
Kolmogorov Backward Equations with 
Singular Diffusion Matrices 

Hermann Singer 

Diskussionsbeitrag Nr. 518 

Dezember 2019 

Lehrstuhl für angewandte Statistik und Methoden der empirischen Sozialforschung 
FernUniversität in Hagen 
Universitätsstraße 41 
58084 Hagen 
http://www.fernuni-hagen.de/ls_statistik/  
Sekretariat.Statistik@FernUni-Hagen.de 



Kolmogorov Backward Equations with
Singular Diffusion Matrices

Hermann Singer

December 12, 2019

Abstract The Feynman-Kac formula is derived from the Kolmogorov for-
mula by using a state extension, which permits the absorption of the potential
term into the drift part of the backward equation. The resulting homogenous
equation with singular diffusion matrix can be solved by using importance
sampling techniques based on a drift correction. The method is applied to the
Cameron-Martin formula, the quantum mechanical linear oscillator and the
pricing of arithmetic Asian options.

Keywords Feynman-Kac formula; Integrated variables; Monte Carlo
method; Importance sampling; Drift correction; Stochastic differential
equations

FernUniversität in Hagen,
Fakultät für Wirtschaftswissenschaft,
Lehrstuhl für angewandte Statistik
und Methoden der empirischen Sozialforschung,
D-58084 Hagen, Germany
E-mail: Hermann.Singer@FernUni-Hagen.de



2 Hermann Singer

1 Introduction

Solutions of deterministic partial differential equations can be written as func-
tional (path) integrals, which may in some cases be interpreted as probabilistic
expressions [1, 31], [29, chs. 4, 5.7]. This was first demonstrated by Feynman in
1942 for the case of the Schrödinger equation [5, 12, 13]. Introducing imaginary
time, a rigorous probabilistic theory was developed by Kac [25, 26, 27]. Later,
the option pricing theory of Black, Scholes and Merton [3, 37, 38] lead to a
partial differential equation, which may be solved by classical methods such as
separation of variables, or by the discounted expectation value of a terminal
condition [8]. This is especially intuitive to economists, who accomplish pricing
by considering the mean of future cash flows. One advantage of probabilistic
solutions of deterministic equations is the possibility of approximations by
statistical averages including standard error estimates [2, 7, 15, 21, 48]. Fur-
thermore, stochastic methods work well in higher dimensions, when spatial
discretization methods suffer from excessive computational demand.

The main device used in this paper is the reduction of the backward equa-
tion with potential term to a homogenous equation by using a state extension
[47, exercise 2.26, p. 421]. Then, the well known Kolmogorov formula implies
the Feynman-Kac formula. Consequently, importance sampling (IS) techniques
[30, 35, 41, 50, 55] for the former turn over to the latter equation. Moreover,
models with integrated variables occurring, for example, in the case of memory
effects [23] or in Asian options [16], are included as a special case. A draw-
back is the occurrence of a singular diffusion matrix, which requires special
attention.

In the field of rare events simulation, adaptive importance sampling meth-
ods have been used [9, 20, 28, 52, 54, 57]. In this context, a duality between an
optimal control problem and importance sampling can be derived. A solution
is given in closed form in terms of a path integral. The measure transformation
involved in Girsanov’s theorem introduces an additional drift term in the sto-
chastic differential equation (SDE) which is used to evaluate the Feynman-Kac
formula. This may be seen as a controlled version of the original SDE. The
optimal choice of the control function in explicit form was given by Milstein
[41, ch. 12] and Kloeden and Platen [30, ch. 16.2], but it requires knowledge
of the solution.

In an application context, approximations of the solution must be com-
puted [40], either iteratively or by using parametrized solutions of simpler
problems. An adaptive iterative approach uses the Kullback-Leibler entropy
[28, 58].

In the present paper, analytically known solutions of the inhomogenous
backward equation, e.g. the Black-Scholes formula or Gaussian solutions for
the Schrödinger equation with zero potential are used in order to implement
suboptimal importance sampling. Nevertheless, substantial variance reduction
can be achieved.

The article is organized as follows: after the definition of backward equa-
tions (Section 2) the main result is derived in Section 3. Then, integrated
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variables are introduced in Section 4 and importance sampling is applied to
the extended problem (Section 5). Finally in Section 6, we discuss applications
to the multivariate Cameron-Martin formula, the Schrödinger equation with
quadratic potential and to arithmetic Asian options.

2 Backward equations

The inhomogenous backward equation for the scalar concentration (density)
field C(x, t) is given by

Ct(x, t) + L(x, t)C(x, t) + v(x, t)C(x, t) = 0, (1)

t ≤ T , with terminal condition C(x, T ) = h(x). In Eq. (1), the partial dif-
ferential operator

L(x, t) = fα(x, t)∂α + 1
2Ωαβ(x, t)∂α∂β

= fT(x, t)∇+ 1
2 tr[Ω(x, t)∇∇T] (2)

is the backward operator w.r.t. the ‘spatial’ variables x = [x1, ..., xp]
T ∈ Rp×1,

where T denotes the transpose of a vector or matrix, t ∈ R is time, ∂α :=
∂/∂xα, ∂y := ∂/∂y and Ct := ∂C(x, t)/∂t, Cx := ∂C(x, t)/∂x = ∇C(x, t),
with ∇ := [∂1, ..., ∂p]

T, the gradient (nabla) operator. The drift vector is f =
fα, α = 1, ..., p and the symmetric diffusion matrix is Ω = Ωαβ ;α, β = 1, ..., p.
We assume a sum convention fαgα =

∑
α fαgα = fTg, and tr[A] = Aαα is

the trace of a square matrix.

The backward equation (1) is a generalized diffusion (transport) equation
including a drift term f and a source (potential) term v C [1, 29, 31, 50]. In a
more narrow sense, only the equation without potential term is a Kolmogorov
backward equation, but this name is also used for the general case [30, chs. 4.8,
17.1]. Likewise, it is called a Cauchy problem for the backward heat equation
with potential. Moreover, a term g(x, t) can be included [29, chs. 4.2, 5.7]. In
this paper, the potential term is called an inhomogeneity, although it contains
the solution C. Equations including stochastic terms are discussed by Holden
et al [22].

