
Examples and Proofs: Partial Order Semantics of Types
of Nets

Robert Lorenz1, Gabriel Juhás2, and Sebastian Mauser3

1 Department of Computer Science, University of Augsburg, Germany
robert.lorenz@informatik.uni-augsburg.de

2 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia

gabriel.juhas@stuba.sk
3 Department of Applied Computer Science

Catholic University of Eichstätt-Ingolstadt, Germany
sebastian.mauser@ku-eichstaett.de

Examples

Example 1

• The type of p/t-nets is given by τpt = (N,N × N, τpt), where n
(i,j)−→ n′ if and only

if n ≥ i and n′ = n − i + j. The abelian monoid of local events has the operation
of componentwise addition and the identity element (0, 0). The weight function W
attaches a tuple of natural numbers to the arcs (p, t) ∈ P × T of a net of type τpt. The
first component of the tuple is interpreted as the number of tokens consumed from t
in p and the second component as the number of tokens produced from t in p. Then
Definition 3 coincides with the standard occurrence rule of p/t-nets.
• The type of elementary nets is given by τen = ({0, 1}, {nop, in, out, failure}, τen),
where τen = {(0, nop, 0), (1, nop, 1), (0, out, 1), (1, in, 0)}. The abelian monoid of
local events has the identity element nop and the operation + given by x+y = failure
for x, y 6= nop. The weight function W attaches a label from {nop, in, out, failure} to
the arcs (p, t) ∈ P ×T of a net of type τen. The local event nop is interpreted as no arc,
in as an arc ingoing to t (from p), out as an arc outgoing from t (to p) and failure as
not allowed. Then Definition 3 coincides with the occurrence rule of elementary nets.
• The type of pti-nets is given by τpti = (N,N × N × Nω, τpti) for the a-posteriori
semantics and τ←−

pti
= (N,N × N × Nω, τ←−

pti
) for the a-priori semantics. The abelian

monoid of local events has the identity element (0, 0, ω) and the operation + given
by componentwise addition on the first two components and the minimum function on
the third component, i.e. (x, y, z) + (x′, y′, z′) = (x + x′, y + y′,min(z, z′)). For the
a-posteriori semantics (n, (i, j, k), n′) ∈ τpti if and only if n ≥ i, n + j ≤ k and
n′ = n − i + j. For the a-priori semantics (n, (i, j, k), n′) ∈ τ←−

pti
if and only if n ≥ i,

n ≤ k and n′ = n − i + j. The weight function W attaches two natural numbers
and an element in Nω to the arcs (p, t) ∈ P × T of a net of type τpti resp. τ←−

pti
. The

first two natural numbers are interpreted as for p/t-nets and the element in Nω as an
inhibitor weight attached to an inhibitor arc ingoing to t (from p). Then Definition 3

coincides with the occurrence rule of pti-nets equipped with the a-posteriori resp. the
a-priori semantics.

Example 2

Consider the type of nets ({s, s′}, {0, 1, 2}, {s 1−→ s, s
2−→ s′, s′ 1−→ s, s

0−→
s, s′ 0−→ s′}), where 0 is the identity element, 1+1 = 2, 1+2 = 0 and 2+2 = 1, and
the marked net N = (P, T, W,m0) of this type given by P = {p}, T = {t1, t2},
m0(p) = s, W (p, t1) = 1, W (p, t2) = 2. Then the LPO lpo = ({v1, v2}, ∅, l),
l(vi) = ti for i = 1, 2, is enabled in N . The step sequence t1t2 of lpo yields the
final marking m(p) = s′, while the step sequence t2t1 of lpo yields the final marking
m(p) = s 6= s′.

Example 3

Consider the case that an LPO lpo = (V, <, l) enabled w.r.t. a net of some type has
two different final markings, where one enables a transition t and one does not enable t.
Then the second statement of Lemma 3 would imply that an LPO lpo′ = (V ∪ {v}, <
∪(V × {v}), l′), l′|V = l, l′(v) = t, is enabled, although it is not enabled. An example
for this is the enabled LPO from Example 2, where the final marking given by m(p) = s
enables t2, but the final marking given by m(p) = s′ does not enable t2.

Example 4

The type of nets ({s, s′, s′′}, {0, a, b, c}, {s a−→ s′, s b−→ s′′, s′ b−→ s′′, s′′ a−→
s′, s 0−→ s, s′ 0−→ s′, s′′ 0−→ s′′}), where 0 is the identity element and a + a =
a + b = a + c = b + b = b + c = c + c = c, satisfies the WISP. Given the marked
net N = (P, T, W,m0) of this type given by P = {p}, T = {ta, tb}, m0(p) = s,
W (p, ta) = a, W (p, tb) = b, the LPOs lpo = ({va, vb}, {(va, vb)}, l), l(va) = ta,
l(vb) = tb and lpo′ = ({v′a, v′b}, {(v′b, v′a)}, l′), l′(v′a) = ta, l′(v′b) = tb are enabled
in N . Both LPOs comprise of one transition occurrence of ta and one of tb, but the
final marking of lpo is given by m(p) = s′′, while the final marking of lpo′ is given by
m(p) = s′.

