
Modeling and Mining of Collaborative Learnflows

Robin Bergenthum, Andreas Harrer, Sebastian Mauser

Katholische Universität Eichstätt-Ingolstadt, Fachgebiet Informatik
forename.name@ku-eichstaett.de

Abstract. This short paper first presents a modeling language for collaborative
learnflows. This language is based on ideas from the area of business process
modeling. Second, it is shown how to automatically generate respective learnflow
models from log files of learning systems.

1 Introduction

Business processes have been established in the research and application field of busi-
ness process resp. workflow engineering with matured methods, representations and
computer support with tools. In contrast, the closely related learning and teaching pro-
cesses only recently gained attention in research and practice and have not yet cre-
ated shared terms, methods, and representations. This is especially true for the field
of Computer-supported Collaborative Learning (CSCL), a discipline that investigates
in the affordances and effects of computer applications supporting groups of students
in knowledge construction and skill development. Thus, while we will call the formal
representation of learning / teaching processes learnflow engineering in this paper, this
term is neither firmly established nor fully deserves the engineering character, but is
approaching this currently with the work of our colleagues and our own contributions.
To reach this goal we compared in earlier work [1] commonalities, specifics, and po-
tential methodological transfer between workflow and learnflow engineering. We also
introduced first approaches for formal modeling of collaborative learning processes by
means of Petri nets and the synthesis of nets from protocols and log files via process
mining algorithms.

Of particular interest are the explicit representation of collaborative learning and
of roles and learning groups. In comparison to business processes [2] the following
specifics of learning processes have to be taken into account:

– For business processes the ultimate goal of performing / enacting a process with its
associated activities is the achievement of a product with guaranteed quality crite-
ria, while the participation of individual actors is only a minor concern. However,
for learning processes the priority is that the learners involved in the activities get
the opportunity to gain knowledge and experience: an objectively measurable re-
sult of the process is - besides the use of formative evaluations / exams - much
less important than the completion of the learning experience for each participant
and its implicit result of constructed knowledge in the student’s mind. This requires
that in the modeling of learning processes the individual actors have to be modeled
thoroughly and explicitly.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 151–159.



– The concept of role in workflow engineering is mainly based on responsibility and
ability for a set of activities, which is static after an initial assignment of roles to
actors. Dynamic constraints on the activities (e.g. the same actor that created a pro-
posal should also fix the contract) and special rules for allocation of actors to activ-
ities (e.g. the actor of a given role that has a minimum number of other roles should
be chosen to distribute the workload) have been formulated in respective work by
means of additional model constructs and notations. In contrary to this rigid role
concept, the usage of roles in learning processes is frequently guided by exercis-
ing specific skills where roles are changed and acquired during a learning process.
Therefore, an extension of static role concepts to dynamic ones that are capable of
taking into account the learning history are needed for learnflow processes.

– Each activity, potentially even the whole learning process, may require group work
and discussion and especially these group activities can have a high importance
for the learning experience. Thus, the flexible and explicit representation of groups
with required roles and - if needed - the dynamic re-arrangement of groups is one
more requirement for learnflow engineering methods.

In this paper we will present a modeling language for learning processes that takes
specifically into account the requirements identified above. To make use of expertise
and experience from workflow engineering we will build the proposal upon sound ex-
isting approaches from this field [2]. Besides the intended applicability for learning and
teaching processes we also consider our approach useful for business processes with
dynamic roles, cooperative and collaborative activities such as in adaptive workflows
where a static process structure is not satisfactory.

A first modeling approach in this direction has been proposed in [1]. There, we rep-
resented learning processes as Petri nets as is usual in the field of workflow management
[2]. The allocation of actors was made by assignment of the required roles to activities
and the usage of a global pool of actors that have the possible roles they can take asso-
ciated to them. The established workflow concepts were extended by a mechanism to
allow the change of actor roles while performing an activity.

Because of the significance of role changes in the modeling of learning processes
in this paper we propose a refinement of that approach. We explicitly model dynamic
role assignments and changes in a state diagram: actors can change their assigned roles
when performing activities, which means that the role changes in the state diagram are
synchronized with the activities in the process model (Petri net). Learning groups are
taking into account by collaborative activities performed by several roles jointly.

