
Verification of Logs - Revealing Faulty

Processes of a Medical Laboratory

Robin Bergenthum and Joachim Schick

Department of Software Engineering and Theory of Programming
FernUniversität in Hagen

{robin.bergenthum,joachim.schick}@fernuni-hagen.de

http://www.fernuni-hagen.de/sttp

Abstract. If there is a suspicion of Lyme disease, a blood sample of
a patient is sent to a medical laboratory. The laboratory performs a
number of di�erent blood examinations testing for antibodies against
the Lyme disease bacteria. The total number of di�erent examinations
depends on the intermediate results of the blood count. The costs of each
examination is paid by the health insurance company of the patient. To
control and restrict the number of performed examinations the health
insurance companies provide a charges regulation document. If a health
insurance company disagrees with the charges of a laboratory it is the
job of the public prosecution service to validate the charges according to
the regulation document.
In this paper we present a case study showing a systematic approach
to reveal faulty processes of a medical laboratory. First, files produced
by the information system of the respective laboratory are analysed and
consolidated in a database. An excerpt from this database is translated
into an event log describing a sequential language of events performed
by the information system. With the help of the regulation document
this language can be split in two sets - the set of valid and the set of
faulty words. In a next step, we build a coloured Petri net model corre-
sponding to the set of valid words in a sense that only the valid words
are executable in the Petri net model. In a last step we translated the
coloured Petri net into a PL/SQL-program. This program can automat-
ically reveal all faulty processes stored in the database.

1 Introduction

A lot of information systems are used in the healthcare sector and each system
produces some kind of log-data. This is particularly true in the domain of med-
ical laboratories where all samples, materials and examination results have to
be stored. This "good laboratory practice" is an important method of quality
management and big medical laboratories own records about several millions of
processed orders.

Every examination performed by a medical laboratory is paid by a health
insurance company. The cost of each examination is rated by a fixed scale of
charges given in a so-called charges regulation document. Of course, the correct

application of the regulations have to be proven to the health insurance com-
panies. If a suspicion about irregular application of the regulations arises, it is
the job of the public prosecution service to validate the billed charges accord-
ing to the regulation document. Usually, the prosecution service orders a report
investigating the issue from an expert-o�ce.

In this case study we describe an approach using coloured Petri nets which is
inspired by the methods of the area of process mining and process discovery to
reveal faulty processes given in log-files of a medical laboratory. The files contain
data recorded over a period of five years having 1500-2000 orders a day. Each
order consisting of 20-30 events, examinations and results. Altogether, we face
about 100 million lines of log that need to be analysed and verified. Each line
describes an event or a sub-process of the medical laboratory. Each event refers
to the occurrence of an action of the information systems and is annotated with
a time stamp, order-id, variables etc. Typical actions of the system are register

order, register requirements, register examination results, validate results, make

invoice, archive order In addition to these basic actions, a medical laboratory
is able to perform a huge number of di�erent examinations. In this case study
the prosecution service ordered a report revealing all faulty processes concerned
with Lyme disease.

To reveal all faulty processes of a set of log-files we choose a four step ap-
proach. We call the first step consolidation step. The main goal is to develop a
schema to integrate all the recorded files into a relational database. Using the
same schema it is also easy to implement a view on top of the database tables.
The view abstracts from redundant or superfluous information and reduces the
data to events and results corresponding to processes considering Lyme disease.
With the help of this view we are able to produce an event log, i.e. a sequence
of events bearing only information about order-number, time-stamp and result.

The next step is called the formalization step. Each sequence of events cor-
responds to a sequence of actions. Each sequence of actions is called a word.
The set of words is called the language of the event log. The main task in the
formalization step is to split this language into two sublanguages, the set of valid
and the set of faulty words. This has to be done manually with the help of the
charges regulation document. Of course, this is a time consuming task, but we
believe that it is very easy and hardly error-prone to classify single words. We
could also try to directly build a model of regulations from the charges regula-
tion document to classify the set of words automatically, but often the regulation
document is given as plain text. Starting from such a description is error-prone
and easily yield a model that does not fit the recorded event log regarding names
of actions, values and level of abstraction. Remark, we only need to partition
the set of words, we do not classify the complete event log. In the formalization
step a set of valid sequences of actions is produced. We call this set the language
of regulations.