More generally, one can also consider so-called quasi-linear equations, where
the potential term is a nonlinear function of C and Cx [10, 39, 45, 46]. The so-
lution can be represented by a pair of forward-backward stochastic differential
equations (BSDE). For a linear function, the Feynman-Kac formula (see Sec. 3)
is obtained as a special case. Adaptive importance sampling schemes based on
BSDE equations are considered by Gobet and Turkedjiev [17, 18], Gobet et al
[19].
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3 Kolmogorov- and Feynman-Kac formula

A well known stochastic representation of the solution C(x, t) of Eq. (1) is
given by the conditional expectation value (Feynman-Kac formula)

C(x, t) = E
[
e
∫ T
t
v(X(τ),τ)dτh(X(T ))

∣∣∣X(t) = x
]
, (3)

where X(τ) ∈ Rp, t ≤ τ ≤ T is a vector stochastic process fulfilling the Itô
stochastic differential equation

dX(τ) = f(X, τ)dτ +G(X, τ)dW (τ) (4)

with initial condition X(t) = x, volatility matrix G : p × r, GGT = Ω,
and dW (τ) denotes the increments of an r-dimensional Wiener process, i.e.
E[Wα(t)] = 0, E[Wα(t) Wβ(t′)] = δαβ min(t, t′); α, β = 1, ..., r. For a proof,
see Karatzas and Shreve [29, ch. 5.7] and Appendix A. The (formal) deriva-
tive ζα(t) = dWα(t)/dt is a white noise process with covariance function
E[ζα(t)ζβ(t′)] = δ(t− t′)δαβ . Here, δ(t− t′) is Dirac’s delta function [32] and
δαβ denotes the Kronecker delta symbol.

This is the starting point for Monte Carlo (MC) approximations [2, 16],
in which the expectation value in Eq. (3) is replaced by a mean value over
independent or dependent replications.

In order to reduce the variance of the MC estimator, importance samp-
ling using a modified drift term can be utilized [35, 36, 40, 41, 50, 51]. This
new drift term in Eq. (4) is chosen such that, (important) trajectories X(τ)
are simulated yielding nonzero values of the terminal condition h(X(T )) (see
Section 5).

In the work of Melchior and Öttinger [35, 36], no potential term was consid-
ered. Therefore in the present context, it is desirable to derive a homogenous
equation without potential term. To achieve this, the integrated potential term
in Eq. (3) can be generated by the system extension

dY (τ) = v(X(τ), τ)dτ (5)

with initial condition Y (t) = 0 [41, ch. 12-13], [30, ch. 17.1], [42, ch. 7].
For the extended system of equations (4, 5) we can use the Kolmogorov

formula [31]

C(x, y = 0, t) = E
[
eY (T )h(X(T ))

∣∣∣X(t) = x, Y (t) = y = 0
]
. (6)

This representation is the solution of the homogenous backward equation

Ct(x, y, t) + L(x, y, t)C(x, y, t) = 0, t ≤ T, (7)

with

L(x, y, t) = fα(x, t)∂α + v(x, t)∂y + 1
2Ωαβ(x, t)∂α∂β (8)
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and terminal condition C(x, y, T ) = exp(y)h(x). Due to the variable extension
(the additional variable y is called integrated because of Eq. (5)), the extended
diffusion matrix Ω̃ = diag(Ω, 0) in Eq. (8) is singular and the drift of the
system Eq. (4, 5) is of the form f̃ = [fT, v]T. One has ∇̃T := [∇T, ∂y] =

[∂1, ..., ∂p, ∂y]; f̃T∇̃ = fT∇+ v ∂y; tr[Ω̃∇̃∇̃T] = tr[Ω∇∇T].
With the ansatz C(x, y, t) = exp(y)C(x, t) one recovers the inhomogenous

equation (1), since

v(x, t)∂yC(x, y, t) = v(x, t)C(x, y, t),

and the term exp(y) can be dropped. Thus one can identify

C(x, y = 0, t) = C(x, t)

C(x, y = 0, T ) = C(x, T ) = h(x) (terminal condition).

In summary, one has derived the Feynman-Kac formula Eq. (3) for the
inhomogenous backward equation (1) by using the Kolmogorov formula for
the extended system Eq. (4, 5) and the corresponding homogenous backward
equation (7).

The main advantage of the extended system is the possibility to use vari-
ance reduction techniques for the Kolmogorov formula, even in the presence
of an inhomogeneity (potential term) in Eq. (1).

A slight drawback is the higher dimensionality p + 1 of the extended dif-
fusion process [XT(τ), Y (τ)]T and the singular diffusion matrix Ω̃ (see also
Section 4). Equations with zero diffusion matrix correspond to determinis-
tic motions which can be described by the Liouville equation in statistical
mechanics [53, p. 411]. Here one has both stochastic motion, Eq. (4), and de-
terministic motion, Eq. (5), without error term.

The transition density p(xJ , yJ , T |x, y, t), appearing in the conditional ex-
pectation Eq. (6), explicitly

C(x, y, t) =

∫
exp(yJ)h(xJ)p(xJ , yJ , T |x, y, t)dxJdyJ ,

is known analytically only for linear systems and some special cases such as
the Feller square root process [8, 11]. Therefore, one can insert the Chapman-
Kolmogorov equation and use the product representation on the time slices
τj = t+ jδτ, j = 0, ...J ; δτ = (T − t)/J

p(ξJ , T |ξ0, t) =

J−1∏
j=0

∫
p(ξj+1, τj+1|ξj , τj)dξJ−1...dξ1, (9)

ξ0 = ξ = [xT, y]T, ξj = [xT
j , yj ]

T, τJ = T, τ0 = t. For a small time step δτ , one
can approximate the transition densities p by the Euler densities (cf. Eq. (4,
5))

q(ξj+1, τj+1|ξj , τj) = φ(ξj+1; ξj + f̃(ξj , τj)δτ, Ω̃(ξj , τj)δτ), (10)
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where φ(x;µ,Σ) = |2πΣ|−1/2 exp[− 1
2 (x−µ)TΣ−1(x−µ)] is the multivariate

Gauss density and | · | is the determinant. In this formula, it is assumed that
the covariance matrix Σ is nonsingular. The extended drift function is of the
form f̃ = [fT, v]T, but the diffusion matrix Ω̃ = diag(Ω, 0) is singular. In this
situation, one may

– either use the singular normal distribution [34, ch. 2.5.4]
– or use a small parameter ε > 0 (Ω̃ = diag(Ω, ε)) and finally consider the

limit ε→ 0.

The latter method leads to the desired result Eq. (3), which can be seen
as follows. The explicit form of Eq. (10) is

q(ξj+1, τj+1|ξj , τj) = φ(xj+1;xj + f(xj , τj)δτ,Ω(xj , τj)δτ)

φ(yj+1; yj + v(xj , τj)δτ, ε
2δτ), (11)

where the second line can be considered as a delta sequence δε(yj+1 − yj −
v(xj , τj)δτ) with the property limε→0

∫
δε(x)f(x)dx = f(0), where f(x) is a

test function. Thus the generalized function δ(x) is represented by a function
sequence δε(x) [32]. Now the integration over the y-variables in Eq. (9) can be
carried out, resulting in the term yJ =

∑
j v(xj , τj)δτ for ε→ 0, which is the

Riemann sum of the integral
∫ T
t
v(x(τ), τ)dτ .