We will discuss the potential and methods for the automated synthesis of these mod-
els from real protocol instances as an approach for collaboration flow mining. For this
we extend our first proposal of a learnflow mining approach presented in [1]. This previ-
ous work focused on the discovery of the structures for the control flow using methods
from the area of workflow mining [3, 4], but in this paper we will address additionally
the challenge how to gain information about dynamic roles and collaboration situations
from the protocol instances. Related work to this is organizational mining [5] that is
limited to static roles and organizational units.

152 Petri Nets & Concurrency Bergenthum, Harrer, and Mauser



In Section 2 we will present our new modeling language by an example learning
process. By means of this example we also illustrate the core ideas of collaboration
flow mining in Section 3.

2 Modeling Language

As an example we consider the following computer supported learning scenario. Groups
of three students use the tool Freestyler (www.collide.info) to learn the effect of dif-
ferent factors such as lightning conditions and CO2-concentration on the growth of
plants. For this purpose, Freestyler provides several tabs with different functionali-
ties. There are for instance tabs to formulate questions, to create simple models or
to import data from a simulation tool. In this example, the set of tabs corresponds to
the set of supported learning activities. Namely we consider the following activities:
In = Introduction, Qu = Elaboration of the Research Question, Pl = Planning, Mo =
Modeling of the Relations of the Different Factors, Hy = Hypothesize, E1 & E2 =
Experiment One resp. Two for Hypothesis Testing, Da = Study of Existing Experi-
mental Data for Hypothesis Testing, An = Analysis of Experimental Results Including
Comprehensive Hypothesis Testing, Pr = Presentation of the Research Results. Some
of these learning activities require collaboration (In, Hy, An require all three learners
and Pl, Mo, Pr each require two learners).

In this context a learnflow model first describes the order in which the tabs have
to be processed by the learners. Second, it determines who is allowed to work on a
tab. This depends on the dynamic roles of the learners within the learning group. The
learners may have the role Student, Modeler, ExModeler, Recorder and ExRecorder.
Student is the default role. The other roles encode the learning history of the learners,
e.g. Recorder and ExRecorder store the information that the learner has performed the
activity Question.

Figure 1 together with Figure 2 show a possible learnflow model for the example
scenario. Figure 1 illustrates the process aspect in the form of a Petri net with transition
annotations. The annotations refer to the numbers of roles required for an activity. The
state chart of Figure 2 complements the Petri net model. It represents a consistent role
diagram, which models the dynamic roles of the three learners in the pool of actors.
Each learner corresponds to one instance of the state chart. Instead of state charts, it
would also be possible to consider state machine Petri nets to model the roles of learn-
ers, but state charts are in our opinion the more natural modelling approach.

The dynamic of the learnflow model is as follows. An activity of the net can only
be accomplished, if the pool of actors contains learners having the roles annotated at
the transition. For instance, the collaborative activity Pl requires two actors with the
role Student. The occurrence of a transition can change the roles of the involved actors.
Such change is modeled in the role diagram by a state transition with the activity name
as the input symbol. Therefore, in our example the activity Pl causes the two students
to switch over to the role Modeler. This role is later on required to perform the activity
Mo. For simplicity of the role diagrams, we use the following convention. If an actor
performs an activity, which does not explicitly cause a change of his role in the state

Mining of collaborative learnflows Petri Nets & Concurrency – 153



chart, he preserves his role. For instance, the activity Mo does not change the role of an
actor with the role Modeler and therefore can be neglected in the state chart.

PrHy An

E1

In

Pl

Mo

Qu

E2

Da

3 Students

2 Students

2 Modelers

Student

2 Modelers AND Recorder

Modeler OR Recorder

2 ExModelers
AND ExRecorder

ExModeler
AND ExRecorder

Modeler OR Recorder

Modeler OR Recorder

Fig. 1. Petri net model with role annotations

Student

Recorder

Modeler

Qu

Pl
ExModeler

E1,E2,Da

ExRecorder
E1,E2,Da

Fig. 2. State chart represent-
ing a role diagram

The example shows, that the presented modeling
language allows to comprehensibly represent collabo-
rative activities as well as dynamic roles and the learn-
ing progress of learners within a learning process. Still
the language is simple and intuitive. It naturally extends
well established modeling approaches from the domain
of business process management. The approach sup-
ports a clear separation of the process perspective and
the role perspective of a learn flow.

