the searched ngY, m) is given by the set of charactefsused in
L(o). The behaviour of this net is restricted by adding place®rplace is defined
by its initial marking and the weights of the arcs connectingm to each transition
t € T. In order to guarantee (1), i.e. to reproduce the log, ordggs are added, which
do not prohibit sequences @f(c). Such places are callddasible (w.rt.L(c)). The
more feasible places we add the smaller is thd$&t, mo) \ L(o). Addingall feasi-
ble places minimize& (N, mg) \ L(o) (preserving (1)). That means the resulting net —
called thesaturated feasible netis an optimal solution for the process mining problem
concerning (1) and (2). But it is not small, even not finiterélthe trade-off between
the size of the constructed net and (2) comes into play: The feasible places we
add the better (2) is reached, but the bigger becomes thérgotesl net. The central
guestion is which feasible places should be added. Two puyes are candidates to
solve this problem: There are two basic algorithmic appneadhroughout the litera-
ture to synthesize a finite néV, m) from a finite language. The crucial idea in these
approaches is to define feasible places structurally orethad bf the given language:
Every feasible place is defined by a so callegionof the language. A region is simply
a (2|T| + 1)-tuple of natural numbers which represents the initial nmylof a place
and the number of tokens each transition consumes resglggiroduces in that place,
satisfying some property which ensures that no occurresmeence of the given (pro-
cess) languagg(o) is prohibited by this place. The set of regions can be cherized
as the set of non-negative integral solutions of a homogehioear inequation system
A () -r > 0 (with integer coefficients) having.(c)| rows. Both approaches use linear
programming techniques and convex geometry to calculagetain adequate finite set
of solutions of this system. In the following we adjust botbgedures to the considered
process mining problem and discuss their applicability #ued results in this context.

The first strategy to add a certain finite set of feasible gaosed in [10], com-
putes a so callefinite basisof the set of all feasible places (any feasible place is a
non-negative linear combination of the basis). Adding alib places leads to a finite




representation of the saturated feasible net. Consegutmnsl approach leads to an op-
timal solution of the process mining problem concerning 2k set of regions is given
by the integer points of a pointgublyhedral cong14]. The finite set of rays of the cone
leads to a (minimal) basis of the set of regions and thus deérfanite basis of the set
of feasible places [3, 14]. It can be effectively computeshfrA ;) (see for example
[11]). The time complexity of the computation essentialgpdnds on the numbérof
basis regions which is bounded by< (‘L(?I‘Tﬂf‘“). That means, in the worst case
the time complexity is exponential i (o)|, whereas in most practical examples the
number of basis solutions is reasonable. The calculatad 8gi of basis places usually
still includes so called redundant places, which can betethitrom the net without
changing its language of occurrence sequences. Some &f tbésndant places can
easily be identified [3]. These are finally deleted from thestoucted net. The resulting
process mining algorithm, called method 1 in the followiisgshown in [3].

For the event log of the running example, method 1 computdmSE places (cor-
responding to rays). 15 of these places are directly debtezhsily identifiable redun-
dant places. Many of the 40 places of the resulting net dteesfundant. It is possible
to calculate a minimal subset of places generating the sangeibge of occurrence se-
quences. This would lead to the net shown in Figure 1 with timéykey places. But this
is extremely inefficient. Thus, more efficient heuristic eggrhes to delete redundant
places are of interest. The practical applicability of thgoathm could be drastically
improved with such heuristics. In the considered examptestrof the redundant places
are so called loop places. If we delete all loop places froenchinstructed net with 40
places, there remain the five places shown in Figure 1 plusigie redundant places
shown in Figure 2. In this case this procedure did not chamgéehaviour of the net.

In this example the process language is ex-
actly reproduced by the constructed net. Usu-
ally this is not the case. For example omitting
the wordacde (but not its prefixes) from the
process language, the inequation system is
changed. Therefore the net constructed fro
this changed language with method 1 coincides
with the above example. This net has the addi-
tional occurrence sequenaéce not belonging
to the changed process language. Since the net
calculated by method 1 is the best approxima-
tion to the given language, the changed procgsgy 2. Redundant places computed
language (given by a log) has to be completg@ih method 1.
in this way to be describable as a p/t-net.