In contrast, the singular normal distribution uses the pseudo inverse Ω̃− =
diag(Ω−, 0) and the second line in Eq. (11) is 1. Thus the result in Eq. (3)
cannot be obtained by using this approach. Therefore in the sequel, we always
assume a small parameter ε and consider the limit ε→ 0 in the final results.

4 Integrated variables

More generally, instead of the scalar process Eq. (5), one may use a q-dimensional
vector process

dY (τ) = v(X(τ), τ)dτ (12)

with initial condition Y (t) = y and consider the Kolmogorov representation

C(x,y, t) = E [H(X(T ),Y (T )) |X(t) = x,Y (t) = y]

(13)

with terminal condition C(x,y, T ) = H(x,y). For example, in case of scalar
X(τ) one can write

dY1(τ) = v(X(τ), τ)dτ

dY2(τ) = X(τ)dτ.
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The integrated variable approach thus permits equations with average values,
e.g. memory effects, or arithmetic Asian options with terminal condition h(y2)
(see Section 6.3). In this case, one sets H(x, y1, y2) = exp(y1)h(y2) and obtains

C(x, y1 = 0, y2, t) = E
[
eY1(T )h(Y2(T )) | X(t) = x, Y1(t) = 0, Y2(t) = y2

]
.

(14)

The starting value Y2(t) = y2 =
∫ t
0
X(τ)dτ is the cumulated value of the so

called underlying X(τ) from 0 to t. At terminal time T , the value of the op-

tion is C(x, 0, y2, T ) = h(y2) = h(
∫ T
0
X(τ)dτ) and thus depends on the time

average X̄T = T−1
∫ T
0
X(τ)dτ .

This shows that the system extension Eq. (12) has the double effect, that

1. the original inhomogenous backward equation can be transformed to a
homogenous one

2. cumulated variables can be used as well.

The advantage is the possibility of importance sampling for the Kolmogorov
formula Eq. (13), as discussed in the next section. A drawback is the occurence
of a singular diffusion matrix, but this happens at any rate in the presence of
integrated variables. As mentioned above, the problem can be solved by intro-
ducing small parameters εα, α = 1, ..., q, in the Gaussian transition densities
Eq. (11), i.e. ε2 → diag(ε21, ..., ε

2
q), and by taking the limit εα → 0 in the final

results.

5 Importance sampling

The expectation value Eq. (13) can be written explicitly in the form

C(ξ, t) =

∫
H(ξJ)p(ξJ , T |ξ, t)dξJ (15)

=

∫
H(ξJ)

p(ξJ , T |ξ, t)
p2(ξJ , T |ξ, t)

p2(ξJ , T |ξ, t)dξJ (16)

where ξ := [xT,yT]T and p2 is an importance density, yielding a smaller vari-
ance of the MC estimator. Intuitively, p2 should attain small values, when
H(ξJ) ≥ 0 is small, since these values contribute little to the functional. The
choice p2 ∝ Hp fulfils this condition and is even optimal [30, ch. 16.3]. How-
ever, the normalization C =

∫
Hpdξ is the desired unknown quantity. Again,

the transition densities can be expressed by the Chapman-Kolmogorov formula
(9) and subsequent Euler approximation.

Assuming that p2 is known, a variance reduced estimator of C (see Eq. (16))
can be written in the form

Ĉ(ξ, t; δτ) = N−1
∑
n

H(ξnJ)

(
p

p2

)
(Ξn, τ |ξ, t) (17)
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where Ξn = [ξnJ , ..., ξn1] ∼ p2 is a replication of the path ξn(τj); j = 1, ..., J ,

starting at ξn(τ0) = ξ, τ0 = t, and p =
∏J−1
j=0 p(ξj+1, τj+1|ξj , τj), τ =

[τJ , ..., τ1]. The optimal importance density is explicitly given by

p2 = H(ξJ)p(Ξ, τ |ξ, t)/C(ξ, t) = popt, (18)

Ξ = [ξJ , ..., ξ1], with corresponding Euler approximation q2 = qopt = Hq/C.

In order to sample paths from p2, one can find a new drift function f̃2 = f̃opt,

so that the density p(Ξ, τ |ξ, t; f̃2, Ω̃) coincides with p2. Then, one can simulate
independent trajectories ξn ∼ p2 and compute the variance reduced estimator
Eq. (17). Since Ω̃ remains invariant, the measures (with densities) p and p2
are absolutely continuous w.r.t. each other and p/p2 (or q/q2 in the case of
approximate Euler densities) exists in a continuum limit (δτ → 0).

It can be shown [36, 50], that the density Eq. (18) fulfils a backward equa-
tion ∂tp2 +L2(ξ, t)p2 = 0 with modified drift f̃2. The new drift can be written
in the form (in the limit ε→ 0, t ≤ τ ≤ T )

f̃2(ξ, τ) = f̃ + Ω̃ ∇ξ logC

=

[
f
v

]
+

[
Ω 0
0 0

] [
∇x logC
∇y logC

]
:=

[
f2(x,y, τ)
v(x, τ)

]
[30, ch. 16.2, p. 514] and Appendix B. Thus, the original drift ist distorted
(tilted) by an additional term, which produces trajectories with high values of
the terminal condition H(xJ ,yJ). Clearly, in order to practically compute the
importance drift, an approximation of the solution C must be known, e.g. a
Gaussian solution for the Schrödinger equation with zero potential (example
6.2) or the Black-Scholes formula (example 6.3). The components of f̃2 corre-
sponding to the integrated variables are not distorted, since they only depend
on the variables x, without error term; see Eq. (12). Because of the special
form of f̃2(

q

q2

)
(Ξ, τ |ξ0, τ0) = exp


J−1∑
j=0

(fj − f2j)TΩ−1j [δxj − 1
2 (fj + f2j)δτ ]

(19)

fj := f(xj , τj),f2j := f2(xj ,yj , τj), etc. [33, vol. I, p. 297], only depends on
the original drift components f(x, τ) and the drift correction in

f2(x,y, τ) = f(x, τ) +Ω(x, τ) ∇x logC(x,y, τ)

= f(x, τ) + δf(x, τ). (20)