For a formal definition of the occurrence rule of the
new modeling language, we consider a translation of
respective learn flow models into a special class of col-
ored Petri nets [6]. All the standard Petri net compo-

nents are kept in the high-level Petri net model. The annotations of the transitions and
the state diagrams (we require that a role occurs only once in a state diagram) are trans-
lated into one high-level place modelling the pool of ressources resp. actors. The color
set of this place is given by the possible roles of learners. The initial marking contains
for each state diagram one token of the kind given by the initial state of the state di-
agram. The place has an outgoing and an ingoing arc connected with each transition
of the net. A transition consumes tokens from the place as given by its annotation. For
each consumed token, there are two cases. Either the state corresponding to the token
type in the state diagram allows a state transfer labeled with the name of the considered
transition or it does not allow such transfer. In the first case, the transition produces a
token of the kind given by the follower state of the state diagram in the ressource pool.
In the second case, it produces a token of the same kind as the consumed token. Note
that for classical business process models with static roles, an analogous translation is
possible. But in this situation the first case neven occurs, i.e. each transition produces
the same tokens in the ressource pool, that the transition consumes from the pool. This
shows, that our new concept is more general than the classical approach.

154 Petri Nets & Concurrency Bergenthum, Harrer, and Mauser



Figure 3 illustrates the described translation for our example model (for the sake of
clearness, the single ressource pool place is splitted in the illustration). The resulting
high-level model on the one hand does not any more show explicitely the dynamic
roles and the behavior of the learners. On the other hand it is quite difficult to read
and understand. Therefore, for modeling purposes, the original representation should
be prefered. The high-level view should only be used for formal considerations.

PrHy An

E1

In

Pl

Mo

Qu

E2

Da

3`“Student“3`“Student“

3`“Student“

1`“Student“

1`“Recorder“

2`“Modeler“++
1`“Recorder“

2`“Modeler“++
1`“Recorder“

y

x
2`“ExModeler“++
1`“ExRecorder“

2`“ExModeler“++
1`“ExRecorder“

1`“ExModeler“++
1`“ExRecorder“

1`“ExModeler“++
1`“ExRecorder“

Ressource 
Pool

3`“Student“

Ressource 
Pool

x

y

x

y

2`“Modeler“

2`“Modeler“

2`“Student“

2`“Modeler“

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

Fig. 3. High-level Petri net

There is the following important observation for our new modeling approach. The
learning progress and the learning history of the actors are encoded in the role diagram.
For instance, the activity E1 initiates a learning progress of the involved learner. This
is represented by a change of the role of the learner. The new role then does not allow
an execution of E2 and Da by this learner anymore. Thus, the three activities E1, E2
and Da have to be divided among the three learners. As an outlook, we also work on a

Mining of collaborative learnflows Petri Nets & Concurrency – 155



further similar modeling language which avoids such progress-dependend role changes
by applying a nets-in-nets concept.

Lastly, our modeling approach regards learning groups implicitly by means of col-
laborative activities. In view of an explicit modeling of groups, there are two natural and
useful possibilities. First of all, different groups can simply be represented by different
process instances. However, in this case an extension of the modeling language which
allows to model dependencies of process instances would be helpful to regard dynamic
group structures. Second, groups can also be modeled analogously as roles, i.e. the role
diagrams of the actors can also capture information about group membership of actors.
However, in contrast to roles it is important to represent the overall dynamic of the
groups. This dynamic can only implicitly be regarded by group-memberships of single
actors. Therefore, an extension of the modeling approach which at any time explicitly
represents the learning groups would be interesting. This can for instance be achieved
by a respective grouping of the state charts in the pool of actors.

3 Collaboration Flow Mining

In this section we introduce an approach to mine a learnflow model given a log file
containing recorded learning activities. We construct a learnflow model which reflects
a learning process performed by the students (maybe unknown to the teacher) or if the
log file is filtered by the teacher even a desired learning process.