The third step is called integration step. The language of regulations is in-
tegrated into a coloured Petri net model. Such an integration can be supported
by synthesis or workflow mining algorithms. In our case study the language of

18 PNSE’14 – Petri Nets and Software Engineering

regulations is already highly compressed and settled, such that we construct a
corresponding coloured Petri net model by hand using the editor CPN-Tools
[1]. The constructed coloured Petri net model is a formalization of the charges
regulation document using the language of the recorded files. Only valid process
instances of the Lyme disease diagnostic processes are executable in this Petri
net model. A big advantage of such a Petri net model is that it can be analysed,
simulated and verified.

The fourth step is called implementation step. Coloured Petri nets are well
readable and have an intuitive formal semantic. We will show how to translate
such a coloured Petri net model into a PL/SQL-program. We translate transi-
tions to functions, places to tables and arcs to delete or insert statements. With
the help of such a PL/SQL-program all sequences of events can be replayed in
the database. If the replay fails, the sequence corresponds to the occurrence of
a faulty process of the medical laboratory.

Fig. 1. Approach to reveal faulty processes

Figure 1 depicts an overview of the presented approach. A key feature is that
it is built on a chain of formal models. The initial models, i.e. the schema, the
view and the event log, consolidate the recorded data. Afterwards, the language
of regulations, the coloured Petri net and the PL/SQL-program are build. The
constructed models document of the whole inspection procedure, all results can
easily be reconstructed, the produced models can be reused when inspecting
other laboratories. Of course, stepping from one formal model to another highly
supports the validity of the investigation report produced. Each step can be

R. Bergenthum and J. Schick: Verification of Logs 19

supported by algorithms and tools. Some steps can even run fully automated
using e.g. synthesis algorithms for the construction of the Petri net model or
automated generation of the PL/SQL-program.

The chosen approach is inspired by techniques well known in the area of
process mining where some recorded behaviour is merged into a formal model of
the underlying process [2–4]. Remark, that it is of great importance to choose an
appropriate process mining algorithm that does not introduce much additional
behaviour to the model. There are language base discovery algorithms [5–7] or
even synthesis algorithms [8–11] that meet this requirement. The approach is also
inspired by work done in the field of business process modelling and requirements
engineering were the starting point of the discovery phase is the construction of
a formal and valid specification [12–16]. Nevertheless, there are two major points
that are unusual to approaches known in both areas. We model the process of
the underlying system by coloured Petri nets since they highly depend on the
intermediate results of a chain of di�erent blood examinations. In addition the
formal language of the event logs needs to be filtered by hand according to the
charges regulation document. This step can not be automated and is crucial for
the quality of the report produced.

The paper is organized as follows: Section 2 provides formal definitions. Sec-
tion 3 presents the approach and our case study. In Section 4, we sum up the
results to prove the applicability of the developed approach.

2 Preliminaries

In this section we briefly recall the basic notions of languages, event logs and
coloured Petri net.

An alphabet is a finite set A. The set of words over an alphabet A is denoted
by A

ú. The empty word is denoted by ⁄. A subset L ™ A

ú is called language
over A.

Business processes describe the flow of work within an organisation [17]. Each
process consist of a set of activities that needs to be performed. We denote T

the set of all activities and call the execution of an activity an event. Events are
labelled with the name of the corresponding activity. Furthermore, events can
carry a time stamp showing the time of execution and values denoting results
of the execution. We denote V the set of values. A set of events corresponding
to the occurrence of a processes is called a case. Recording the behaviour of a
system yields a set of interleaved cases we call an event log.

Definition 1. Given a finite set of activities T , a finite set of values V and a

finite set of cases C. An element ‡ œ (T ◊ V ◊ C)ú
is called an event log. Fix a

case c œ C we define the function pc : (T ◊ V ◊ C) æ (T ◊ V) by

pc(t, v, c

Õ) =
;

(t, v) ,if c = c

Õ

⁄ ,else.