The main advantage of method 1 is the optimality w.r.t. (2)e Tesulting process
model may be seen as a natural completion of the given prpliadmplete log file.
Problematic is that the algorithm in some cases may be imeftiin time and space
consumption. Moreover, the resulting net may be relatitédy

The second strategy to synthesize a finite net, used e.g, 2, [6 to add such
feasible places to the constructed net, whielparatespecified behaviour from non-
specified behaviour. That means for eacte L(o) and eacht € 7' such thatwt ¢




L(o), one searches for a feasible plagg;, which prohibitswt. Suchwt is called
wrong continuatiorfalso called faulty word in [1]) and such places are cadiggarating
feasible placeslf there is such a separating feasible place, it is addedamet. The
number of wrong continuations is bounded|tyc)| - |T|. Thus the set containing one
separating feasible place for each wrong continuationwfuich such place exists, is
finite. The net resulting from adding such a set of placesigialgood solution for the
process mining problem: If the process language of the lagegactly be generated by
a p/t-net, the constructed net is such a net. Consequantlyis case (2) is optimized.
In general (2) is not necessarily optimized, since it is fadeghat even if there is no
feasible place prohibitingz, there might be one prohibitingtt’ — but such places are
not added. However, in most practical cases this does ngieng)3].

In order to compute a separating feasible place which pitstabwrong continua-
tionwt, one defines so callextparating regiondefining such places. These are defined
by one additional (strict) inequation ensuring thatis prohibited. Thus a separating
regionr w.r.t. a wrong continuationt can be calculated (if it exists) as a non-negative
integer solution of a homogenous linear inequation systéimimeger coefficients of
the formA ;) - r > 0,b,; - r < 0. The matrixA ) is defined as before. If there
exists no non-negative integer solution of this systenretlegists no separating region
w.r.t. wt and thus no separating feasible place prohibitirtg If there exists a non-
negative integer solution of the system, any such a soldiigfimes a separating feasible
place prohibitingut.

There are several linear programming solver to decide tivalsitity of such a sys-
tem and to calculate a solution if it is solvable. The choit@ @oncrete solver is a
parameter of the process mining algorithm, that can be usedgrove the results or
the runtime. Since the considered system is homogenousamvapply solvers search-
ing for rational solutions. In order to decide if there is anwegative rational solution
and to find such a solution in the positive case, the ellipsmthod by Khachiyan [14]
can be used. The runtime of this algorithm is polynomial ia ¢ize of the inequation
system. Since there are at m@bto)| - |T'| wrong continuations, the time complexity
for computing the final net is polynomial in the size of theuhpvent logo. Although
the method of Khachiyan yields an algorithm to solve the pssamining problem in
polynomial time, usually a better choice is the classicai@@ex algorithm or variants
of the Simplex algorithm [20]. While the Simplex algorithexéxponential in the worst
case, probabilistic and experimental results [14] showtth@Simplex algorithm has a
significant faster average runtime than the algorithm ofdfligan. The standard pro-
cedure to calculate a starting edge with the Simplex algaris a natural approach to
decide, if there is a non-negative integer solution of thedr inequation system and to
find such solution in the positive case. But it makes alsoesémsise the whole Sim-
plex method including a linear objective function. The a®oof a reasonable objective
function for the Simplex solver is a parameter of the ald¢ponitto improve the results,
e.g. a function minimizing the arc weights and the initialrkilags of the separating
feasible places. Moreover, there are several variantseoStimplex algorithm that can
improve the runtime of the mining algorithm [20]. For examthe inequation systems
for the wrong continuations only differ in the last ineqoatb,,; - r < 0. This enables
the efficient application of incremental Simplex methods.



Independently from the choice of the solver, certain sepaydeasible places may
separate more than one wrong continuation. For not yet deresil wrong continua-
tions, that are prohibited by feasible places already atl#te constructed net, we do
not have to calculate a separating feasible place. Therefeichoose a certain ordering
of the wrong continuations. We first add a separating feagilzsice for the first wrong
continuation (if such place exists). Then we only add a sepay feasible place for the
second wrong continuation, if it is not prohibited by an atte added feasible places,
and so on. This way we achieve, that in the resulting netpuarivrong continuations
are prohibited by the same separating feasible place. Témedordering of the wrong
continuations can be used as a parameter to positivelytadgialgorithm. In particular,
given a fixed solver, there always exists an ordering of thengrcontinuations, such
that the net has no redundant places. But in general the nestilanclude redundant
places. Again easily identifiable redundant places ardyidaleted from the computed
net. The resulting process mining algorithm, called methdd shown in [3].