The parts of the density function depending only on yj and v(xj , τj) cancel
(see Eq. (11), 3rd line), as well as the Jacobian terms |2πΩj |−1/2. Now, in
analogy to the discussion following Eq. (11), the integration in Eq. (16) over the
y-variables can be carried out and the delta functions δε(yj+1−yj−v(xj , τj)δτ)
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generate the integrated variables yj =
∑j
l=0 v(xl, τl)δτ in the limit εα →

0, α = 1, ..., q (see Sections 3, 4). An alternative derivation using the Girsanov
theorem is given in Appendix B. Thus the variance reduced MC estimator can
be expressed in this limit as

Ĉ(x,y, t; δτ) = N−1
∑
n

H(xnJ ,ynJ)

(
q

q2

)
(Xn,Yn, τ | x,y, t), (21)

where Xn = [xnJ , ...,xn1], Yn = [ynJ , ...,yn1], τ = [τJ , ..., τ1]. The Euler-
Maruyama approximation for the stochastic equations (4, 12) with modified
drift f̃2 reads

xn,j+1 = xnj + f̃2(xnj ,ynj , τj)δτ +G(xnj ,ynj , τj)δWnj

yn,j+1 = v(xnj , τj)δτ,

xn0 = x,yn0 = y and δWnj ∼ N(0, Irδτ), independent and identically dis-
tributed, and Ir is an r-dimensional unit matrix. The solution Eq. (15) is im-
plicitly contained in the drift correction Ω(x, τ)∇x logC(x,y, τ), t ≤ τ ≤ T .
For example, the solution Eq. (6) can be estimated as

Ĉ(x, t; δτ) = N−1
∑
n

eynJh(xnJ)

(
q1
q2

)
(Xn,yn, τ | x, y = 0, t), (22)

yn = [ynJ , ..., yn1], and the drift correction is

Ω(x, τ)∇x log(eyC(x, τ)) = Ω(x, τ)∇x logC(x, τ), (23)

without the integrated potential term y.
In contrast, in the case of Asian options (Eq. 14), one has C(x, y1, y2, τ) =

ey1C(x, y2, τ), so only the discount factor ey1 cancels, but not the cumulated
variable y2.

6 Examples

6.1 The Cameron-Martin formula

The functional

E
[
e−

γ2

2

∫ ρ
0
W 2(τ)dτ |W (0) = x

]
=

e−
1
2x

2γ tanh(γρ)√
cosh(γρ)

(24)

of the Wiener process was computed analytically by Cameron and Martin
[6], Gelfand and Yaglom [14]. See also Borodin and Salminen [4, p. 168, 1.9.3].
According to Eq. (3), it is the solution of the backward equation with the time
invariant functions f = 0, Ω = 1, quadratic potential v(x) = − 1

2γ
2x2 and

terminal condition C(x, t) = h(x) = 1. Explicitly, we have

Ct(x, t) +
[
1
2∇

2
x − 1

2γ
2x2
]
C(x, t) = 0; t ≤ T. (25)



10 Hermann Singer

Now, since the system is autonomous, one can rewrite Eq. (3) as

C(x, T ) = E
[
e
∫ T−t
0

v(X(τ))dτh(X(T − t))
∣∣∣ X(0) = x

]
.

(26)

Setting ρ = T−t, one obtains the left hand side of Eq. (24). Since f = 0, Ω = 1,
one has X = W .

Liptser and Shiryayev [33, vol. 1, ch. 7.7.] derived a multivariate exten-
sion of Eq. (24), which serves as a comparison of Monte Carlo and numerical
integration, based on a semi-discretization of the backward equation. For a
p-dimensional Wiener process starting at x, one obtains

E
[
e−

1
2

∫ ρ
0
W T(τ)Γ (τ)W (τ)dτ |W (0) = x

]
= e

1
2

∫ ρ
0

tr[R(τ)]dτe
1
2x

TR(0)x, (27)

where Γ : p× p is a symmetric positive semidefinite weight matrix and R(τ)
is the solution of the matrix Riccati equation (0 ≤ τ ≤ ρ)

Ṙ(τ) = Γ (τ)−R(τ)2; R(ρ) = 0. (28)

In the case p = 2 one has the system

Ṙ11 = γ21 −R2
11 −R2

12 (29)

Ṙ12 = γ12 − (R11 +R22)R12 (30)

Ṙ22 = γ22 −R2
22 −R2

12. (31)

For diagonal Γ , the equation for R12 can be solved by

R12(τ) = e
∫ ρ
τ
(R11+R22)ds R12(ρ) = 0.

Therefore for constant Γ , one obtains the solution (analogous for R22)

R11(τ) = γ1 tanh(γ1(τ − ρ))

R11(0) = −γ1 tanh(γ1ρ)

and 1
2

∫ ρ
0
R11(τ)dτ = − 1

2 log cosh γ1ρ. Note that R(0) is a function of ρ, de-
noted as R(0, ρ). This implies the result

E
[
e−

1
2

∫ ρ
0
W T(τ)diag(γ2

1 ,γ
2
2)W (τ)dτ |W (0) = [x1, x2]T

]
=

e−
1
2 log cosh γ1ρ−

1
2 log cosh γ2ρe−

1
2x

2
1γ1 tanh(γ1ρ)− 1

2x
2
2γ2 tanh(γ2ρ) (32)

which is, as expected, the product of the univariate formula Eq. (24). With
off-diagonal γ12 6= 0, the solution of Eq. (30) is not identically to zero and the
system Eqs. (29–31) must be solved. One can use Runge-Kutta integration
and compute the importance drift ∇ logC(x, u) = R(0, u)x (see Eq. (27) and
below).

Fig. 1 shows a Monte Carlo approximation (Eq. 22) of the 2-dimensional
solution Eq. (32) as a function of x1 = x2 = x with sample size N =
10. The standard errors of the simulated solution were estimated as s/

√
N ,
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Fig. 1 Two-dimensional Cameron-Martin formula (Monte Carlo simulation). Solution and es-
timated standard errors as a function of x1 = x2 = x = −3, ...,+3, δx = 0.25, ρ = 1,
γ21 = γ21 = 1, γ12 = 0, δτ = 0.01. Sample size N = 10. Left: Optimal importance sampling.
Right: MC solution without importance sampling. Red lines: analytical values computed from
Eq. (32).
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Fig. 2 Two-dimensional Cameron-Martin formula (Monte Carlo simulation). Left: convergence
for fixed x = [0, 0]T over sample size N = 2, ...1000 and estimated standard errors (optimal
importance sampling). Right: convergence without importance sampling.

where s is the standard deviation of the N random numbers in Eq. (22), i.e.
eynT h(xnT )(q1/q2)(Xn,yn, ρ | x, y = 0, t = 0).