Example 5

Consider a net N = (P, T, W,m0) fulfilling the WISP and not fulfilling the ISP, i.e.
there is x1, x2 and a reachable marking m such that m

x1+x2−→ m′ but not m
x1x2−→. Let

lpo′ = (V ′, <′, l′) be an LPO in step form such that m0

σlpo′−→ m. Then the second
statement of Lemma 8 would imply that an LPO lpo = (V ′ ∪ V, <′ ∪(V ′ × V), l),
l|V ′ = l′, |V |l = x1 + x2, is enabled, although it is not enabled. An example for this
situation is the type of nets ({s}, {0, 1, 2}, {s 0−→ s}), where 0 is the identity element,
1 + 1 = 2, 1 + 2 = 0 and 2 + 2 = 1 (monoid as in Example 2), and the the marked
net N = (P, T,W,m0) of this type given by P = {p}, T = {t1, t2}, m0(p) = s,

W (p, t1) = 1, W (p, t2) = 2. The LPO lpo = ({v1, v2}, ∅, l), l(vi) = ti for i = 1, 2
is not enabled in N , because the step sequences t1t2 and t2t1 are not enabled in m0,
although t1 + t2 is enabled in m0 (here m = m0 in the above notation, i.e. V ′ = ∅).

Example 6

• The type of nets in Example 2 does not satisfy the WISP, since s
(1)(2)−→ s′ and s

1+2−→ s.
• The type of nets in Example 5 satisfies the WISP but not the ISP, since s

1+2−→ s but

not s
(1)(2)−→ .

• The type of nets in Example 4 satisfies the WISP but not the PIP, since s
(a)(b)−→ s′′ and

s
(b)(a)−→ s′.

• Combining the previous two types to the type ({s, s′, s′′}, {0, 1, 2, a, b, c}, {s a−→
s′, s b−→ s′′, s′ b−→ s′′, s′′ a−→ s′, s 0−→ s, s′ 0−→ s′, s′′ 0−→ s′′}), where 0 is
the identity element, 1 + 1 = 2, 1 + 2 = 0, 2 + 2 = 1 and x + y = c for x ∈
{1, 2, a, b, c}, y ∈ {a, b, c}, yields an example of a type of nets satisfying the WISP, but
neither the ISP nor the PIP.
• The type of nets not satisfying the PIP from Example 4, satisfies the ISP.
• The type of nets not satisfying the ISP from Example 5, satisfies the PIP. Also the
type τ←−

pti
in Example 1 satisfies the PIP but not the ISP.

• The types τpt, τen and τpti in Example 1 satisfy the PIP and the ISP.

Example 7

The types of nets τpt, τpti and τ←−
pti

from Example 1 can be equipped with appropriate
flow maps yielding flow types of nets (note that in each case the set of local states is the
free abelian monoid (N, +, 0)):
• fpt(i, j) = (i, j),
• fpti(i, j, k) = (i, j),
• f←−

pti
(i, j, k) = (i, j).

Also τen from Example 1 can be interpreted as a flow type of nets by setting LS =
N ⊃ {0, 1} and LE = N × N, where (0, 0), (1, 0) resp. (0, 1) correspond to nop, in
resp. out and all other local events correspond to failure. The respective flow map is
given by fen(i, j) = (i, j). Similar net classes such as nets with read arcs, capacities,
etc. are also covered by flow types of nets.

Example 8

The characteristic of a free abelian monoid is that each element can uniquely up to the
ordering be represented by the elements of a subset of generator elements. The abelian
monoid M = N × N \ {(0, 1), (1, 0)} with the operation of componentwise addition
does not have such property. The elements (1, 1), (2, 0) and (0, 2) cannot be represented
as a sum of other elements of M , and the element (2, 2) can be represented as 2 · (1, 1)
and (2, 0) + (0, 2). Define τ = (M, M × M, τ) with (n, (i, j), n′) ∈ τ if and only
if n ≥ i and n′ = n − i + j, and define f(i, j) = (i, j). Consider the marked net