Given an event log ‡ = e1 . . . en œ (T ◊ V ◊ C)ú
we define the language L(‡)

of ‡ by L(‡) = {pc(e1)...pc(ei)|i Æ n, c œ C} ™ (T ◊ V)ú
.

20 PNSE’14 – Petri Nets and Software Engineering

The language of an event log is finite and prefix closed. It reflects the control
flow between activities given by the events of the log. Each case adds a word to
the set of words called language.

In this paper we use coloured Petri nets to model valid behaviour of a med-
ical laboratory. The underlying Petri net models the control flow between ac-
tions while variables control the examination results. The following definition of
coloured Petri nets was given in [1].

Definition 2. A coloured Petri net is a tuple CPN = (P, T, F, À, V, D, G, E, I),
where:

P is a finite set of places.

T is a finite set of transitions, such that P fl T = ÿ holds.

F ™ (P ◊ T) fi (T ◊ P) is a set of directed arcs.

À is a finite set of non-empty colour sets.

V is a finite set of typed variables such that Type[v] œ À for all variables v œ V .

D : P æ À assigns a colour set to each place.

G : T æ EXP V assigns a guard to each transition t such that Type[G(t)] =
Bool.

E : F æ EXP V assigns an arc expression to each arc f such that Type[E(f)] =
D(p)MS, where p is the place connected to the arc f .

I : P æ EXP 0 is an initialisation expression to each place p such that

Type[I(p)] = D(p)MS.

In contrast to low-level Petri net a place of a coloured Petri net belongs to a
given type called colour. According to this colour each place carries values called
tokens. Arcs carry variables and if an arc is connected to a place, the tokens
of the place can bind to variables of the arc. A binding b of a transition maps
variables of related arcs into values of related places. A transition t is executable
if there is a binding b such that the transition guard evaluates to true. When the
transition occurs, as for low-level Petri net, it removes the specified tokens from
the input places and produces tokens in the output places (see [1] for a formal
definition).

The initialisation function I assigns tokens to places yielding an initial mark-
ing. Given a coloured Petri net CPN a sequence of sequential enabled transitions
is called an occurrence sequence of CPN . In this paper we add the values of the
respective bindings to each transition of an occurrence sequence. The language
L(CPN) of CPN is defined as the set of all occurrence sequences. Given an
event log log œ (T ◊ V ◊ C)ú, log is executable in CPN if L(log) ™ L(CPN)
holds.

3 Verification of Logs

In this section we present an approach to validate a set of given recorded files
with the help of a regulation document. In the following case study, on behalf
of the public prosecution service, recorded data of an information system of a

R. Bergenthum and J. Schick: Verification of Logs 21

medical laboratory has to be reviewed. During a period of five years 1800 files
were produced and recorded. Each file contains about 1500 processed orders.
The regulation document is given by a charges regulation document provided by
health insurance companies. The goal is to identify faulty processes performed
by the medical laboratory considering all processes corresponding to Lyme dis-
ease diagnostic. An overview of our approach is sketched in Figure 1 given in
the introduction. The subsections of this section reflect the four steps of our
approach.

3.1 Consolidation Step

In a first step the recorded files need to be consolidated and formalized. The aim
of this step is to load the recorded files into a database to extract an event log
from it afterwards. For the storage and processing of data, the commercial Oracle
Database is used. This database system provides a procedural programming
language named PL/SQL for the implementation of the stored procedures. To
set up the database an entity-relationship diagram is produced. Of course, to
produce this diagram first the recorded files need to be reviewed. Afterwards,
we use the Oracle SQL Developer Data Modeler to construct the model.

An excerpt of a file recorded by the medical laboratory is depicted in Figure 2.
All files of the laboratory’s information system have a hierarchical structure with
a flexible record length up to 1024 characters. Each file is a sequence of di�erent
types of blocks. Each block corresponds to a set of di�erent actions of the system.
The first line of each block is the header of the block and all following lines are
indented.