The formula was evaluated for the coordinates x1 = x2 = x = −3, ...,+3,
δx = 0.25 with time step δτ = 0.01. The weight matrix Γ = diag(1, 1) was set
diagonal to have an analytical reference solution. Clearly, the simulated solu-
tion with optimal importance sampling (top) is very accurate. The standard
deviations are about a factor 10−1 smaller as compared to the naive MC esti-
mator (bottom), and the relative error w.r.t. the exact solution is smaller than
2.5%. In Fig. 2, the convergence over sample size N = 2, ..., 1000 is displayed
(error bars: means ± standard errors).

It is interesting to compare the Monte Carlo results with approximations
based on numerical integration (for details, see [51]). The functional integral
Eq. (3) was first approximated on the time slices τj = s+ jδτ, j = 0, ...J ; δτ =
(T − t)/J by a (J − 1)-dimensional integral. Afterwards, in a second step,
the integrals were replaced by Riemann sums on a ‘spatial’ grid xa, ...,xb
with spacing δx. The transition densities p(xj+1, τj+1|xj , τj) were evaluated
on these sample points, resulting in transition matrices. Thus the functional
integral is approximated by a (J − 1)-fold matrix product.
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Fig. 3 Two-dimensional Cameron-Martin formula (numerical integration). Left: Solution as a
function of x. Same parameters as in Fig. 1, spatial discretization xa = [−5,−5]T, ...,xb =
[5, 5]T, δx = [0.25, 0.25]T, δτ = 0.01. Exact solution and methods INT (blue), FD (green) (for
details, see text). Right: relative error w.r.t. the analytical solution as a function of x.
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Fig. 4 Two-dimensional Cameron-Martin formula (numerical integration). Left: relative error
of MC solution (blue line: with importance sampling, green: without IS). Right: relative error
with smaller spatial grid steps δx = [0.1, 0.1]T. Methods INT, FD and ETK (yellow).

Monte Carlo semi-discretization
MC/IS MC/without IS INT FD ETK

N 10 100 10 100 1000

p relative error
1 0.009 0.009 0.728 0.068 0.075 0.0002 0.0025 0.0015
2 0.025 0.017 0.566 0.253 0.066 0.0004 0.005 0.0029
3 0.029 0.027 0.832 0.504 0.148 0.0002 0.027 0.0605

p CPU time
1 0.34 3.52 0.17 1.33 14.86 0.02 0.01 0.01
2 0.39 3.80 0.17 1.41 14.80 0.91 0.05 6.00
3 0.41 3.80 0.16 1.48 15.96 40.91 1.23 146.66

Table 1 Cameron-Martin formula: Maximum absolute relative error in the interval x = −3, ..., 3
and CPU time of Monte Carlo method versus semi-discretization methods for p = 1, ..., 3. Sample
size N = 10, 100, 1000, δτ = 0.01. Spatial discretization xa = [−5, ...,−5]T, ...,xb = [5, ..., 5]T,
δx = [0.25, ..., 0.25]T. For p = 3, δx = [0.5, 0.5, 0.5]T (see text).
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Fig. 5 Cameron-Martin formula: MC method with importance sampling, sample size N = 10.
CPU time (in seconds) as function of dimension p = 1, ..., 100 and quadratic fit. Left: parallel,
right: sequential computation.
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Fig. 6 Cameron-Martin formula, x = [0, ..., 0]T, Nondiagonal weight matrix Γ : 10×10. Exact
importance sampling for several time steps as a function of sample size N = 2, ..., 2000. For
larger time steps, the estimates are biased. Left: δt = 0.01. Right: δt = 0.001. For comparison,
the solution of the Riccati equation using Runge-Kutta integration is displayed (red line).
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Fig. 7 Cameron-Martin formula, x = [0, ..., 0]T, Nondiagonal weight matrix Γ : 10 × 10.
Approximative importance sampling (diagonal Γimp) as a function of sample size N = 2, ..., 2000.
Left: δt = 0.01. Right: δt = 0.001.

The transition matrices were computed by 3 methods:

1. Euler transition kernel (ETK) based on the short time Gaussian approxi-
mation φ(xj+1;xj + fjδτ,Ωjδτ) (cf. Eq. (10)).

2. Matrix exponential exp(F δτ) of the discretized Fokker-Planck operator
F = LT. Here we used either finite differences (FD) or an integral repre-
sentation (INT) F (x)h(x) =

∫
F (x,x′)h(x′)dx′, where the integral kernel
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is F (x,x′) = F (x)δ(x − x′), and F = L∗ is the adjoint of the backward
operator Eq. (2). F (x,x′) was evaluated on the spatial grid, resulting again
in a matrix [51, 56].

Clearly, the size of the matrices scales with the power of model dimension
p and gets excessively large. In contrast, the computational demand of the
MC method should be of order Np2, since the simulated data and involved
densities depend on the p× p diffusion matrix Ω (cf. Eq. 21).

In Fig. (3), top picture, the exact solution Eq. (32) for the 2-dimensional
model and the methods INT and FD are displayed. The relative error w.r.t. the
exact solution (smaller than 0.04% (INT), 0.5% (FD)) is shown in the bottom
picture, and for the MC estimates with sample size N = 10 (smaller than 2.5%)
in the top picture of Fig. (4). Due to the large grid steps δx = [0.25, 0.25] in
the range xa = [−5,−5],..., xb = [5, 5] and δτ = 0.01, the method ETK yields
very large errors and is not displayed. In fact a smaller δx of order

√
δτ = 0.1

should be used. However, this yields transition matrices of order 10201×10201,
which is computationally demanding. Now, the method ETK yields reasonable
errors and the result is displayed in Fig. (4), bottom.

A comparison of the dimensions p = 1, ..., 3 is shown in table 1. The
Cameron-Martin formula was computed for the 25 values x1 = ... = xp = x =
−3, ..., 3; δx = 0.25 and δτ = 0.01. The interval for the numerical integration
was chosen larger (xa = [−5, ...,−5], ...,xb = [5, ..., 5], δx = [0.25, ..., 0.25]),
to minimize errors in the region of interest. In the case p = 3, one would ob-
tain a 413 × 413 = 68921 × 68921 transition matrix, therefore the grid steps
were doubled to δx = [0.5, 0.5, 0.5] (9261× 9261 matrix). Then, the maximal
absolute relative error of the 25 function values w.r.t. the analytical solution
(maxj=1,...,25 |Ĉ(xj)/C(xj)− 1|) and the CPU time was determined and tab-
ulated. The times relate to a Intel Core i9 processor with 2,9 GHz and Math-
ematica 11.3. Sparse arrays and parallel computing were utilized. The MC
method with importance sampling performs well in all dimensions p = 1, ..., 3,
already for small sample size N = 10. In contrast, without importance samp-
ling, a much bigger sample size N > 1000 is required. The semi-discretization
methods INT and FD yield very small relative error, except for the case FD,
p = 3 (similar to MC). In higher dimensions, the performance of these meth-
ods declines quickly. As noted above already for p = 3, the grid steps must be
doubled to permit numerical computations. The small CPU time for the finite
difference method FD is due to the tridiagonal form of the backward matrix
L = F T.