If an information system supports an actor while performing a learning activity this
event can be recorded and gathered in protocol instances. Each recorded event contains
information about the respective process instance, the name of the activity, the time of
its occurrence and the involved actors. First, the events are ordered by their respective
process and process instance. Second, they are ordered by the time of their occurrence
within each process instance. Thus, each process instance yields a sequence of activities
together with the respective actors. In the following we use these sequences as an input
to a mining algorithm creating a process model. This process model can be used for
verification and analysis issues or even as an input for information systems controlling
the learnflow.

The tool Freestyler records the activities of the students. Figure 4 shows a part
of a Freestyler log file of the considered learning process. It also shows a sequence of
activities together with the corresponding actors resulting from that log file. The teacher
may filter the log file by adding additional learning sequences or by removing unwanted
learning sequences according to certain criteria such as subsequently measured learning
achievements. In this case the mining yields a model of the desired learning process,
while without filtering a model of the actual behaviour of the students is generated.

In the following we assume the log file to be complete for the given learning process,
i.e. each possible learning sequence of the learning process is recorded in the log, where
we distinguish learning sequences in the form shown in the last table of Figure 4. After
abstracting from the set of actors in the learning sequences well know process mining
algorithms [1, 3, 4] can be used to automatically construct a model of the control flow
of the learning process. Since we consider a complete log file, we highly recommend
to use a precise mining algorithm. Such algorithms exactly reproduce the sequences

156 Petri Nets & Concurrency Bergenthum, Harrer, and Mauser



Log file
Process Process instance Action Student Time

Photosynthesis Group A Introduction Andi, Basti, Robin 10:03:12
Photosynthesis Group A Question Robin 10:06:43
Photosynthesis Group B Introduction Bert, Caro, Hans 10:07:33

... ... ... ... ...

Learning sequences
Group A (Introduction; Andi,Basti,Robin), (Question; Robin), (Planning; Andi,Basti), (Modeling; Andi,Basti),

(Hypothesis; Andi,Basti,Robin), (Experiment1; Andi), (Experiment2; Robin), (Data; Basti),
(Analysis; Andi,Basti,Robin), (Presentation; Andi,Robin)

...

Projection of learning sequences onto single students
Introduction, Planning, Modeling, Hypothesis, Experiment1, Analysis, Presentation
Introduction, Planning, Modeling, Hypothesis, Data, Analysis
Introduction, Question, Hypothesis, Experiment2, Analysis, Presentation
...

Learning sequences for role annotations
Group A (Introduction; -,-,-), (Question; In), (Planning; In,In), (Modeling; InPl,InPl),

(Hypothesis; InPlMo,InPlMo,InQu), (Experiment1; InPlMoHy), (Experiment2; InQuHy), (Data; InPlMoHy),
(Analysis; InPlMoHyE1,InPlMoHyDa,InQuHyE2), (Presentation; InPlMoHyE1An,InQuHyE2An)

...

Fig. 4. Example log file

of a log file if this is possible. Precise mining algorithms for Petri nets are base on
the so called theory of regions. In [4] we propose to apply regions of languages for
mining, since the sequences of a log file in a natural way determine a language. We have
also implemented a respective algorithm. From the log file in Figure 3 this algorithm
generates the Petri net model shown in Figure 1 yet without role annotations. In order
to generate these role annotations and the state chart describing the dynamic roles of
the students we introduce an additional mining method.

For every learning sequence and each occurring student within the learning se-
quence we consider the sequence of activities the student performs. Figure 4 shows
this projection of the learning sequences onto the students for the considered example.
All these sequences are integrated into a deterministic state chart in the form of a tree.
Its states are determined by the history of previously performed activities (also regard-
ing the order of the activities) and are named accordingly. In our example the resulting
state chart is given in Figure 5 yielding a first model of roles for our learning process.
In order to consistently use these roles as annotations in the Petri net model, in every
learning sequence each actor must be renamed by the role describing the activities per-
formed by the actor in the history of this learning sequence (see Figure 4 lower part).
The role annotation of an activity in the Petri net is determined by all roles or combina-
tions of roles in the case of a collaborative activity that occur together with this activity
in any such learning sequence.