To calculate a net from the log of the running example withirodt2, we consider
the length- plus-lexicographic order of the 45 wrong camditions:b, ¢, d, e, aa, ae,
aba, abe, abd, abe, . ... To compute a separating feasible place for a given wrong con
tinuation, we use the standard Simplex algorithm. We chaosabjective function (for
the Simplex algorithm) that minimizes all arc weights ougpfrom the constructed
place as well as the initial marking. Figure 3 shows the @aesulting from the first
five wrong continuations, ¢, d, e andaa. In Figures we annotate the constructed sepa-
rating feasible places with the wrong continuation, for ethihe place was calculated.
The next wrong continuatioge leads theie-place in Figure 4. Theaba is already pro-
hibited by theaa-place and thus no additional place is computed. The nes¢tivrong
continuationsibe, abd andabe lead to the respective separating feasible places in Fig-
ure 4. Then all remaining 35 wrong continuations are praéibby one of the already
calculated nine feasible places. Thec-, andd-place from Figure 3 are finally deleted
in Figure 4 as easily identifiable redundant places. Coregfyuthe net in Figure 4
with six places results from Method 2 (only theplace is still redundant).

Fig. 3. First places computed with method 2.  Fig. 4. Final net constructed with method 2.
The main advantage of method 2 is that the number of addedglabdounded by
|L(o)|-|T| and that in most practical cases it is a lot smaller. UsubByrésulting net is
small and concise. The calculation of the net is efficiener€lexists a polynomial time
algorithm. Problematic is, that a good solution regard2)dg not guaranteed, i.e. there
may be intricate examples leading to a bad solution of thege® mining problem.
In [3] we show an example, where the constructed net is notmaptregarding (2),



but this example was really hard to find. Therefore, in mosesahe net should be an
optimal solution. Moreover if the constructed net is notimgat, the respective example
in [3] indicates that it is usually still a good solution ofetlprocess mining problem.
Altogether the process model resulting from method 2 is saeable completion of the
given probably incomplete log file. Although optimality seding (2) is not guaranteed,
the distinct advantages of method 2 concerning the runtirdétee size of the calculated
net altogether argue for method 2. But method 1 can still teachluable results, in
particular if combined with some heuristics to decreasentimber of places of the
constructed net. Mainly, algorithms deleting redundaates$ are of interest.

3 Conclusion

The presented methods only considered p/t-nets as proca$sisn To complete the
outline of applying language based Petri net synthesisdogas mining, we discuss al-
ternative Petri net classes in this paragraph. In the exaugihg method 1, we proposed
to omit loops to simplify the constructed net. Leaving lodmsn p/t-nets in general,
leads to the simpler class of pure nets. The process minimgpaph can analogously be
developed for this net class. The inequation systems ggleinin particular the num-
ber of variables is halved. Therefore the process miningagmh gets more efficient
for pure nets, but the modelling power is restricted in casttto p/t-nets. Typical work-
flow Petri nets often have unweighted arcs. To construct sethfrom a log with the
presented methods, one simply has to add additional ineqeatnsuring arc weights
smaller or equal than one. A problem is that the resultingesys are inhomogeneous.
Method 1 is not applicable in this case (adaptions are sidkible). Method 2 is still
useable, but the linear programming techniques to find aéipgrfeasible places be-
come less efficient [14]. A popular net class with unweigtasss are elementary nets.
In elementary nets the number of tokens in a place is boungled®. This leads to ad-
ditional inhomogeneous inequations ensuring this prgpBidte that the total number
of possible places is finite in the case of elementary netss Biiso the set of feasible
places is finite leading to improvements of method 1. So farcomsiderations were
based on the regions definition in [6, 1]. There exists onth&ursynthesis approach
based on regions of languages [10], which we discuss anda@nip][3].

The big advantage of the presented process mining appredeised on regions
of languages is that they lead to reliable results. Othecgs® mining algorithms are
often more or less heuristic and their applicability is shosnly with experimental
results. We showed theoretical results that justify thatghesented methods lead to a
good or even optimal solution regarding (2), while (1) is igudeed. A problem of the
algorithms may be the required time and space consumptiorelhss the size of the
resulting nets. The presented algorithms can be seen asathascan be improved in
several directions. Method 2 for computing separatingifdaglaces is flexible w.r.t.
the used solver and the chosen ordering of the wrong conitimsa Varying the solver
couldimprove time and space consumption, heuristics fordian appropriate ordering
of the wrong continuations could lead to smaller nets. Bogthmds could be improved
by additional approaches to find redundant places yieldimgller nets. For example,
in this paper we used a simple special objective functiomédimplex algorithm to
rule out some redundant places. To develop such approastpjmental results and
thus an implementation of the algorithms is necessary.
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