of flow type τ defined by T = {t1, t2, t3, t4}, P = {p}, W (p, t1) = ((0, 0), (1, 1)),
W (p, t2) = ((0, 0), (1, 1)), W (p, t3) = ((2, 0), (0, 0)), W (p, t4) = ((0, 2), (0, 0)),
m0(p) = (0, 0). Then the LPO lpo = ({v1, v2, v3, v4}, {(v1, v3), (v1, v4), (v2, v3), (v2,
v4)}, l) with l(vi) = ti is enabled in this net. But it is not possible to assign appropriate
token flows to the arcs of the LPO such that the token flow property is fulfilled. This is
because v1 and v2 each produce the local state (1, 1) yielding together (2, 2), which is
enough to enable v3 and v4 in one step consuming (2, 0) resp. (0, 2) ((2, 0) + (0, 2) =
(2, 2)). But v3 then consumes (1, 0) from v1 as well as from v2. Since (1, 0) /∈ M ,
there is no valid distribution of local states to the arcs of lpo such that the token flow
property is satisfied. This example not only shows the need for generator local states,
but also illustrates the essential concept of token flows that, in order to check the token
flow property for an LPO, an appropriate distribution of the local states produced resp.
consumed by an event to the outgoing resp. ingoing arcs of the event has to be found.

Example 9

Canonical blocking functions for the two types of pti-nets from Example 1 are given by
bpti(n, (i, j, k)) = 1 ⇐⇒ n + j ≤ k resp. b←−

pti
(n, (i, j, k)) = 1 ⇐⇒ n ≤ k in the case

of τpti resp. τ←−
pti

.

Proofs

Proof of Lemma 1

Let lpo be enabled, then lpo′ is enabled, since it is a prefix. Let lpo′′ = (V ′, <′′, l′) be
a step sequentialization of lpo′, then there is a step sequentialization lpos = (V,<s, l)
of lpo fulfilling v′ <s c <s v and c co<s

c′ for all v′ ∈ V ′, c, c′ ∈ C, v ∈ V \ (V ′ ∪ C)
as well as <′′=<s |V ′×V ′ . The step sequence σlpos

is enabled showing that |C|l is
enabled in the final marking of lpo′ defined by lpo′′.

If lpo is not enabled, either every proper prefix of lpo is enabled or not. In the second
case there is a non-empty co-set of lpo having a prefix which is not enabled. In the first
case consider a step sequentialization lpos of lpo, such that σlpos = x1 . . . xn is not
enabled (where xn not empty). Since every proper prefix of lpo is enabled, x1 . . . xn−1

is enabled and xn is not enabled in the follower marking of x1 . . . xn−1. Define C as
the set of maximal events of lpos (corresponding to the step xn) and consider the prefix
lpo′ of lpo given by the set of events V \ C. Then lpo′ is enabled (since it is a proper
prefix of lpo) and |C|l is not enabled in the final marking of lpo′ given by the step
sequence x1 . . . xn−1 of lpo′.

Proof of Lemma 2

Given two step sequentializations lpo′ and lpo′′ of lpo with m0

σlpo′−→ m′ and m0

σlpo′′−→
m′′, we have to show that m′ = m′′.

We consider a fixed order of the events V = {v1, . . . , vn} such that vi < vj im-
plies i < j. We show that both m′ and m′′ coincide with the marking m′′′ given by

m0
l(v1)...l(vn)−→ m′′′. For this we iteratively transform σlpo′ to l(v1) . . . l(vn). Each iter-

ation yields a step sequence σi of lpo which is enabled (since lpo is enabled) and fulfills
m0

σi−→ m′ (since WISP holds).
First, we transform σlpo′ to a linear sequence of lpo. Let σlpo′ = x1 . . . xk. If xi

(for some i) is not a single event, then xi can be decomposed into two non-empty steps
x′, x′′, i.e. xi = x′ + x′′. Let m0

x1...xi−1−→ mi−1 and mi−1
xi−→ mi. According to

the WISP, also mi−1
x′x′′−→ mi (the enabledness is ensured by the enabledness of lpo).

Steps are decomposed in this way until the resulting step sequence is a linear sequence
t1 . . . tn of lpo with m0

t1...tn−→ m′.
Let lpolin = (V, <lin, l) be a linearization of lpo such that σlpolin

= t1 . . . tn. In
lpolin the nodes {v1, . . . , vn} are totally ordered respecting the partial ordering given
by <, but possibly in another order than given by the indices 1, . . . , n. That means it
may be that vi <lin vj and i > j, but only in the case vi 6< vj and vj 6< vi, i.e. vi co<vj .
In this situation we switch the positions of the events vi and vj in lpolin to get in several
steps the linearization v1 → v2 → . . . → vn of lpo. The different positions of nodes in
the two linearizations v1 → v2 → . . . → vn and lpolin can be related by a permutation
π such that π(i) is the position of the i-th node of lpolin in v1 → v2 → . . . → vn, i.e.
the index of the i-th node of lpolin (π−1(i) is the position of vi in lpolin).