The file depicted in Figure 2 starts with a block corresponding to the reg-
istration of a new order for a blood count. The header of this block reads as
follows: The first number corresponds to the registration-id 727980834 gener-
ated for this new order. This id perfectly fits the need to identify cases in the
given file. In our case study each registration-id corresponds to a case of the
system. The next two numbers refer to the time the registration occurred, i.e.
January 25th 2011, 11:49:54 in our example. The next two strings indicate that
this action was manually triggered. The last number of the header encodes the
name of the action occurred. In this particular information system the number
10 refers to the action order blood count. The inner lines of this first block carry
the values of this registration action. Possible values are the name, birthday and
address of the patient registered.

The next block corresponds to the scheduling of examinations. The header
refers to the same case as the first registration block since both ids match.
Remark, both recorded actions even occurred within the same second. The dif-
ference between both headers is only given by the number at the end of the
line. In this block 20 refers to the action schedule examination. This block con-
sists of two sub-blocks, both sub-blocks marked by the keyword BORR. BORR
stands for Lyme disease and indicates that the scheduled examinations are part
of Lyme disease diagnosis. Again, the inner lines carry values of the scheduling
where BORG and BORM are abbreviations of two di�erent blood examinations.

22 PNSE’14 – Petri Nets and Software Engineering

Fig. 2. An excerpt of a recorded file of the medical laboratory.

R. Bergenthum and J. Schick: Verification of Logs 23

In this example the block corresponds to the occurrence of two di�erent actions.
A BORG-examination and a BORM-examination is scheduled.

The sixth block shown in Figure 2 corresponds to the recording of results
of the scheduled examinations. The number 21 refers to the action receive re-

sult. This block matches the schedule examination block besides two important
di�erences. First, the keyword ONLVAL indicates that this event was automat-
ically triggered by the information system when the results of examinations are
received. Second, the inner lines of the block carry the results of these examina-
tions. In this example the results of the BORG- and the BORM-examinations
are received. The value of the BORG-examination is smaller than 10.00 and the
value of the BORM-examination is smaller than 18.00. Both values show the ab-
sence of the corresponding antibodies, i.e. both examinations are negative and
no further examinations need to be scheduled.

After knowing the structure of the files an entity-relationship diagram is
built. With the help of this schema a PL/SQL-program is written to load all
files into the Oracle Database. If all the data is stored, the next step is to
extract a consolidated and formal event log from this database. The event log
only contains events and values corresponding to processes that need to fulfil
regulations given in the charges regulation document concerning Lyme disease
diagnostic. We omit a detailed description of the produced entity-relationship
diagram, but give a short impression in Figure 3.

Fig. 3. Entity-relationship diagram of our Oracle Database.

Given the entity-relationship diagram it is easy to implement a view on top of
the tables of the database to receive an appropriate event log. In our example, the
excerpt depicted in Figure 2 only contains four blocks corresponding to Lyme
disease diagnostic. In the first and in the third block two new orders arrived
and both patients are registered. In the second block a BORG- and a BORM-
examination for the first order is scheduled. The sixth block shows the results

24 PNSE’14 – Petri Nets and Software Engineering

of both examinations. We are able to discard all other blocks shown in Figure
2. If we apply the constructed view to this excerpt we get the event log shown
in Table 1. This event log abstracts from additional events and values. It shows
the six events corresponding to the four blocks concerned with Lyme disease of
Figure 2.

id action value stamp

727980834 10 25.01.11, 11:49:54
727980834 20 BORG 25.01.11, 11:49:54
727980834 20 BORM 25.01.11, 11:49:54
702673748 10 25.01.11, 11:50:04
727980834 21 BORG < 10 27.01.11, 12:33:44
727980834 21 BORM < 18 27.01.11, 12:33:44

Table 1. Event log of the file depicted in Figure 2.

With the help of the Oracle Database and the implemented view arbitrary
extracts of the recorded files can be shown as event logs. These logs are the
results of the consolidation step of our approach. In the next steps these logs are
filtered with the help of the regulation document and integrated to an executable
model.

3.2 Formalisation Step

In the second step of our approach first the event log is used to define the for-
mal language of the recorded behaviour. Then, in a next step, this behaviour is
filtered with the help of the charges regulation document yielding a language of
valid words. The aim of this formalisation step is to bring together the recorded
behaviour and the regulation document given as plain text. Remark, that it is
much easier to only evaluate the recorded language with the help of the regula-
tions and not to build an independent model of all regulations hoping it will fit
the language of the recorded behaviour.