For the ETK method, the time discretization should be of order δτ = δx2,
i.e. 0.252 = 0.0625, p = 1, 2 and 0.52 = 0.25 for p = 3. Therefore, the last
column in the table was computed with these values.

In summary, the numerical integration methods work well for low dimen-
sions p = 1, 2, but the size of the transition matrices scales with the power of p
and CPU time and storage demand gets excessively large, despite using sparse
arrays. In contrast, the MC methods also work for high dimensions, especially
when using parallel computing (see Fig. 5).
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Finally, we used a nondiagonal matrix Γ : 10×10 with main diagonal γii = i
and γij = 1/2, i 6= j and computed the solution with exact and approximate
importance sampling. In the former case, the Riccati equation (28) was solved
using an Euler scheme yielding the log derivative ∇ logC(x, u) = R(0, u)x.
Approximate importance sampling was implemented using the product of
univariate explicit formulas as in Eq. (32), equivalent to a diagonal Γimp in
Eq. (20). The results are displayed in Fig. (6) for fixed x = [0, ..., 0]T.

The MC estimates with standard errors were plotted over sample size N =
2, ..., 2000 with time steps δt = 0.01 (top) and δt = 0.001 (second from the
top), both with exact importance sampling. Clearly, the bias of the estimates
gets smaller with decreasing time step δt. The red line is the result computed
with a 4th order Runge-Kutta scheme for Eq. (28). In Fig. (7), approximate
importance sampling is displayed. The standard errors are larger, but also a
substantial variance reduction is achieved.

6.2 Schrödinger equation

With respect to the time difference ρ = T − t, one obtains from Eq. (25) in
forward direction ρ ≥ 0

uρ(x, ρ) = [ 12∆−
1
2γ

2x2]u(x, ρ), (33)

where u(x, ρ) = C(x, T − ρ). This can be considered as Euclidean version of
the Schrödinger equation for the harmonic oscillator with quadratic potential
v(x) = 1

2γ
2x2, m = ~ = 1,

iψρ(x, ρ) = [− 1
2∆+ v(x)]ψ(x, ρ), (34)

ρ ≥ 0, with the replacement iρ→ ρ (imaginary time) [44, 49, p. 7]. Using the
initial condition u(x, 0) = δ(x − z), the solution of equation (33) reads (cf.
Eq. (26))

u(x, ρ) = E
[
e−

γ2

2

∫ ρ
0
W 2(τ)dτ δ(W (ρ)− z)

∣∣∣W (0) = x
]

=√
γ

2π sinh(γρ)
exp

(
γ[2xz − (x2 + z2) cosh(γρ)]

2 sinh(γρ)

)
(35)

[4, 13, p. 168]. A simulated solution of Eq. (33) using optimal importance
sampling (Eq. (22)) is shown in Fig. 8, top row, as a function of initial lo-
calization z = −1, ..., 2. As importance drift, the representation Eq. (23) was
inserted, using the analytical solution Eq. (35). In contrast, without impor-
tance sampling, one obtains much larger simulation errors (Fig. 8, middle).
Now, since in practice the exact solution is unknown, one must use a suit-
able approximation to compute a suboptimal drift correction. Setting γ = 0,
the oscillator equation coincides with the diffusion equation. The solution is
u(x, ρ) = φ(x; z, ρ), u(x, 0) = δ(x−z). This function is used in the drift correc-
tion. In Fig. 8, bottom, the result is displayed. It is very similar to the optimal
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Fig. 8 Schrödinger equation (linear oscillator). Left: Simulated Feynman-Kac formula as a
function of z = −1, ..., 2, x = 1, ρ = 1, γ = 1, δτ = 0.01. Sample size N = 1000, means and
standard deviations in M = 10 replications. Top: optimal importance sampling. Middle: without
importance sampling. Bottom: approximate importance sampling with γ = 0 (see text). Right:
means and standard errors as a function of sample size N = 2, ..., 1000, x = 1, z = 2.

approach (top). A plot over sample size displays some minor differences (Fig. 8,
right column). Without importance sampling, very large sample sizes are re-
quired to obtain small standard deviations (middle, right). In Fig. 8, means
and standard deviations (error bars) were computed over M = 10 replications
of Eq. (22).

In Fig. 9, left column, the exact solution of the oscillator equation and the
corresponding diffusion equation (v(x) = 0; γ = 0) are displayed for several
time points. The logarithmic derivatives (right) for the importance drift are
linear in both cases. For small times, the derivatives and thus the importance
sampling Monte Carlo algorithms are very similar. Furthermore, Fig. 10 illus-
trates the tilted dynamics of the optimal trajectories, which are determined
by the drift correction.
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Fig. 9 Schrödinger equation. Left column: Comparison of exact (red) and approximate (orange)
solution of the oscillator equation for three time points τ = 1, 0.5, 0.1. Right column: logarithmic
derivative ∇x log u(x, τ) for the importance drift.

Fig. 10 Schrödinger equation. Simulation of solution u(x, ρ), ρ = 1, x = 1, z = 2, δτ = 0.01.
Left: trajectories W2(τ) with importance drift f2 (as function of τ/δτ = 0, ..., 100). Middle:
trajectories −γ2/2

∫ τ
0 W 2

2 (τ ′)dτ ′, Right: histogram of W2(ρ), mean = 1.98804, std = 0.10231.

As explained in Sec. 6.1, one can solve the backward equation on a spatial
grid (here from xa = −5, ..., xb = 5, δx = 0.1). The results are displayed in
Fig. 11. In the top picture, the exact solution (red) is displayed together with
the three methods as described above. The relative error (smaller than 2%)
w.r.t. the analytical solution is displayed in the middle picture. The results of
INT and FTK are very similar. Similar small errors are obtained for the MC
method (N = 1000) with exact and approximate (zero potential) importance
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Fig. 11 Schrödinger equation. Comparison of MC with numerical integration (see text). Top:
Analytical solution (red), finite differences (FD, green), Euler transition kernel (yellow) and
integral operator (INT, blue) as a function of z = −1, ..., 2. Middle: relative error w.r.t. the
analytical solution. The results of INT and FTK are very similar. Bottom: relative error of Monte
Carlo approximations (optimal IS = blue, approximate IS (Gaussian) = green, N = 1000) w.r.t.
the analytical solution. Without importance sampling (yellow), the error is very large.

sampling (bottom). The error without IS is much larger and not a smooth
function of the variable z.