Let π be the permutation on {1, . . . , n} such that vπ(i) <lin vπ(j) ⇐⇒ i < j.
If π(i) = i for all i ∈ {1, . . . , n}, we are finished. Otherwise, consider that i is the

first index satisfying π(i) 6= i (obviously π−1(i) > i). The idea is to ”bubble-sort” the
events vπ−1(i) from the position π−1(i) backwards to the position i, and to repeat this
procedure until there is no such i. Since i was the first index with the property π(i) 6= i,
we have j = π(π−1(i) − 1) > i = π(π−1(i)) implying vj 6< vi. Since vj <lin

vi and lpolin is a linearization of lpo, we have vi 6< vj . It follows vi co<vj . Thus,
removing vj <lin vi from <lin gives a step sequentialization of lpo. The associated step
sequence t1 . . . tπ−1(i)−2(tπ−1(i)−1+tπ−1(i)) . . . tn is enabled. Moreover, by the WISP,

m0

t1...tπ−1(i)−2−→ m̃, m̃
tπ−1(i)−1tπ−1(i)−→ m̃′ and m̃

tπ−1(i)−1+tπ−1(i)−→ m̃′. Thus the final
marking m′ is preserved by the associated step sequence t1 . . . tπ−1(i)−2(tπ−1(i)−1 +
tπ−1(i)) . . . tn. We can further introduce vi <lin vj to <lin yielding a linearization of
lpo having the associated linear sequence t1 . . . tπ−1(i)−2tπ−1(i)tπ−1(i)−1 . . . tn, where

by the WISP m̃
tπ−1(i)tπ−1(i)−1−→ m̃′. Thus, we have ”bubble-sorted” vi to one position

backward preserving the final marking m′ of the associated linear sequence of lpo.

Repeating this procedure sorts each vi to position i. This shows m0
l(v1)...l(vn)−→ m′.

Since the same procedure can be applied to lpo′′, we also get m0
l(v1)...l(vn)−→ m′′

proving m′ = m′′.

Proof of Lemma 3

The first part follows directly from Lemma 1. For the second part, let lpo be not enabled
in N . Consider a prefix lpop = (Vp, <p, lp) of lpo (lpop might equal lpo) which is also
not enabled and minimal with this property, i.e. every proper prefix of lpop is enabled.
By Lemma 1 there is a non-empty co-set C of lpop and a prefix lpo′ = (V ′, <′, l′) of
C (within lpop) such that either lpo′ is not enabled or |C|l is not enabled in some final
marking of lpo′. Since lpo′ is a proper prefix of lpop, the second case holds. By Lemma
2 the final marking of lpo′ is unique, i.e. each step sequence σ of lpo′ is enabled, but
|C|l is not enabled in the follower marking of σ, showing the statement.

Proof of Lemma 4

Let (LS,LE, τ) fulfill the WISP and let N be of this type. Let m,m′,m′′ be reach-
able markings and x1, x2 be steps of transitions such that m

x1+x2−→ m′ and m
x1x2−→

m′′. By the occurrence rule, for each place p there holds m(p)
∑

t∈T (x1+x2)(t)W (p,t)−→
m′(p) and m(p)

∑
t∈T x1(t)W (p,t)−→ mmid(p)

∑
t∈T x2(t)W (p,t)−→ m′′(p). Denoting ei =∑

t∈T xi(t)W (p, t) for i = 1, 2, s = m(p), s′ = m′(p) and s′′ = m′′(p) we get
m′(p) = s′ = s′′ = m′′(p).

Let (LS, LE, τ) not satisfy the WISP. That means, there are local states s, s′, s′′

and local events e1, e2 such that s
e1+e2−→ s′, s

e1e2−→ s′′ and s′ 6= s′′. We construct a
net N = (P, T,W,m0) of type τ not satisfying the WISP by P = {p}, T = {t1, t2},
m0(p) = s, W (p, t1) = e1, W (p, t2) = e2.

Proof of Lemma 5

Let (LS, LE, τ) fulfill the PIP and let N be of this type. Let m,m′,m′′ be reachable
markings and x1, . . . , xn and x′1, . . . , x

′
m be steps of transitions such that m

x1...xn−→ m′,

m
x′1...x′m−→ m′′ and x1+ . . .+xn = x′1+ . . .+x′m. Denote ei =

∑
t∈T xi(t)W (p, t) and

e′i =
∑

t∈T x′i(t)W (p, t), s = m(p), s′ = m′(p) and s′′ = m′′(p). By the occurrence

rule, for each place p there holds s
e1...en−→ s′ and s

e′1...e′m−→ s′′. This gives m′(p) = s′ =
s′′ = m′′(p), since τ satisfies PIP.

Let (LS,LE, τ) not satisfy the PIP. That means there are local states s, s′, s′′, a
multi-set of local events u and two partitions u = u1+. . .+un = u′1+. . .+u′m of u with

s
e1...en−→ s′, s

e′1...e′m−→ s′′ and s′ 6= s′′, where ei =
∑

e∈ui
ui(e)e and e′i =

∑
e∈u′i

u′i(e)e.
We construct a marked net N = (P, T, W,m0) of type τ not satisfying the PIP by
P = {p}, T = LE, m0(p) = s, W (p, e) = e.