To deduct a formal language from the event log, first the actions of the system
need to be identified. In our case study the list of significant actions reads as
follows:

T = {10, 20BORG, 20BORM, 20BV LSEG, 20BP 39G, 20BP 83, 20BIV 1,
20BIV 2, 20BIV 3, 20BIV 4, 20BOSP C, 20BV LSEM, 20BP 39M,
21BORG, 21BORM, 21BV LSEG, 21BP 39G, 21BP 83, 21BIV 1,
21BIV 2, 21BIV 3, 21BIV 4, 21BOSP C, 21BV LSEM, 21BP 39M}

The numbers 10, 20 and 21 indicate if a blood count for a patient is registered,
an examination is scheduled or if a result is received. The attached letters are

R. Bergenthum and J. Schick: Verification of Logs 25

the abbreviations of the corresponding examinations. There are 12 di�erent tests
corresponding to Lyme disease diagnostic leading to 25 di�erent actions in total.
Every action having a name starting with 21 carries a value of the type boolean

(i.e. either the examination is negative or positive). At this point we are able to
abstract from any other value given in the files such that any other action occurs
without additional data. As stated above all events having the same registration-
id belong to the same case. Events of the same case can be ordered by their time
stamp. If we apply this knowledge to our event log we get a set of words. The
following table shows three example words given by the event log of our case
study:

L(log) = {10 20BORG 20BORM (21BORG,false) (21BORM,false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,true)
(21BORM,true) (21BVLSEG,false) (21BP39G,false) (21BP83,false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM,false) (21BP39M,false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,false)
(21BORM,false) (21BVLSEG,false) (21BP39G,false) (21BP83,false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM,false) (21BP39M,false),

. . .
Table 2. The language of the event log.

The language depicted in Table 2 was automatically processed from the given
event log. This language is a complete and formal description of the set of pro-
cesses occurred in the information system of the medical laboratory. Any new
sequence of actions and values given by the events of a case yields a new word in
the language of the log. Of course, the language of the log is much smaller than
the event log since cases corresponding to the same process are not distinguished.

Given the language of the log the next step is to distinguish valid and faulty
words. This is a major task in the presented approach which can not be auto-
mated. The charges regulation document is given as text. It is absolutely neces-
sary to understand the given regulations and apply them to the set of words. The
main advantage of the presented approach is that the set of words is given in a
very compact and formal style. There is no room for interpretations or ambigu-
ities. The rules of the charges regulation document do not need to be modelled
explicitly, they just need to be applied to the given language. As stated in [13, 16]
a single word is much easier to understand than a whole system. The evaluation
of single words can be performed by experts on the regulation document. There
is no need that these experts know how to model a system or even can read the
files or know how the information system works.

26 PNSE’14 – Petri Nets and Software Engineering

In our example given in Table 2 the first two words are valid. The third
word is faulty since the set of examinations {BVLSEG, BP39G, BP83, BIV1,
BIV2, BIV3, BIV4, BOSPC, BVLSEM, BP39M } may only be preformed if one
of the BORG- and BORM-examination is positive. According to the regulation
document the blood count needs to be performed in two steps. First, the BORG-
and BORM-examination results need to be evaluated, if one of these is positive,
a more detailed set of examinations should be performed.

The result of the formalization step is the set of valid words. This set can
be seen as the relevant part of the language of the charges regulation document
given in the language of the information system. If this language is found, the
most challenging task of the investigation process has been completed. In the
next steps this set is integrated into an executable model.

3.3 Integration Step

The third step of our approach is called integration step. The aim is to build
an executable model having the language of the charges regulation document.
As suggested in [18] it would be possible to skip this integration step and just
filter the event log with the help of the set of valid words given by the language
constructed in the former step, but there are mainly two important reasons to
build an integrated model first. A model provides a more compact representation
of the set of words such that the model can more easily be simulated and anal-
ysed. For this purpose there exist a lot of well known Petri net algorithms in the
literature. Second, an executable model can easily be translated into executable
code in the last step of our approach.