Table 2 displays the maximum relative absolute error w.r.t. the exact solu-
tion and CPU time for several MC sample sizes N = 10, 1000, 2000 (M = 10
replications) and grid steps δx = 0.2, 0.1, 0.05. For exact or approximate
importance sampling, similar error estimates are obtained (< 2% for N =
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Monte Carlo semi-discretization
N opt. IS appr. IS no IS δx INT FD ETK

relative error
10 0.1238 0.1395 0.8081 0.2 0.0289 0.0196 3.5775

1000 0.0194 0.0173 0.0799 0.1 0.0167 0.0135 0.0167
2000 0.0164 0.0142 0.045 0.05 0.0167 0.0159 0.0167

CPU time
10 2.25 2.33 0.95 0.2 0.09 0.05 0.01

1000 296.53 299.37 115.46 0.1 0.25 0.06 0.28
2000 587.31 575.13 244.98 0.05 1.29 0.10 0.92

Table 2 Schrödinger equation. Maximum absolute relative error in interval z = −1, ..., 2 and
CPU time (seconds) of Monte Carlo method versus semi-discretization methods. Sample size
N = 10, 1000, 2000, M = 10 replications. Spatial discretization xa = −5, ..., xb = 5, δx =
0.2, 0.1, 0.05, δτ = 0.01 (see text).

1000, 2000). Without importance sampling, larger sample sizes are required.
For the semi-discretization methods, a spatial discretization of δx ≤ 0.1 is re-
quired to obtain errors < 2%. In this one-dimensional example, the numerical
integration method is much faster than the MC method.

Numerical considerations

In the simulations, the initial condition u(0, x) = δ(x − z) was represented
by the delta sequence δε(x) = φ(x; 0, ε2) [32] with the smoothing parameter
ε2 = δτ . This can be motivated from the quadratic variation dW 2(τ) = dτ of
the Wiener process. Furthermore, the drift correction δf = ν Ω∇x log u(x, τ)
was multiplied by a scaling factor ν ≈ 0.8 in order to obtain a minimal standard
deviation. The optimal value may be determined by a minimization algorithm.
The scaling factor can be motivated by the observation, that the function
h = δ(W (ρ)− z) is very narrow (of order

√
δτ = 0.1) and too large drifts lead

to approximation errors. Alternatively, a scaled smoothing parameter can be
used.

6.3 European and Asian options

As already mentioned in Sec. 4, the terminal value of a so called arithmetic
Asian option depends on the time average of the underlying X(t) (stock price
etc.) in the interval t0 ≤ t ≤ T . This time average can be generated by the

inclusion of an integrated variable Y (t) =
∫ t
t0
X(u)du.

In contrast, the terminal condition of a European option is given only by
the last value X(t) = x. For example, a call option has terminal condition
C(x, T ) = h(x) = max(x −K, 0) where K is the strike price. In this simpler
case, the option fulfils the Black-Scholes partial differential equation (PDE)

Ct(x, t) + L(x, t)C(x, t)− r C(x, t) = 0, t ≤ T, (36)
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Fig. 12 Black-Scholes formula and simulated call option. Left: with optimal importance samp-
ling. Right: without importance sampling. Sample size N = 10, strike price K = 50, volatility
σ = 0.2, interest rate r = 0.07, T = 1, t = 0.

with terminal condition C(x, T ) = h(x) and backward operator

L(x, t) = rx∇x + 1
2σ

2x2∇2
x (37)

[see, e.g. 3, 29, 50]. Solving the PDE (36) leads to the Black-Scholes formula.
Originally [3], separation of variables was used, but the stochastic representa-
tion

C(x, t) = E
[
e−r(T−t)h(X(T ))

∣∣∣ X(t) = x
]

(38)

gives the same results. The stochastic process X(τ) fulfils the Itô equation
(t ≤ τ ≤ T ;X(t) = x)

dX(τ) = rX(τ)dτ + σX(τ)dW (τ), (39)

a geometric Brownian motion. The integral in Eq. (38) can be calculated an-
alytically by noting that X(t) is log-normally distributed. The results are
displayed in Fig. (12) for a call option with sample size N = 10, strike price
K = 50, volatility σ = 0.2, interest rate r = 0.07, time to maturity T − t = 1
and terminal condition h(x) = max(x − K, 0). Clearly, importance sampling
yields a very strong variance reduction. Other simulation methods, option
types and dynamics of the underlying are discussed in [15, 16, 43, 48, 50, 59].

In the case of arithmetic Asian options, according to Section 4, one has the
stochastic representation

C(x, y, t) = E
[
e−r(T−t)h(Y (t))

∣∣∣ X(t) = x, Y (t) = y
]

(40)

where Y (t) =
∫ t
t0
X(u)du is an integrated variable. The processes X and Y

fulfil the system of Itô equations (one could also join an equation for the
state-dependent interest rate v(x, τ) = −r(x, τ); see sect. 4)

dX(τ) = rX(τ)dτ + σX(τ)dW (τ)

dY (τ) = X(τ)dτ,

with initial conditions X(t) = x, Y (t) = y, t ≤ τ ≤ T . Since the inte-
grated variable does not have an error term, a singular transition density
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Fig. 13 Asian call option. Left: Simulated values (Black-Scholes importance sampling, K2 =
K). Black-Scholes value (red) for comparison. Same parameters as in Fig. 12, sample size
N = 1000 and t = t0 = 0, T = 1. Right: Ratios of means (blue) and standard deviations
(green), each ratio computed without/with importance sampling. Strong variance reduction for
options out of the money (x < 50).

p(xj+1, yj+1|xj , yj) with covariance matrix diag(Ω, 0) occurs (see Section 5).
Clearly, Eq. (40) is the Feynman-Kac formula for the PDE (Ingersoll [24, ch.
17.10], Zvan et al [60])

Cs + rxCx + xCy + 1
2σ

2x2Cxx − rC = 0; t ≤ T.

C ≡ C(x, y, t) with terminal condition C(x, y, T ) = h(y). For a call option,
one sets

h(y) = max

(
y

T − t0
−K, 0

)
.