Proof of Lemma 6

Since lpo is enabled, there is a an enabled step sequence x1 . . . xn of lpo. Since lpo′ is
enabled, there is a an enabled step sequence x′1 . . . x′m of lpo′. Since |V |l = |V ′|l′ , we
have x1 + . . . + xn = x′1 + . . . + x′m. From PIP we get, that both step sequences define
the same final marking.

Proof of Lemma 7

Let (LS,LE, τ) fulfill the ISP and let N be of this type. Let m,m′ be reachable mark-
ings and x1, x2 be steps of transitions such that m

x1+x2−→ m′. Then, by the occur-

rence rule, for each place p there holds m(p)
∑

t∈T (x1+x2)(t)W (p,t)−→ m′(p). Denoting
ei =

∑
t∈T xi(t)W (p, t) for i = 1, 2, s = m(p) and s′ = m′(p) we get that s

e1e2−→ s′

by the ISP. This gives m
x1x2−→ m′.

Let (LS, LE, τ) not satisfy the ISP. That means there are local states s, s′ and
local events e1, e2 such that s

e1+e2−→ s′ but not s
e1e2−→ s′. We construct a net N =

(P, T, W,m0) of type τ not satisfying the ISP by P = {p}, T = {t1, t2}, m0(p) = s,
W (p, t1) = e1, W (p, t2) = e2.

Proof of Lemma 8

Since every cut is a co-set, the first part is shown by Lemma 3. For the second part, let
lpo be not enabled in N . Consider a prefix lpop = (Vp, <p, lp) of lpo which is also not
enabled and minimal with this property, i.e. every proper prefix of lpop is enabled. By
Lemma 1 there is a non-empty co-set C ′ of lpop and a prefix lpo′ = (V ′, <′, l′) of C ′

(within lpop) such that either lpo′ is not enabled or |C ′|l is not enabled in the unique
(Lemma 2) final marking of lpo′. Since lpo′ is a proper prefix of lpop, the second case
holds. We now extend C ′ to a cut C containing additionally maximal elements of lpo′

and minimal elements of lpo w.r.t. V \ V ′: Denote D = {v ∈ V \ V ′ | v′ < v =⇒

v′ ∈ V ′} and E = {v ∈ V ′ | v co<D ∧ (v < v′ =⇒ v′ /∈ V ′)}. The set C = D ∪ E
is a cut of lpo fulfilling C ′ ⊆ C (since C ′ ⊆ D). The prefix lpo′′ = (V ′′, <′′, l′′) of
C fulfills V ′′ ⊆ V ′ = V ′′ ∪ E, and therefore is enabled by the minimality property
of lpop. Assume that |C|l is enabled in the unique final marking of lpo′′. By the ISP
also the step sequence |E|l|D|l is enabled in the final marking of lpo′′. The marking
reached through firing |E|l in the final marking of lpo′′ is the final marking of lpo′.
Therefore, since C ′ ⊆ D, again by the ISP |C ′|l is enabled in the final marking of lpo′,
a contradiction. Thus, |C|l is not enabled in the final marking of the enabled prefix lpo′′

of C, i.e. each step sequence σ of lpo′′ is enabled, but |C|l is not enabled in the follower
marking of σ (given by the final marking of lpo′′), showing the statement.

Proof of Lemma 9

Let s, s′, s′′ be local states, u be a multi-set of local events and u = u1 + . . . +
un = u′1 + . . . + u′m be two partitions of u. Denote ei =

∑
e∈ui

ui(e)e and e′i =
∑

e∈u′i
u′i(e)e and let s

e1...en−→ s′ and s
e′1...e′m−→ s′′. Denote s = s0

e1−→ s1
e2−→

....
en−→ sn = s′. Then, since f1 and f2 are monoid morphisms, si = si−1 + f2(ei) −

f1(ei) = si−1 +f2(
∑

e∈ui
ui(e)e)−f1(

∑
e∈ui

ui(e)e) = si−1 +
∑

e∈ui
ui(e)f2(e)−∑

e∈ui
ui(e)f1(e) for each i. Putting all these equations together, we get s′ = s +∑n

i=1(
∑

e∈ui
ui(e)f2(e))−

∑n
i=1(

∑
e∈ui

ui(e)f1(e)) = s+
∑

e∈u u(e)f2(e)−
∑

e∈u

u(e)f1(e). Analogously there holds s′′ = s +
∑

e∈u u(e)f2(e)−
∑

e∈u u(e)f1(e).