The problem of integrating a set of words into a Petri net is a well known
problem. There exists a lot of work tackling the problem in the area of process
mining [2, 19, 20, 7] and in the area of language based synthesis [8, 21, 11, 9, 6].
Algorithms from both areas can by applied to support the integration step.
In the presented case study we built the corresponding model by hand. The
constructed language of the charges regulation document was already compressed
in such a way that there was no need for automated integration. At first, a
transition is constructed for every action of the given language. According to
the ordering of actions given in the language places are added to this set of
transitions such that only words of the language are executable in the resulting
net. In a second step the values carried by actions yield coloursets added to the
constructed Petri net. Variables are added to arcs connected with the respective
transitions corresponding to actions carrying a value. The coloured Petri net
is adjusted in such a way that each pair of an action and value given in the
language corresponds to a transition and a binding. In a last step, like it is
common for coloured Petri nets, it is possible to merge some transitions. Similar
parts of the Petri net are folded yielding additional coloured tokens representing
each part. For modelling we use CPN-Tools [22, 23]. CPN-Tools is developed at
the AIS group of the Technische Universiteit Eindhoven and supports all editing
and simulation features for coloured Petri net.

R. Bergenthum and J. Schick: Verification of Logs 27

In our case study our initial low-level Petri net contains 25 transitions cor-
responding to the 25 actions of our process identified in the formalization step.
The control flow is rather simple and we just add the corresponding places.
First, a blood count have to be registered, then an arbitrary number of the 12
examinations concerning Lyme disease can be scheduled. The execution of these
12 examinations must follow the simple rule, that first the BORG- and BORM-
examination need to be performed before the other examinations occur. Remark,
the control flow of the initial low-level net is independent form the values given
in the language. Rules and regulation concerning values are added in the next
step. All actions that corresponds to an examination result carry a value. For
this reason we introduced a boolean colourset called RES and allow each such
transition to be executed while binding to true or false. At this point we are
able to require that a BORG- or BORM-examination must be positive before
any other examination can be executed. In a last step we folded transitions if
possible. The resulting net is depicted in Figure 4.

Fig. 4. Coloured Petri net representing the charges regulation document.

In Figure 4 the transition named 10 is enabled in the initial marking. If
transition 10 fires, a BORG- and a BORM-token is produced in the place search

test and tokens corresponding to all other examinations are produced in the place
western blot test. In such a marking only the upper transition 20 is enabled. If
transition 20 fires a BORG- or a BORM- examination is scheduled. As soon
as an examination is scheduled transition 21 is enabled. If transition 21 fires,
it consumes a token from the place investigation and moves this token to the
place results. While the token is moved a random boolean value is attached.
The lower transition named 20 is enable if the western blot tests are scheduled
and if there are at least two tokens in the places results. The arc inscription
1Õ

y + +1Õ
z denotes a pair of tokens. One token is assigned to the variable y

28 PNSE’14 – Petri Nets and Software Engineering

and another token is assigned to the variable z. The guard [fb(z)] ensures that
the token called z carries the value true. It follows that in the model shown in
Figure 4 the western blot tests can only be preformed if the results of the BORG-
and BORM-examination are present and at least one of these examinations was
evaluated with true.

The model shown in Figure 4 is only able to reproduce one single run of the
information system. In some sense it is a model of valid words, not a model of
the running information system. Our goal is to replay each case of the event
log in this model, there is no need to construct a model which is able to handle
multiple cases at once.

Besides the possibility to validate the produced model by simulation, CPN-
Tools provides some model checking algorithms (see [1] for details). Table 3
depicts a small part of the CPN-Tools state space report of the model shown in
Figure 4.

Liveness Properties ————————
Dead Transition Instances: None
Live Transition Instances: None
Fairness Properties ————————
No infinite occurrence sequences.

Table 3. CPN-Tools state space report of the model shown in Figure 4.

The integration step yields a sound and integrated model of the valid lan-
guage produced during the formalization step. Of course, if analysing this model
uncovers faults or additional requirements, the language produced in the formal-
ization step needs to be adopted according to the change made in the model.
If model and language match and describe the valid behaviour of the underly-
ing charges regulation document, in the last step of our approach, the model is
translated into executable PL/SQL-code.