In this case, the solution is not known, but one can use the Black-Scholes
formula to compute a suboptimal drift correction Ω(x, τ)∇xCref(x, τ). In this
reference solution Cref(x, τ), appropriate parameters may be used, which give
a better fit to the solution to be approximated. For example, the strike price
K can be enlarged to generate smaller values of Cref . Fig. 13 (left) shows that
the Asian option value is below the European one (used as reference solution)
for x-values above K. This may be understood from the observation that

µ(t) = E[X(t)] = x exp(rt)

E[Y (t)/t] =
1

t

∫ t

0

µ(τ)dτ =
x

rt
(exp(rt)− 1) < x exp(rt) = µ(t).

Therefore, the expected time average is always smaller, at least for the geo-
metric Brownian motion. From this it is plausible that also the expectation
values of the terminal condition fulfil E[h(Y (t)/t)] < E[h(X(t))], for h(x) is
linear above the strike price K, leading to a higher option value for a Euro-
pean option ‘in the money’ (x > K). In general, this is not true, since a lower
expectation value can be compensated by a higher variance leading to a higher
expectation of h.

Fig. 13 (right) displays the ratio of mean values and standard deviations,
computed with and without importance sampling (see Eq. 21). The ratio of
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standard deviations (green) shows a strong variance reduction for options out
of the money (x < K = 50). In this case, many trajectories are lifted above
the strike price K, whereas without importance sampling, they are supressed
by the terminal condition h. Actually, for Asian options only the time average
of X(u) must be above K.

7 Conclusion

The inhomogenous backward equation with potential term and integrated vari-
ables was transformed, using a state extension, to a singular form, where the in-
homogeneity was absorbed in the drift term. Then, the Feynman-Kac formula
can be represented as a Kolmogorov formula and the importance sampling
method with distorted drift can be used, although the Feynman-Kac formula
contains terms depending on the complete history from present time t to final
time T . This embraces, e.g., state-dependent potentials (interest rates) and
models with integrated variables, e.g. arithmetic Asian options, where the ter-
minal value depends on the cumulated history. The resulting new probability
measure p2 expresses the optimal importance density in terms of a stochastic
process with distorted drift, which only concerns the nonintegrated part. The
integrated potential does not appear in the drift correction. Other integrated
variables still appear in the correction term.

In one or two dimensions, methods using a spatial discretization are fast
and accurate, but in higher dimensions, only the Monte Carlo approach yields
feasible computations, since the computational demand only scales quadrat-
ically with dimension. Although the drift correction requires the knowledge
of the solution, suboptimal importance sampling using approximate solutions
leads to a substantial variance reduction.

In conclusion, the variance reduced Monte Carlo estimator for the Feynman-
Kac representation can be computed by using a Kolmogorov formula with state
extension, even in high dimensions.

Appendix A: The Feynman-Kac formula

The Feynman-Kac formula Eq. (3) can be proved by using the Itô lemma for
the ‘discounted’ function C∗ = C(X(τ), τ) β(t, τ), where C(x, t) is a solution
of Eq. 1 and β(t, τ) = exp[

∫ τ
t
v(X(u), u)du] is the discount factor [see 29, ch.

5.7]. One obtains (C,α := ∂αC)

d[C(X(τ), τ)β(t, τ)] = dC β + C dβ

= (C,αdXα(τ) + 1
2C,αβΩαβdτ + Cτdτ)β + Cβvdτ

= β(LC + Cτ + vC)dτ + βC,αGαβdWβ(τ) (41)
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The first term in Eq. (41) is null due to the backward equation. Integrating
from t to T one obtains

C(X(T ), T )β(t, T )− C(X(t), t)β(t, t) =

∫ T

t

β(t, τ)C,αGαβdWβ(τ).

Taking the conditional expectation E[ · |X(t) = x] the result Eq. (3) is proved.

Appendix B: Milstein-Girsanov transformation

The drift correction used in Section 5, namely δf(x,y, τ) = Ω(x, τ)∇x logC
(x,y, τ), can also be derived by the measure transformation approach [41, ch.
12], [30, ch. 16.2]. The aim is to compute the functional

C(ξ, t) = E[H(ξ(T )) | ξ(t) = ξ],

where dξ = f̃dt+G̃dW . By the Girsanov theorem, the ‘drifted’ Wiener process

Wd(t) = W (t)−
∫ t

0

d(ξd, τ)dτ

(cf. Eq. 42) is a Wiener process w.r.t. a transformed probability measure Pd
with Radon-Nikodym density dPd/dP = Θ(t)/Θ(0). The correction process
Θ(t) fulfils the stochastic equation dΘ(τ) = Θ(τ)〈d(ξd, τ), dW (τ)〉 with the
explicit solution

Θ(T )/Θ(t) = exp

[∫ T

t

〈d, dW (τ)〉 − 1
2 〈d,d〉dτ

]
,

d = d(ξd, τ), where 〈f , g〉 =
∑
α fαgα denotes the scalar product. Using the

drifted Wiener process Wd,

dξd = f̃dτ + G̃dWd = f̃dτ − (G̃d)dτ + G̃dW (42)

is a transformed Itô process, which has the same properties as ξ(t) (w.r.t. the
probability Pd). Therefore, the functional can be written as expectation w.r.t.
the transformed process including a correction factor

E[H(ξ(T )) | ξ(t) = ξ] = E[H(ξd(T ))Θ(T )/Θ(t) | ξd(t) = ξ].

It can be shown (Milstein [41], ch. 12, Kloeden and Platen [30], ch. 16.2.) that
the optimal choice of the drift d is given by

d(ξ, τ) = −G̃T∇ξ logC(ξ, τ).

Now, since G̃T = [GT,0] and ξ = [xT,yT]T, we have d(ξ, τ) = −GT∇x logC
(x,y, τ) := −GTs. Therefore, the drift correction appearing in the trans-
formed Itô equation (42) is

−G̃d =

[
GGT∇x logC(x,y, τ)

0

]
=

[
δf
0

]
,
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Ω = GGT. Now, 〈d,d〉 = 〈GTs,GTs〉 = 〈Ωs,Ω−1Ωs〉 = 〈δf ,Ω−1δf〉 and
〈d, dW 〉 = 〈GTs, dW 〉 = 〈s, dx − fdτ − δfdτ〉 = −〈δf ,Ω−1(dx − fdτ −
δfdτ)〉, assuming a nonsingular diffusion matrix. Thus, the correction factor
can be written as

Θ(T )/Θ(t) = exp

∫ T

t

−〈δf ,Ω−1(dxd − fdτ − 1
2δfdτ)〉,

which coincides with Eq. (19), after setting f2 = f + δf and discretization of
the integrals.
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