Proof of Lemma 10

Each step sequence σ = y1 . . . yn corresponding to a step sequentialization of lpo is
enabled in m0, i.e. m0

y1−→ m1
y2−→ . . .

yn−→ mn, where (mi−1(p),
∑

t∈T yi(t) ·
W (p, t),mi(p)) ∈ τ . By the flow type of nets definition, we have mi(p) = mi−1(p)−
f1(

∑
t∈T yi(t) · W (p, t)) + f2(

∑
t∈T yi(t) · W (p, t)) = mi−1(p) − ∑

t∈T yi(t) ·
f1(W (p, t)) +

∑
t∈T yi(t) · f2(W (p, t)). For the final marking mn of lpo we compute

mn(p) = m0(p)+
∑n

i=1(
∑

t∈T yi(t)·f2(W (p, t)))−∑n
i=1(

∑
t∈T yi(t)·f1(W (p, t)))

= m0(p) +
∑

t∈T |V |l(t) · f2(W (p, t)) − ∑
t∈T |V |l(t) · f1(W (p, t)) = m0(p) +∑

v∈V f2(W (p, l(v)))−∑
v∈V f1(W (p, l(v))).

Proof of Theorem 1

Let LS be the free abelian monoid NA over the set A. Define lpo = (V,<, l) through
V = V ′ ∪ {vmin, vmax}, ∀v ∈ V ′ : vmin < v < vmax, l(vmin) 6= l(vmax) and
l(vmin), l(vmax) /∈ l(V ′). We will show the theorem by contradiction, i.e. we assume
that there is a place p for which there does not exist a token flow function xp :<→ LS
such that

(i) ∀v 6= vmax : Inxp(v) = f1(W (p, l(v))).
(ii) Outxp(vmin) = m0(p) and ∀v 6= vmax : Outxp(v) = f2(W (p, l(v))).

Denote V = {v0, . . . , v|V |} such that vi < vj implies i < j, in particular v0 = vmin.
Consider the setX of token flow functions which satisfy (i) and Outxp(vmin) ≥ m0(p)
and ∀v 6= vmax : Outxp

(v) ≥ f2(W (p, l(v))). Observe that this set is non-empty,
e.g. the function xp, defined by xp(vmin, v′) = f1(W (p, l(v′))) for every v′ ∈ V ′,
xp(v′, vmax) = f2(W (p, l(v′))) for every v′ ∈ V ′, xp(vmin, vmax) = m0(p) and
xp(v, v′) = 0 for every v < v′, v, v′ ∈ V ′, is in X . By assumption, none of the
functions in X fulfils (ii).

We say that a function x ∈ X does not fulfil (ii) for an index i, if i = 0 and
Outx(vi) > m0(p) or if i > 0 and Outx(vi) > f2(W (p, l(vi))). Denote kx the small-
est index for which a flow function x ∈ X does not fulfil (ii). Let Xsup ⊆ X be the
non-empty set of all token flow functions x ∈ X which maximize kx, i.e. such that
there holds ∀x′, x′′ ∈ Xsup : kx′ = kx′′ and ∀x ∈ X , ∀x′ ∈ Xsup : kx 6 kx′ . Denote
sup = kx for x ∈ Xsup. By assumption sup < |V | (note that sup = 0 is possible).

Finally, choose a token flow function x0 ∈ Xsup which minimizes Outx0(vsup),
i.e. such that there holds ∀x ∈ Xsup : Outx(vsup) 6< Outx0(vsup).

In the following, we construct from x0 a co-set C ′ of lpo′ such that |C ′|l is not
enabled in the final marking of the prefix lpo′′ = (D′, < |D′×D′ , l|D′), D′ = {v ∈ V ′ |
v < C ′}, of C ′. By assumption such prefix is enabled w.r.t. N , because lpo′ is enabled.
By Lemma 10, there holds for the final marking m of lpo′′:

m(p) = m0(p) +
∑

v∈D′
f2(W (p, l(v)))−

∑

v∈D′
f1(W (p, l(v))).

To show that |C ′|l is not enabled in m we show that there exists no m′ such that
(m(p),

∑
t∈T |C ′|l(t) ·W (p, t),m′(p)) ∈ τ . By the flow type of nets definition it suf-

fices to verify m(p) 6≥ f1(
∑

t∈T |C ′|l(t) ·W (p, t)) =
∑

t∈T |C ′|l(t) · f1(W (p, t)) =∑
v∈C′ f1(W (p, l(v))), i.e.

(∗) m0(p) +
∑

v∈D′
f2(W (p, l(v)))−

∑

v∈D′
f1(W (p, l(v))) 6≥

∑

v∈C′
f1(W (p, l(v))).

This contradicts the enabledness of lpo′. To this end we next define the sets of nodes C ′

and D such that D = D′ ∪ {vmin}, D turns out to define the prefix of C ′ in lpo given
by the nodes smaller than C ′ and C ′ is a co-set.

Consider a ∈ A such that Outx0(vsup)(a) > f2(W (p, l(vsup)))(a) (resp. Outx0

(vsup)(a) > m0(p)(a) if sup = 0). Let D be the set of all nodes v ∈ V such that
there exists a sequence of nodes σ(v) = v0w1v1 . . . wkvk with v0 = vsup and vk = v
satisfying

(C1) ∀j 6= m : wj 6= wm ∧ vj 6= vm, and
(C2) ∀j : x0(vj , wj+1)(a) > 0 ∧ vj < wj .