3.4 Implementation Step

The fourth and last step of our approach is called the implementation step.
Although, the coloured Petri net model is executable we translate the produced
Petri net into PL/SQL-code. PL/SQL is a proprietary programming language
which is integrated in the Oracle Database. Since it can execute SQL statements
directly it is more suitable than Java or C++ in our approach. The aim is to
get an executable program directly running next to the recorded data. With the
help of this program faulty processes preformed by the medical laboratory can
automatically be revealed.

During the case study the coloured Petri net model depicted in Figure 4 is
transformed into PL/SQL mainly using the following ideas:

(i) Each place of the coloured Petri net yields a temporary table in the database.
The tables are able to store records representing tokens and their values.

R. Bergenthum and J. Schick: Verification of Logs 29

(ii) Each transition of the coloured Petri net yields a parametrized function in
the database. A function returns true only if the corresponding transition
is executable. To check if a transition is executable arcs of the Petri net are
translated into SQL-statements. Roughly speaking, these statements check
if there exist appropriate values in the tables corresponding to places in the
preset of the transition.

(iii) Each arc of the coloured Petri net yields an SQL-statement in the database.
Arcs leading from a place to a transition correspond to DELETE-statements
consuming tokens from tables. Arcs leading from a transition to a place
correspond to INSERT-statements producing tokens in tables.

(iv) Each guard or function of the coloured Petri net yields a function in the
database. The SML-functions given in the coloured Petri net can easily be
translated.

CPN PL/SQL-program

COLOUR a list of attributes
PLACE a table having a COLOUR
TOKEN a record in PLACE
PT-Arc DELETE from PLACE return TOKEN
TP-Arc INSERT into PLACE values TOKEN
EXPRESSION a WHERE expression
TRANSITION a function using ARCS
GUARD a sub-function of TRANSITION

Table 4. Pattern of transformations form a CPN into a PL/SQL-program.

A table of transformation patterns is given in Table 4. With the help of
these transformation rules it is even possible to implement a fully automated
transformation procedure.

To actually verify the event log with the help of the PL/SQL-program the
set of cases of the event log is replayed. The registration-ids of the set of faulty
cases is stored in an additional table. With the help of this procedure faulty
processes can be revealed. The set of faulty processes is the basis of the report
produced for the prosecution service. The specific results produced in our case
study are presented in the next section.

4 Results and Conclusion

In the context of the presented case study, a set of files of a medical laboratory
has been verified. The files record all occurred actions of the information system
of the laboratory over a period of five years. In that given period, 22432 orders of
Lyme disease diagnostic have been performed by the laboratory. The PL/SQL-
program produced by our approach calculates the following results:

30 PNSE’14 – Petri Nets and Software Engineering

recorded processes valid faulty runtime

22432 3311 19121 11 minutes

Table 5. Results of the presented case study.

As shown in Table 5 only 15% of the recorded behaviour is valid according to
the charges regulation document. It turned out, that the considered laboratory
in almost every case performed the complete set of 12 examinations in a first
step. The regulations require that the BORG- and BORM-examination precede
all other examinations. Only if one of the two examinations is positive, the set
of all examinations can be charged.

To get a more detailed view on the recorded data, in a second step, we ad-
justed our coloured Petri net model. We removed the transition guard requiring
a positive result from one of the BORG- or BORM-examination, assuming a
more sloppy interpretation of the regulation document. If we repeat the valida-
tion procedure we get that 50% of all recorded processes are valid concerning
this more liberal model. In other words, even if we allow that all 12 examina-
tions can be performed at once, 50% of all processes contain additional faults
like unnecessary actions or manual changing of examination values.

In the paper we presented an approach together with a case study to verify
logs revealing faulty processes of a medical laboratory. The produced PL/SQL-
program can directly be applied to any medical laboratory using the same infor-
mation system. The main advantage of the presented approach is that it is based
on a chain of formal models. With the help of these models it is easy to keep
track of the validity of the produced report. Most of the steps can be supported
using algorithms or tools well known in the area of Petri nets. Furthermore,
experts on the regulation document can support the formalisation step without
any knowledge about modelling techniques. If a model is produced it also can
be adopted and reused. This can help to generate di�erent criteria regarding
only parts of the regulation document. Of course, all calculated results can be
reproduced at any time, if this is required by the public prosecution service.