Although we have not formally proven this yet, it can be shown that using this
approach and given a complete log file, i.e. a complete set of learning sequences, a
model is calculated which has the same behaviour as show in the log file (if such a model
exists). That means, the mined model and the log define the same learning sequences in
the form depicted in the last table of Figure 4. In our example the generated model has
equivalent behaviour to the learning process model shown in Figure 1. Yet the model
has a much lager set of roles. The reason for this is that the role model encodes the
complete history of each actor.

Mining of collaborative learnflows Petri Nets & Concurrency – 157



- In
In

InPlPl

InPlMo InPlMoHy
Hy

InPlHy

Hy

E1 InPlMoHyE1

E2

Da

An
InPlMoHyE1An

Pr
InPlMoHyE1AnPr

InPlMoHyE2
An

InPlMoHyE2An
Pr

InPlMoHyE2AnPr

InPlMoHyDa
An

InPlMoHyDaAn
Pr

InPlMoHyDaAnPr

InPlHyE1
An

InPlHyE1An
Pr

InPlHyE1AnPr

InPlHyE2
An

InPlHyE2An
Pr

InPlHyE2AnPr

InPlHyDa
An

InPlHyDaAn
Pr

InPlHyDaAnPr

E1

E2

Da

InQu

Qu

InQuHy

InQuHyE1
An

InQuHyE1An
Pr

InQuHyE1AnPr

InQuHyE2
An

InQuHyE2An
Pr

InQuHyE2AnPr

InQuHyDa
An

InQuHyDaAn
Pr

InQuHyDaAnPr

E1

E2

Da

Hy

Mo

Fig. 5. Role diagram with finest granularity

In the following our goal is to simplify the model of roles by combining roles.
Therefore, we developed the following rules. Remark that the annotations in the Petri
net model have to be renamed consistently.

– Role transitions triggered by actions performed collaboratively by all actors be-
longing to one process instance can be neglected.

– Roles having the same postset of roles (respectively an empty postset) and the same
outgoing activities can be fused, if for each outgoing activity the roles occur to-
gether with the same roles over all learning sequences. Thereby, outgoing activities
between the roles to be fused can be neglected.

– Only as a last step roles having an empty postset can be neglected.

It can be proven, that given a complete log file, applying these rules to the previ-
ously mined role diagram again yields a behaviour equivalent learnflow model. In our
example with these three rules we get a model of roles which is isomorphic to the model
shown in Figure 2. Apart from the role names that are not present in the log files any-
way we were in this case able to recreate the original learning process model from a
complete log file. The role names have to be assigned by the teacher afterwards.

Finally, in practical settings typically we have to assume that not all possible learn-
ing sequences have been recorded in a log file. For such log files the presented approach
has to be adapted. Heuristics can help to infer the missing sequences and to integrate
them into the process model. For the control flow perspective existing methods from the
area of process mining can be used in this context [3]. For the role diagrams we plan

158 Petri Nets & Concurrency Bergenthum, Harrer, and Mauser



to use methods from the theories of structural equivalence and generalized block mod-
elling [7] where missing information is penalized and a solution with minimal penalties
can be used for the generalized role model.

References

1. Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Learnflow mining. In: DeLFI, LNI 132, GI
(2008) 269–280

2. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press
(2002)

3. Aalst, W.: Finding Structure in Unstructured Processes: The Case for Process Mining. In:
ACSD 2007, IEEE (2007) 3–12

4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of
Languages. In: BPM 2007, Springer (2007) 375 – 383

5. Song, M., Aalst, W.: Towards comprehensive support for organizational mining. Decision
Support Systems 46(1) (2008) 300–317

6. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume
1-3 of Monographs in Theoretical Computer Science. Springer (1992, 1994, 1997)

7. Doreian, P., Batagelj, V., Ferligoj, A.: Generalized Blockmodeling. Volume 25 of Structural
Analysis in the Social Sciences. Cambridge University Press, Cambridge (2005)

Mining of collaborative learnflows Petri Nets & Concurrency – 159