Since Outx0(vsup)(a) > 0, the initial node v0 = vmin is in D. Moreover, vsup ∈ D
(case k = 0). The node vmax = v|V | is not in D, since vmax 6= vsup and there is no
node w with vmax < w.

Define

C ′ = {w ∈ V \D | ∃v ∈ D : x0(v, w)(a) > 0}

The set C ′ represents the step of transitions ”consuming too much tokens” (of l(vsup)).
We prove in several steps that C ′ is a co-set of lpo′ having the prefix lpo′′ as described
before and satisfying (∗). The idea is that if this is not the case, along the paths σ(v)
token flow can be redistributed in such a way that the outtoken flow of vsup w.r.t. a is
reduced, while the outtoken flow of vsup w.r.t. a′ 6= a, the intoken flows of all nodes
and the outtoken flows of nodes with index i < sup are not changed. However, this is
not possible by the choice of x0.

Claim 1: vj ∈ D =⇒ j 6 sup

Assume j > sup. Then it is possible to construct a token flow function x ∈ Xsup

with Outx(vsup) < Outx0(vsup), which contradicts the choice of x0, as follows: Let
σ(v) = v0w1v1 . . . wkvk and set

∀j : x(vj , wj)(a) = x0(vj , wj)(a) + 1
∀j : x(vj , wj+1)(a) = x0(vj , wj+1)(a)− 1

else : x(v, v′)(a′) = x0(v, v′)(a′).

Claim 2: (vj ∈ D) =⇒ x0(vj , vmax)(a) = 0

From Claim 1 we deduce j ≤ sup. Assume x0(vj , vmax)(a) > 0. Then it is possible to
construct a token flow function x ∈ Xsup with Outx(vsup) < Outx0(vsup), which con-
tradicts the choice of x0, as follows: In the case j < sup, let σ(v) = v0w1v1 . . . wkvk

and set

x(vj , vmax)(a) = x0(vj , vmax)(a)− 1,

∀j : x(vj , wj)(a) = x0(vj , wj)(a) + 1,

∀j : x(vj , wj+1)(a) = x0(vj , wj+1)(a)− 1,

else : x(v, v′)(a′) = x0(v, v′)(a′).

In the case j = sup set x(vj , vmax)(a) = x0(vj , vmax)(a)− 1 and x(v, v′)(a′) =
x0(v, v′)(a′) else.

Claim 2 shows that vmax /∈ C ′, i.e. C ′ ⊆ V ′.

Claim 3: ∀v ∈ V : (∃w ∈ C ′ : v < w) ⇐⇒ v ∈ D

=⇒: Let w ∈ C ′ with v < w. We construct a sequence σ(v) = vsup . . . v fulfilling
(C1) and (C2). By the definition of C ′ there is a node v′ ∈ D with x0(v′, w)(a) > 0.
Let σ(v′) = vsupw

1v1 . . . wkvk. In the case v = vj for j ∈ {0, . . . , k} it follows
v ∈ D. We distinguish the following remaining cases:

– (∃j ∈ {0, . . . , k} : wj = w): Denote m the smallest index with wm = w. Then
vsupw

1v1 . . . wmv satisfies (C1) and (C2).
– (∀j ∈ {0, . . . , k} : wj 6= w): vsupw

1v1 . . . wkv′wv satisfies (C1) and (C2).

⇐=: Let v ∈ D, we will find w ∈ C ′ with v < w. If v = vsup, then there is w = vj ,
j > sup, x0(vsup, vj)(a) > 0. By Claim 1, vj /∈ D and consequently w = vj ∈ C ′.
If v 6= vsup, let σ(v) = vsupw

1v1 . . . wkvk. By the definition of C ′, the node wk can
either be in C ′ or in D, because x0(vk−1, wk)(a) > 0 and vk−1 ∈ D. We distinguish
these cases:

– wk ∈ C ′: v = vk < wk ∈ C ′.
– wk ∈ D: Denote v a maximal node in the set {v′ ∈ D | v < v′} w.r.t. < (the

set is not empty since wk is one of its elements). If v = vsup, then v < v <
w ∈ C ′ (the existence of such w has already been shown). Otherwise let σ(v) =
vsupw

1v1 . . . wlvl satisfy (C1) and (C2). Then wl 6∈ D (otherwise v would not
be maximal) and thus wl ∈ C ′, because x0(vl−1, wl)(a) > 0 and vl−1 ∈ D.
Consequently v < v < wl ∈ C ′.

Claim 3 in particular shows that C ′ is a co-set, because v < w ∈ C ′ =⇒ v ∈
D =⇒ v /∈ C ′. Moreover, it shows D = {v ∈ V | v < C ′}, i.e. D′ = D \ {vmin} =
{v ∈ V ′ | v < C ′}.