From the experience we gained in the case study we feel that the approach
forces us to tackle the given task in a very structured way. The approach provides
good documented, traceable results. In the future, we will test the presented
approach on a larger regulation document yielding a larger regulation model
and try to automate each step of the approach further.

R. Bergenthum and J. Schick: Verification of Logs 31

References

1. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

2. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182–192

4. Rozinat, A.: Process Mining: Conformance and Extension. PhD thesis, TU Eind-
hoven (2010)

5. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building
Instance Graphs. In Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.:
ER. Volume 3288 of Lecture Notes in Computer Science., Springer (2004) 362–376

6. Bergenthum, R., Mauser, S.: Mining with User Interaction. In Desel, J., Yakovlev,
A., eds.: Proceedings of the Workshop Applications of Region Theory, Petri Nets
2011. Volume 725 of CEUR Workshop Proceedings. (2011) 79–84

7. Bergenthum, R., Mauser, S.: Folding Partially Ordered Runs. In Desel, J.,
Yakovlev, A., eds.: Proceedings of the Workshop Applications of Region Theory,
Petri Nets 2011. Volume 725 of CEUR Workshop Proceedings. (2011) 52–62

8. Badouel, E., Darondeau, P.: Theory of Regions. In Reisig, W., Rozenberg, G., eds.:
Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1996)
529–586

9. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models
from Example Runs. Petri Nets and Other Models of Concurrency 2 (2009) 243–
259

10. Darondeau, P.: Synthesis and Control of Asynchronous and Distributed Systems.
In Basten, T., Juhás, G., Shukla, S.K., eds.: ACSD, IEEE Computer Society (2007)
13–22

11. Bergenthum, R., Desel, J., Kölbl, C., Mauser, S.: Experimental Results on Process
Mining Based on Regions of Languages. In: Proceedings of the Workshop CHINA,
Petri Nets 2008, China (2008) 73–87

12. Glinz, M.: Improving the Quality of Requirements with Scenarios. In: Second
World Congress on Software Quality, Yokohama (2000) 55–60

13. Desel, J.: From Human Knowledge to Process Models. In Kaschek, R., Kop, C.,
Steinberger, C., Fliedl, G., eds.: UNISCON. Volume 5 of Lecture Notes in Business
Information Processing., Springer (2008) 84–95

14. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd Edition. Springer (2012)

15. Mayr, H.C., Kop, C., Esberger, D.: Business Process Modeling and Requirements
Modeling. In: ICDS, IEEE Computer Society (2007) 8

16. Mauser, S., Bergenthum, R., Desel, J., Klett, A.: An Approach to Business Process
Modeling Emphasizing the Early Design Phases. In: Proceedings of the Workshop
Algorithmen und Werkzeuge für Petrinetze. Volume 501 of CEUR Workshop Pro-
ceedings. (2009) 41–56

17. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series. MIT Press (2011)

18. Harel, D.: Come, Let’s Play - Scenario-based Programming using LSCs and the
play-engine. Springer (2003)

32 PNSE’14 – Petri Nets and Software Engineering

19. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundam. Inform. 94(3-4) (2009)
387–412

20. IEEE Task Force on Process Mining: Process Mining Manifest. In Daniel, F.,
Barkaoui, K., Dustdar, S., eds.: Business Process Management Workshop. Vol-
ume 99 of Lecture Notes in Business Information., Springer (2012) 169–194

21. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume
4714 of Lecture Notes in Computer Science., Springer (2007) 375–383

22. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In van der Aalst, W.M.P., Best, E., eds.:
ICATPN. Volume 2679 of Lecture Notes in Computer Science., Springer (2003)
450–462

23. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In Colom, J.M.,
Desel, J., eds.: Petri Nets. Volume 7927 of Lecture Notes in Computer Science.,
Springer (2013) 400–409

R. Bergenthum and J. Schick: Verification of Logs 33