Claim 4: C ′ satisfies (∗)

If sup = 0, i.e. D = {v0}, then (∗) means m0(p) 6≥ Outx0(v0) (because in this
case for v ∈ C ′: f1(W (p, l(v))) = Inx0(v) = x0(v0, v)) – this holds by assumption.
Let sup > 0. According to Claim 1 there holds Outx0(v0) = m0(p) and ∀v ∈ D \
{v0, vsup} : Outx0(v) = f2(W (p, l(v))). More precisely, according to Claim 2, we
have

∑
v0≺v′, v′∈V ′ x0(v0, v

′) = m0(p) and ∀v ∈ D \ {v0, vsup} :
∑

v<v′, v′∈V ′ x0(v,
v′) = f2(W (p, l(v))). Finally, by assumption we have ∀v ∈ D ∪ C ′ : Inx0(v) =
f1(W (p, l(v))) and Outx0(vsup)(a) > f2(W (p, l(vsup)))(a). Altogether we compute
m0(p)(a)+

∑
v∈D′ f2(W (p, l(v)))(a)−∑

v∈D′ f1(W (p, l(v)))(a)−∑
v∈C′ f1(W (p,

l(v)))(a) <
∑

v∈D(
∑

v≺v′ x0(v, v′)(a))−∑
v∈D(

∑
v′≺v x0(v′, v)(a))−∑

v∈C′

(
∑

v′≺v x0(v′, v)(a)) = 0.
The last equation holds since each summand x0(v, v′)(a) either (i) equals 0, or

(ii) is counted exactly once positively and once negatively: There are only summands
x0(v, v′)(a) with v ∈ D. For (v, v′) ∈ D × (D ∪ C ′) case (ii) holds according to
Claim 3 and for (v, v′) ∈ D × (V \D) with x0(v, v′) > 0 we have v′ ∈ C ′ by defini-
tion – that means (ii) holds in each case (i) does not hold. Thus, we have m0(p)(a) +∑

v∈D′ f2(W (p, l(v)))(a) − ∑
v∈D′ f1(W (p, l(v)))(a) <

∑
v∈C′ f1(W (p, l(v)))(a)

showing (*).
Altogether |C ′|l is not enabled in the final marking of the prefix lpo′′ of C ′ within

lpo′. By Lemma 1, lpo′ is not enabled, a contradiction.

Proof of Lemma 11

Define lpo = (V, <, l) through V = V ′∪{vmin, vmax}, ∀v ∈ V ′ : vmin < v < vmax,
l(vmin) 6= l(vmax) and l(vmin), l(vmax) /∈ l(V ′) and x such that (lpo,x) fulfills the
token flow property. Assume lpo′ is not enabled. Consider a prefix lpop = (Vp, <p, lp)

of lpo′ which is also not enabled and minimal with this property, i.e. every proper
prefix of lpop is enabled. By Lemma 1 there is a non-empty co-set C ′ of lpop and a
prefix (within lpop) lpo′′ = (V ′′, <′′, l′′) of C ′ such that the step of transitions |C ′|l
is not enabled in the final marking m of lpo′′ (lpo′′ is enabled by the minimality prop-
erty of lpop). By Lemma 10 we have m(p) = m0(p) +

∑
v∈V ′′ f2(W (p, l(v))) −∑

v∈V ′′ f1(W (p, l(v))) for the final marking m of lpo′′ for all p ∈ P . Denote V ′′
m =

V ′′∪{vmin}. By the token flow property m(p) = Outxp
(vmin)+

∑
v∈V ′′ Outxp

(v)−∑
v∈V ′′ Inxp

(v) =
∑

v∈V ′′m
(
∑

v<v′ xp(v, v′))−∑
v∈V ′′(

∑
v′<v xp(v′, v)) =∑

(v,v′)∈<∩(V ′′m×(V \V ′′m)) xp(v, v′) ≥ ∑
(v,v′)∈<∩(V ′′m×C′) xp(v, v′) =

∑
v∈C′ Inxp

(v)
=

∑
v∈C′ f1(W (p, l(v))) = f1(

∑
t∈T |C ′|l(t) ·W (p, t)). By the required property of

(τ, f), we conclude that for m′(p) = m(p)− f1(
∑

t∈T |C ′|l(t) ·W (p, t)) + f2(
∑

t∈T

|C ′|l(t) ·W (p, t)) we have (m(p),
∑

t∈T |C ′|l(t) ·W (p, t),m′(p)) ∈ τ . Thus |C ′|l is
enabled in m, a contradiction.

Proof of Corollary 1

The ”only if” statement follows from Theorem 1 and Lemma 1. The ”if” part can be
proven analogously to Lemma 11 additionally regarding the non-blocking property.

